JP6211942B2 - Insulating heat dissipation substrate, and LED element and module using the insulating heat dissipation substrate - Google Patents

Insulating heat dissipation substrate, and LED element and module using the insulating heat dissipation substrate Download PDF

Info

Publication number
JP6211942B2
JP6211942B2 JP2014013600A JP2014013600A JP6211942B2 JP 6211942 B2 JP6211942 B2 JP 6211942B2 JP 2014013600 A JP2014013600 A JP 2014013600A JP 2014013600 A JP2014013600 A JP 2014013600A JP 6211942 B2 JP6211942 B2 JP 6211942B2
Authority
JP
Japan
Prior art keywords
heat dissipation
substrate
film
aluminum
insulating heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2014013600A
Other languages
Japanese (ja)
Other versions
JP2015141987A (en
Inventor
陽子 志田
陽子 志田
水野 雅夫
雅夫 水野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2014013600A priority Critical patent/JP6211942B2/en
Publication of JP2015141987A publication Critical patent/JP2015141987A/en
Application granted granted Critical
Publication of JP6211942B2 publication Critical patent/JP6211942B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Led Device Packages (AREA)
  • Insulated Metal Substrates For Printed Circuits (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Description

本発明は、金属基板上に絶縁性の放熱膜を有する絶縁放熱基板、並びに当該絶縁放熱基板を用いたLED素子およびモジュールに関する。   The present invention relates to an insulating heat dissipation substrate having an insulating heat dissipation film on a metal substrate, and an LED element and a module using the insulating heat dissipation substrate.

LED(発光ダイオード)素子やICなどを搭載したモジュールでは、高輝度化や高出力化の要請に伴い、LED素子などが発生する熱量も高くなり、温度が上昇する。その結果、たとえばLED素子では、温度の上昇につれて発光色が変化したり、LED素子の劣化が促進されるなどの問題が生じる。そのため、LED素子が搭載される基板には、絶縁性のみならず、発生した熱を効率よく放熱すること(放熱性)が望まれている。   In modules equipped with LED (light emitting diode) elements, ICs, and the like, the amount of heat generated by the LED elements and the like increases with the demand for higher brightness and higher output, and the temperature rises. As a result, for example, in the LED element, there are problems that the emission color changes as the temperature rises and the deterioration of the LED element is promoted. Therefore, it is desired that the substrate on which the LED element is mounted not only has insulation but also efficiently radiates the generated heat (heat dissipation).

このような絶縁性且つ放熱性を備えた絶縁放熱基板として、従来より、アルミナ基板などのセラミックス基板が使用されている。アルミナ基板は、高い熱伝導性を有し、熱や光に対する耐久性に優れたアルミナ(酸化アルミニウム)で構成されている。しかしながら、アルミナ基板は、約1600℃程度の高温で焼成する必要があるため、高価である他、加工性が悪く任意の形状への加工が困難であり、脆いなどの問題がある。   Conventionally, a ceramic substrate such as an alumina substrate has been used as an insulating heat radiating substrate having such insulating properties and heat radiating properties. The alumina substrate is made of alumina (aluminum oxide) having high thermal conductivity and excellent durability against heat and light. However, since the alumina substrate needs to be fired at a high temperature of about 1600 ° C., it is expensive and has problems such as poor workability and difficulty in processing into an arbitrary shape and brittleness.

そこで、アルミナなどの高熱伝導性材料を樹脂へ含有した樹脂基板が提案されている。例えば特許文献1には、窒化ホウ素粉末や酸化アルミニウム粉末などの高熱伝導性フィラーをシリコーン樹脂へ含有させて熱伝導性と絶縁性の両方が高められた樹脂基板が開示されている。樹脂基板は、低コストで、加工性に優れるなどの利点を有する。しかし、樹脂基板はベースに樹脂を使用しているため、耐熱性に限界があり、適用される温度域が制限されるという問題がある。   Therefore, a resin substrate containing a high thermal conductivity material such as alumina in a resin has been proposed. For example, Patent Document 1 discloses a resin substrate in which both high thermal conductivity and insulating properties are improved by adding a high thermal conductive filler such as boron nitride powder or aluminum oxide powder to a silicone resin. The resin substrate has advantages such as low cost and excellent workability. However, since the resin substrate uses a resin for the base, there is a problem that the heat resistance is limited and the applied temperature range is limited.

