JP6767610B2 - Insulation and its manufacturing method - Google Patents

Insulation and its manufacturing method Download PDF

Info

Publication number
JP6767610B2
JP6767610B2 JP2016024274A JP2016024274A JP6767610B2 JP 6767610 B2 JP6767610 B2 JP 6767610B2 JP 2016024274 A JP2016024274 A JP 2016024274A JP 2016024274 A JP2016024274 A JP 2016024274A JP 6767610 B2 JP6767610 B2 JP 6767610B2
Authority
JP
Japan
Prior art keywords
heat insulating
fiber
radiation prevention
thermoplastic resin
radiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016024274A
Other languages
Japanese (ja)
Other versions
JP2017141913A (en
Inventor
亨 岡崎
亨 岡崎
崇 鶴田
崇 鶴田
茂昭 酒谷
茂昭 酒谷
享 和田
享 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2016024274A priority Critical patent/JP6767610B2/en
Publication of JP2017141913A publication Critical patent/JP2017141913A/en
Application granted granted Critical
Publication of JP6767610B2 publication Critical patent/JP6767610B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Thermal Insulation (AREA)

Description

本発明は、断熱体とその製造方法に関する。特に、高温環境にて使用する断熱体とその製造方法に関するものである。 The present invention relates to a heat insulating body and a method for producing the same. In particular, it relates to a heat insulating body used in a high temperature environment and a method for manufacturing the same.

従来の断熱体として、例えば、シリカエアロゲルを不織布へ含有させた断熱体がある。この断熱体は、シリカ粒子間のナノオーダーの細孔により、空気の流れを阻害するので、断熱性能が高い。 As a conventional heat insulating body, for example, there is a heat insulating body in which silica airgel is contained in a non-woven fabric. This heat insulating body has high heat insulating performance because it obstructs the flow of air due to nano-order pores between silica particles.

しかしながら、100℃を越えるような高温環境では、この断熱材は、輻射率が高いシリカ粒子の表面(輻射率0.95)で輻射熱が発生しやすくなる。結果、シリカ粒子の持つ細孔によって得られた断熱性に対して、輻射伝熱の影響が大きくなり、断熱性を失う(断熱材の見かけの熱伝導率が大きくなる)傾向にある。 However, in a high temperature environment exceeding 100 ° C., this heat insulating material tends to generate radiant heat on the surface of silica particles having a high emissivity (radiance rate 0.95). As a result, the influence of radiant heat transfer on the heat insulating property obtained by the pores of the silica particles becomes large, and the heat insulating property tends to be lost (the apparent thermal conductivity of the heat insulating material becomes large).

これに対する従来の技術として、特許文献1がある。特許文献1を図11の断面図で説明する。ここでは、断熱体1は、断熱層21の上に、アルミニウム箔等の輻射防止用フィルムとして輻射反射層23を配置し、輻射反射層23の位置を固定するために樹脂等で構成された被覆用シート22でパウチ状に包含させている。これにより、上部に熱源がある場合の輻射伝熱成分を輻射反射層23により抑制するというものである。 Patent Document 1 is a conventional technique for this. Patent Document 1 will be described with reference to the cross-sectional view of FIG. Here, in the heat insulating body 1, the radiation reflecting layer 23 is arranged on the heat insulating layer 21 as a radiation prevention film such as an aluminum foil, and a coating made of resin or the like is used to fix the position of the radiation reflecting layer 23. The sheet 22 is included in a pouch shape. As a result, the radiant heat transfer component when there is a heat source in the upper part is suppressed by the radiant reflection layer 23.

また、特許文献2に記載されているのは、エアロゲル含有断熱体の内部に粒状の輻射散乱材を含有させ、輻射伝熱成分を抑制させている。 Further, what is described in Patent Document 2 is that a granular radiant scattering material is contained inside the airgel-containing heat insulating body to suppress the radiant heat transfer component.

特開2009−299893号公報JP-A-2009-299893 特許第5465192号公報Japanese Patent No. 5465192

しかしながら、図11に示される特許文献1では、熱源が紙面上部にある場合、熱伝導率が大きい被覆用シート22により、熱源からの熱が回り込み、Bの経路を辿って対面への熱パスが形成されるため、断熱性を大きく低下させる可能性がある。 However, in Patent Document 1 shown in FIG. 11, when the heat source is on the upper part of the paper surface, the heat from the heat source wraps around due to the coating sheet 22 having a large thermal conductivity, and the heat path to the facing surface follows the path B. Since it is formed, it may significantly reduce the heat insulating property.

また、特許文献2に示される構造では、振動等の外力が作用する場合、輻射散乱材が断熱材内部から脱落し、断熱性の低下、あるいは、場所による断熱性の粗密が生じる可能性がある。 Further, in the structure shown in Patent Document 2, when an external force such as vibration acts, the radiation scattering material may fall off from the inside of the heat insulating material, resulting in a decrease in heat insulating property or coarse or dense heat insulating property depending on the location. ..

そこで、本発明は、断熱性の低下や部材の脱落を起こさずに、輻射を防止した断熱体とその製造方法を提供することを目的とする。 Therefore, an object of the present invention is to provide a heat insulating body in which radiation is prevented and a method for manufacturing the same, without causing deterioration of heat insulating property or dropping of members.

