JP6771213B2 - ボールエンドミルの製造方法及びボールエンドミル - Google Patents

ボールエンドミルの製造方法及びボールエンドミル Download PDF

Info

Publication number
JP6771213B2
JP6771213B2 JP2016175336A JP2016175336A JP6771213B2 JP 6771213 B2 JP6771213 B2 JP 6771213B2 JP 2016175336 A JP2016175336 A JP 2016175336A JP 2016175336 A JP2016175336 A JP 2016175336A JP 6771213 B2 JP6771213 B2 JP 6771213B2
Authority
JP
Japan
Prior art keywords
rough
processed material
tip
copper
based block
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016175336A
Other languages
English (en)
Other versions
JP2018039084A (ja
Inventor
究 三橋
究 三橋
Original Assignee
有限会社三井刻印
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 有限会社三井刻印 filed Critical 有限会社三井刻印
Priority to JP2016175336A priority Critical patent/JP6771213B2/ja
Publication of JP2018039084A publication Critical patent/JP2018039084A/ja
Application granted granted Critical
Publication of JP6771213B2 publication Critical patent/JP6771213B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Milling Processes (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)

Description

本発明は、先端の外径が0.1mmよりも小径のボールエンドミルの製造技術に関する。
フライス工具の一種として、エンドミルが知られている。このエンドミルのうち、先端が半球(ボール)形状になったものはボールエンドミルと呼ばれる。このボールエンドミルの製造方法が各種提案されてきた(例えば、特許文献1(図3、図5)参照)。
特許文献1の技術を図12及び図13に基づいて説明する。
図12は従来のボールエンドミルの外形図であり、ボールエンドミル100は、シャンク101と、このシャンク101の一端に一体形成されシャンク101より小径の首部102と、この首部102の先端に一体形成されたチップ部103とからなる。
工具先端部(チップ部103)の外径は、0.1mm〜6.0mmである(特許文献1[請求項1])。
このような形状のボールエンドミル100は、次に説明する装置で加工される。
図13は従来の三次元加工装置の原理図であり、三次元加工装置110は、素材保持機構111とレーザ光照射機構121と制御部131とからなる。
素材保持機構111は、円柱素材112を支えると共に軸回りに回転させる回転機構113と、この回転機構113を支えると共に旋回させる旋回機構114と、回転機構113及び旋回機構114を一括してx軸方向へ移動するx軸ステージ115、y軸方向へ移動するy軸ステージ116及びz軸方向へ移動するz軸ステージ117とを備えている。
レーザ光照射機構121は、レーザ光源122と、ガルバノスキャナ123とを備えている。
円柱素材112は、PCD(ダイヤモンド焼結体)などからなる(特許文献1段落0020)。
素材保持機構111で保持される円柱素材112へ、レーザ光照射機構121からレーザ光が照射される。レーザ光で、照射部位が溶かされる。
円柱素材112は、ステージ115〜117でxyz軸方向に移動されると共に、旋回機構114で揺動され、回転機構113で回転されるため、先端が半球状に整形され、ボールエンドミル100が得られる。
特許文献1の回転機構113や旋回機構114は、回転や旋回を円滑に行わせるために、固定部と移動部との間に僅かな隙間が設けられる。隙間が0であると回転不能や旋回不能となるからである。