また、特許文献2には、アルミナなどのコア金属(アルミナ基板など)の表面にホーロー層が被覆された発光素子実装用ホーロー基板が提案されている。しかし、ホーロー自体の熱伝導率は1W/m・K以下と低く、良好な熱伝導性が発揮されない。   Patent Document 2 proposes a light-emitting element mounting enamel substrate in which a surface of a core metal such as alumina (alumina substrate or the like) is coated with an enamel layer. However, the thermal conductivity of the enamel itself is as low as 1 W / m · K or less, and good thermal conductivity is not exhibited.

特開2011−144234号公報(電気化学工業)JP2011-144234A (Electrochemical Industry) 特開2006−344694号公報(フジクラ)JP 2006-344694 A (Fujikura)

上記のようにLED素子などが搭載される絶縁放熱基板には、本来の作用である放熱性、絶縁性のほか、加工性、熱伝導性などに優れることが要求される。更に近年では、焼成温度が低い基板の提供が望まれている。前述したアルミナ基板は、焼成温度が約1600℃と非常に高いため、当該焼成温度よりも融点の遥かに低い銅(銅の融点は約1084℃)などを、配線材料として使用できないからである。これに対し、基板の焼成温度が低いと、例えば、銅よりも融点の低いアルミニウム材料(アルミニウムの融点は約660℃)も配線部材などの関連部材として使用可能であり、上記基板を関連部材と同時に、或いは、当該関連部材と一体的に焼成できるため、生産性が向上する。   As described above, an insulating heat dissipation substrate on which an LED element or the like is mounted is required to be excellent in workability, thermal conductivity, etc. in addition to heat dissipation and insulation, which are the original functions. In recent years, it has been desired to provide a substrate having a low firing temperature. This is because the above-mentioned alumina substrate has a very high firing temperature of about 1600 ° C., and therefore, copper having a melting point much lower than the firing temperature (copper has a melting point of about 1084 ° C.) cannot be used as a wiring material. On the other hand, when the firing temperature of the substrate is low, for example, an aluminum material having a melting point lower than that of copper (a melting point of aluminum is about 660 ° C.) can be used as a related member such as a wiring member. At the same time or because it can be integrally fired with the related member, productivity is improved.

例えば配線部材として、銅線、銅板、Snなどのめっきが施された銅材料などが汎用されているが、最近では、軽量化を目的に、熱伝導性の高いアルミニウム材料も利用されている。具体的には、アルミニウム板やアルミニウム線などの配線材料のほか、周辺に熱を逃がす冷却体または筐体として、アルミニウム製のフィンやファンなどが用いられている。ここで純アルミニウムの融点は、上述したとおり約660℃であり、関連部材として純アルミニウム材料を用いる場合、上記基板は、少なくとも純アルミニウムの融点よりも低い温度で焼成できることが必要である。また、上記関連部材には、純アルミニウムのほか、アルミニウム合金も汎用されており、アルミニウム合金が溶融し始める温度は、1000系アルミニウム合金で約650℃、2000系アルミニウム合金で約500℃、3000系アルミニウム合金で約640℃、5000系アルミニウム合金で約570℃、6000系アルミニウム合金で約580℃、7000系アルミニウム合金で約480℃であるため、これらのアルミニウム合金の使用も考慮した場合には、基板の焼成温度は出来るだけ低い方が良い。特に工業的に汎用される6000系アルミニウム合金の使用を考慮すると、上記基板は、おおむね、約550℃以下の温度で焼成できることが推奨される。   For example, copper wires, copper plates, copper materials plated with Sn and the like are widely used as wiring members, but recently, aluminum materials with high thermal conductivity are also used for the purpose of weight reduction. Specifically, in addition to wiring materials such as aluminum plates and aluminum wires, aluminum fins, fans, and the like are used as cooling bodies or casings that release heat to the periphery. Here, the melting point of pure aluminum is about 660 ° C. as described above, and when a pure aluminum material is used as a related member, the substrate needs to be able to be fired at a temperature lower than at least the melting point of pure aluminum. In addition to pure aluminum, aluminum alloys are also widely used for the related members. The temperature at which the aluminum alloy begins to melt is about 650 ° C. for 1000 series aluminum alloys, about 500 ° C. for 2000 series aluminum alloys, and 3000 series. The aluminum alloy is about 640 ° C, the 5000 series aluminum alloy is about 570 ° C, the 6000 series aluminum alloy is about 580 ° C, and the 7000 series aluminum alloy is about 480 ° C. The firing temperature of the substrate should be as low as possible. Considering the use of a 6000 series aluminum alloy that is widely used industrially, it is recommended that the substrate can be fired at a temperature of about 550 ° C. or less.