上記目的を達成するために、断熱体と、上記断熱体の表面に、金属を蒸着した第1繊維と熱可塑性樹脂の第2繊維とを含む樹脂層と、を有する断熱材を用いる。 In order to achieve the above object, a heat insulating material having a heat insulating body and a resin layer containing a first fiber vapor-deposited with a metal and a second fiber of a thermoplastic resin on the surface of the heat insulating body is used.

また、金属を蒸着した第1繊維と熱可塑性樹脂からなる第2繊維とを編み輻射防止部を作製する第1工程と、上記第1工程でできた上記輻射防止部を断熱部の表面に配置し、熱処理をし、上記熱可塑性樹脂を溶かし、上記輻射防止部と上記断熱部とを合体させる第2工程と、を含む断熱体の製造方法を用いる。 Further, the first step of knitting the first fiber vapor-deposited with metal and the second fiber made of thermoplastic resin to produce a radiation prevention portion, and the radiation prevention portion formed in the first step are arranged on the surface of the heat insulating portion. A method for producing a heat insulating body is used, which includes a second step of performing heat treatment, melting the thermoplastic resin, and combining the radiation prevention portion and the heat insulating portion.

本発明によれば、断熱性の低下や部材の脱落を起こさずに、輻射防止機能を持たせることができる。 According to the present invention, it is possible to provide a radiation prevention function without lowering the heat insulating property or causing the member to fall off.

実施の形態1の輻射防止機能を持つ断熱材の斜視図Perspective view of the heat insulating material having the radiation prevention function of the first embodiment 実施の形態1の輻射防止機能を持つ断熱材の断面構造図Cross-sectional structural view of the heat insulating material having the radiation prevention function of the first embodiment (a)実施の形態1のエアロゲル断熱部の模式図、(b)実施の形態1の断熱ビーズの模式図、(c)実施の形態1の断熱ビーズの二次粒子の模式図(A) Schematic diagram of the airgel heat insulating portion of the first embodiment, (b) Schematic diagram of the heat insulating beads of the first embodiment, (c) Schematic diagram of the secondary particles of the heat insulating beads of the first embodiment. 実施の形態1の輻射防止機能を持つ断熱材の輻射防止部(溶融前)の構造模式図Schematic diagram of the structure of the radiation prevention part (before melting) of the heat insulating material having the radiation prevention function of the first embodiment. 実施の形態1の輻射防止部の経糸を構成するアルミ蒸着樹脂繊維の断面模式図Schematic cross-sectional view of aluminum-deposited resin fibers constituting the warp of the radiation prevention portion of the first embodiment 実施の形態1の輻射防止機能を持つ断熱材の輻射防止部(溶融硬化後)の構造模式図Schematic diagram of the structure of the radiation prevention part (after melt curing) of the heat insulating material having the radiation prevention function of the first embodiment. 実施の形態1の輻射防止機能を持つ断熱材の構成図Configuration diagram of the heat insulating material having the radiation prevention function of the first embodiment (a)〜(d)実施の形態1の輻射防止効果を示すグラフと各地点での状態を示す図(A) to (d) A graph showing the radiation prevention effect of the first embodiment and a diagram showing the state at each point. 実施の形態2の輻射防止機能を持つ断熱材の輻射防止部(溶融前)の構造模式図Schematic diagram of the structure of the radiation prevention part (before melting) of the heat insulating material having the radiation prevention function of the second embodiment. 実施の形態3の輻射防止機能を持つ断熱材の輻射防止部(溶融前)の構造模式図Schematic diagram of the structure of the radiation prevention part (before melting) of the heat insulating material having the radiation prevention function of the third embodiment. 特許文献1の輻射防止機能を持つ断熱材の断面構造図Cross-sectional structure of a heat insulating material having a radiation prevention function of Patent Document

以下、実施の形態について、図面を参照しながら説明する。 Hereinafter, embodiments will be described with reference to the drawings.

<断熱体1の構成>
図1は、実施の形態1における輻射防止機能を持つ断熱体1の斜視図である。断熱体1は、エアロゲル断熱部2と輻射防止部3から構成されている。図2は、図1におけるA−A´−B´−B面の断面構造図である。輻射防止部3は、エアロゲル断熱部2の上部に配置され、経糸であるアルミ蒸着樹脂繊維4と、熱可塑性樹脂5とである。なお、図1と図2に示すのは、熱可塑性樹脂繊維が、溶融し冷却して硬化した熱可塑性樹脂5である。
<Structure of heat insulating body 1>
FIG. 1 is a perspective view of the heat insulating body 1 having a radiation prevention function according to the first embodiment. The heat insulating body 1 is composed of an airgel heat insulating portion 2 and a radiation preventing portion 3. FIG. 2 is a cross-sectional structural view of the AA'-B'-B plane in FIG. The radiation prevention unit 3 is arranged above the airgel heat insulating unit 2, and is an aluminum-deposited resin fiber 4 which is a warp and a thermoplastic resin 5. It should be noted that FIG. 1 and FIG. 2 show the thermoplastic resin 5 in which the thermoplastic resin fibers are melted, cooled, and cured.

