JP6734797B2 - Power system - Google Patents

Power system Download PDF

Info

Publication number
JP6734797B2
JP6734797B2 JP2017033927A JP2017033927A JP6734797B2 JP 6734797 B2 JP6734797 B2 JP 6734797B2 JP 2017033927 A JP2017033927 A JP 2017033927A JP 2017033927 A JP2017033927 A JP 2017033927A JP 6734797 B2 JP6734797 B2 JP 6734797B2
Authority
JP
Japan
Prior art keywords
facility
power
power generation
continuous
connection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017033927A
Other languages
Japanese (ja)
Other versions
JP2018139477A (en
Inventor
聡史 山下
聡史 山下
広介 小林
広介 小林
崇之 渡邉
崇之 渡邉
卓也 伴野
卓也 伴野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Co Ltd
Original Assignee
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gas Co Ltd filed Critical Tokyo Gas Co Ltd
Priority to JP2017033927A priority Critical patent/JP6734797B2/en
Publication of JP2018139477A publication Critical patent/JP2018139477A/en
Application granted granted Critical
Publication of JP6734797B2 publication Critical patent/JP6734797B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/70Smart grids as climate change mitigation technology in the energy generation sector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/12Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation
    • Y04S10/123Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation the energy generation units being or involving renewable energy sources

Landscapes

  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Distribution Board (AREA)

Description

本発明は、需要者構内に発電設備を接続可能な電力システムに関する。 The present invention relates to a power system capable of connecting power generation equipment to a customer premises.

需要者は、電力会社からの電気(商用電力)の供給を受けて構内の負荷設備(一般用電気工作物)で電気を使用する。また、太陽光発電設備等、発電設備を構内に設け、負荷設備を動作させるとともに(例えば、特許文献1)、発電設備で生成した電力のうち余った電力を電力会社に売電することも可能である。 A consumer receives electricity (commercial electricity) supplied from an electric power company and uses the electricity in a load facility (general electric work) on the premises. It is also possible to install a power generation facility such as a solar power generation facility on the premises, operate the load facility (for example, Patent Document 1), and sell the surplus power of the power generated by the power generation facility to the power company. Is.

特開2013−247737号公報JP, 2013-247737, A

太陽光発電設備や燃料電池等の電力供給設備として、現在、単相3線式100/200Vの3つの電力線のうちR相とT相とに接続されるものが用いられている。しかし、省エネルギー機器が普及し、構内の電力需要が減少すると、必ずしもR相およびT相への接続を要さず、例えば、単相3線式100/200Vの片方(単相2線式100V)に相当するR相とN相、または、T相とN相のみに接続される小出力の電力供給設備を設置することが考えられる。 As electric power supply equipment such as a solar power generation equipment and a fuel cell, what is connected to the R phase and the T phase among the three electric power lines of single-phase three-wire type 100/200V is currently used. However, when energy-saving equipment becomes widespread and the power demand on the premises decreases, it is not always necessary to connect to the R phase and the T phase. For example, one of the single-phase three-wire system 100/200V (single-phase two-wire system 100V) It is conceivable to install a small output power supply facility connected to only the R phase and N phase, or the T phase and N phase corresponding to the above.

そうすると、発電設備を、分電盤の二次側において、一般には住居内で使用されない単相3線100/200Vの配線に接続するだけでなく、単相2線100Vという一般に使用される分岐ブレーカの二次側に接続することも可能となる。この結果、既存の需要者構内に発電設備を増設する場合において、既存の配線およびコンセントを介して発電設備を接続できるようになる。また、発電設備を屋外に設置する場合には、分電盤の分岐ブレーカの二次側に設置されている屋外コンセントを介して発電設備を接続することも可能となる。いずれにせよ、既存の構内配線の有効活用および施工費の削減を図ることができる。 Then, on the secondary side of the distribution board, the power generation equipment is not only connected to the single-phase three-wire 100/200V wiring which is not generally used in the house, but also the single-phase two-wire 100V commonly used branch breaker. It is also possible to connect to the secondary side of the. As a result, when the power generation equipment is added to the existing customer premises, the power generation equipment can be connected through the existing wiring and outlet. Further, when the power generation equipment is installed outdoors, it is also possible to connect the power generation equipment via an outdoor outlet installed on the secondary side of the branch breaker of the distribution board. In any case, it is possible to effectively use the existing wiring in the premises and reduce the construction cost.

なお、このような発電設備に加え、熱源機等の連設設備を併設する場合がある。このとき、かかる連設設備を、停電等、電力系統の異常時にも利用できるように、発電設備から電力の供給を受け得るように構成することもできる。この場合、連設設備は、通常時には電力系統および発電設備から電力の供給を受け、電力系統の異常時には発電設備のみから電力の供給を受けることとなる。 In addition to such power generation equipment, there may be a case where a continuous equipment such as a heat source machine is installed. At this time, the connection facility may be configured to be able to receive power supply from the power generation facility so that it can be used even when there is an abnormality in the power system such as a power failure. In this case, the continuous installation is normally supplied with electric power from the electric power system and the electric power generation equipment, and is supplied with electric power only from the electric power generation equipment when the electric power system is abnormal.

しかし、発電設備を設置する場合、電力会社との系統連系協議が必要となる。そして、連系ブレーカは、系統連系協議を完了しなければONすることができない。そのため、発電設備に連設設備を接続する場合には、連設設備への電力供給は系統連系協議完了後となる。したがって、系統連系協議が完了する前に、熱源機等の連設設備の使用が必要となった場合、一旦、屋外コンセントから、直接、電力の供給を受け、系統連系協議の終了後、電力系統と発電設備との連系ブレーカのONに伴って、屋外コンセントから発電設備にその接続を切り換えなければならない。 However, when installing power generation equipment, it is necessary to discuss grid interconnection with electric power companies. Then, the interconnection breaker cannot be turned on unless the interconnection interconnection consultation is completed. Therefore, when connecting the power generation equipment to the connection facility, power will be supplied to the connection facility after the grid interconnection discussion is completed. Therefore, if it is necessary to use a connected facility such as a heat source device before the grid interconnection discussion is completed, once the power is directly supplied from the outdoor outlet, and after the grid interconnection discussion is completed, When the breaker for the interconnection between the power system and the power generation equipment is turned on, the connection must be switched from the outdoor outlet to the power generation equipment.

