JP2018064346A - Power system - Google Patents

Power system Download PDF

Info

Publication number
JP2018064346A
JP2018064346A JP2016200724A JP2016200724A JP2018064346A JP 2018064346 A JP2018064346 A JP 2018064346A JP 2016200724 A JP2016200724 A JP 2016200724A JP 2016200724 A JP2016200724 A JP 2016200724A JP 2018064346 A JP2018064346 A JP 2018064346A
Authority
JP
Japan
Prior art keywords
wiring
power supply
power
current
supply facility
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016200724A
Other languages
Japanese (ja)
Other versions
JP6778076B2 (en
Inventor
聡史 山下
Satoshi Yamashita
聡史 山下
広介 小林
Kosuke Kobayashi
広介 小林
卓也 伴野
Takuya Tomono
卓也 伴野
崇之 渡邉
Takayuki Watanabe
崇之 渡邉
治良 三宅
Haruyoshi Miyake
治良 三宅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Co Ltd
Original Assignee
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gas Co Ltd filed Critical Tokyo Gas Co Ltd
Priority to JP2016200724A priority Critical patent/JP6778076B2/en
Publication of JP2018064346A publication Critical patent/JP2018064346A/en
Application granted granted Critical
Publication of JP6778076B2 publication Critical patent/JP6778076B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Landscapes

  • Emergency Protection Circuit Devices (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Distribution Board (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent a current exceeding overcurrent capability from flowing to an existing premise wiring.SOLUTION: A power system 100 for supplying power of a power system 14 to a load facility 16 through premise wiring 116 includes a power supply facility 120 connected with the premise wiring, and a circuit breaker 114c connected with the premise wiring, and having a breaking capacity obtained by reducing the maximum capacity of the power supply facility from the breaking capacity of the circuit breaker 114c that had been connected with the premise wiring before power supply facility is connected. With such an arrangement, a current exceeding the overcurrent capability can be prevented from flowing to the premise wiring.SELECTED DRAWING: Figure 3

Description

本発明は、需要者構内に電力供給設備を接続可能な電力システムに関する。   The present invention relates to a power system capable of connecting a power supply facility to a customer premises.

需要者は、電力会社からの電気(商用電力)の供給を受けて構内の負荷設備(一般用電気工作物)で電気を使用する。また、太陽光発電設備等、発電設備を構内に設け、負荷設備を動作させるとともに(例えば、特許文献1)、電力会社に余った電力を売電することも可能である。   A consumer receives electricity (commercial power) supplied from an electric power company and uses electricity in a load facility (general-purpose electric work) on the premises. It is also possible to provide power generation facilities such as solar power generation facilities on the premises, operate load facilities (for example, Patent Document 1), and sell surplus power to the power company.

特開2013−247737号公報JP 2013-247737 A

太陽光発電設備等の発電設備や電池といった電力供給設備として、現在、単相3線式のものが用いられている。しかし、今後、省エネルギー機器が普及し、構内の電力需要が減少すると、必ずしも単相3線式であることを要さず、例えば、単相3線の片方に相当する単相2線のみに接続される小出力の電力供給設備を設置することが考えられる。   Currently, single-phase, three-wire type power generation facilities such as solar power generation facilities and power supply facilities such as batteries are used. However, when energy-saving equipment becomes more widespread in the future and the power demand on the premises decreases, it does not necessarily need to be a single-phase three-wire system, for example, it is connected only to a single-phase two-wire equivalent to one of the single-phase three-wire It is conceivable to install a small power supply facility.

そうすると、電力供給設備を、分電盤のサービス遮断器の二次側に接続するだけでなく、単相2線の配線用遮断器の二次側に直接接続することも可能となる。また、この場合に、屋外に既設の屋外コンセントに電力供給設備を接続して既存の構内配線をそのまま活用することで、施工費を削減することもできる。   Then, it is possible not only to connect the power supply facility to the secondary side of the service breaker of the distribution board, but also to directly connect to the secondary side of the single-phase two-wire circuit breaker. In this case, the construction cost can also be reduced by connecting the power supply equipment to an existing outdoor outlet and utilizing the existing premises wiring as it is.

しかし、分電盤内の各配線用遮断器に接続される構内配線には過電流耐量が予め定められており、そのような配線用遮断器の二次側に単純に電力供給設備を接続すると、以下の問題が生じうる。すなわち、配線用遮断器の二次側に位置する構内配線の過電流耐量は、配線用遮断器の遮断容量に基づいて決定されている。したがって、配線用遮断器を介することなく電力供給設備から負荷設備に直接電力が供給されると、構内配線に過電流耐量を上回る電流が流れるおそれがある。   However, the overcurrent withstand capability is predetermined for the premises wiring connected to each circuit breaker in the distribution board, and simply connecting the power supply equipment to the secondary side of such a circuit breaker The following problems can occur. That is, the overcurrent withstand capability of the local wiring located on the secondary side of the wiring breaker is determined based on the breaking capacity of the wiring breaker. Therefore, when power is directly supplied from the power supply facility to the load facility without going through the wiring circuit breaker, a current exceeding the overcurrent withstand capability may flow through the premises wiring.

本発明は、このような課題に鑑み、既設の構内配線に過電流耐量を上回る電流が流れるのを防止することが可能な電力システムを提供することを目的としている。   In view of such a problem, an object of the present invention is to provide an electric power system capable of preventing a current exceeding an overcurrent withstand capability from flowing through an existing premises wiring.