<エアロゲル断熱部2の構成>
図3(a)は、実施の形態1におけるエアロゲル断熱部2の模式図である。エアロゲル断熱部2は、エアロゲル等からなる断熱ビーズ12と、PET(ポリエチレンテレフタレート)繊維(第2繊維)、グラスウール等の繊維構造物11とを、複合化したものである。
<Structure of airgel heat insulating part 2>
FIG. 3A is a schematic view of the airgel heat insulating portion 2 according to the first embodiment. The airgel heat insulating portion 2 is a composite of heat insulating beads 12 made of airgel or the like and a fiber structure 11 such as PET (polyethylene terephthalate) fiber (second fiber) or glass wool.

図3(b)は、実施の形態1における断熱ビーズ12の模式図であり、二次粒子13が三次元ネットワークを形成した状態である。
図3(c)は、実施の形態1における断熱ビーズ12の二次粒子13の模式図であり、さらに細かい一次粒子14の集合体である。
FIG. 3B is a schematic view of the heat insulating beads 12 in the first embodiment, in which the secondary particles 13 form a three-dimensional network.
FIG. 3C is a schematic view of the secondary particles 13 of the heat insulating beads 12 in the first embodiment, and is an aggregate of finer primary particles 14.

図3(a)〜図3(c)において、微小な一次粒子14の集合体として成る二次粒子13が、三次元ネットワーク骨格を形成し、断熱ビーズ12と成る。この断熱ビーズ12を繊維構造物11と複合化することによりエアロゲル断熱部2を得る。断熱ビーズ12の体積の90%以上は、細孔である。一次粒子14の粒子径は、1nm前後であり、二次粒子13の粒子径は、10nm前後であり、断熱ビーズ12の粒子径は、20〜200μmである。 In FIGS. 3 (a) to 3 (c), the secondary particles 13 formed as an aggregate of the fine primary particles 14 form a three-dimensional network skeleton to form the heat insulating beads 12. The airgel heat insulating portion 2 is obtained by combining the heat insulating beads 12 with the fiber structure 11. More than 90% of the volume of the heat insulating beads 12 are pores. The particle size of the primary particles 14 is about 1 nm, the particle size of the secondary particles 13 is about 10 nm, and the particle size of the heat insulating beads 12 is about 20 to 200 μm.

断熱ビーズ12の材質としては、断熱性能に優れることから二酸化ケイ素からなるシリカ粒子が望ましい。ここで、断熱ビーズ12の細孔のサイズD(図3(b))は、68nm以下であることが望ましい。68nmは、空気の平均自由工程である。細孔が68nm以下であると、空気が移動できず、断熱性が高くなる。 As the material of the heat insulating beads 12, silica particles made of silicon dioxide are desirable because they are excellent in heat insulating performance. Here, it is desirable that the size D (FIG. 3 (b)) of the pores of the heat insulating beads 12 is 68 nm or less. 68 nm is the mean free path of air. When the pores are 68 nm or less, air cannot move and the heat insulating property becomes high.

<輻射防止部3の構成>
図4は、実施の形態1における輻射防止部3の原料30を上部から見た構造模式図である。輻射防止部3の原料30は、経糸をアルミ蒸着樹脂繊維4、緯糸を熱可塑性樹脂繊維51で構成されており、経糸、緯糸は平織構造により織られている。
<Structure of radiation prevention unit 3>
FIG. 4 is a schematic structural diagram of the raw material 30 of the radiation prevention unit 3 according to the first embodiment as viewed from above. The raw material 30 of the radiation prevention unit 3 is composed of an aluminum-deposited resin fiber 4 for the warp and a thermoplastic resin fiber 51 for the weft, and the warp and the weft are woven by a plain weave structure.

図5にアルミ蒸着樹脂繊維4の断面構造図を示す。アルミ蒸着樹脂繊維4は、PET(ポリエチレンテレフタレート)フィルム、ナイロンフィルムなどの合成樹脂フィルム8に、アルミ蒸着膜7を蒸着させ、その上に腐食防止塗膜層6をコーティングしたものである。この構造は、いわゆる、金銀糸の構造である。 FIG. 5 shows a cross-sectional structure of the aluminum-deposited resin fiber 4. The aluminum-deposited resin fiber 4 is obtained by depositing an aluminum-deposited film 7 on a synthetic resin film 8 such as a PET (polyethylene terephthalate) film or a nylon film, and coating the corrosion-preventing coating layer 6 on the film. This structure is a so-called gold-silver thread structure.

<エアロゲル断熱部2の製造方法>
エアロゲル断熱部2の製造方法としては、図3(a)に示すように、断熱ビーズ12をエアロゲルとする場合、高モル珪酸ソーダなどの、エアロゲルの出発原料である液体を、PET繊維、グラスウールなどで構成される不織布など(繊維構造物11)に含浸させ、ゲル化工程、養生(熟成)工程、疎水化工程、乾燥工程を経て、繊維構造物11と断熱ビーズ12を複合して形成することが望ましい。
<Manufacturing method of airgel heat insulating part 2>
As a method for producing the airgel heat insulating portion 2, as shown in FIG. 3A, when the heat insulating beads 12 are used as an airgel, a liquid which is a starting material of the airgel such as high molar sodium silicate is used as a PET fiber, glass wool or the like. By impregnating a non-woven fabric or the like (fiber structure 11) composed of the above, the fiber structure 11 and the heat insulating beads 12 are combined and formed through a gelling step, a curing (aging) step, a hydrophobicization step, and a drying step. Is desirable.