本発明は上記事情に鑑みてなされたものであり、その目的は、LED素子などを搭載するのに好適に用いられる絶縁放熱基板であって、熱伝導性に優れており、約550℃以下の温度でも焼成可能な絶縁放熱基板を提供することにある。   The present invention has been made in view of the above circumstances, and an object thereof is an insulating heat dissipation substrate suitably used for mounting an LED element or the like, which has excellent thermal conductivity, and is about 550 ° C. or less. An object of the present invention is to provide an insulating heat dissipation substrate that can be fired even at a temperature.

上記課題を解決し得た本発明の絶縁放熱基板は、金属基板の少なくとも片面に絶縁性の放熱膜を有する絶縁放熱基板であって、前記放熱膜は、焼成温度が550℃以下の非晶質無機酸化物中に、熱伝導率が1.0W/m・K以上となるように、絶縁性の放熱材料が分散しており、前記放熱膜の膜厚は10〜250μmであるところに要旨を有するものである。   The insulated heat dissipation substrate of the present invention that has solved the above problems is an insulated heat dissipation substrate having an insulating heat dissipation film on at least one side of a metal substrate, and the heat dissipation film is amorphous with a firing temperature of 550 ° C. or less. An insulating heat dissipating material is dispersed in the inorganic oxide so that the thermal conductivity is 1.0 W / m · K or more, and the gist of the heat dissipating film is 10 to 250 μm. It is what you have.

本発明の好ましい実施形態において、隣接する前記放熱材料の最小距離の平均値は1.5μm以下である。   In preferable embodiment of this invention, the average value of the minimum distance of the said heat dissipation material which adjoins is 1.5 micrometers or less.

本発明の好ましい実施形態において、前記放熱膜中に占める前記放熱材料の含有率は、20体積%以上、45体積%以下である。   In preferable embodiment of this invention, the content rate of the said thermal radiation material which occupies in the said thermal radiation film is 20 volume% or more and 45 volume% or less.

本発明の好ましい実施形態において、前記放熱材料は、窒化アルミニウム、酸化アルミニウム、窒化ケイ素、炭化ケイ素、窒化ホウ素、酸化マグネシウム、およびダイヤモンドよりなる群から選択される少なくとも一種である。   In a preferred embodiment of the present invention, the heat dissipation material is at least one selected from the group consisting of aluminum nitride, aluminum oxide, silicon nitride, silicon carbide, boron nitride, magnesium oxide, and diamond.

本発明の好ましい実施形態において、前記非晶質無機酸化物は、リン酸ガラスを主成分とするものである。   In a preferred embodiment of the present invention, the amorphous inorganic oxide is mainly composed of phosphate glass.

本発明の好ましい実施形態において、前記金属基板は、アルミニウム、鉄、銅、またはステンレスで構成されている。   In a preferred embodiment of the present invention, the metal substrate is made of aluminum, iron, copper, or stainless steel.

本発明には、上記のいずれかに記載の絶縁放熱基板を用いたLED素子、および上記LED素子を備えたモジュールも包含される。   The present invention also includes an LED element using any of the above-described insulated heat dissipation substrates and a module including the LED element.

本発明によれば、熱伝導性、絶縁性、放熱性に優れており、純アルミニウムやアルミニウム合金などのアルミニウム材料を同時に焼成可能な絶縁放熱基板を提供することができる。本発明の絶縁放熱基板はLED素子などが搭載される基板として有用であり、上記基板にLED素子などが搭載されたモジュールは、高い性能を有している。   ADVANTAGE OF THE INVENTION According to this invention, it is excellent in thermal conductivity, insulation, and heat dissipation, and the insulated heat dissipation board which can bake aluminum materials, such as pure aluminum and aluminum alloy, simultaneously can be provided. The insulated heat dissipation substrate of the present invention is useful as a substrate on which an LED element or the like is mounted, and a module in which the LED element or the like is mounted on the substrate has high performance.