上記課題を解決するために、電力系統の電力を、構内配線を通じて負荷設備に供給する本発明の電力システムは、構内配線に接続された電力供給設備と、構内配線に接続され、電力供給設備が接続される前に構内配線に接続されていた遮断器の遮断容量から電力供給設備の最大容量を減じた遮断容量を有する遮断器と、を備えることを特徴とする。   In order to solve the above-mentioned problems, the power system of the present invention for supplying the power of the power system to the load equipment through the on-site wiring, the power supply equipment connected to the on-site wiring, and the power supply equipment connected to the on-site wiring. And a breaker having a breaking capacity obtained by subtracting the maximum capacity of the power supply facility from the breaking capacity of the breaker connected to the premises wiring before being connected.

電力系統の電力を、構内配線を通じて負荷設備に供給する本発明の他の電力システムは、構内配線に接続された電力供給設備と、構内配線に接続され、構内配線の過電流耐量から電力供給設備の最大容量を減じた遮断容量を有する遮断器と、を備えることを特徴とする。   Another power system of the present invention for supplying power from a power system to a load facility through a premises wiring is a power supply facility connected to the premises wiring and a power supply facility connected to the premises wiring from the overcurrent withstand capability of the premises wiring. And a circuit breaker having a breaking capacity obtained by reducing the maximum capacity.

本発明によれば、既設の構内配線に過電流耐量を上回る電流が流れるのを防止することが可能となる。   ADVANTAGE OF THE INVENTION According to this invention, it becomes possible to prevent the electric current exceeding an overcurrent tolerance from flowing into the existing premise wiring.

電力システムの基本的な接続態様を示した説明図である。It is explanatory drawing which showed the basic connection aspect of the electric power system. 電力供給設備の接続態様を説明するための説明図である。It is explanatory drawing for demonstrating the connection aspect of electric power supply equipment. 第1の実施形態における電力システムの接続態様を示した説明図である。It is explanatory drawing which showed the connection aspect of the electric power system in 1st Embodiment. 第2の実施形態における電力システムの接続態様を示した説明図である。It is explanatory drawing which showed the connection aspect of the electric power system in 2nd Embodiment. 第2の実施形態における他の電力システムの接続態様を示した説明図である。It is explanatory drawing which showed the connection aspect of the other electric power system in 2nd Embodiment.

以下に添付図面を参照しながら、本発明の好適な実施形態について詳細に説明する。かかる実施形態に示す寸法、材料、その他具体的な数値等は、発明の理解を容易とするための例示にすぎず、特に断る場合を除き、本発明を限定するものではない。なお、本明細書および図面において、実質的に同一の機能、構成を有する要素については、同一の符号を付することにより重複説明を省略し、また本発明に直接関係のない要素は図示を省略する。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. The dimensions, materials, and other specific numerical values shown in the embodiments are merely examples for facilitating the understanding of the invention, and do not limit the present invention unless otherwise specified. In the present specification and drawings, elements having substantially the same function and configuration are denoted by the same reference numerals, and redundant description is omitted, and elements not directly related to the present invention are not illustrated. To do.

図1は、電力システム100の基本的な接続態様を示した説明図である。電力システム100は、引き込み線12を通じて、電力系統14から電気(商用電力)の供給を受ける。かかる電力システム100は、低圧受電の需要者単位で構成され、その範囲としては、一般用電気工作物であれば、家屋等に限らず、病院、工場、ホテル、レジャー施設、商業施設、マンションといった建物単位や建物内の一部分であってもよい。   FIG. 1 is an explanatory diagram showing a basic connection mode of the power system 100. The power system 100 is supplied with electricity (commercial power) from the power system 14 through the lead-in line 12. Such a power system 100 is configured in units of low-voltage power receiving consumers, and the scope thereof is not limited to houses and the like as long as it is a general electric work, such as a hospital, factory, hotel, leisure facility, commercial facility, condominium, etc. It may be a building unit or a part of a building.

また、電力システム100は、電力メータ112と、分電盤114と、構内配線116と、コンセント118とを含んで構成される。   The power system 100 includes a power meter 112, a distribution board 114, local wiring 116, and an outlet 118.

電力メータ(電力量計)112は、電力系統14に引き込み線12を介して接続され、引き込み線12と電力システム100との間に流れる(消費および売電の)電流値を計測する。   The power meter (watt-hour meter) 112 is connected to the power system 14 via the lead-in line 12 and measures a current value (consumption and power sale) flowing between the lead-in line 12 and the power system 100.

分電盤114は、電力メータ112に接続され、契約容量を示すサービス遮断器(サービスブレーカ)114a、漏電の検出に応じて電気の供給を遮断する漏電遮断器(漏電ブレーカ)114b、および、構内配線116に接続され、その構内配線116に流れる電流が遮断容量(例えば20A)を超過すると電気の供給を遮断する配線用遮断器(安全ブレーカ)114cを有する。   The distribution board 114 is connected to the power meter 112 and is connected to a service circuit breaker (service breaker) 114a indicating a contracted capacity, a leakage breaker (leakage breaker) 114b that cuts off the supply of electricity in response to detection of a leakage, and a premises A wiring breaker (safety breaker) 114c is connected to the wiring 116 and cuts off the supply of electricity when the current flowing through the local wiring 116 exceeds the breaking capacity (for example, 20A).