<輻射防止部3の製造方法>
輻射防止部3の製造方法としては、図4に示すように、経糸をアルミ蒸着樹脂繊維4、緯糸を熱可塑性樹脂繊維51として、平織を行い輻射防止部3の原料30とする。なお、アルミ蒸着樹脂繊維4のベース樹脂フィルム(合成樹脂フィルム8)の材料としては、断熱体1の使用温度域よりも融点が十分高いもの(例えば、PET樹脂=融点260℃)が望ましい。また、熱可塑性樹脂繊維51の材料としては、断熱体1の使用温度域よりも融点が十分に高く、合成樹脂フィルム8の融点より低いもの(例えば、PLA樹脂=融点190℃)が望ましい。
<Manufacturing method of radiation prevention unit 3>
As a method of manufacturing the radiation prevention unit 3, as shown in FIG. 4, the warp yarn is an aluminum-deposited resin fiber 4 and the weft yarn is a thermoplastic resin fiber 51, and plain weave is performed to use the raw material 30 of the radiation prevention unit 3. The material of the base resin film (synthetic resin film 8) of the aluminum-deposited resin fiber 4 is preferably one having a melting point sufficiently higher than the operating temperature range of the heat insulating body 1 (for example, PET resin = melting point 260 ° C.). Further, as the material of the thermoplastic resin fiber 51, a material having a melting point sufficiently higher than the operating temperature range of the heat insulating body 1 and lower than the melting point of the synthetic resin film 8 (for example, PLA resin = melting point 190 ° C.) is desirable.

<エアロゲル断熱部2と輻射防止部3の原料30との接着方法>
エアロゲル断熱部2と輻射防止部3の原料30との接着方法としては、熱接着を行う。まずは、図7に示すように、エアロゲル断熱部2の上に輻射防止部3の原料30を配置する。次に、熱可塑性樹脂繊維51の融点より高く、合成樹脂フィルム8の融点より低い温度帯の炉の中で、熱可塑性樹脂繊維51が溶融するまで加熱する。
<Adhesion method between the airgel heat insulating part 2 and the raw material 30 of the radiation prevention part 3>
As a method of adhering the airgel heat insulating portion 2 and the raw material 30 of the radiation preventing portion 3, thermal adhesion is performed. First, as shown in FIG. 7, the raw material 30 of the radiation prevention unit 3 is arranged on the airgel heat insulating unit 2. Next, the thermoplastic resin fiber 51 is heated in a furnace in a temperature range higher than the melting point of the thermoplastic resin fiber 51 and lower than the melting point of the synthetic resin film 8 until the thermoplastic resin fiber 51 is melted.

例えば、合成樹脂フィルム8をPET樹脂、熱可塑性樹脂繊維51をPLA樹脂とする場合、200℃〜260℃の間の温度帯を使用する。 For example, when the synthetic resin film 8 is a PET resin and the thermoplastic resin fiber 51 is a PLA resin, a temperature range between 200 ° C. and 260 ° C. is used.

加熱により、図4に示すような構造をしていた輻射防止部3の原料30が、図6に示すように、熱可塑性樹脂繊維51のみ溶融する。次に、炉から出し、冷却を行うことで、溶融した熱可塑性樹脂繊維51がエアロゲル断熱部2の繊維構造物11と絡まり、アンカー効果によって強固に接着する。結果、図2に示したように、エアロゲル断熱部2と熱可塑性樹脂5とが接着した状態となる。 By heating, the raw material 30 of the radiation prevention unit 3 having the structure as shown in FIG. 4 is melted only by the thermoplastic resin fiber 51 as shown in FIG. Next, by taking it out of the furnace and cooling it, the molten thermoplastic resin fiber 51 is entangled with the fiber structure 11 of the airgel heat insulating portion 2 and firmly adhered by the anchor effect. As a result, as shown in FIG. 2, the airgel heat insulating portion 2 and the thermoplastic resin 5 are adhered to each other.

<輻射防止機能を持つ断熱体1の効果>
断熱体1を表面から裏面に通過する熱流量は、式1となる。
<Effect of heat insulating body 1 with radiation prevention function>
The heat flow rate passing through the heat insulating body 1 from the front surface to the back surface is given by Equation 1.

W=C×ΔT・・・(式1)
ここで、断熱材全体を通過する熱流量の合計値W、熱コンダクタンスC、表裏面間の温度差ΔTである。
W = C × ΔT ... (Equation 1)
Here, the total value W of the heat flow rate passing through the entire heat insulating material, the thermal conductance C, and the temperature difference ΔT between the front and back surfaces.

熱コンダクタンスCは、熱伝導成分Ccと輻射成分Crにより構成され、式2である。 The thermal conductance C is composed of the thermal conductive component Cc and the radiation component Cr, and is of the formula 2.

C=Cc+Cr・・・(式2)
ここで、熱伝導成分Ccは、エアロゲル断熱部2が持つ熱伝導率λb、熱が通過する方向に対する断面積A、断熱材の厚さLから、式3である。
C = Cc + Cr ... (Equation 2)
Here, the heat conductive component Cc is of the formula 3 from the thermal conductivity λb of the airgel heat insulating portion 2, the cross-sectional area A with respect to the direction in which heat passes, and the thickness L of the heat insulating material.