一般に、隙間は数μmが確保され、回転機構113や旋回機構114他で累積される。素材保持機構111としては、累積隙間は5μm(0.005mm)程度になる。この累積隙間は、ガタと呼ばれる。
チップ部103の外径は0.1mm(最小値)である。上記した0.005mmのガタが影響し、チップ部103の外径が0.095mm又は0.105mmに仕上がる可能性がある。すなわち、仕上がり精度が±5%となる。チップ部103の外径が小さくなるほど、仕上がり精度が悪くなり、仮に、チップ部103の外径が0.01mmであれば、仕上がり精度は±50%となる。この精度は許容されない。
このことから、従来の技術では、ボールエンドミルの最小外径が0.1mmとされた。すなわち、従来からボールエンドミルの最小外径は0.1mmが限度とされてきた。
しかし、金型などの被加工物には、より微細な加工及び高い精度が求められる。そのため、外径が0.1mmよりも遙かに小径のボールエンドミルが必然的に必要となる。
特開2016−43450号公報
本発明は、外径が0.1mmよりも遙かに小径のボールエンドミルを提供することを課題とする。
請求項1に係る発明は、シャンクと、このシャンクの一端に固定され外径が0.5〜1.5mmである金属柱と、この金属柱の先端に一体形成された焼結ダイヤモンド層とからなり、この焼結ダイヤモンド層の先端が半球状になっているボールエンドミルの製造方法であって、
前記焼結ダイヤモンド層に、研磨又は放電加工により、最小外径が0.005mmの微細柱を形成することで、前記シャンク、前記金属柱及び前記焼結ダイヤモンド層からなる粗加工済み素材を得る工程と、
前記粗加工済み素材を回転させつつ支持する回転機構と、前記粗加工済み素材を回転軸に沿って移動する移動機構と、前記微細柱の先方に静止状態で配置される銅系ブロックと、前記粗加工済み素材と前記銅系ブロックに接続される電源とを準備する準備工程と、
前記電源で、前記粗加工済み素材が負極、前記銅系ブロックが正極となるように通電する通電工程と、
この通電工程を維持しつつ、前記回転機構で前記粗加工済み素材を回転しつつ前記移動機構で前記粗加工済み素材を前記銅系ブロックへ前進させ、前記微細柱から前記銅系ブロックに向かう放電により、前記銅系ブロックに窪みを形成し、この窪みからの熱により前記微細柱の先端のコーナー部を溶かして半球状にする先端整形工程と、からなる。
請求項2に係る発明は、シャンクと、このシャンクの一端に固定され外径が0.5〜1.5mmである金属柱と、この金属柱の先端に一体形成された焼結ダイヤモンド層とからなり、この焼結ダイヤモンド層の先端が半球状になっているボールエンドミルの製造方法であって、
前記焼結ダイヤモンド層に、研磨又は放電加工により、最小外径が0.02mmの微細柱を形成することで、前記シャンク、前記金属柱及び前記焼結ダイヤモンド層からなる第1粗加工済み素材を得る工程と、
前記第1粗加工済み素材の先端に、研磨又は放電加工により、粗い半球を形成することで第2粗加工済み素材を得る工程と、
前記第2粗加工済み素材を回転させつつ支持する回転機構と、前記第2粗加工済み素材を回転軸に沿って移動する移動機構と、前記微細柱の先方に静止状態で配置される銅系ブロックと、前記第2粗加工済み素材と前記銅系ブロックに接続される電源とを準備する準備工程と、
非通電状態で、前記回転機構及び前記移動機構にて前記第2粗加工済み素材を回転しつつ前記銅系ブロックへ前進させ、この銅系ブロックに初期窪みを形成する工程と、
前記電源で、前記第2粗加工済み素材が正極、前記銅系ブロックが負極となるように通電する通電工程と、
この通電工程を維持しつつ、前記回転機構で前記第2粗加工済み素材を回転しつつ前記移動機構で前記第2粗加工済み素材を、前記微細柱の先端が前記初期窪みに進入するまで前記銅系ブロックへ前進させ、前記銅系ブロックから前記微細柱に向かう放電により、前記粗い半球を平滑な半球に整形する先端整形工程と、からなる。
請求項3に係る発明は、シャンクと、このシャンクの一端に固定され外径が0.5〜1.5mmである金属柱と、この金属柱の先端に一体形成された焼結ダイヤモンド層とからなるボールエンドミルであって、
前記焼結ダイヤモンド層は、先端に外径が0.005〜0.02mmの微細柱を備えており、この微細柱の先端が半球状に丸められており、
前記焼結ダイヤモンド層は、前記金属柱に底面が接する第1円錐部と、この第1円錐部に底面が接すると共に前記第1円錐部の円錐頂角よりも円錐頂角が大きな第2円錐部とを更に有し、前記第2円錐部から前記微細柱が延びていることを特徴とする。