ここで、需要者は、構内配線116の端部となるコンセント118に負荷設備16を接続し、配線用遮断器114cを通じて電力の供給を受ける。なお、負荷設備16は、実線で示したように、屋内のコンセント118aに接続することも、破線のように、屋外コンセント118bに接続することもできる。かかる構成では、負荷設備16に供給される電力は、全て配線用遮断器114cを介することになるので、配線用遮断器114cの遮断容量は、構内配線116の過電流耐量以下となるように設計されることとなる。   Here, the consumer connects the load facility 16 to an outlet 118 serving as an end of the premises wiring 116, and is supplied with electric power through the circuit breaker 114c. The load facility 16 can be connected to an indoor outlet 118a as shown by a solid line, or can be connected to an outdoor outlet 118b as shown by a broken line. In such a configuration, since all the electric power supplied to the load facility 16 is routed through the wiring breaker 114c, the breaking capacity of the wiring breaker 114c is designed to be equal to or less than the overcurrent withstand capability of the local wiring 116. Will be.

上記の電力システム100に電力供給設備120を接続することを検討する。したがって、電力システム100は、電力メータ112、分電盤114、構内配線116、コンセント118に加え、電力供給設備120を含んでいる。ここで、電力供給設備120は、電力系統14より優先して、電気エネルギーを消費する負荷設備16に電力を供給する。かかる電力供給設備120としては、例えば、太陽光発電機、風力発電機、水力発電機、地熱発電機、太陽熱発電機、大気中熱発電機等の再生可能エネルギー発電設備や、燃料電池、内燃力発電、蓄電池等を用いることができる。   Consider connecting the power supply facility 120 to the power system 100 described above. Therefore, the power system 100 includes a power supply facility 120 in addition to the power meter 112, the distribution board 114, the local wiring 116, and the outlet 118. Here, the power supply facility 120 supplies power to the load facility 16 that consumes electrical energy in preference to the power system 14. Examples of such power supply facilities 120 include renewable energy power generation facilities such as solar power generators, wind power generators, hydroelectric power generators, geothermal power generators, solar thermal power generators, atmospheric heat power generators, fuel cells, and internal combustion power generation. A storage battery or the like can be used.

このような電力供給設備120は、単相3線(200V)に接続して用いるのが一般的である。この場合、配線用遮断器114cに代えて連系遮断器(200V)を設け、その連系遮断器に電力供給設備120を接続したり、また、漏電遮断器114bの1次側から別途の個別遮断器(200V)を介して電力供給設備120を接続しなければならない。   Such power supply equipment 120 is generally used connected to a single-phase three-wire (200 V). In this case, an interconnection breaker (200V) is provided in place of the circuit breaker 114c, and the power supply facility 120 is connected to the interconnection breaker, or a separate individual is provided from the primary side of the earth leakage breaker 114b. The power supply facility 120 must be connected via a circuit breaker (200V).

ただし、今後は、省エネルギー機器が普及し、電力システム100の電力需要が減少すると、必ずしも単相3線式の電力供給設備を要さない、本実施形態のような、単相3線のN相(中性線)に対するR相(電圧線)、T相(電圧線)のうち、いずれか一方の単相2線(R相とN相、もしくは、T相とN相)のみに接続される小出力の電力供給設備120が設置されることとなる。   However, in the future, when energy-saving devices become widespread and the power demand of the power system 100 decreases, a single-phase three-wire N-phase like this embodiment does not necessarily require a single-phase three-wire power supply facility. Only one of the R phase (voltage line) and T phase (voltage line) for the (neutral wire) is connected to one of the single phase two wires (R phase and N phase, or T phase and N phase). A small output power supply facility 120 will be installed.

図2は、電力供給設備120の接続態様を説明するための説明図である。上記のように単相2線で運用できれば、連系遮断器等を介在しなくとも、図2のように、既存の構内配線116から分岐している屋外コンセント118bに、過電流および漏電を防止する個別遮断器122を通じて電力供給設備120を接続することが可能となり、電力システム100内の配線を簡素化できる。   FIG. 2 is an explanatory diagram for explaining a connection mode of the power supply facility 120. If it can be operated with single-phase two-wires as described above, it prevents overcurrent and leakage to the outdoor outlet 118b that branches off from the existing on-site wiring 116 as shown in FIG. Thus, the power supply facility 120 can be connected through the individual circuit breaker 122, and the wiring in the power system 100 can be simplified.

しかし、上述したように、分電盤114内の各配線用遮断器114cの遮断容量や、構内配線116の過電流耐量は、その設置時に定められており(例えば、両方共20A)、図2のように、配線用遮断器114cの二次側に単に電力供給設備120を接続すると、以下の問題が生じうる。すなわち、配線用遮断器114cでは、遮断容量である20Aまで電流を供給することができる。一方、電力供給設備120も、配線用遮断器114cからの電力と並行して、5Aの電流を供給することができる。この場合、負荷設備16には、その合計である25Aの電流を供給し得ることとなる。そうすると、過電流耐量が20Aとなるように配置された構内配線116に、20Aを上回る電流が流れ得ることとなり、発熱や耐久性劣化の原因となるおそれが生じる。   However, as described above, the breaking capacity of each wiring breaker 114c in the distribution board 114 and the overcurrent withstand capability of the local wiring 116 are determined at the time of installation (for example, both are 20A). If the power supply facility 120 is simply connected to the secondary side of the circuit breaker 114c as described above, the following problem may occur. In other words, the wiring breaker 114c can supply current up to 20A, which is the breaking capacity. On the other hand, the power supply facility 120 can also supply a current of 5 A in parallel with the power from the circuit breaker 114c. In this case, the load facility 16 can be supplied with a total current of 25 A. If it does so, the electric current exceeding 20A may flow into the premise wiring 116 arrange | positioned so that overcurrent tolerance may be 20A, and there exists a possibility of causing a heat_generation | fever and durability deterioration.