Cc=(A×λ)/L・・・(式3)
また、輻射成分Crは、輻射防止部3の面積S(アルミ蒸着樹脂繊維4の表面の面積)、輻射熱伝達率hrから、式4である。
Cc = (A × λ) / L ... (Equation 3)
Further, the radiant component Cr is of the formula 4 from the area S of the radiant prevention portion 3 (the area of the surface of the aluminum-deposited resin fiber 4) and the radiant heat transfer coefficient hr.

Cr=S×hr・・・(式4)
放射熱伝達率hrは、輻射防止膜(アルミ)の輻射率ε、固体表面の絶対温度Taおよび周囲環境の絶対温度T∞から、式5となる。
Cr = S × hr ... (Equation 4)
The radiant heat transfer coefficient hr is given by Equation 5 from the emissivity ε of the radiation prevention film (aluminum), the absolute temperature Ta of the solid surface, and the absolute temperature T∞ of the ambient environment.

hr=5.67×10−8×ε×(Ta+T∞)×(Ta+T∞)(式5)
輻射成分Crが大きくなると式4の熱コンダクタンスの輻射成分Crが大きな値をとり、式1に示す熱コンダクタンスCの値が大きくなる。このため、式1に示す断熱体1を通過する熱流量が増え、断熱効果が小さくなってしまう。つまり、見かけの熱伝導率が大きくなる。
hr = 5.67 × 10-8 × ε × (Ta 2 + T∞ 2 ) × (Ta + T∞) (Equation 5)
When the radiation component Cr becomes large, the radiation component Cr of the thermal conductance of the formula 4 takes a large value, and the value of the thermal conductance C shown in the formula 1 becomes large. Therefore, the heat flow rate passing through the heat insulating body 1 represented by the formula 1 increases, and the heat insulating effect becomes small. That is, the apparent thermal conductivity increases.

断熱体1の見かけの熱伝導率λcは、式1の熱流量を用いて、式6となる。 The apparent thermal conductivity λc of the heat insulating body 1 is given by the formula 6 using the heat flow rate of the formula 1.

λc=(W・L)/(A・ΔT)・・・(式6)
断熱体1の熱伝導率の測定規格である熱流計法(JIS A1412−2)では、式6にしたがい、断熱体1の表裏間を通過する熱流量W、断熱材の厚みL、断面積Aと表裏面の温度差ΔTから、熱伝導率(伝導、輻射成分を含む見かけの熱伝導率)を求める。
λc = (W ・ L) / (A ・ ΔT) ・ ・ ・ (Equation 6)
In the thermal flow metering method (JIS A1412-2), which is a standard for measuring the thermal conductivity of the heat insulating body 1, the heat flow rate W passing between the front and back surfaces of the heat insulating body 1, the thickness L of the heat insulating material, and the cross-sectional area A are according to Equation 6. The thermal conductivity (apparent thermal conductivity including conduction and radiation components) is obtained from the temperature difference ΔT between the front and back surfaces.

図8(a)に、アルミ蒸着樹脂繊維4の密度を変更して作製した断熱体1に対して、熱流計法による熱伝導率の測定結果を示す。 FIG. 8A shows the measurement results of the thermal conductivity of the heat insulating body 1 produced by changing the density of the aluminum-deposited resin fibers 4 by the heat flow metering method.

ここでは、輻射防止部3は、経糸のアルミ蒸着樹脂繊維4であるクラウン工業株式会社製金銀糸BRIGHTEX LAME’平糸M12メタリックと、緯糸の熱可塑性樹脂繊維51であるWINBO製フィラメントマテリアルPLA樹脂Marbotとを、平織りにて作製した原料30を溶かして製造した。 Here, the radiation prevention unit 3 includes a gold-silver thread BRIGHTEX LAME'flat thread M12 metallic manufactured by Crown Industry Co., Ltd., which is an aluminum-deposited resin fiber 4 of the warp, and a filament material PLA resin Marbot made by WINBO, which is a thermoplastic resin fiber 51 of the weft. Was produced by melting the raw material 30 produced by plain weaving.

熱伝導率の測定には、ネッチ・ジャパン株式会社製熱流計法熱伝導率測定装置HFM−436を使用し、サンプル温度(エアロゲル断熱部2の中心温度)90℃の環境にて測定した。 For the measurement of the thermal conductivity, a thermal conductivity measuring device HFM-436 manufactured by Netch Japan Co., Ltd. was used, and the measurement was performed in an environment of a sample temperature (center temperature of the airgel heat insulating portion 2) of 90 ° C.

用いたいくつかの輻射防止部3の原料30の斜視図を図8(b)〜図8(d)に示す。アルミ蒸着樹脂繊維4の密度の変更は、図8(b)〜図8(d)に示すように、輻射防止部3の原料30を構成するアルミ蒸着樹脂繊維4の経糸を配置する間隔を調整することにより行った。アルミ蒸着樹脂繊維4を配置しない経糸には熱可塑性樹脂繊維51を配置した。 The perspective views of the raw material 30 of some of the radiation prevention units 3 used are shown in FIGS. 8 (b) to 8 (d). To change the density of the aluminum-deposited resin fiber 4, as shown in FIGS. 8 (b) to 8 (d), the interval at which the warp threads of the aluminum-deposited resin fiber 4 constituting the raw material 30 of the radiation prevention unit 3 are arranged is adjusted. I went by doing. The thermoplastic resin fiber 51 was arranged in the warp yarn in which the aluminum-deposited resin fiber 4 was not arranged.