ただし、仮に、施工者が発電設備への接続切換を怠ったとしても、既に、屋外コンセントから電力の供給を受けているため、電力系統に異常が発生するまで連設設備は正常に動作することとなる。しかし、そのまま接続を是正することなく放置すると、電力系統の異常時には、発電設備からの電力供給を受けられないため、本来可能なはずの連設設備の利用ができなくなってしまう。 However, even if the installer neglects to switch the connection to the power generation equipment, since the power is already being supplied from the outdoor outlet, the connected equipment must operate normally until an abnormality occurs in the power system. Becomes However, if the connection is left uncorrected as it is, the power supply from the power generation equipment cannot be received when the power system is abnormal, and thus the continuous equipment, which should be possible, cannot be used.

本発明は、このような課題に鑑み、発電設備への接続切換を怠った場合であっても、その状態を適切に是正することが可能な電力システムを提供する。 In view of such a problem, the present invention provides an electric power system capable of appropriately correcting the state even when connection switching to a power generation facility is neglected.

上記課題を解決するために、電力系統の電力を、分岐ブレーカに接続された構内配線を通じて負荷設備に供給する本発明の電力システムは、構内配線に接続され、電力の発電が可能な発電設備と、発電設備との通信を確立可能な連設設備と、発電設備に設けられ、連設設備との通信を確立した後、連設設備への電力の供給を停止し、連設設備との通信が維持されているか否か判定する正常動作判定部と、正常動作判定部によって通信が維持されていると判定されると、連設設備への電力供給の接続異常を報知する異常報知部と、を備える。 In order to solve the above problems, the power system of the present invention, which supplies the electric power of the power system to the load facility through the premises wiring connected to the branch breaker, is connected to the premises wiring and a power generation facility capable of generating electric power. , The communication facility with which the communication facility can be established, and the communication facility, which is installed in the power generation facility, establishes communication with the facility, then stops the power supply to the facility, and communicates with the facility. The normal operation determination unit that determines whether or not is maintained, and if it is determined that the communication is maintained by the normal operation determination unit, an abnormality notification unit that notifies the connection abnormality of the power supply to the continuous facility, Equipped with.

上記課題を解決するために、電力系統の電力を、分岐ブレーカに接続された構内配線を通じて負荷設備に供給する本発明の他の電力システムは、構内配線に接続され、電力の発電が可能な発電設備と、電力系統または発電設備から電力の供給を受けて動作する連設設備と、発電設備に設けられ、連設設備への電力の供給を停止し、連設設備が正常に動作しているか否か判定する正常動作判定部と、正常動作判定部によって連設設備が正常に動作していると判定されると、連設設備への電力供給の接続異常を報知する異常報知部と、を備える。 In order to solve the above problems, another power system of the present invention, which supplies electric power of an electric power system to load equipment through a premises wiring connected to a branch breaker, is connected to the premises wiring and is capable of generating electric power. The equipment and the connected equipment that operates by receiving power supply from the power grid or power generation equipment, and the power generation equipment that is installed, stops the power supply to the equipment, and is the equipment connected normally? A normal operation determining unit that determines whether or not the normal operation determining unit determines whether the connected facility is operating normally, and an abnormality notification unit that notifies a connection abnormality of power supply to the connected facility. Prepare

本発明によれば、発電設備への接続切換を怠った場合であっても、その状態を適切に是正することが可能となる。 According to the present invention, even if the connection switching to the power generation facility is neglected, the state can be appropriately corrected.

電力システムの基本的な接続態様を示した説明図である。It is explanatory drawing which showed the basic connection mode of an electric power system. 連設設備の設置時に生じる作業を説明するための説明図である。It is an explanatory view for explaining work which occurs at the time of installation of continuous installation equipment. 電力システムの接続関係を示した説明図である。It is explanatory drawing which showed the connection relation of an electric power system. 異常判定方法の処理の流れを示したフローチャートである。7 is a flowchart showing the flow of processing of an abnormality determination method.

以下に添付図面を参照しながら、本発明の好適な実施形態について詳細に説明する。かかる実施形態に示す寸法、材料、その他具体的な数値等は、発明の理解を容易とするための例示にすぎず、特に断る場合を除き、本発明を限定するものではない。なお、本明細書および図面において、実質的に同一の機能、構成を有する要素については、同一の符号を付することにより重複説明を省略し、また本発明に直接関係のない要素は図示を省略する。 Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. The dimensions, materials, and other specific numerical values shown in the embodiments are merely examples for facilitating understanding of the invention, and do not limit the invention unless otherwise specified. In this specification and the drawings, elements having substantially the same function and configuration are denoted by the same reference numerals to omit redundant description, and elements not directly related to the present invention are omitted. To do.

(電力システム100)
図1は、電力システム100の基本的な接続態様を示した説明図である。電力システム100は、引き込み線12を通じて、電力系統14から電気(商用電力)の供給を受ける。かかる電力システム100は、低圧受電の需要者単位で構成され、その範囲としては、一般用電気工作物であれば、家屋等に限らず、病院、工場、ホテル、レジャー施設、商業施設、マンションといった建物単位や建物内の一部分であってもよい。
(Power system 100)
FIG. 1 is an explanatory diagram showing a basic connection mode of the power system 100. The power system 100 is supplied with electricity (commercial power) from the power grid 14 through the service line 12. The electric power system 100 is configured for each low-voltage power receiving user, and its range is not limited to houses and the like as long as it is a general-purpose electric facility, but it is also a hospital, factory, hotel, leisure facility, commercial facility, condominium, or the like. It may be a building unit or a part of the building.

また、電力システム100は、電力メータ112と、分電盤114と、構内配線116と、コンセント118とを含んで構成される。 The power system 100 also includes a power meter 112, a distribution board 114, a premises wiring 116, and an outlet 118.

電力メータ(電力量計)112は、電力系統14に引き込み線12を介して接続され、引き込み線12と電力システム100との間に流れる(消費および売電の)電流値を計測する。 The electric power meter (electric energy meter) 112 is connected to the electric power system 14 via the service line 12, and measures a current value (consumption and power sale) flowing between the service line 12 and the power system 100.