請求項1に係る発明では、放電加工の際に、敢えて粗加工済み素材側を負極、すなわち電極側にした。銅系ブロック側が高温になる。粗加工済み素材の先端の微細柱が銅系ブロック側の熱で間接的に穏やかに溶かされる。この穏やかな溶融により微細柱の先端のコーナー部が角から丸に変わる。そのため、最小外径が0.005mmである超微細なボールエンドミルを製造することができる。
請求項2に係る発明では、第1粗加工済み素材の微細柱の先端を粗く丸める。このような微細柱をエンドミルの代替品にして、銅系ブロックに初期窪みを形成する。次に、銅系ブロックを負極、微細柱を正極になるように通電する。このような微細柱を、負極側の銅系ブロック側に回転させつつ前進させる。微細柱の先端は粗く丸めたことで、多面半球形状となり、無数の凸部を含む。凸部が熱と機械的接触とにより平坦になる。結果、最小外径が0.02mmである超微細なボールエンドミルを製造することができる。
請求項3に係る発明により、先端が0.005〜0.02mmであるボールエンドミルが提供される。従来のボールエンドミルの最小半径が0.1mm程度である。対して、本発明のボールエンドミルは、外径が格段に小径である。本発明のボールエンドミルにより、より微細な溝や模様を金型等に形成することができる。溝や模様の仕上がり精度が格段によくなる。
加えて、請求項に係る発明では、微小径(0.005〜0.02mm)の微細柱を第1・第2円錐部を介することにより、外径を徐々に変化させながら金属柱に接続する。断面積の急変が避けられるため、応力集中を緩和することができ、ボールエンドミルの寿命を延ばすことができる。
本発明に係る粗加工済み素材を得る工程を説明する図である。 図1(d)の2部拡大図である。 第1の方法のために準備する放電加工装置の原理図である。 第1の方法に係る先端整形工程を説明する図である。 第1の方法で得られたボールエンドミルの外形図である。 第2の方法のために準備する放電加工装置の原理図である。 第2の方法に係る第1粗加工済み素材の形状を説明する図である。 第2の方法に係る第2粗加工済み素材の形状を説明する図である。 第2の方法に係る初期窪み形成工程と先端整形工程を説明する図である。 従来の技術と実施例との比較図である。 実施例の別の形態を説明する図である。 従来のボールエンドミルの外形図である。 従来の三次元加工装置の原理図である。
本発明の実施の形態を添付図に基づいて以下に説明する。なお、図面は符号の向きに見るものとする。
第1の方法を図1〜図5に基づいて説明する。
図1(a)に示すように、超硬や工具鋼からなる金属板11と、この金属板11に積層した焼結ダイヤモンド層12とからなる複層板10を準備する。焼結ダイヤモンド層12を構成する焼結ダイヤモンドは、PCD(Polycrystlline Diamond、多結晶焼結ダイヤモンド)の略であり、ダイヤモンドの微細結晶を高圧・高温で焼結してなる。
金属板11の厚さt1は、5〜13mmであり、焼結ダイヤモンド層12の厚さt2は、0.5〜2.0mmであり、複層板10の厚さTは(t1+t2)であって、5.5〜15mmが好適である。
複層板10からワイヤカット放電加工により、円柱材15を切り出す。図1(b)に示す円柱材15の外径Dは、0.5〜1.5mmが好適である。すなわち、円柱材15は、外径がDの金属柱16と、この金属柱16の先端に付設された焼結ダイヤモンド層12とからなる。
図1(c)に示すように、シャンク17の先端に円柱材15をろう付け固定する。
図1(d)に示すように、円柱材15の先端を研磨等により粗く形状を整えることで、粗加工済み素材20を得る。
図1(d)の要部を拡大して、図2に示す。
図2に示すように、粗加工済み素材20において、先端の焼結ダイヤモンド層12は、外径がDである金属柱16から第1円錐部21及び第2円錐部22で先細り形状をされ、第2円錐部22の先端に、外径がdで長さがLである微細柱23が形成されている。dは、最小値が0.005mmである。Lはdの数倍に設定される。なお、dは、最小値が0.005mmであればよく、0.005〜0.02mmの範囲から選択可能である。
第1円錐部21の円錐頂角θ1に対して、第2円錐部22の円錐頂角θ2は大きく設定される。
以上に説明した粗加工済み素材20に、放電加工を施す。この放電加工に使用する放電加工装置30の基本構成を次に説明する。