(第1の実施形態)
図3は、第1の実施形態における電力システム100の接続態様を示した説明図である。構内配線116は、通常、需要者設備と共に設置されている。したがって、電力供給設備120の設置、追加、変更に従って、その都度、構内配線116を変更するのは非効率である。そこで、第1の実施形態では、構内配線116を変更することなく、構内配線116の過電流耐量に基づいて、配線用遮断器114cを変更(交換)する。
(First embodiment)
FIG. 3 is an explanatory diagram showing a connection mode of the power system 100 according to the first embodiment. The on-site wiring 116 is usually installed together with the customer facility. Therefore, it is inefficient to change the premises wiring 116 each time according to the installation, addition, and change of the power supply facility 120. Therefore, in the first embodiment, the circuit breaker 114c is changed (replaced) based on the overcurrent capability of the local line 116 without changing the local line 116.

具体的には、まず、配線用遮断器114cの適切な遮断容量を導出する。かかる適切な遮断容量は、例えば、構内配線の過電流耐量(例えば20A)から電力供給設備120の最大容量(例えば5A)を減じて求める。ここでは、適切な遮断容量が20A−5A=15Aとなる。したがって、図3のように、既設の配線用遮断器114cを、遮断容量が15Aである配線用遮断器114cに交換する。   Specifically, first, an appropriate breaking capacity of the wiring breaker 114c is derived. Such an appropriate breaking capacity is obtained, for example, by subtracting the maximum capacity (for example, 5A) of the power supply facility 120 from the overcurrent withstand capability (for example, 20A) of the premises wiring. Here, an appropriate breaking capacity is 20A-5A = 15A. Therefore, as shown in FIG. 3, the existing circuit breaker 114c is replaced with a circuit breaker 114c having a breaking capacity of 15A.

そうすると、図3のように、交換された配線用遮断器114cでは、遮断容量である15Aまでしか電流を供給できなくなる。そして、電力供給設備120も、配線用遮断器114cからの電力と並行して、5Aの電流を供給することができる。この場合、負荷設備16には、その合計である20Aまでの電流が供給されることとなるが、かかる20Aは、構内配線116の過電流耐量と等しいので、なんら問題が生じない。   Then, as shown in FIG. 3, the exchanged circuit breaker 114c can supply current only up to 15A which is the breaking capacity. The power supply facility 120 can also supply a current of 5 A in parallel with the power from the wiring breaker 114c. In this case, the load facility 16 is supplied with a current up to 20 A, which is the total, but since 20 A is equal to the overcurrent withstand capability of the premises wiring 116, no problem occurs.

このように、構内配線116の過電流耐量から電力供給設備120の最大容量を減じた遮断容量の配線用遮断器114cに交換することで、構内配線116に過電流耐量を上回る電流が流れることを防止することが可能となる。   In this way, by exchanging the circuit breaker 114c with a breaking capacity obtained by subtracting the maximum capacity of the power supply facility 120 from the overcurrent withstand capability of the local wiring 116, a current exceeding the overcurrent withstand capability flows through the local wiring 116. It becomes possible to prevent.

また、配線用遮断器114cの適切な遮断容量は、以下の手順でも導出できる。すなわち、無駄な過剰設計を回避すべく、上記のように、配線用遮断器114cの遮断容量と、構内配線116の過電流耐量とは、大凡等しくなるように設計される(ただし、遮断容量≦過電流耐量)。   Further, an appropriate breaking capacity of the wiring breaker 114c can be derived by the following procedure. That is, in order to avoid useless excessive design, as described above, the breaking capacity of the circuit breaker 114c and the overcurrent withstand capability of the local wiring 116 are designed to be approximately equal (however, the breaking capacity ≦ Overcurrent capability).

したがって、構内配線116の過電流耐量に代えて、参照容易な配線用遮断器114cの遮断容量を用いることができる。例えば、電力供給設備120が接続される前に構内配線116に接続されていた配線用遮断器114cの遮断容量(例えば20A)から、電力供給設備120の最大容量(例えば5A)を減じて適切な遮断容量15Aを求める。こうして、上記同様、既設の配線用遮断器114cを、遮断容量が15Aである配線用遮断器114cに交換できる。   Therefore, the breaking capacity of the easily accessible circuit breaker 114c can be used instead of the overcurrent withstand capability of the local wiring 116. For example, the maximum capacity (for example, 5A) of the power supply facility 120 is appropriately reduced by subtracting the maximum capacity (for example, 5A) of the power supply facility 120 from the interrupting capacity (for example, 20A) of the circuit breaker 114c connected to the premises wiring 116 before the power supply facility 120 is connected. The breaking capacity 15A is obtained. Thus, the existing wiring breaker 114c can be replaced with a wiring breaker 114c having a breaking capacity of 15A in the same manner as described above.