図8(d)より、輻射防止機能を持つアルミ蒸着樹脂繊維4が無いもの(図8の左側0:100の構造)では、見かけの熱伝導率(伝導、輻射成分を含む熱伝導率)が約0.024W/(m・K)と高いが、アルミ蒸着樹脂繊維4の割合を増やすごとに(図8の真ん中50:50の構造、図8の右側100:0の構造へと移るごとに)、見かけの熱伝導率の値が小さくなっていることがわかる。すなわち、アルミ蒸着樹脂繊維4を備えた構造により、伝熱における輻射成分が抑えられていることがわかる。 From FIG. 8D, the apparent thermal conductivity (conductivity, thermal conductivity including radiation components) is higher in the case without the aluminum vapor-deposited resin fiber 4 having a radiation prevention function (structure at 0: 100 on the left side of FIG. 8). It is as high as about 0.024 W / (m · K), but each time the ratio of the aluminum vapor-deposited resin fiber 4 is increased (the structure is 50:50 in the middle of FIG. 8 and the structure is 100: 0 on the right side of FIG. 8). ), It can be seen that the apparent thermal conductivity value is small. That is, it can be seen that the structure provided with the aluminum-deposited resin fiber 4 suppresses the radiant component in heat transfer.

図9は、実施の形態1における輻射防止機能を持つ断熱体1の輻射防止部3の原料30の構造を上部から見た図である。熱可塑性樹脂繊維51による輻射防止部3とエアロゲル断熱部2との接着力が十分に確保される場合、図9に示すように、輻射防止部3の原料30の織構造を、アルミ蒸着樹脂繊維4が表面に多く出る綾織にし、輻射防止効果を高めることも可能である。 FIG. 9 is a view of the structure of the raw material 30 of the radiation prevention unit 3 of the heat insulating body 1 having the radiation prevention function according to the first embodiment as viewed from above. When sufficient adhesive force between the radiation prevention portion 3 and the airgel heat insulation portion 2 by the thermoplastic resin fiber 51 is secured, as shown in FIG. 9, the woven structure of the raw material 30 of the radiation prevention portion 3 is made of aluminum-deposited resin fiber. It is also possible to enhance the radiation prevention effect by forming a twill weave in which a large amount of 4 appears on the surface.

図10は、実施の形態1における輻射防止機能を持つ断熱体1の輻射防止部3の原料30の構造を上部から見た図である。熱可塑性樹脂繊維51による輻射防止部3とエアロゲル断熱部2との接着力が十分に確保できる場合、図9に示すように、輻射防止部3の原料30の織構造を、アルミ蒸着樹脂繊維4が表面に多く出る朱子織にし、輻射防止効果を高めることも可能である。 FIG. 10 is a view of the structure of the raw material 30 of the radiation prevention unit 3 of the heat insulating body 1 having the radiation prevention function according to the first embodiment as viewed from above. When the adhesive force between the radiation prevention portion 3 and the airgel heat insulating portion 2 by the thermoplastic resin fiber 51 can be sufficiently secured, as shown in FIG. 9, the woven structure of the raw material 30 of the radiation prevention portion 3 is made of the aluminum-deposited resin fiber 4. It is also possible to enhance the radiation prevention effect by using an airgel weave that produces a large amount of resin on the surface.

実施の形態の断熱材は、従来品よりも、断熱性の確保と輻射防止剤の脱落防止性に優れる。このため、特に100℃あるいはそれ以上の、輻射伝熱が支配的である温度域での断熱効果が期待でき、省エネルギーに貢献できるあらゆる機器の断熱用途に適用できる。
(なお書き)
輻射防止部3は、エアロゲル断熱部2の上面全体にある必要はない。大部分を覆えばよい。輻射防止部3の原料30は、平織、朱子織、綾織に限られない。規則正しく2つの繊維が織られているのが、物理的に、好ましい。不織布的な状態でおられていてもよい。
The heat insulating material of the embodiment is superior to the conventional product in ensuring heat insulating properties and preventing the radiation inhibitor from falling off. Therefore, a heat insulating effect can be expected especially in a temperature range where radiant heat transfer is dominant, such as 100 ° C. or higher, and it can be applied to heat insulating applications of all devices that can contribute to energy saving.
(Note)
The radiation prevention unit 3 does not have to be on the entire upper surface of the airgel heat insulating unit 2. Most of it should be covered. The raw material 30 of the radiation prevention unit 3 is not limited to plain weave, satin weave, and twill weave. It is physically preferable that the two fibers are woven regularly. It may be in a non-woven fabric state.

本発明の断熱材は、断熱材料として広く利用される。特に、100℃あるいはそれ以上の、輻射伝熱が支配的である温度域で利用される。あらゆる機器の断熱用途に利用される。 The heat insulating material of the present invention is widely used as a heat insulating material. In particular, it is used in a temperature range of 100 ° C. or higher, where radiant heat transfer is dominant. It is used for heat insulation of all kinds of equipment.