図3に示すように、放電加工装置30は、粗加工済み素材20を回転自在に支える回転機構31と、この回転機構31を回転軸32に沿って移動する移動機構33と、粗加工済み素材20の先方(前方、図では下方)に、配置される銅系ブロック35と、この銅系ブロック35と粗加工済み素材20とに通電する電源36と、加工液37を供給する加工液供給機構38とからなる。ここでは、粗加工済み素材20が負極(−)、銅系ブロック35が正極(+)となるように、正極と負極が設定されている。銅系ブロック35はテーブルに固定され、静止状態とされる。
銅系ブロック35は、純銅、銅タングステン、テルル銅、タフピッチ銅、その他でよい。また、銅系ブロック35は、放電加工に用いられる電極、例えば、タングステン系やグラファイト系とすることは差し支えない。
放電加工方法の原理を次に説明する。
図3にて、回転機構31で毎分数百回転の速度で粗加工済み素材20を回転させつつ、移動機構33で粗加工済み素材20を銅系ブロック35へ前進させる。銅系ブロック35と粗加工済み素材20との間に加工液供給機構38で加工液37を満たす。
図4(a)に示すように、粗加工済み素材20の微細柱23の先端から銅系ブロック35の上面へ放電39が形成される。放電39により銅系ブロック35の上面は高温になる。
図4(b)に示すように、放電39により、銅系ブロック35の上面に、円板状の窪み41ができる。銅系ブロック35の上面は放電で高温になる。銅系ブロック35の上面で微細柱23が加熱される。このとき、微細柱23の正面(下面)23aは上向き熱42で加熱される(一面加熱)。一方、正面と側面が交叉するコーナー部23bは、上向き熱43と横向き熱44で加熱される(二面加熱)。コーナー部23bが正面23aよりも高温になるため、コーナー部23bが大いに溶融する。
結果、図4(c)に示すように、微細柱23のコーナー部23bは丸くなり始める。窪み41も丸みを帯びた形状になる。微細柱23のコーナー部23bは更に丸くなる。
図4(d)に示すように、微細柱23のコーナー部23bは更に丸くなる。
図4(e)に示すように、微細柱23の先端を微細柱23の外径の1.0〜2.0倍の深さで銅系ブロック35へ進入させると、微細柱23の先端が半球形状になる。
図5(a)に示すように、微細柱23を含むボールエンドミル50を上昇する。銅系ブロック35に深い窪み41が残る。
図5(b)に示すように、得られたボールエンドミル50は、シャンク17と、このシャンク17の一端に固定され外径が0.5〜1.5mmである金属柱16と、この金属柱16の先端に一体形成された焼結ダイヤモンド層12とからなる。
そして、焼結ダイヤモンド層12は、先端に外径dが0.005〜0.02mmの微細柱23を備えており、この微細柱23の先端が半球状に丸められている。
従来の技術によるボールエンドミルは、先端の最小外径が0.1mmであった。対して、本発明によるボールエンドミル50は、先端の最小外径が0.005mmであるため、より微細な仕上げ加工に供することができる。金型などにより細かな溝や模様を形成することができ、形成した溝や模様の仕上がり精度が格段に向上する。
好ましくは、図5(a)に示すように、焼結ダイヤモンド層12は、金属柱16に底面が接する第1円錐部21と、この第1円錐部21に底面が接すると共に第1円錐部21の円錐頂角θ1よりも円錐頂角θ2が大きな第2円錐部22とを更に有し、第2円錐部22から微細柱23が延びている。微細柱23に作用する外力(研磨抵抗力など)は、第2円錐部22で分散され、更に第1円錐部21で分散され、金属柱16に伝達される。すなわち、断面の急変に伴って発生する応力の集中が、図5(a)の構造にすることにより大いに緩和される。この緩和により、ボールエンドミル50の寿命が延びる。
以上に述べたボールエンドミル50の製造方法(第1の方法)を整理すると次の通りである。
図1(d)に示すように、焼結ダイヤモンド層12に、研磨又は放電加工により、外径dが0.005〜0.02mmの微細柱(図2、符号23)を形成することで、シャンク17、金属柱16及び焼結ダイヤモンド層12からなる粗加工済み素材20を得る工程を実施する。
図3に示すように、粗加工済み素材20を回転させつつ支持する回転機構31と、粗加工済み素材20を回転軸32に沿って移動する移動機構33と、微細柱(粗加工済み素材20)の先方(図では下方)に静止状態で配置される銅系ブロック35と、粗加工済み素材20と銅系ブロック35に接続される電源36とを準備する(準備工程)。
そして、電源36で、粗加工済み素材20が負極(−)、銅系ブロック35が正極(+)となるように通電する通電工程を実施する。
回転機構31で粗加工済み素材20を回転しつつ移動機構33で粗加工済み素材20を銅系ブロック35へ前進させる。