このように、電力供給設備120が接続される前に構内配線116に接続されていた配線用遮断器114cの遮断容量から電力供給設備120の最大容量を減じた遮断容量の配線用遮断器114cに交換することで、構内配線116に過電流耐量を上回る電流が流れることを防止することが可能となる。   As described above, the circuit breaker 114c having the breaking capacity obtained by subtracting the maximum capacity of the power supply facility 120 from the breaking capacity of the circuit breaker 114c connected to the premises wiring 116 before the power supply facility 120 is connected. By exchanging, it is possible to prevent the current exceeding the overcurrent capability from flowing through the local wiring 116.

(第2の実施形態)
上述した第1の実施形態では、構内配線116の過電流耐量に基づいて、配線用遮断器114cを変更(交換)する例を挙げて説明した。第2の実施形態では、配線用遮断器114cも変更することなく、電力供給設備120での処理を工夫することで、構内配線116を保護する。
(Second Embodiment)
In the first embodiment described above, an example in which the circuit breaker 114c is changed (replaced) based on the overcurrent capability of the local wiring 116 has been described. In the second embodiment, the on-site wiring 116 is protected by devising the processing in the power supply facility 120 without changing the wiring circuit breaker 114c.

図4は、第2の実施形態における電力システム200の接続態様を示した説明図である。かかる図4では電力の移動を実線で、情報を含む信号の流れを破線の矢印で示している。電力システム200は、電力メータ112と、分電盤114と、構内配線116と、コンセント118と、電力供給設備220と、電流計224とを含んで構成される。ただし、第1の実施形態における構成要素として既に述べた、電力メータ112と、分電盤114と、構内配線116と、コンセント118とは、実質的に機能が同一なので重複説明を省略し、ここでは、構成が相違する電力供給設備220と、電流計224とを主に説明する。   FIG. 4 is an explanatory diagram showing a connection mode of the power system 200 in the second embodiment. In FIG. 4, the movement of power is indicated by a solid line, and the flow of a signal including information is indicated by a dashed arrow. The power system 200 includes a power meter 112, a distribution board 114, local wiring 116, an outlet 118, a power supply facility 220, and an ammeter 224. However, since the power meter 112, the distribution board 114, the local wiring 116, and the outlet 118, which have already been described as the constituent elements in the first embodiment, have substantially the same functions, redundant description is omitted here. Now, the power supply equipment 220 and the ammeter 224 having different configurations will be mainly described.

電流計224は、構内配線116と電力供給設備220との接続点Pと、負荷設備16との間に設置され、接続点Pから負荷設備16へ流れる電流を測定する。   The ammeter 224 is installed between the connection point P between the local wiring 116 and the power supply facility 220 and the load facility 16, and measures the current flowing from the connection point P to the load facility 16.

電力供給設備220は、少なくとも、発電部120aと、制御部120bとを有している。発電部120aは、例えば、燃料電池等で構成され、他のエネルギーを電気エネルギーに変換して電気を生成する。制御部120bは、中央処理装置(CPU)、プログラム等が格納されたROM、ワークエリアとしてのRAM等を含む半導体集積回路で構成され、発電部120aの出力を制御する。   The power supply facility 220 includes at least a power generation unit 120a and a control unit 120b. The power generation unit 120a is composed of, for example, a fuel cell, and generates electricity by converting other energy into electric energy. The control unit 120b is composed of a semiconductor integrated circuit including a central processing unit (CPU), a ROM storing programs, a RAM as a work area, and the like, and controls the output of the power generation unit 120a.

特に、本実施形態において、制御部120bは、電流計224で測定した電流が構内配線116の過電流耐量(例えば20A)以下となるように、電力供給設備220における発電部120aの出力を制限する。   In particular, in the present embodiment, the control unit 120b limits the output of the power generation unit 120a in the power supply facility 220 so that the current measured by the ammeter 224 is equal to or less than the overcurrent capability (eg, 20 A) of the premises wiring 116. .

例えば、負荷設備16で消費される電流、すなわち、接続点Pから負荷設備16へ流れる電流(a)が5A未満であれば、その電力は電力供給設備220で全て賄われる。したがって、電力供給設備220から接続点Pへ流れる電流(b)が電流(a)と等しくなり、配線用遮断器114cから接続点Pへ流れる電流(c)は0Aとなる。   For example, if the current consumed by the load facility 16, that is, the current (a) flowing from the connection point P to the load facility 16 is less than 5 A, the power supply facility 220 provides all the power. Therefore, the current (b) flowing from the power supply facility 220 to the connection point P is equal to the current (a), and the current (c) flowing from the wiring breaker 114c to the connection point P is 0A.

また、電流(a)が5A以上となると、電力供給設備220から接続点Pへ流れる電流(b)はその最大値の5Aとなり、配線用遮断器114cから接続点Pへ流れる電流(c)は、電流(a)と電流(b)との差分(電流(a)−電流(b))を賄うこととなる。   Further, when the current (a) is 5A or more, the current (b) flowing from the power supply facility 220 to the connection point P becomes the maximum value 5A, and the current (c) flowing from the wiring breaker 114c to the connection point P is The difference between the current (a) and the current (b) (current (a) −current (b)) is covered.