分電盤114は、電力メータ112に接続され、電流が契約容量を超過すると電気の供給を遮断するサービスブレーカ114a、漏電の検出に応じて電気の供給を遮断する漏電ブレーカ114b、および、構内配線116に接続され、その構内配線116に流れる電流が遮断容量(例えば、20A)を超過すると電気の供給を遮断する分岐ブレーカ(配線用遮断器)114cを有する。 The distribution board 114 is connected to the power meter 112, and has a service breaker 114a that cuts off the supply of electricity when the current exceeds the contracted capacity, a leakage breaker 114b that cuts off the supply of electricity in response to detection of leakage, and internal wiring. It has a branch breaker (wiring circuit breaker) 114c that is connected to 116 and cuts off the supply of electricity when the current flowing through the premises wiring 116 exceeds the breaking capacity (for example, 20 A).

需要者は、構内配線116の端部となるコンセント118に負荷設備16を接続し、分岐ブレーカ114cを通じて電力の供給を受ける。なお、負荷設備16は、屋内の屋内コンセント118aに接続することも、屋外の屋外コンセント118bに接続することもできる。 The consumer connects the load facility 16 to the outlet 118 that is the end of the premises wiring 116, and receives power supply through the branch breaker 114c. The load facility 16 can be connected to an indoor outlet 118a indoors or an outdoor outdoor outlet 118b.

ここで、上記の電力システム100に発電設備120の追加を試みる。発電設備120は、出力電圧値を調整することで、電力系統14より優先して負荷設備16に電力を供給する。かかる発電設備120としては、例えば、太陽光発電機、風力発電機、水力発電機、地熱発電機、太陽熱発電機、大気中熱発電機等の再生可能エネルギー発電設備や、燃料電池、内燃力発電、蓄電池等を用いることができる。 Here, an attempt is made to add a power generation facility 120 to the above power system 100. The power generation facility 120 adjusts the output voltage value to supply power to the load facility 16 with priority over the power system 14. Examples of the power generation facility 120 include a renewable energy power generation facility such as a solar power generator, a wind power generator, a hydroelectric power generator, a geothermal power generator, a solar thermal power generator, an atmospheric thermal power generator, a fuel cell, an internal combustion power generation, and the like. A storage battery or the like can be used.

発電設備120として仮に燃料電池を用いた場合、電気エネルギーとともに熱エネルギーも回収することができる。すなわち、可燃性ガスと水蒸気を反応させて水素を取り出し、その水素と酸素とを反応させて水(水蒸気として再利用)を生成する。この反応過程で電気エネルギーを回収できる。また、これらの反応により生じた熱エネルギーは、貯湯タンクの湯として蓄熱される。 If a fuel cell is used as the power generation facility 120, thermal energy as well as electrical energy can be recovered. That is, combustible gas and water vapor are reacted to take out hydrogen, and the hydrogen and oxygen are reacted to generate water (reused as water vapor). Electric energy can be recovered during this reaction process. The thermal energy generated by these reactions is stored as hot water in the hot water storage tank.

このような発電設備120は、単相3線式100/200Vの発電設備が一般的である。この場合、分岐ブレーカ114cに代えて連系ブレーカ(100V/200V)を設け、その連系ブレーカに発電設備120を接続したり、また、漏電ブレーカ114bの一次側から別途の連系ブレーカ(100V/200V)を介して発電設備120を接続しなければならない。 Such a power generation facility 120 is generally a single-phase three-wire type 100/200V power generation facility. In this case, an interconnection breaker (100V/200V) is provided in place of the branch breaker 114c, the power generation equipment 120 is connected to the interconnection breaker, or a separate interconnection breaker (100V/100V/100V/200V) is connected from the primary side of the earth leakage breaker 114b. The power generation facility 120 must be connected via 200V).

ただし、今後は、省エネルギー機器が普及し、電力システム100の電力需要が減少すると、必ずしも単相3線式100/200VのうちのR相およびT相への接続を要さない、本実施形態のような、単相3線式100/200Vのうちの電力線であるR相またはT相のいずれか一方と、中性線であるN相とにのみ(R相とN相、もしくは、T相とN相)接続される小出力の発電設備120が設置されることとなる。 However, in the future, when energy-saving equipment becomes widespread and the power demand of the power system 100 decreases, it is not always necessary to connect to the R phase and the T phase of the single-phase three-wire system 100/200V. As described above, only one of the R phase or the T phase, which is the power line of the single-phase three-wire system 100/200V, and the N phase, which is the neutral line (the R phase and the N phase, or the T phase, The N-phase) connected small output power generation facility 120 will be installed.

このように、単相3線式100/200VのうちのR相およびN相、もしくは、T相およびN相に対して発電設備120を運用できれば、図1において白抜き矢印で示したように、既存の構内配線116から分岐している屋外コンセント118bに、過電流および漏電を防止する連系ブレーカ(100V/200V)122を通じて発電設備120を接続することが可能となる。かかる構成により、既存の構内配線116の有効活用および施工費の削減を図るとともに、電力システム100内の配線を簡素化できる。 In this way, if the power generation facility 120 can be operated for the R phase and the N phase or the T phase and the N phase of the single-phase three-wire system 100/200V, as indicated by the white arrow in FIG. 1, The power generation facility 120 can be connected to the outdoor outlet 118b branched from the existing in-house wiring 116 through the interconnection breaker (100V/200V) 122 that prevents overcurrent and leakage. With such a configuration, it is possible to effectively use the existing premises wiring 116 and reduce the construction cost, and it is possible to simplify the wiring in the power system 100.