図1は、本発明に係る絶縁放熱基板の構成を模式的に示す断面図であり、図1(a)は基板の片面に絶縁性の放熱膜を有する例、図1(b)は基板の両面に絶縁性の放熱膜を有する例である。FIG. 1 is a cross-sectional view schematically showing the configuration of an insulating heat dissipation substrate according to the present invention. FIG. 1A is an example having an insulating heat dissipation film on one side of the substrate, and FIG. This is an example having insulating heat dissipation films on both sides. 図2は、実施例の表2のNo.10において、絶縁性の放熱膜の一部分を示す断面SEM画像である。FIG. 10 is a cross-sectional SEM image showing a part of the insulating heat dissipation film. 図3は、実施例において、絶縁放熱基板の熱抵抗を測定するための概略断面図である。FIG. 3 is a schematic cross-sectional view for measuring the thermal resistance of the insulating heat dissipation board in the embodiment.

本発明の絶縁放熱基板は、金属基板の少なくとも片面に絶縁性の放熱膜を有する絶縁放熱基板であって、前記放熱膜は、焼成温度が550℃以下の非晶質無機酸化物中に、熱伝導率が1.0W/m・K以上となるように、絶縁性の放熱材料が分散しており、前記放熱膜の膜厚が10〜250μmであるところに特徴がある。本発明では、焼成温度が低い非晶質無機酸化物を用いているため、配線材料などに汎用される銅のみならず、銅に比べて融点が低い純アルミニウムやアルミニウム合金などのアルミニウム材料も使用することができる。更に本発明では、上記非晶質無機酸化物中に絶縁性の放熱材料が、高い熱伝導率が発揮されるように適切に分散しているため、放熱膜の熱伝導性が向上する。更に本発明では、このような絶縁性の放熱膜を金属基板上に有しているため、加工性に優れており、任意の形状に加工することができる。   The insulating heat dissipation substrate of the present invention is an insulating heat dissipation substrate having an insulating heat dissipation film on at least one surface of a metal substrate, and the heat dissipation film is heated in an amorphous inorganic oxide having a firing temperature of 550 ° C. or less. The insulating heat dissipation material is dispersed so that the conductivity is 1.0 W / m · K or more, and the thickness of the heat dissipation film is 10 to 250 μm. In the present invention, since an amorphous inorganic oxide having a low firing temperature is used, not only copper, which is widely used for wiring materials, but also aluminum materials such as pure aluminum and aluminum alloys having a melting point lower than that of copper are used. can do. Furthermore, in the present invention, since the insulating heat dissipation material is appropriately dispersed in the amorphous inorganic oxide so as to exhibit high thermal conductivity, the heat conductivity of the heat dissipation film is improved. Furthermore, in this invention, since it has such an insulating heat dissipation film on a metal substrate, it is excellent in workability and can be processed into an arbitrary shape.

以下、図1を参照しながら、本発明の絶縁放熱基板10を詳細に説明する。   Hereinafter, the insulating heat dissipation substrate 10 of the present invention will be described in detail with reference to FIG.