そして、電流計224を通じて電流(a)が20Aを上回ったことが測定されると、すなわち、配線用遮断器114cから接続点Pへ流れる電流(c)が15Aを上回ると、制御部120bは、その電流(a)が構内配線116の過電流耐量である20A以下となるように、電力供給設備220における発電部120aの出力を制限して、最終的には出力を0とする。こうして、配線用遮断器114cから接続点Pへ流れる電流(c)と電流(a)とが等しくなる。このとき、負荷設備16へ20Aを上回る電流が流れ続けると、配線用遮断器114cからの電力の供給が遮断され、構内配線116が保護される。   Then, when it is measured through the ammeter 224 that the current (a) exceeds 20A, that is, when the current (c) flowing from the circuit breaker 114c to the connection point P exceeds 15A, the control unit 120b The output of the power generation unit 120a in the power supply facility 220 is limited so that the current (a) is 20 A or less, which is the overcurrent withstand capacity of the premises wiring 116, and finally the output is set to zero. Thus, the current (c) flowing from the circuit breaker 114c to the connection point P is equal to the current (a). At this time, if a current exceeding 20 A continues to flow to the load facility 16, the supply of power from the circuit breaker 114 c is interrupted, and the local wiring 116 is protected.

かかる発電部120aの出力制限は、発電部120aの出力の解列により実行する。また、配線用遮断器114cでは、例えば22A以下なら20分、24A以下なら10分の有余がある等、超過電流毎にステップ状に動作時限が決まっており、短時間の過電流は許容されるので、その許容される範囲で、発電部120aの出力を徐々に低減して最終的に0にすることでも実現できる。   The output limitation of the power generation unit 120a is executed by disconnecting the output of the power generation unit 120a. In the circuit breaker 114c, for example, the operation time limit is determined in a stepwise manner for each excess current, such as 20 minutes if it is 22A or less and 10 minutes if it is 24A or less, and a short overcurrent is allowed. Therefore, it can also be realized by gradually reducing the output of the power generation unit 120a within the permissible range to finally zero.

そして、電流計224を通じて電流(a)が20A以下となると、制御部120bは、電流(a)が20A以下となる条件下で、電力供給設備220における発電部120aの出力を徐々に増大する。   When the current (a) becomes 20 A or less through the ammeter 224, the control unit 120b gradually increases the output of the power generation unit 120a in the power supply facility 220 under the condition that the current (a) becomes 20 A or less.

このように、電力供給設備220において、電流計224で測定した電流が構内配線116の過電流耐量以下となるように、電力供給設備220における発電部120aの出力を制限する構成により、構内配線116に過電流耐量を上回る電流が流れることを防止することが可能となる。   Thus, in the power supply facility 220, the on-site wiring 116 is configured to limit the output of the power generation unit 120 a in the power supply facility 220 so that the current measured by the ammeter 224 is equal to or less than the overcurrent tolerance of the on-premises wiring 116. Therefore, it is possible to prevent a current exceeding the overcurrent tolerance from flowing.

また、ここでは、構内配線116と電力供給設備220との接続点Pと負荷設備16との間に電流計224を設置する例を挙げて説明したが、配線用遮断器114cと、構内配線116と電力供給設備220との接続点Pとの間に電流計224を設置する方が容易な場合、かかる位置に電流計224を配置してもよい。   Here, the example in which the ammeter 224 is installed between the connection point P between the local wiring 116 and the power supply facility 220 and the load facility 16 has been described. However, the wiring breaker 114c and the local wiring 116 are provided. When it is easier to install the ammeter 224 between the power supply facility 220 and the connection point P, the ammeter 224 may be disposed at this position.

図5は、第2の実施形態における他の電力システム300の接続態様を示した説明図である。ここでも、電力の移動を実線で、情報を含む信号の流れを破線の矢印で示している。電力システム300は、電力メータ112と、分電盤114と、構内配線116と、コンセント118と、電力供給設備220と、電流計224とを含んで構成される。電力システム300は、電力システム200と配置が異なるだけで、実質的に機能が同一なので重複説明を省略する。   FIG. 5 is an explanatory diagram showing a connection mode of another power system 300 in the second embodiment. Again, the movement of power is indicated by a solid line, and the flow of a signal including information is indicated by a dashed arrow. The power system 300 includes a power meter 112, a distribution board 114, local wiring 116, an outlet 118, a power supply facility 220, and an ammeter 224. The power system 300 is different in arrangement only from the power system 200 and has substantially the same function, and therefore a duplicate description is omitted.

かかる電力システム300において、電流計224は、配線用遮断器114cと、構内配線116と電力供給設備220との接続点Pとの間に設置され、配線用遮断器114cから接続点Pへ流れる電流を測定する。また、制御部120bは、電力供給設備220で出力された電流を検出することができる。そして、制御部120bは、電流計224で測定した電流と、電力供給設備220で出力された電流との和が構内配線116の過電流耐量(例えば20A)以下となるように、電力供給設備220の出力を制限する。   In the power system 300, the ammeter 224 is installed between the wiring breaker 114 c and the connection point P between the local wiring 116 and the power supply facility 220, and the current flowing from the wiring breaker 114 c to the connection point P. Measure. The control unit 120b can detect the current output from the power supply facility 220. The control unit 120b then supplies the power supply facility 220 so that the sum of the current measured by the ammeter 224 and the current output from the power supply facility 220 is equal to or less than the overcurrent withstand capacity (for example, 20A) of the premises wiring 116. Limit the output of.