そして、図4(a)〜(e)に示すように、微細柱23から銅系ブロック35に向かう放電39により、銅系ブロック35に窪み41を形成し、この窪み41からの熱43、44により微細柱23の先端のコーナー部23bを溶かして半球状にする先端整形工程を実施することにより、図5(b)に示すような、先端の外径dが0.005〜0.02mmであるボールエンドミル50を製造する。
ところで、標準的な電源36の使用方法としては、図3に示す銅系ブロック35を負極として、被加工物である粗加工済み素材20を正極とする。放電が銅系ブロック35から粗加工済み素材20へ向かうため、銅系ブロック35はあまり損耗しなく、粗加工済み素材20が盛んに溶かされる。
対して、本発明(第1の方法)では、敢えて、銅系ブロック35を正極として、粗加工済み素材20を負極とした。
この理由は、微細柱23の外径が0.005〜0.02mmと極く小径であり、通常の入熱では、微細柱23の溶融が促され、半球状になる前に全体的に溶融が進行してしまう。本発明のように粗加工素材20を負極にすることで、銅系ブロック35を放電で熱し、この熱で間接的に微細柱23を加熱するようにした。微細柱23が穏やかに溶かされるため、外径が0.005〜0.02mmである超微細な微細柱23の先端のコーナー部23bを溶かして先端を半球状にすることに成功した。
一方、微細柱23の外径が0.02mmを超えると、微細柱23の先端がうまく半球状にならなかったり、加工時間が長くなるなどの問題が起こる。
そこで、微細柱23の外径が0.02〜0.05mmのボールエンドミルについては、別の加工方法(第2の方法)を提供する。
第2の方法を、図6〜図9に基づいて説明する。
第2の方法に用いる放電加工装置30Bは、図3に示す放電加工装置30と次に述べる点で異なり、その他は同一であるため、同一の構成要素には、放電加工装置30の符号を流用し詳細な説明は省略する。
図6に示すように、電源36の正極は、第2粗加工済み素材20Bに接続され、電源36の負極は、銅系ブロック35に接続されている。回転機構31には、第2粗加工済み素材20Bが取付けられている。
第2粗加工済み素材20Bは、第1粗加工済み素材20Aを加工して得られる。
図7(a)に示す第1粗加工済み素材20Aは、図1(d)に示す加工済み素材20と同様に、図1(a)〜(c)の手順で製造された素材である。
図7(a)のb部拡大図である図7(b)に示すように、金属柱16に焼結ダイヤモンド層12が一体形成されている。焼結ダイヤモンド層12の先端に形成される微細柱23の外径d2は、0.02〜0.05mmであり、図2での外径d(0.005〜0.02mm)より大径である。そのため、金属柱16と微細柱23との間は1個の円錐部で繋ぐことができる。無論、金属柱16と微細柱23とを複数個の円錐部で繋ぐことは差し支えない。または、金属柱16と焼結ダイヤモンド層12とを全体的に細長い円錐部としてもよい。この場合は、微細柱23は円柱ではなく、テーパー角が小さな円錐柱となる。
このような第1粗加工済み素材20Aの先端に、研磨又は放電加工で、更に粗加工を施す。
得られた第2粗加工済み素材20Bは、図8(a)に示すが、先端は、図8(a)のb部拡大図である図8(b)に示すように、微細柱23の先端を粗く丸める。粗いため多角形(多面半球)のようになる。面と面の境界に凸部23cができる。
図9(a)に示すように、通電しない状態で、静止している銅系ブロック35へ、毎分数百回転の速度で回転する第2粗加工済み素材20Bを先進させる。微細柱23の凸部23cが刃の役割をすると共に微細柱23がエンドミルの役割を果たすため、図9(b)に示すように、銅系ブロック35に初期窪み41Pができる。初期窪み41Pは、後工程での窪み41の前段階の窪みである。
図9(c)に示すように、第2粗加工済み素材20Bを後退させる。銅系ブロック35に初期窪み41Pが残る。第2粗加工済み素材20Bを後退させると、初期窪み41Pと微細柱23の間が広がり、そこへ加工液37を容易に且つ良好に供給できるようになる。
図9(d)に示すように、加工液37を供給し、銅系ブロック35が負極、微細柱23が正極になるように通電しつつ、第2粗加工素材20Bを前進させる。すると、銅系ブロック35から微細柱23へ放電39が形成される。放電は凸部23cに集中しやすいので、他の部位より凸部23cが高温になる。
微細柱23を連続的に前進させつつ回転させる。凸部23cは、初期窪み41Pに機械的に接触して丸くなると共に熱により溶かされて丸くなる。機械的研削と熱溶解との相乗効果で凸部23cが丸くなる。この間、初期窪み41Pも丸くなって、窪み(図9(e)、符号41)になる。
結果、図9(e)に示すように、微細柱23の先端は平滑化された半球形状になる。