また、このような発電設備120に加え、さらに連設設備124を併設(連設)する場合がある。連設設備124としては、例えば、発電設備120が燃料電池であった場合に、バックアップ熱源機が挙げられる。バックアップ熱源機は、可燃性ガスによる加熱機構を備え、発電設備120の貯湯タンクの湯水の温度が低い場合の加熱や、構内の風呂の追い炊き等に用いられる。したがって、連設設備124は、発電設備120と通信することで連携して動作することができる。 Further, in addition to such power generation equipment 120, there may be a case where a continuous installation equipment 124 is additionally provided (connected). Examples of the continuous facility 124 include a backup heat source device when the power generation facility 120 is a fuel cell. The backup heat source device has a heating mechanism using a combustible gas, and is used for heating when the temperature of hot water in the hot water storage tank of the power generation facility 120 is low, and for reheating the bath in the premises. Therefore, the continuous facility 124 can operate in cooperation with each other by communicating with the power generation facility 120.

なお、連設設備124は、通信のみならず、発電設備120に電力線を接続することで発電設備120を通じて電力系統14から電力の供給を受けることができる。こうして、連設設備124は、電力系統14の電力によって、例えば加熱機構を動作させることができる。 It should be noted that the connection facility 124 can receive power from the power system 14 through the power generation facility 120 by connecting a power line to the power generation facility 120 as well as communication. In this way, the continuous facility 124 can operate, for example, a heating mechanism by the power of the power system 14.

また、連設設備124は、電力系統14のみならず、発電設備120からも電力の供給を受けることができる。例えば、停電時等、電力系統14の異常時に電力系統14から電力の供給を受けられなくなった場合、発電設備120は、自立運転を開始し、電力系統14の代わりに連設設備124に電力を供給する。こうすることで、連設設備124は、電力系統14の停電時においても、発電設備120の電力によって加熱機構を動作させることができるので、需要者は、停電時においても、湯水を利用することが可能となる。このように、連設設備124は、通常時には発電設備120を通じて電力系統14から電力の供給を受け、電力系統14の異常時には自立運転している発電設備120から電力の供給を受けることとなる。 Further, the continuous facility 124 can be supplied with electric power from the power generation facility 120 as well as the power system 14. For example, when power cannot be supplied from the power system 14 when the power system 14 is abnormal, such as during a power outage, the power generation facility 120 starts self-sustaining operation and supplies power to the continuous facility 124 instead of the power system 14. Supply. By doing so, since the continuous facility 124 can operate the heating mechanism by the power of the power generation facility 120 even when the power system 14 has a power failure, the consumer can use the hot water even when the power fails. Is possible. As described above, the continuous installation facility 124 is normally supplied with power from the power system 14 through the power generation facility 120, and is supplied with power from the power generation facility 120 that operates independently when the power system 14 is abnormal.

ところで、発電設備120を設置する場合、電力会社との系統連系協議を要する。ここで、系統連系協議は、電力系統14の電力品質(電圧・周波数等)や供給信頼度等の面で適切な運用を図るべく、電力会社(一般電気事業者)と発電設備(分散型電源)設置者とが協議をすることである(参考:JEAC9701−2012)。そうすると、連設設備124を設置する際に、施工者は、接続切換等、所定の作業を強いられることになる。 By the way, when the power generation facility 120 is installed, system interconnection consultation with an electric power company is required. Here, in the grid interconnection discussion, in order to properly operate the power system 14 in terms of power quality (voltage, frequency, etc.) and supply reliability, etc. (Power source) It is to discuss with the installer (reference: JEAC 9701-2012). Then, when installing the continuous facility 124, the builder is forced to perform a predetermined work such as connection switching.

図2は、連設設備124の設置時に生じる作業を説明するための説明図である。ここで、発電設備120は、連系ブレーカ122を通じて屋外コンセント118bに接続されている。 FIG. 2 is an explanatory diagram for explaining the work that occurs when the continuous facility 124 is installed. Here, the power generation facility 120 is connected to the outdoor outlet 118b through the interconnection breaker 122.

施工者は、連設設備124の初期動作確認のため、または、系統連系協議完了前に連設設備124を利用するため、まず、図2(a)のように、連設設備124を、発電設備120に接続することなく、直接、屋外コンセント118bに接続する。これは、電力会社との系統連系協議が完了しないと、連系ブレーカ122をON状態にできないので、連設設備124が発電設備120を通じて電力の供給を受けられないからである。 In order to confirm the initial operation of the connection facility 124, or to use the connection facility 124 before the completion of the grid interconnection discussion, the installer first sets the connection facility 124 as shown in FIG. It is directly connected to the outdoor outlet 118b without being connected to the power generation facility 120. This is because the interconnection breaker 122 cannot be turned on until the interconnection interconnection consultation with the electric power company is completed, so that the interconnection facility 124 cannot receive the power supply through the power generation facility 120.

そして、連設設備124の初期動作確認が終了し、また、電力会社との系統連系協議が完了すると、図2(b)のように、連設設備124の接続先を、屋外コンセント118bから発電設備120に切り換える。こうして、連設設備124の設置が完了する。 When the initial operation confirmation of the connection facility 124 is completed and the grid interconnection discussion with the electric power company is completed, the connection destination of the connection facility 124 is changed from the outdoor outlet 118b as shown in FIG. 2B. Switch to the power generation facility 120. Thus, the installation of the continuous installation facility 124 is completed.

このように、施工者は、連設設備124の接続先を切り換えなければならないが、希に、連設設備124の接続先の切り換えを失念し、図2(a)のように、連設設備124を屋外コンセント118bに接続したまま設置を完了する場合がある。しかし、仮に、施工者が発電設備120への接続切換を怠ったとしても、連設設備124は、既に、屋外コンセント118bから、直接、電力の供給を受けているため、電力系統14に異常が発生するまで連設設備124は正常に動作することとなる。 As described above, the builder has to switch the connection destination of the continuous facility 124, but rarely forgets to switch the connection destination of the continuous facility 124, and as shown in FIG. Installation may be completed with 124 connected to the outdoor outlet 118b. However, even if the installer neglects to switch the connection to the power generation equipment 120, the continuous equipment 124 has already been directly supplied with power from the outdoor outlet 118b, and therefore the power system 14 is abnormal. The continuous installation 124 will operate normally until it occurs.