例えば、負荷設備16で消費される電流、すなわち、接続点Pから負荷設備16へ流れる電流(a)が5A未満であれば、その電力は電力供給設備220で全て賄われる。したがって、電力供給設備220から接続点Pへ流れる電流(b)が電流(a)と等しくなり、配線用遮断器114cから接続点Pへ流れる電流(c)は0Aとなる。   For example, if the current consumed by the load facility 16, that is, the current (a) flowing from the connection point P to the load facility 16 is less than 5 A, the power supply facility 220 provides all the power. Therefore, the current (b) flowing from the power supply facility 220 to the connection point P is equal to the current (a), and the current (c) flowing from the wiring breaker 114c to the connection point P is 0A.

また、電流(a)が5A以上となると、電力供給設備220から接続点Pへ流れる電流(b)はその最大値の5Aとなり、配線用遮断器114cから接続点Pへ流れる電流(c)は、電流(a)と電流(b)との差分を賄うこととなる。   Further, when the current (a) is 5A or more, the current (b) flowing from the power supply facility 220 to the connection point P becomes the maximum value 5A, and the current (c) flowing from the wiring breaker 114c to the connection point P is The difference between the current (a) and the current (b) is covered.

そして、電力供給設備220で出力された電流が5Aに達し、かつ、電流計224を通じて測定された電流(c)が15Aを上回ると、すなわち、接続点Pから負荷設備16に流れる電流(a)が20Aを上回ると、制御部120bは、電流(b)と電流(c)との和が構内配線116の過電流耐量である20A以下となるように、すなわち、電流(c)が15A以下となるように、電力供給設備220における発電部120aの出力を制限して、最終的には出力を0とする。こうして、配線用遮断器114cから接続点Pへ流れる電流(c)と電流(a)とが等しくなる。このとき、負荷設備16へ20Aを上回る電流が流れ続けると、配線用遮断器114cからの電力の供給が遮断され、構内配線116が保護される。   When the current output from the power supply facility 220 reaches 5 A and the current (c) measured through the ammeter 224 exceeds 15 A, that is, the current (a) flowing from the connection point P to the load facility 16. When the current exceeds 20A, the control unit 120b makes the sum of the current (b) and the current (c) equal to or less than 20A, which is the overcurrent withstand capability of the local wiring 116, that is, the current (c) becomes 15A or less. Thus, the output of the power generation unit 120a in the power supply facility 220 is limited, and finally the output is set to zero. Thus, the current (c) flowing from the circuit breaker 114c to the connection point P is equal to the current (a). At this time, if a current exceeding 20 A continues to flow to the load facility 16, the supply of power from the circuit breaker 114 c is interrupted, and the local wiring 116 is protected.

そして、電流(b)と電流(c)との和が20A以下となると、制御部120bは、電流(b)と電流(c)との和が20A以下となる条件下で、電力供給設備220における発電部120aの出力を徐々に増大する。   Then, when the sum of the current (b) and the current (c) is 20 A or less, the control unit 120 b uses the power supply facility 220 under the condition that the sum of the current (b) and the current (c) is 20 A or less. The output of the power generation unit 120a is gradually increased.

このように、電力供給設備220において、電流計224で測定した電流と、電力供給設備220で出力された電流との和が構内配線116の過電流耐量以下となるように、電力供給設備220における発電部120aの出力を制限する構成により、構内配線116に過電流耐量を上回る電流が流れることを防止することが可能となる。   As described above, in the power supply facility 220, the sum of the current measured by the ammeter 224 and the current output from the power supply facility 220 is equal to or less than the overcurrent withstand capacity of the local wiring 116. With the configuration that limits the output of the power generation unit 120a, it is possible to prevent the current exceeding the overcurrent capability from flowing through the local wiring 116.

以上、添付図面を参照しながら本発明の好適な実施形態について説明したが、本発明はかかる実施形態に限定されないことは言うまでもない。当業者であれば、特許請求の範囲に記載された範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。   As mentioned above, although preferred embodiment of this invention was described referring an accompanying drawing, it cannot be overemphasized that this invention is not limited to this embodiment. It will be apparent to those skilled in the art that various changes and modifications can be made within the scope of the claims, and these are naturally within the technical scope of the present invention. Understood.

例えば、上述した実施形態においては、屋外コンセント118bに個別遮断器122を通じて電力供給設備120を接続する例を挙げて説明したが、かかる屋外コンセント118bを含むコンセント118については、通常の電気機器が利用可能な100Vのみならず、エアコンが利用可能な200Vにも適用することができる。   For example, in the above-described embodiment, an example in which the power supply facility 120 is connected to the outdoor outlet 118b through the individual circuit breaker 122 has been described. However, for the outlet 118 including the outdoor outlet 118b, a normal electric device is used. The present invention can be applied not only to a possible 100V but also to a 200V capable of using an air conditioner.

本発明は、需要者構内に電力供給設備を接続可能な電力システムに利用することができる。   INDUSTRIAL APPLICABILITY The present invention can be used for a power system that can connect a power supply facility to a customer premises.