得られたボールエンドミル50Bは、図9(f)で示すように、シャンク17と、外径が0.5〜1.5mmである金属柱16と、ダイヤモンド層12とからなり、ダイヤモンド層12の先端に外径d2が0.02〜0.05mmである微細柱23を有し、この微細柱23の先端が半球状に整形されている。
以上に述べたボールエンドミル50Bの製造方法(第2の方法)を整理すると次の通りである。
図7(b)に示すように、焼結ダイヤモンド層12に、研磨又は放電加工により、外径d2が0.02〜0.05mmの微細柱23を形成することで、図7(a)に示すようなシャンク17、金属柱16及び焼結ダイヤモンド層12からなる第1粗加工済み素材20Aを得る工程を実施する。
第1粗加工済み素材20Aの先端に、研磨又は放電加工により、図8(b)に示すような粗い半球を形成することで、図8(a)に示す第2粗加工済み素材20Bを得る工程を実施する。
図6に示すように、第2粗加工済み素材20Bを回転させつつ支持する回転機構31と、第2粗加工済み素材20Bを回転軸32に沿って移動する移動機構33と、微細柱23の先方に静止状態で配置される銅系ブロック35と、第2粗加工済み素材20Bと銅系ブロック35に接続される電源36とを準備する(準備工程)。
非通電状態で、図9(a)に示すように、回転機構及び移動機構にて第2粗加工済み素材20Bを回転しつつ銅系ブロック35へ前進させ、図9(b)に示すように、銅系ブロック35に初期窪み41Pを形成する。
次に、電源で、図9(c)に示すように、第2粗加工済み素材20Bが正極、銅系ブロック35が負極となるように通電する(通電工程)。
この通電工程を維持しつつ、図9(d)に示すように、回転機構で第2粗加工済み素材20Bを回転しつつ移動機構で第2粗加工済み素材20Bを、微細柱23の先端が初期窪み41Pに進入するまで銅系ブロック35へ前進させる。銅系ブロック35から微細柱23に向かう放電39により、凸部23cが溶かされると共に凸部23cが初期窪み41Pの壁に機械的に接触して平坦化される。このようにして微細柱23の先端の粗い半球が徐々に滑らかになる。図9(e)に示すように、微細柱23の先端が平滑な半球に整形される(先端整形工程)。
結果、図9(f)に示すように、先端の外径dが0.02〜0.05mmであるボールエンドミル50Bが得られる。
第2の方法では、予め初期窪み41Pを形成し、先端が多面形状の微細柱23と初期窪み41Pの間に放電させるため、第1の方法より、一層正確な仕上がり形状が得られる。反面、第2の方法では、最小外径0.02mmが限度である。
以上に、ボールエンドミルの製造方法(第1の方法及び第2の方法)を説明した。これらの方法と従来の技術とを、先端の外径に基づいて比較する。
図10に示すように、従来の技術に基づく比較例では、ボールエンドミルの先端の外径は、0.1〜6.0mmであった。
対して、第2の方法に基づく実施例2では、ボールエンドミルの先端の最小外径は、0.02mm、先端の外径は0.02〜0.05mmであった。この実施例2によれば、0.1mmより十分に小さな外径のボールエンドミル50Bを得ることができる。
さらには、第1の方法に基づく実施例1では、ボールエンドミルの先端の最小外径は、0.005mm、先端の外径は0.005〜0.02mmであった。実施例1によれば、0.1mmより遙かに十分に小さな外径のボールエンドミル50を得ることができる。
なお、実験の結果、第1の方法において、加工時間の延長を許容すれば、外径が0.05mmまで加工が可能であった。また、第2の方法においても、外径が0.1mm未満まで加工が可能であった。
よって、図11に示すように、第1の方法によれば、最小外径が0.005mmであって、外径が0.005〜0.05mmであるボールエンドミル50が得られる。
第2の方法によれば、最小外径が0.02mmであって、外径が0.02〜0.1未満mmであるボールエンドミル50Bが得られる。
本発明は、外径が0.01mmより小径のボールエンドミルに好適である。
12…焼結ダイヤモンド層、16…金属柱、17…シャンク、20…粗加工済み素材、20A…第1粗加工済み素材、20B…第2粗加工済み素材、21…第1円錐部、22…第2円錐部、23…微細柱、23b…コーナー部、23c…粗い半球に存在する凸部、30…第1の方法に供する放電加工装置、30B…第2の方法に供する放電加工装置、31…回転機構、32…回転軸、33…移動機構、35…銅系ブロック、36…電源、39…放電、41…窪み、41P…初期窪み、50、50B…ボールエンドミル、D…金属柱の外径、d1、d2…微細柱の外径、θ1…第1円錐部の円錐頂角、θ2…第2円錐部の円錐頂角。