上述したとおり、本発明の絶縁放熱基板10は、金属基板1の少なくとも片面に絶縁性の放熱膜2を有している。具体的には、放熱膜2は、図1(a)に示すように金属基板1の片面(LED素子などが搭載される面)に有していても良いし、図1(b)に示すように金属基板1の両面に有していても良い。ここで、熱抵抗などを考慮すると、片面塗装の態様が好ましく用いられる。放熱膜2に含まれる、リン酸ガラスなどの非晶質無機酸化物は、放熱性能を示す熱抵抗に悪影響を及ぼすため、薄い方が好ましいからである。一方、絶縁放熱基板に平坦性が求められる場合は、両面塗装の態様が好ましい。片面塗装の場合、非晶質無機酸化物と金属基板を構成する金属との熱膨張係数が異なるため、絶縁放熱基板に歪みが生じるためである。   As described above, the insulating heat dissipation substrate 10 of the present invention has the insulating heat dissipation film 2 on at least one surface of the metal substrate 1. Specifically, the heat dissipation film 2 may be provided on one side of the metal substrate 1 (the surface on which the LED element or the like is mounted) as shown in FIG. 1A, or as shown in FIG. As such, it may be provided on both surfaces of the metal substrate 1. Here, in consideration of thermal resistance and the like, a single-sided coating mode is preferably used. This is because the amorphous inorganic oxide such as phosphate glass contained in the heat dissipation film 2 adversely affects the thermal resistance showing the heat dissipation performance, and thus is preferably thinner. On the other hand, when flatness is required for the insulating heat dissipation substrate, a double-sided coating mode is preferable. In the case of single-sided coating, the thermal expansion coefficients of the amorphous inorganic oxide and the metal constituting the metal substrate are different, so that the insulating heat dissipation substrate is distorted.

放熱膜2の膜厚は、絶縁性を確保するため、10〜250μmであることが好ましい。放熱膜2の膜厚が10μm未満では、所望とする絶縁性(絶縁耐性1.0kV以上)が得られない。一方、放熱膜2の膜厚が250μmを超えると、熱抵抗が目標レベルの1.0×10-4K/W以下を超えてしまう。放熱膜2の膜厚は、30μm以上、200μm以下であることがより好ましい。 The film thickness of the heat dissipation film 2 is preferably 10 to 250 μm in order to ensure insulation. If the film thickness of the heat dissipation film 2 is less than 10 μm, desired insulation (insulation resistance of 1.0 kV or more) cannot be obtained. On the other hand, if the film thickness of the heat dissipation film 2 exceeds 250 μm, the thermal resistance exceeds the target level of 1.0 × 10 −4 K / W or less. The film thickness of the heat dissipation film 2 is more preferably 30 μm or more and 200 μm or less.

放熱膜2は、焼成温度が550℃以下の非晶質無機酸化物3、および絶縁性の放熱材料を含む。詳細には放熱膜2は、非晶質無機酸化物3中に、放熱膜2の熱伝導率が1.0W/m・K以上となるように、絶縁性の放熱材料4が分散している。ここで、非晶質無機酸化物3は、絶縁性の放熱材料4同士を繋げるバインダーとして作用し、その熱伝導率は放熱材料4に比べて低い。   The heat dissipation film 2 includes an amorphous inorganic oxide 3 having a firing temperature of 550 ° C. or less and an insulating heat dissipation material. Specifically, in the heat dissipation film 2, the insulating heat dissipation material 4 is dispersed in the amorphous inorganic oxide 3 so that the thermal conductivity of the heat dissipation film 2 is 1.0 W / m · K or more. . Here, the amorphous inorganic oxide 3 acts as a binder that connects the insulating heat dissipation materials 4, and its thermal conductivity is lower than that of the heat dissipation material 4.

本発明に用いられる非晶質無機酸化物3は、焼成温度が550℃以下の範囲を満足する。非晶質無機酸化物3の焼成温度が550℃を超えると、配線材料または金属基板として好ましく用いられるアルミニウムの融点を超えてしまい、アルミニウム材料を用いることができない。   The amorphous inorganic oxide 3 used in the present invention satisfies the range where the firing temperature is 550 ° C. or less. When the firing temperature of the amorphous inorganic oxide 3 exceeds 550 ° C., the melting point of aluminum preferably used as a wiring material or a metal substrate is exceeded, and the aluminum material cannot be used.