そして、接続が是正されることなく放置されると、電力系統14の異常時に、発電設備120からの電力供給を受けられず、連設設備124が動作しないことから、ここで、初めて、その接続切換が正常に行われていないことが発覚する。しかし、このような緊急時に接続切換を怠っていたことが発覚しても、結局、連設設備124が使えないので、発電設備120に連設設備124を連設している効果が得られない。ここでは、発電設備120への接続切換を怠った場合であっても、その状態を適切に是正することを目的としている。 If the connection is left without being corrected, the power supply from the power generation facility 120 cannot be received when the power system 14 is abnormal, and the continuous facility 124 does not operate. It is discovered that the switching is not performed normally. However, even if it is discovered that the connection switching has been neglected in such an emergency, since the continuous installation facility 124 cannot be used after all, the effect of connecting the continuous installation facility 124 to the power generation facility 120 cannot be obtained. .. Here, even if the connection switching to the power generation equipment 120 is neglected, the purpose is to appropriately correct the state.

図3は、電力システム100の接続関係を示した説明図である。かかる図3では電力の移動を実線で、情報を含む信号の移動を破線の矢印で示している。 FIG. 3 is an explanatory diagram showing the connection relationship of the power system 100. In FIG. 3, the movement of power is indicated by a solid line, and the movement of a signal including information is indicated by a dashed arrow.

発電設備120は、上述したように、屋外コンセント118bを通じて構内配線116に接続され、発電部120aにおいて他のエネルギーを電気エネルギーに変換して電気を生成し、屋外コンセント118bを通じ、生成した電気を電力系統14より優先して構内の負荷設備16に供給する。 As described above, the power generation facility 120 is connected to the indoor wiring 116 through the outdoor outlet 118b, converts other energy into electric energy in the power generation unit 120a to generate electricity, and generates electricity through the outdoor outlet 118b. The load equipment 16 on the premises is supplied with priority over the grid 14.

また、発電設備120は、発電部120aに加え、第1解列部120bと、第2解列部120cと、連設設備用コンセント120dと、通信部120eと、制御部120fとを有する。第1解列部120bは、屋外コンセント118bと発電部120aとの間に設けられ、発電部120aから構内配線116への電力供給(出力)を遮断する。第2解列部120cは、発電部120aと連設設備用コンセント120dとの間に設けられ、電力系統14や発電部120aから連設設備124への電力供給(出力)を遮断する。 In addition to the power generation unit 120a, the power generation facility 120 includes a first disconnection unit 120b, a second disconnection unit 120c, a continuous facility outlet 120d, a communication unit 120e, and a control unit 120f. The first disconnection unit 120b is provided between the outdoor outlet 118b and the power generation unit 120a, and shuts off the power supply (output) from the power generation unit 120a to the premises wiring 116. The second disconnecting section 120c is provided between the power generation section 120a and the continuous installation outlet 120d, and shuts off power supply (output) from the power system 14 or the power generation section 120a to the continuous installation 124.

通信部120eは、連設設備124との通信線120gを通じて連設設備124と通信を確立する(相互通信)。制御部120fは、中央処理装置(CPU)、プログラム等が格納されたROM、ワークエリアとしてのRAM等を含む半導体集積回路で構成され、発電設備120全体を制御する。また、制御部120fは、プログラムと協働することで、通信確立部130、自立運転切換部132、正常動作判定部134、異常報知部136として機能する。なお、ここでは、制御部120fが発電設備120と一体的に形成される例を挙げて説明しているが、別体として設けられてもよい。 The communication unit 120e establishes communication with the continuous facility 124 through the communication line 120g with the continuous facility 124 (mutual communication). The control unit 120f is composed of a semiconductor integrated circuit including a central processing unit (CPU), a ROM in which programs and the like are stored, a RAM as a work area, and the like, and controls the entire power generation facility 120. Further, the control unit 120f functions as the communication establishing unit 130, the self-sustained operation switching unit 132, the normal operation determination unit 134, and the abnormality notification unit 136 by cooperating with the program. Although the control unit 120f is described here as an example formed integrally with the power generation facility 120, the control unit 120f may be provided separately.

通信確立部130は、通信部120eを通じて、連設設備124の通信部(図示せず)と通信を確立し、連設設備124との連携動作のため連設設備124と通信を行う。自立運転切換部132は、電力系統14の異常、例えば、電力系統14から電力の供給を受けられなくなると、第1解列部120bを解列(OFF)して、自立運転に切り換える。こうして、連設設備124は、通常時に、発電設備120を通じて電力系統14もしくは発電部120aから電力の供給を受け、電力系統14の異常時に、自立運転している発電設備120から電力の供給を受けることが可能となる。 The communication establishing unit 130 establishes communication with the communication unit (not shown) of the continuous installation facility 124 through the communication unit 120e, and communicates with the continuous installation facility 124 for cooperative operation with the continuous installation facility 124. The self-sustained operation switching unit 132 disconnects (OFFs) the first disconnection unit 120b to switch to the self-sustained operation when the power system 14 is abnormal, for example, when power cannot be supplied from the power system 14. In this way, the continuous facility 124 receives power from the power system 14 or the power generation unit 120a through the power facility 120 during normal operation, and receives power from the power facility 120 operating independently when the power system 14 is abnormal. It becomes possible.

なお、自立運転切換部132は、以下のようにして電力系統14の異常を判定する。すなわち、発電設備120では、発電部120aの出力側に設けられた電圧計(図示せず)により構内配線116の相間電圧値を計測し、計測した相間電圧値より高い電圧値で電力を出力することで、負荷設備16に電力(電流)を供給する(定電流制御)。そうすると、発電設備120の電圧値は、構内配線116の相間電圧値に追従することとなり、構内配線116の相間電圧値の変化に基づいて、発電部120aの出力電圧値も変化する。したがって、自立運転切換部132は、発電部120aの出力電圧値が所定の閾値(例えば、90V)以下となると、電力系統14が異常であると判定することができる。 In addition, the self-sustained operation switching unit 132 determines the abnormality of the power system 14 as follows. That is, in the power generation facility 120, the voltmeter (not shown) provided on the output side of the power generation unit 120a measures the interphase voltage value of the internal wiring 116, and outputs electric power at a voltage value higher than the measured interphase voltage value. As a result, power (current) is supplied to the load facility 16 (constant current control). Then, the voltage value of the power generation equipment 120 follows the interphase voltage value of the internal wiring 116, and the output voltage value of the power generation unit 120a also changes based on the change of the interphase voltage value of the internal wiring 116. Therefore, the self-sustained operation switching unit 132 can determine that the power system 14 is abnormal when the output voltage value of the power generation unit 120a becomes equal to or lower than a predetermined threshold value (for example, 90V).