Claims (3)

  1. シャンクと、このシャンクの一端に固定され外径が0.5〜1.5mmである金属柱と、この金属柱の先端に一体形成された焼結ダイヤモンド層とからなり、この焼結ダイヤモンド層の先端が半球状になっているボールエンドミルの製造方法であって、
    前記焼結ダイヤモンド層に、研磨又は放電加工により、最小外径が0.005mmの微細柱を形成することで、前記シャンク、前記金属柱及び前記焼結ダイヤモンド層からなる粗加工済み素材を得る工程と、
    前記粗加工済み素材を回転させつつ支持する回転機構と、前記粗加工済み素材を回転軸に沿って移動する移動機構と、前記微細柱の先方に静止状態で配置される銅系ブロックと、前記粗加工済み素材と前記銅系ブロックに接続される電源とを準備する準備工程と、
    前記電源で、前記粗加工済み素材が負極、前記銅系ブロックが正極となるように通電する通電工程と、
    この通電工程を維持しつつ、前記回転機構で前記粗加工済み素材を回転しつつ前記移動機構で前記粗加工済み素材を前記銅系ブロックへ前進させ、前記微細柱から前記銅系ブロックに向かう放電により、前記銅系ブロックに窪みを形成し、この窪みからの熱により前記微細柱の先端のコーナー部を溶かして半球状にする先端整形工程と、からなるボールエンドミルの製造方法。
  2. シャンクと、このシャンクの一端に固定され外径が0.5〜1.5mmである金属柱と、この金属柱の先端に一体形成された焼結ダイヤモンド層とからなり、この焼結ダイヤモンド層の先端が半球状になっているボールエンドミルの製造方法であって、
    前記焼結ダイヤモンド層に、研磨又は放電加工により、最小外径が0.02mmの微細柱を形成することで、前記シャンク、前記金属柱及び前記焼結ダイヤモンド層からなる第1粗加工済み素材を得る工程と、
    前記第1粗加工済み素材の先端に、研磨又は放電加工により、粗い半球を形成することで第2粗加工済み素材を得る工程と、
    前記第2粗加工済み素材を回転させつつ支持する回転機構と、前記第2粗加工済み素材を回転軸に沿って移動する移動機構と、前記微細柱の先方に静止状態で配置される銅系ブロックと、前記第2粗加工済み素材と前記銅系ブロックに接続される電源とを準備する準備工程と、
    非通電状態で、前記回転機構及び前記移動機構にて前記第2粗加工済み素材を回転しつつ前記銅系ブロックへ前進させ、この銅系ブロックに初期窪みを形成する工程と、
    前記電源で、前記第2粗加工済み素材が正極、前記銅系ブロックが負極となるように通電する通電工程と、
    この通電工程を維持しつつ、前記回転機構で前記第2粗加工済み素材を回転しつつ前記移動機構で前記第2粗加工済み素材を、前記微細柱の先端が前記初期窪みに進入するまで前記銅系ブロックへ前進させ、前記銅系ブロックから前記微細柱に向かう放電により、前記粗い半球を平滑な半球に整形する先端整形工程と、からなるボールエンドミルの製造方法。
  3. シャンクと、このシャンクの一端に固定され外径が0.5〜1.5mmである金属柱と、この金属柱の先端に一体形成された焼結ダイヤモンド層とからなるボールエンドミルであって、
    前記焼結ダイヤモンド層は、先端に外径が0.005〜0.02mmの微細柱を備えており、この微細柱の先端が半球状に丸められており、
    前記焼結ダイヤモンド層は、前記金属柱に底面が接する第1円錐部と、この第1円錐部に底面が接すると共に前記第1円錐部の円錐頂角よりも円錐頂角が大きな第2円錐部とを更に有し、前記第2円錐部から前記微細柱が延びていることを特徴とするボールエンドミル。
JP2016175336A 2016-09-08 2016-09-08 ボールエンドミルの製造方法及びボールエンドミル Active JP6771213B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016175336A JP6771213B2 (ja) 2016-09-08 2016-09-08 ボールエンドミルの製造方法及びボールエンドミル