ここで、焼成温度は、非晶質無機酸化物を実際に焼成するときの温度であり、電気炉内部の雰囲気を熱電対で測定して算出される。具体的には焼成温度は、非晶質無機酸化物が軟化して流動性が出現する温度であり、ガラスなどの特性を示す指標である軟化点やガラス転移点に比べて、温度は高い。本実施例では、屈伏点近傍での焼成を行なっている。屈伏点とは、ガラスを加熱して、凝固状態から液状に変化した(このときの温度が、一般にガラス転移点と呼ばれる。)とき、この温度で熱膨張率は大きくなるが、更に温度をあげると、熱膨張率が増加しなくなる点が現れるが、それを屈伏点と呼ぶ。非晶質無機酸化物3の焼成温度は低い程良く、500℃以下であることが好ましい。なお、非晶質無機酸化物3の焼成温度の下限は特に限定されないが、非晶質無機酸化物の融点などを考慮すると、おおむね、400℃以上であることが好ましい。   Here, the firing temperature is a temperature at which the amorphous inorganic oxide is actually fired, and is calculated by measuring the atmosphere inside the electric furnace with a thermocouple. Specifically, the firing temperature is a temperature at which the amorphous inorganic oxide is softened and fluidity appears, and is higher than a softening point or a glass transition point that is an index indicating characteristics of glass or the like. In this embodiment, firing is performed near the yield point. The yield point means that when the glass is heated to change from a solidified state to a liquid state (the temperature at this time is generally called the glass transition point), the coefficient of thermal expansion increases at this temperature, but the temperature is further increased. Then, a point where the coefficient of thermal expansion does not increase appears, which is called a yield point. The lower the firing temperature of the amorphous inorganic oxide 3, the better, and it is preferably 500 ° C. or lower. Note that the lower limit of the firing temperature of the amorphous inorganic oxide 3 is not particularly limited, but is preferably about 400 ° C. or higher considering the melting point of the amorphous inorganic oxide.

上記要件を満足する非晶質無機酸化物3として、リン酸ガラスなどのようにリン酸化合物を主成分とするものが好ましい。一般にガラスは、ケイ酸塩を主成分として含み、焼成温度が550℃を遥かに超えるからである。本発明に用いられる、リン酸化合物を主成分とする非晶質無機酸化物3は、リンの酸化物(例えばP25など)を、非晶質無機酸化物中に最も多く含み(例えば50質量%以上)含み、残部:Si、Ti、B、Zn、Sn、Ba、Li、K、Sb、Naなどの少なくとも一種の酸化物であることが好ましい。このような酸化物として、例えば、SiO2、TiO2、B23、ZnO、SnO、BaO、Li2O、K2O、Sb23、Na2Oなどが挙げられる。 As the amorphous inorganic oxide 3 satisfying the above requirements, those containing a phosphate compound as a main component, such as phosphate glass, are preferable. This is because glass generally contains silicate as a main component and the firing temperature far exceeds 550 ° C. The amorphous inorganic oxide 3 mainly composed of a phosphoric acid compound used in the present invention contains the largest amount of phosphorus oxide (for example, P 2 O 5 ) in the amorphous inorganic oxide (for example, 50% by mass or more) and the balance is preferably at least one oxide such as Si, Ti, B, Zn, Sn, Ba, Li, K, Sb, and Na. Examples of such oxides include SiO 2 , TiO 2 , B 2 O 3 , ZnO, SnO, BaO, Li 2 O, K 2 O, Sb 2 O 3 , and Na 2 O.

上記要件を満足する非晶質無機酸化物3は、市販品を用いることもできる。後記する実施例では、日本フリット株式会社製VQ0028の低融点ガラス粉末(基準焼成温度:520℃)を用いたが、本発明はこれに限定されない。例えば、上記のほか、日本フリット株式会社製VQ0028M5(基準焼成温度はVQ0028と同じで、520℃)を用いることもできる。このVQ0028M5は粉末タイプであり、これにより、上記VQ0028を使用した場合に比べて粉砕時間を短縮することができる。   Commercially available products can be used as the amorphous inorganic oxide 3 that satisfies the above requirements. In Examples described later, VQ0028 low melting point glass powder (standard firing temperature: 520 ° C.) manufactured by Nippon Frit Co., Ltd. was used, but the present invention is not limited to this. For example, in addition to the above, VQ0028M5 manufactured by Nippon Frit Co., Ltd. (the reference firing temperature is the same as VQ0028 and 520 ° C.) can also be used. This VQ0028M5 is a powder type, and this makes it possible to shorten the pulverization time compared to the case where the VQ0028 is used.