また、発電設備120が自立運転に切り換わると、発電部120aは、定電圧制御に切り換えられ、所定の電圧(例えば、101V)で、所定の電流量を供給する。また、発電部120aが生成した電力が連設設備124で消費しきれない場合、余った電力は発電設備120の内部負荷で消費する。 When the power generation facility 120 switches to the self-sustaining operation, the power generation unit 120a is switched to the constant voltage control and supplies a predetermined amount of current at a predetermined voltage (for example, 101V). Further, when the power generated by the power generation unit 120a cannot be completely consumed by the continuous installation facility 124, the surplus power is consumed by the internal load of the power generation facility 120.

正常動作判定部134は、通信確立部130が連設設備124との通信を確立した後、第2解列部120cを解列(OFF)して発電設備120から連設設備124への電力(電力系統14および発電部120aのいずれもの電力)の供給を停止し(したがって、連設設備124には電力が供給されない)、それに伴い、連設設備124との通信が維持されているか否か判定する。異常報知部136は、正常動作判定部134によって、連設設備124との通信が維持されていると判定されると、連設設備124への電力供給の接続異常を報知する。 The normal operation determination unit 134 disconnects (turns off) the second disconnection unit 120c after the communication establishment unit 130 establishes communication with the connected facility 124, and then the power from the power generation facility 120 to the connected facility 124 ( The supply of electric power from either the power system 14 or the power generation unit 120a is stopped (therefore, the electric power is not supplied to the continuous installation facility 124), and accordingly, it is determined whether communication with the continuous installation facility 124 is maintained. To do. When the normal operation determination unit 134 determines that the communication with the continuous facility 124 is maintained, the abnormality notification unit 136 reports a connection abnormality of power supply to the continuous facility 124.

ここでは、連設設備124の設置時において、連設設備124の初期動作確認が終了した後に、発電設備120と連設設備124間の電力配線120hが接続されているか否か確認することを目的としている。例えば、正常動作判定部134が、第2解列部120cを解列し、連設設備124に電力が供給されなくなると、連設設備124では通信を維持できなくなるはずである。したがって、正常動作判定部134は、発電設備120と連設設備124との通信が維持されなくなったことをもって、発電設備120と連設設備124間の電力配線120hが接続されている、すなわち、接続状態は正常であると判断できる。 Here, at the time of installation of the connection facility 124, the purpose is to confirm whether or not the power wiring 120h between the power generation facility 120 and the connection facility 124 is connected after the initial operation confirmation of the connection facility 124 is completed. I am trying. For example, if the normal operation determination unit 134 disconnects the second disconnection unit 120c and the electric power is not supplied to the connection facility 124, the connection facility 124 cannot maintain communication. Therefore, the normal operation determination unit 134 determines that the power wiring 120h between the power generation facility 120 and the continuous facility 124 is connected when the communication between the power generation facility 120 and the continuous facility 124 is not maintained, that is, the connection. It can be judged that the condition is normal.

一方、発電設備120と連設設備124間の電力配線120hが接続されていない場合、連設設備124は電力系統14から屋外コンセント118bを通じて、直接、電力の供給を受けているので、第2解列部120cが解列されても動作し続ける。そうすると、発電設備120と連設設備124との通信が維持されるので、正常動作判定部134は、発電設備120と連設設備124との通信が維持されていることをもって、発電設備120と連設設備124間の電力配線120hが接続されていない(接続切換が行われていない)、すなわち、接続状態は異常であると判断できる。こうして、異常報知部136は、連設設備124への電力供給の接続異常を報知する。以下、このような制御部120fによる異常判定方法を詳述する。 On the other hand, when the power wiring 120h between the power generation facility 120 and the continuous facility 124 is not connected, the continuous facility 124 is directly supplied with power from the power system 14 through the outdoor outlet 118b. Even if the column part 120c is disconnected, it continues to operate. Then, since the communication between the power generation facility 120 and the continuous facility 124 is maintained, the normal operation determination unit 134 is connected to the power generation facility 120 with the fact that the communication between the power generation facility 120 and the continuous facility 124 is maintained. It can be determined that the power wiring 120h between the installation facilities 124 is not connected (connection switching is not performed), that is, the connection state is abnormal. In this way, the abnormality notification unit 136 notifies the connection abnormality of the power supply to the continuous installation 124. Hereinafter, the abnormality determination method by the control unit 120f will be described in detail.

(異常判定方法)
図4は、異常判定方法の処理の流れを示したフローチャートである。かかる異常判定方法は所定周期でループ制御される。なお、ここでは、系統連系協議が終了し、発電設備120と連設設備124間の通信線120gの接続、および、発電設備120と連設設備124間の電力配線120hの接続切換が行われ(ただし失念する場合もある)、連系ブレーカ122がON状態に切り換えられたとする。なお、発電設備120の第1解列部120bおよび第2解列部120cはいずれもON状態となっているとする。
(Abnormality determination method)
FIG. 4 is a flowchart showing the flow of processing of the abnormality determination method. The abnormality determination method is loop-controlled at a predetermined cycle. Here, the grid interconnection consultation is completed, and the communication line 120g between the power generation equipment 120 and the connection equipment 124 and the connection of the power wiring 120h between the power generation equipment 120 and the connection equipment 124 are switched. (However, it may be forgotten) It is assumed that the interconnection breaker 122 is switched to the ON state. It is assumed that both the first disconnecting section 120b and the second disconnecting section 120c of the power generation facility 120 are in the ON state.

(ステップS10)
制御部120fは、まず、連系ブレーカ122がON状態になったか否か、すなわち、当該発電設備120に電力が供給されたか否か判定する。その結果、連系ブレーカ122がON状態であれば、ステップS11に処理を移し、ON状態でなければ、ステップS10の処理を繰り返す。
(Step S10)
The control unit 120f first determines whether or not the interconnection breaker 122 is in the ON state, that is, whether or not electric power is supplied to the power generation facility 120. As a result, if the interconnection breaker 122 is in the ON state, the process proceeds to step S11, and if it is not in the ON state, the process of step S10 is repeated.