1 断熱体
2 エアロゲル断熱部
3 輻射防止部
4 アルミ蒸着樹脂繊維
5 熱可塑性樹脂
6 腐食防止塗膜層
7 アルミ蒸着膜
8 合成樹脂フィルム
11 繊維構造物
12 断熱ビーズ
13 二次粒子
14 一次粒子
21 断熱層
22 被覆用シート
23 輻射反射層
30 原料
51 熱可塑性樹脂繊維
1 Insulation body 2 Aerogel insulation part 3 Radiation prevention part 4 Aluminum vapor deposition resin fiber 5 Thermoplastic resin 6 Corrosion prevention coating layer 7 Aluminum vapor deposition film 8 Synthetic resin film 11 Fiber structure 12 Insulation beads 13 Secondary particles 14 Primary particles 21 Insulation Layer 22 Coating sheet 23 Radiation reflection layer 30 Raw material 51 Thermoplastic resin fiber

Claims (7)

断熱部と、
金属を蒸着した第1繊維と熱可塑性樹脂繊維とを含み、前記断熱部の表面に配置される輻射防止部と、を含み、
前記第1繊維は、前記熱可塑性樹脂繊維と編まれて、
前記断熱部は、断熱ビーズとの複合物であり、
前記熱可塑性樹脂繊維のみが溶融され、前記断熱部と前記輻射防止部とが接着された断熱材。
Insulation part and
It contains a first fiber vapor-deposited with metal and a thermoplastic resin fiber, and includes a radiation prevention portion arranged on the surface of the heat insulating portion.
The first fiber is knitted with the thermoplastic resin fiber and
The heat insulating portion is a composite with heat insulating beads.
A heat insulating material in which only the thermoplastic resin fiber is melted and the heat insulating portion and the radiation preventing portion are adhered to each other.
前記第1繊維は、合成樹脂フィルムを前記金属で蒸着されており、前記合成樹脂フィルムは、溶融されていない請求項1記載の断熱材。 The heat insulating material according to claim 1, wherein the first fiber is a synthetic resin film vapor-deposited with the metal, and the synthetic resin film is not melted. 前記第1繊維は、前記熱可塑性繊維と、朱子織で編まれ、前記第1繊維が、前記熱可塑性樹脂繊維より多く表面に出る請求項1または2に記載の断熱材。 The heat insulating material according to claim 1 or 2, wherein the first fiber is knitted with the thermoplastic fiber and a satin weave, and the first fiber is exposed to the surface more than the thermoplastic resin fiber. 前記第1繊維は、前記熱可塑性繊維と、綾織で編まれ、前記第1繊維が、前記熱可塑性樹脂繊維より多く表面に出ている請求項1または2に記載の断熱材。 The heat insulating material according to claim 1 or 2 , wherein the first fiber is knitted with the thermoplastic fiber and a twill weave, and the first fiber is exposed on the surface more than the thermoplastic resin fiber. 前記断熱ビーズは、シリカである請求項1〜4のいずれか1項に記載の断熱体。 The heat insulating body according to any one of claims 1 to 4, wherein the heat insulating beads are silica. 金属を蒸着した第1繊維と、熱可塑性樹脂からなる第2繊維とを含む輻射防止部を作製する第1工程と、
前記第1工程で作製された前記輻射防止部を断熱部の表面に配置し、熱処理をし、前記第2繊維のみを溶かすことで、前記輻射防止部と前記断熱部とを合体させる第2工程と、を含む断熱体の製造方法。
A first step of producing a radiation prevention portion containing a first fiber vapor-deposited with a metal and a second fiber made of a thermoplastic resin.
The second step of arranging the radiation prevention portion produced in the first step on the surface of the heat insulating portion, heat-treating the heat insulating portion, and melting only the second fiber to combine the radiation preventing portion and the heat insulating portion. And, including how to manufacture the insulation.
前記第1工程では、前記第1繊維と前記第2繊維とは織らせている請求項6記載の製造方法。 The production method according to claim 6, wherein in the first step, the first fiber and the second fiber are woven.
JP2016024274A 2016-02-12 2016-02-12 Insulation and its manufacturing method Active JP6767610B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016024274A JP6767610B2 (en) 2016-02-12 2016-02-12 Insulation and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016024274A JP6767610B2 (en) 2016-02-12 2016-02-12 Insulation and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2017141913A JP2017141913A (en) 2017-08-17
JP6767610B2 true JP6767610B2 (en) 2020-10-14

Family

ID=59629025

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016024274A Active JP6767610B2 (en) 2016-02-12 2016-02-12 Insulation and its manufacturing method

Country Status (1)

Country Link
JP (1) JP6767610B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2802314B1 (en) * 2012-01-13 2020-11-25 XSpray Microparticles AB A method for producing stable, amorphous hybrid nanoparticles comprising at least one protein kinase inhibitor and at least one polymeric stabilizing and matrix- forming component.
CN111316465B (en) * 2017-11-17 2023-11-24 日东电工株式会社 battery cover
JP6864384B2 (en) * 2019-06-11 2021-04-28 オゾンセーブ株式会社 Manufacturing method of heat insulating material and cutting material