或いは、関谷理化(株)製のフリットガラス(粉末ガラス)のうち、焼成温度が550℃以下のものを使用することができる。上記フリットガラスには、例えば、リン酸系ガラスフリットのような、リン酸を主成分とするガラスのほか;ビスマス珪酸系ガラスフリット、ホウ珪酸系ガラスフリット、低温焼成用ガラスフリットなどが挙げられる。なお、上記のカタログには、ガラス転移点(Tg)または軟化点(Ts)が記載されており、焼成温度は記載されていない。この場合、前述したように焼成温度はTgやTsに比べて高いため、少なくとも、TgやTsが、本発明で規定する焼成温度の上限である550℃以下を下回るものを選択して用いることが必要である。   Alternatively, a frit glass (powder glass) manufactured by Sekiya Rika Co., Ltd. having a firing temperature of 550 ° C. or lower can be used. Examples of the frit glass include glass containing phosphoric acid as a main component, such as phosphate glass frit; bismuth silicate glass frit, borosilicate glass frit, glass frit for low-temperature firing, and the like. In the above catalog, the glass transition point (Tg) or softening point (Ts) is described, and the firing temperature is not described. In this case, as described above, since the firing temperature is higher than Tg and Ts, it is necessary to select and use at least Tg and Ts below the upper limit of the firing temperature defined in the present invention, which is 550 ° C. or less. is necessary.

本発明に用いられる放熱材料4は、絶縁性を有し、且つ、高い熱伝導率を有するものである。このような絶縁性の放熱材料として、例えば、酸化アルミニウム(Al23の熱伝導率は約20〜40W/m・K)、窒化アルミニウム(AlNの熱伝導率は約70〜270W/m・K)、窒化ケイ素(Si34の熱伝導率は約30〜80W/m・K)、炭化ケイ素(SiCの熱伝導率は約270W/m・K)、窒化ホウ素(BNの熱伝導率は約30〜150W/m・K)、酸化マグネシウム(MgOの熱伝導率は約40〜70W/m・K)、ダイヤモンド(熱伝導率は約300〜2000W/m・K)などが挙げられる。これらのうち、酸化アルミニウムは安価であり、材料コストを低減できるため、最も好ましく用いられる。 The heat dissipating material 4 used in the present invention has insulating properties and high thermal conductivity. As such an insulating heat dissipation material, for example, aluminum oxide (Al 2 O 3 has a thermal conductivity of about 20 to 40 W / m · K), aluminum nitride (AlN has a thermal conductivity of about 70 to 270 W / m · K). K), silicon nitride (Si 3 N 4 has a thermal conductivity of about 30-80 W / m · K), silicon carbide (SiC has a thermal conductivity of about 270 W / m · K), boron nitride (BN has a thermal conductivity) Is about 30 to 150 W / m · K), magnesium oxide (MgO has a thermal conductivity of about 40 to 70 W / m · K), diamond (a thermal conductivity is about 300 to 2000 W / m · K), and the like. Of these, aluminum oxide is most preferred because it is inexpensive and can reduce material costs.

本発明の絶縁放熱基板10は、非晶質無機酸化物3中に、熱伝導率が1.0W/m・K以上となるように、絶縁性の放熱材料4が分散しているところに特徴がある。本発明において「分散している」とは、絶縁性の放熱膜が上述した1.0W/m・K以上の高い熱伝導率を発揮し得るよう、放熱材料4が、ベースとなる非晶質無機酸化物3の膜中に一様に分散していることを意味する。具体的には、後記する実施例に記載の方法により、隣接する放熱材料4同士の距離を測定してその最小距離を求めたとき、最小距離の平均値が1.5μm以下を満足することが好ましい。最小距離の平均値が1.5μmを超えると、放熱材料4同士の距離が離れ過ぎてしまい、その間に、バインダーとして作用する低熱伝導性の非晶質無機酸化物3が存在するようになるため、放熱膜2自体の熱伝導率も低くなる。上記最小距離の平均値は小さい程良く、より好ましくは1.0μm以下である。なお、上記最小距離の平均値の下限は、放熱材料4による熱伝導性との関係では特に限定されないが、非晶質無機酸化物3は、放熱材料4を繋ぐバインダーとして機能しているため、放熱膜2の脆性や密着性などを考慮すると、おおむね、放熱材料の最小距離の平均値は0.05μm以上であることが好ましい。   The insulating heat dissipation substrate 10 of the present invention is characterized in that the insulating heat dissipation material 4 is dispersed in the amorphous inorganic oxide 3 so that the thermal conductivity is 1.0 W / m · K or more. There is. In the present invention, “dispersed” means that the heat dissipation material 4 is an amorphous base material so that the insulating heat dissipation film can exhibit the above-described high thermal conductivity of 1.0 W / m · K or more. It means that the inorganic oxide 3 is uniformly dispersed in the film. Specifically, when the minimum distance is obtained by measuring the distance between adjacent heat dissipation materials 4 by the method described in the examples described later, the average value of the minimum distance may satisfy 1.5 μm or less. preferable. If the average value of the minimum distances exceeds 1.5 μm, the distance between the heat dissipating materials 4 will be too far, and there will be a low thermal conductive amorphous inorganic oxide 3 acting as a binder in the meantime. The heat conductivity of the heat dissipation film 2 itself is also lowered. The average value of the minimum distance is preferably as small as possible, more preferably 1.0 μm or less. The lower limit of the average value of the minimum distance is not particularly limited in relation to the thermal conductivity of the heat dissipation material 4, but the amorphous inorganic oxide 3 functions as a binder that connects the heat dissipation material 4, Considering the brittleness and adhesion of the heat dissipation film 2, the average value of the minimum distance of the heat dissipation material is preferably 0.05 μm or more.