14 電力系統
16 負荷設備
100、200、300 電力システム
112 電力メータ
114 分電盤
114c 配線用遮断器
116 構内配線
118 コンセント
120、220 電力供給設備
120b 制御部
224 電流計
14 Power system 16 Load facility 100, 200, 300 Power system 112 Power meter 114 Distribution board 114c Circuit breaker 116 On-site wiring 118 Outlet 120, 220 Power supply facility 120b Control unit 224 Ammeter

Claims (2)

電力系統の電力を、構内配線を通じて負荷設備に供給する電力システムであって、
前記構内配線に接続された電力供給設備と、
前記構内配線に接続され、前記電力供給設備が接続される前に該構内配線に接続されていた遮断器の遮断容量から該電力供給設備の最大容量を減じた遮断容量を有する遮断器と、
を備えることを特徴とする電力システム。
An electric power system that supplies electric power from an electric power system to a load facility through premises wiring,
A power supply facility connected to the premises wiring;
A circuit breaker having a breaking capacity obtained by subtracting the maximum capacity of the power supply facility from the breaking capacity of the circuit breaker connected to the campus wiring and connected to the campus wiring before the power supply facility is connected;
An electric power system comprising:
電力系統の電力を、構内配線を通じて負荷設備に供給する電力システムであって、
前記構内配線に接続された電力供給設備と、
前記構内配線に接続され、該構内配線の過電流耐量から前記電力供給設備の最大容量を減じた遮断容量を有する遮断器と、
を備えることを特徴とする電力システム。
An electric power system that supplies electric power from an electric power system to a load facility through premises wiring,
A power supply facility connected to the premises wiring;
A circuit breaker connected to the premises wiring, having a breaking capacity obtained by subtracting the maximum capacity of the power supply facility from the overcurrent withstand capability of the premises wiring;
An electric power system comprising:
JP2016200724A 2016-10-12 2016-10-12 Power system Active JP6778076B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016200724A JP6778076B2 (en) 2016-10-12 2016-10-12 Power system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016200724A JP6778076B2 (en) 2016-10-12 2016-10-12 Power system

Publications (2)

Publication Number Publication Date
JP2018064346A true JP2018064346A (en) 2018-04-19
JP6778076B2 JP6778076B2 (en) 2020-10-28

Family

ID=61968121

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016200724A Active JP6778076B2 (en) 2016-10-12 2016-10-12 Power system

Country Status (1)

Country Link
JP (1) JP6778076B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005333777A (en) * 2004-05-21 2005-12-02 Hokkaido Electric Power Co Inc:The Control device provided with systematically interconnected protection function of sog switch
JP2009178032A (en) * 2007-12-25 2009-08-06 Panasonic Electric Works Co Ltd Dc power distribution system
JP2014045605A (en) * 2012-08-28 2014-03-13 Noritz Corp Power conditioner
JP2014158391A (en) * 2013-02-18 2014-08-28 Mitsubishi Electric Corp Power conversion system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005333777A (en) * 2004-05-21 2005-12-02 Hokkaido Electric Power Co Inc:The Control device provided with systematically interconnected protection function of sog switch
JP2009178032A (en) * 2007-12-25 2009-08-06 Panasonic Electric Works Co Ltd Dc power distribution system
JP2014045605A (en) * 2012-08-28 2014-03-13 Noritz Corp Power conditioner
JP2014158391A (en) * 2013-02-18 2014-08-28 Mitsubishi Electric Corp Power conversion system

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
"『発電しすぎてブレーカーが落ちた人いますか?』の 口コミ掲示板", [オンライン], JPN6020027225, 28 June 2014 (2014-06-28), JP, ISSN: 0004315630 *
"太陽光パネル設置後、アンペア数を60A⇒40Aに下げました。", [オンライン], JPN6020027227, 4 December 2013 (2013-12-04), JP, ISSN: 0004315631 *
はらみづほ: "夜も太陽といっしょ!ソーラーパネルでこころも明るくなる、"発電女子"のくらし", [オンライン], JPN6020027224, 1 October 2013 (2013-10-01), JP, ISSN: 0004315629 *
経済産業省大臣官房商務流通保安審議官, 電気設備の技術基準の解釈, JPN6019046262, 23 September 2016 (2016-09-23), JP, pages 2 - 143, ISSN: 0004256126 *

Also Published As

Publication number Publication date
JP6778076B2 (en) 2020-10-28

Similar Documents

Publication Publication Date Title
US9906034B2 (en) Power generation and control system
JP6418239B2 (en) Power supply apparatus and power supply method
US10938212B2 (en) Device for optimizing production, consumption, and storage of electric energy
US9711967B1 (en) Off grid backup inverter automatic transfer switch
JP5865225B2 (en) Control system, control device, and control method
US11139681B2 (en) Smart switching panel for secondary power supply
JP6712217B2 (en) Power system
JP6717705B2 (en) Power system
EP3032682B1 (en) Power supply system, power conversion device, and distribution board
JP6781007B2 (en) Power system
JP7000227B2 (en) Power system
JP6778076B2 (en) Power system
JP2018157736A (en) Electric power system
JP6730172B2 (en) Power system
JP2018084564A (en) Power system and method of installing ammeter
JP6734797B2 (en) Power system
JP2008104262A (en) Islanding pevention for apparatus distributed power unit
JP7082510B2 (en) Power system
JP7210358B2 (en) Power supply equipment
Nurdiana et al. Performance of 10 kWp PV rooftop system based on smart grid in energy building PUSPIPTEK
JP7378946B2 (en) power supply equipment
JP6463982B2 (en) Electric power demand control system
JP7244344B2 (en) Distributed power system
JP2020162267A (en) Distributed power supply system
JP6340892B2 (en) Switching device and power supply system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190605

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200121

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200428

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200611

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20200611

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20200630

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20200707

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200804

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200827

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200929

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201009

R150 Certificate of patent or registration of utility model

Ref document number: 6778076

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250