(ステップS11)
ステップS10において連系ブレーカ122がON状態であると判定されれば、制御部120fは、当該発電設備120の初期動作確認を行う。
(Step S11)
If it is determined in step S10 that the interconnection breaker 122 is in the ON state, the control unit 120f confirms the initial operation of the power generation facility 120.

(ステップS12)
続いて、制御部120fの通信確立部130は、通信部120eを通じて、連設設備124の通信部と通信を確立し、連設設備124との連携動作のための初期動作確認を行う。
(Step S12)
Subsequently, the communication establishing unit 130 of the control unit 120f establishes communication with the communication unit of the continuous installation facility 124 through the communication unit 120e, and confirms the initial operation for cooperative operation with the continuous installation facility 124.

(ステップS13)
次に、制御部120fの正常動作判定部134は、第2解列部120cを解列して、発電設備120から連設設備124への電力の供給を停止する。
(Step S13)
Next, the normal operation determination unit 134 of the control unit 120f disconnects the second disconnection unit 120c to stop the supply of electric power from the power generation facility 120 to the continuous facility 124.

(ステップS14)
そして、正常動作判定部134は、連設設備124との通信が維持されているか否か判定する。その結果、通信が途切れた(維持されていない)と判定されれば、ステップS15に処理を移し、通信が維持されていると判定されれば、ステップS16に処理を移す。
(Step S14)
Then, the normal operation determination unit 134 determines whether communication with the continuous facility 124 is maintained. As a result, if it is determined that the communication is interrupted (not maintained), the process proceeds to step S15, and if it is determined that the communication is maintained, the process proceeds to step S16.

(ステップS15)
ステップS14において連設設備124との通信が途切れたと判定されれば、発電設備120と連設設備124間の電力配線120hが接続されている、すなわち、接続状態は正常であると判断できるので、正常動作判定部134は、第2解列部120cをON状態に戻して、発電設備120から連設設備124への電力の供給を再開し、当該異常判定方法を終了する。
(Step S15)
If it is determined in step S14 that the communication with the continuous facility 124 is interrupted, it can be determined that the power wiring 120h between the power generation facility 120 and the continuous facility 124 is connected, that is, the connection state is normal, The normal operation determination unit 134 returns the second disconnecting unit 120c to the ON state, restarts the supply of power from the power generation facility 120 to the continuous facility 124, and ends the abnormality determination method.

(ステップS16)
ステップS14において連設設備124との通信が維持されていると判定されれば、発電設備120と連設設備124間の電力配線120hが接続されていない、すなわち、接続状態は異常であると判断できるので、異常報知部136は、連設設備124への電力供給の接続異常を報知する。かかる報知を受けて、施工者は、発電設備120への接続切換を怠ったことを把握し、発電設備120への接続切換を実行することができる。
(Step S16)
If it is determined in step S14 that communication with the continuous facility 124 is maintained, it is determined that the power wiring 120h between the power generation facility 120 and the continuous facility 124 is not connected, that is, the connection state is abnormal. Therefore, the abnormality notification unit 136 notifies the connection abnormality of the power supply to the continuous facility 124. Upon receiving the notification, the builder can recognize that he/she has failed to switch the connection to the power generation facility 120 and can switch the connection to the power generation facility 120.

(ステップS17)
続いて、正常動作判定部134は、発電設備120への接続切換が実行されたか否か判定する。その結果、発電設備120への接続切換が実行されていれば、ステップS15に処理を移し、発電設備120への接続切換が実行されていなければ、ステップS16からの処理を繰り返す。
(Step S17)
Subsequently, the normal operation determination unit 134 determines whether the connection switching to the power generation equipment 120 has been executed. As a result, if the connection switching to the power generation equipment 120 has been performed, the process proceeds to step S15, and if the connection switching to the power generation facility 120 has not been performed, the processing from step S16 is repeated.

かかる構成により、施工者が発電設備120への接続切換を仮に怠った場合であっても、その状態を適切に是正することができる。また、これに伴い発電設備120と連設設備124とを確実に接続することができるので、電力系統14の異常時に、確実、かつ、安全に連設設備124を利用することが可能となる。 With this configuration, even if the installer neglects to switch the connection to the power generation equipment 120, the state can be appropriately corrected. Further, as a result, the power generation facility 120 and the continuous installation facility 124 can be reliably connected, so that when the power system 14 is abnormal, the continuous installation facility 124 can be used reliably and safely.

以上、添付図面を参照しながら本発明の好適な実施形態について説明したが、本発明はかかる実施形態に限定されないことは言うまでもない。当業者であれば、特許請求の範囲に記載された範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。 The preferred embodiments of the present invention have been described above with reference to the accompanying drawings, but it goes without saying that the present invention is not limited to such embodiments. It is obvious to those skilled in the art that various changes or modifications can be conceived within the scope described in the claims, and naturally, they also belong to the technical scope of the present invention. Understood.

例えば、上述した実施形態においては、通信確立部130が、連設設備124との通信を確立した後、正常動作判定部134が、発電設備120からの電力の供給を停止し、連設設備124との通信が維持されているか否か判定し、通信が維持されていると判定されると、異常報知部136が、連設設備への電力供給の接続異常を報知する例を挙げて説明したが、かかる場合に限らず、発電設備120からの電力の供給を停止したことによって、連設設備124の本来の動作が不能になることを確認できれば足り、例えば、正常動作判定部134が、発電設備120からの電力の供給を停止し、連設設備124が正常に動作しているか否か判定し、連設設備124が正常に動作していると判定されると、異常報知部136が、連設設備124への電力供給の接続異常を報知するとしてもよい。 For example, in the above-described embodiment, after the communication establishing unit 130 establishes communication with the continuous facility 124, the normal operation determination unit 134 stops the power supply from the power generating facility 120 and the continuous facility 124. It has been described with reference to an example in which it is determined whether or not the communication with is maintained, and when it is determined that the communication is maintained, the abnormality notification unit 136 notifies the connection abnormality of the power supply to the continuous facility. However, not only in such a case, it is sufficient to confirm that the original operation of the continuous installation 124 is disabled by stopping the supply of electric power from the power generation installation 120. For example, the normal operation determination unit 134 When the supply of power from the equipment 120 is stopped, it is determined whether or not the continuous equipment 124 is operating normally, and when it is determined that the continuous equipment 124 is operating normally, the abnormality notification unit 136 An abnormality in the connection of the power supply to the continuous facility 124 may be notified.