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5723758Y2 (en) * 1975-11-27 1982-05-22
JPS5681986U (en) * 1979-11-26 1981-07-02
JPS5864433U (en) * 1981-10-26 1983-04-30 三菱油化株式会社 Heat insulation material
JPH0989190A (en) * 1995-09-26 1997-03-31 Kiwa Sangyo Kk Heat retaining material coating sheet
JP4251463B2 (en) * 1997-07-02 2009-04-08 パナソニック株式会社 Thermal insulation sheet and thermal insulation
JP2000304293A (en) * 1999-04-14 2000-11-02 Toto Ltd Heat insulating material
JP4477248B2 (en) * 2001-02-01 2010-06-09 帝人ファイバー株式会社 Insulation
JP2003065488A (en) * 2001-08-28 2003-03-05 Matsushita Electric Works Ltd Radiation control bag and method of manufacturing the same
JP2005214250A (en) * 2004-01-28 2005-08-11 Matsushita Electric Ind Co Ltd Equipment using vacuum thermal insulation material
JP2005114123A (en) * 2003-10-10 2005-04-28 Matsushita Electric Ind Co Ltd Vacuum heat insulating material and application method of the same
US7862876B2 (en) * 2004-01-20 2011-01-04 Panasonic Corporation Film for suppressing conduction of radiation heat and heat insulating material using the same
WO2005110735A2 (en) * 2004-03-10 2005-11-24 Federal-Mogul Powertrain, Inc. Heat shield having a sealed edge
JP5022649B2 (en) * 2006-08-24 2012-09-12 フタムラ化学株式会社 Reflective sheet for agriculture
US8025751B2 (en) * 2008-05-07 2011-09-27 Dzs, Llc Needlepunched nonwoven with centrally-located binder
JP5615514B2 (en) * 2008-05-15 2014-10-29 ニチアス株式会社 Heat insulating material, heat insulating structure using the same, and method for manufacturing heat insulating material
JP2011174519A (en) * 2010-02-24 2011-09-08 Toray Ind Inc Heat insulating material
KR20130057619A (en) * 2011-11-24 2013-06-03 (주)엘지하우시스 Vacuum adiabatic material of blocking radiant heat
JP5734526B2 (en) * 2013-01-11 2015-06-17 株式会社カネカ Heat insulation sheet, heat insulating material, method for manufacturing heat insulating sheet, and method for manufacturing heat insulating material
CN105008786B (en) * 2013-02-28 2016-10-19 松下知识产权经营株式会社 Use the insulated structure of aeroge
KR101783074B1 (en) * 2013-03-12 2017-09-29 (주)엘지하우시스 Envelope including glass fiber for vacuum insulation panel and vacuum insulation panel having the same
JP6276231B2 (en) * 2015-10-05 2018-02-07 井前工業株式会社 Fire and heat insulation system and fire and heat insulation sheet using the same

Also Published As

Publication number Publication date
JP2017141913A (en) 2017-08-17

Similar Documents

Publication Publication Date Title
JP6767610B2 (en) Insulation and its manufacturing method
US7859104B2 (en) Thermal interface material having carbon nanotubes and component package having the same
US9404028B2 (en) Heat conducting composite material and light-emitting diode having the same
Jo et al. Wearable transparent thermal sensors and heaters based on metal-plated fibers and nanowires
JP2016512581A (en) Self-winding type EMI shielding fabric sleeve and method for producing the same
JP2011246112A (en) Thermal dissipation device for space equipment, in particular for space satellite
TW201024487A (en) Integral woven three-layer heating textile
Peng et al. Bifunctional asymmetric fabric with tailored thermal conduction and radiation for personal cooling and warming
WO2012077648A1 (en) Jacket heater and heating method using jacket heater
Xu et al. Developing thermal regulating and electromagnetic shielding textiles using ultra-thin carbon nanotube films
Li et al. Asymmetrical Emissivity and Wettability in Stitching Treble Weave Metafabric for Synchronous Personal Thermal‐Moisture Management
KR20130078005A (en) Core for vacuum insulation panel with excellent heat insulation property and pinhole resistance
Luo et al. High‐performance, multifunctional, and designable carbon fiber felt skeleton epoxy resin composites EP/CF‐(CNT/AgBNs) x for thermal conductivity and electromagnetic interference shielding
US11906254B2 (en) Heat sink with carbon-nanostructure-based fibres
RU160985U1 (en) THERMAL INSULATION COATING
CN203151931U (en) Composite material fiber cloth containing heat dissipating effect
JP6552974B2 (en) Heat dissipation sheet and method of manufacturing heat dissipation sheet
US20060105656A1 (en) Copper vermiculite thermal coating
JP2017188403A (en) heater
JP6211942B2 (en) Insulating heat dissipation substrate, and LED element and module using the insulating heat dissipation substrate
JP4610428B2 (en) Heat resistant insulation sheet
JP2011179001A5 (en)
JP2005187301A (en) Carbon fiber-reinforced metal composite material and its manufacturing method
US11121535B1 (en) Composite lightning strike protection system
Liu et al. MXene bridging graphite nanoplatelets for electrically and thermally conductive nanofiber composites with high breathability

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20160526

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190109

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20190116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191220

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200421

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200609

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200804

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200817

R151 Written notification of patent or utility model registration

Ref document number: 6767610

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151