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016175336A JP6771213B2 (ja) 2016-09-08 2016-09-08 ボールエンドミルの製造方法及びボールエンドミル

Publications (2)

Publication Number Publication Date
JP2018039084A JP2018039084A (ja) 2018-03-15
JP6771213B2 true JP6771213B2 (ja) 2020-10-21

Family

ID=61624702

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016175336A Active JP6771213B2 (ja) 2016-09-08 2016-09-08 ボールエンドミルの製造方法及びボールエンドミル

Country Status (1)

Country Link
JP (1) JP6771213B2 (ja)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3711255B2 (ja) * 2001-09-21 2005-11-02 日立ツール株式会社 テーパ部を有するエンドミル
JP5083276B2 (ja) * 2005-07-25 2012-11-28 三菱マテリアル株式会社 微細加工用工具および脆性材料の微細加工方法
JP4996363B2 (ja) * 2007-06-20 2012-08-08 オーエスジー株式会社 小径超硬エンドミル
JP3161423U (ja) * 2010-05-19 2010-07-29 有限会社三井刻印 研削工具

Also Published As

Publication number Publication date
JP2018039084A (ja) 2018-03-15

Similar Documents

Publication Publication Date Title
Hasan et al. A review of modern advancements in micro drilling techniques
US20190084087A1 (en) Energy machined polycrystalline diamond compact and related methods
US20140321931A1 (en) Hybrid cutting tool, chip transporting portion and process for producing a cutting tool
JP6435801B2 (ja) エンドミル
CN104416207B (zh) 球头立铣刀
Zhao et al. Fabrication of high hardness microarray diamond tools by femtosecond laser ablation
US11358233B2 (en) Method for generating a toothed workpiece and control program, tools and tooth-cutting machine suitable therefor
CN106925953A (zh) 发动机缸孔铣削工艺
CN110497001A (zh) 一种新型金刚石微钻头及制造方法
Büttner et al. Innovative micro-tool manufacturing using ultra-short pulse laser ablation
CA2810179A1 (en) Method and apparatus for non-rotary machining
JP6771213B2 (ja) ボールエンドミルの製造方法及びボールエンドミル
JPWO2017199911A1 (ja) 回転切削工具を用いたディンプル加工方法
EP3028839A1 (en) A method for manufacturing an object by laser sintering and a laser sintering device for manufacturing the object
JP5983364B2 (ja) エンドミル
Wu et al. Fabrication of PCD micro end mill for machining hard and brittle material
Amorim et al. Performance and surface integrity of wire electrical discharge machining of thin Ti6Al4V plate using coated and uncoated wires
EP3476363A1 (en) Processing method for making dental devices
EP3542947A1 (en) Processing method, processing system, and processing program
JP2021505394A (ja) ワークのレーザ加工方法及び切削工具の製造方法
Boban et al. Ultra-precision surface finishing and feature generation on metal additive manufactured components with controlled tool path design
JP4724062B2 (ja) ドレスギアの製造方法及び製造装置
JP2006281376A (ja) 切削工具の製造方法
Kanthababu et al. Investigation on material removal rate and surface roughness in electrical discharge turning process of Al 7075-based metal matrix composites
JP5892007B2 (ja) スクエアエンドミル及びその製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190604

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200331

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200327

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200402

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200908

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200918

R150 Certificate of patent or registration of utility model

Ref document number: 6771213

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250