本発明は、需要者構内に発電設備を接続可能な電力システムに利用することができる。 INDUSTRIAL APPLICATION This invention can be utilized for the electric power system which can connect a power generation facility to a customer premises.

14 電力系統
16 負荷設備
100 電力システム
114c 分岐ブレーカ
116 構内配線
120 発電設備
124 連設設備
134 正常動作判定部
136 異常報知部
14 power system 16 load facility 100 power system 114c branch breaker 116 premises wiring 120 power generation facility 124 continuous facility 134 normal operation determination unit 136 abnormality notification unit

Claims (2)

電力系統の電力を、分岐ブレーカに接続された構内配線を通じて負荷設備に供給する電力システムであって、
前記構内配線に接続され、電力の発電が可能な発電設備と、
前記発電設備との通信を確立可能な連設設備と、
前記発電設備に設けられ、前記連設設備との通信を確立した後、前記連設設備への電力の供給を停止し、前記連設設備との通信が維持されているか否か判定する正常動作判定部と、
前記正常動作判定部によって前記通信が維持されていると判定されると、前記連設設備への電力供給の接続異常を報知する異常報知部と、
を備える電力システム。
A power system for supplying electric power of an electric power system to load equipment through premises wiring connected to a branch breaker,
A power generation facility that is connected to the internal wiring and is capable of generating electric power,
A continuous facility capable of establishing communication with the power generation facility,
Normal operation provided in the power generation facility, after establishing communication with the continuous facility, stopping supply of power to the continuous facility, and determining whether communication with the continuous facility is maintained A judgment unit,
When it is determined that the communication is maintained by the normal operation determination unit, an abnormality notification unit that notifies the connection abnormality of the power supply to the continuous installation,
Power system comprising.
電力系統の電力を、分岐ブレーカに接続された構内配線を通じて負荷設備に供給する電力システムであって、
前記構内配線に接続され、電力の発電が可能な発電設備と、
前記電力系統または前記発電設備から電力の供給を受けて動作する連設設備と、
前記発電設備に設けられ、前記連設設備への電力の供給を停止し、前記連設設備が正常に動作しているか否か判定する正常動作判定部と、
前記正常動作判定部によって前記連設設備が正常に動作していると判定されると、前記連設設備への電力供給の接続異常を報知する異常報知部と、
を備える電力システム。
A power system for supplying electric power of an electric power system to load equipment through premises wiring connected to a branch breaker,
A power generation facility that is connected to the internal wiring and is capable of generating electric power,
A continuous facility that operates by receiving power supply from the power system or the power generation facility,
A normal operation determination unit provided in the power generation facility, stopping the supply of power to the continuous facility, and determining whether or not the continuous facility is operating normally,
When it is determined by the normal operation determination unit that the connection facility is operating normally, an abnormality notification unit that notifies the connection abnormality of the power supply to the connection facility,
Power system comprising.
JP2017033927A 2017-02-24 2017-02-24 Power system Active JP6734797B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017033927A JP6734797B2 (en) 2017-02-24 2017-02-24 Power system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017033927A JP6734797B2 (en) 2017-02-24 2017-02-24 Power system

Publications (2)

Publication Number Publication Date
JP2018139477A JP2018139477A (en) 2018-09-06
JP6734797B2 true JP6734797B2 (en) 2020-08-05

Family

ID=63451497

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017033927A Active JP6734797B2 (en) 2017-02-24 2017-02-24 Power system

Country Status (1)

Country Link
JP (1) JP6734797B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6912126B1 (en) * 2020-07-31 2021-07-28 株式会社石川エナジーリサーチ Power supply system and distribution board for power outages

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3192918B2 (en) * 1995-04-18 2001-07-30 三洋電機株式会社 Grid-connected power supply
JP5782817B2 (en) * 2011-04-29 2015-09-24 株式会社ノーリツ Waste heat recovery device
JP2014045605A (en) * 2012-08-28 2014-03-13 Noritz Corp Power conditioner
JP6480096B2 (en) * 2013-04-19 2019-03-06 京セラ株式会社 Power control system, power control apparatus, and control method for power control system

Also Published As

Publication number Publication date
JP2018139477A (en) 2018-09-06

Similar Documents

Publication Publication Date Title
JP5792824B2 (en) Power supply system, distributed power supply system, management device, and power supply control method
JP6047490B2 (en) Power supply system, power distribution device, and power control method
US9711967B1 (en) Off grid backup inverter automatic transfer switch
US20180309299A1 (en) Power control apparatus, control method for power control apparatus, power control system, and control method for power control system
WO2014003037A1 (en) Control device, fuel cell unit, and control method
JP6712217B2 (en) Power system
JP5886138B2 (en) Power control system, fuel cell, and control method
JP2015220791A (en) Power supply control device
JP6734797B2 (en) Power system
EP2882022B1 (en) Management system, management method, control device, and power generator
EP2879221B1 (en) Control device, fuel cell system and control method
JP5652814B2 (en) Distributed power supply system
JP7181138B2 (en) Distributed power system
JP2018157736A (en) Electric power system
JP5886136B2 (en) Power control system, control device, and control method
US20150333491A1 (en) Alternative energy bus bar by pass breaker
US10910839B2 (en) Power control system and control method for power control system
JP2018064347A (en) Power system
JP7210358B2 (en) Power supply equipment
JP2005302460A (en) Control unit of fuel cell system
JP2019030152A (en) Power control system and power control method
JP2017153304A (en) Power Conditioner
WO2015008707A1 (en) Control device, panelboard and control method
JP5645767B2 (en) Power control apparatus and power control method
JP2018064346A (en) Power system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190918

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200707

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200708

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200710

R150 Certificate of patent or registration of utility model

Ref document number: 6734797

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250