放熱膜2中に占める放熱材料4の好ましい含有率は、20体積%以上、45体積%以下に制御することが好ましい。これにより、上記最小距離の平均値を、適切な範囲に調整することができる。放熱材料4の含有率が20体積%未満では、放熱材料4の添加による高い熱伝導性向上効果が有効に発揮されない。一方、放熱材料の含有率が45体積%を超えると、金属基板1に放熱膜2を形成したとき、放熱材料4同士を繋ぐバインダー作用を有する非晶質無機酸化物3の含有量が少なくなり、放熱膜2が剥離する虞がある。より好ましくは、25体積%以上、35体積%以下である。   It is preferable to control the preferable content rate of the thermal radiation material 4 which occupies in the thermal radiation film 2 to 20 volume% or more and 45 volume% or less. Thereby, the average value of the minimum distance can be adjusted to an appropriate range. When the content of the heat dissipation material 4 is less than 20% by volume, the high thermal conductivity improvement effect due to the addition of the heat dissipation material 4 is not effectively exhibited. On the other hand, when the content of the heat dissipation material exceeds 45% by volume, when the heat dissipation film 2 is formed on the metal substrate 1, the content of the amorphous inorganic oxide 3 having a binder function that connects the heat dissipation materials 4 decreases. There is a possibility that the heat radiation film 2 is peeled off. More preferably, it is 25 volume% or more and 35 volume% or less.

放熱膜2を形成するためには、上述した非晶質無機酸化物3および放熱材料4の混合粉末;更には、これらに、必要に応じて上記添加剤を含む混合粉末を水等の溶媒中に分散させた分散液を用い、公知の塗装手段を行なえば良い。公知の塗装手段として、例えばスプレー法、ディップ法、バーコーター法、スピンコート法などが挙げられる。これにより、任意の形状に加工することが可能となる。上記塗装手段のうち、大面積を均一に塗装可能なスプレー法が最も好ましい。   In order to form the heat-dissipating film 2, a mixed powder of the above-described amorphous inorganic oxide 3 and the heat-dissipating material 4; A well-known coating means may be performed using the dispersion liquid dispersed in (1). Examples of known coating means include a spray method, a dip method, a bar coater method, and a spin coat method. Thereby, it becomes possible to process into an arbitrary shape. Of the above-mentioned coating means, a spray method capable of uniformly coating a large area is most preferable.

ここで、非晶質無機酸化物3および放熱材料4を含む混合粉末の量を、放熱材料20体積%以上、45体積%以下の範囲に制御することで、放熱膜中の放熱材料の含有率を上述した好ましい範囲に制御することができる。   Here, the content rate of the heat dissipation material in the heat dissipation film is controlled by controlling the amount of the mixed powder containing the amorphous inorganic oxide 3 and the heat dissipation material 4 to the range of 20% by volume or more and 45% by volume or less of the heat dissipation material. Can be controlled within the preferred range described above.

金属基板1は、アルミニウム、鉄、銅、ステンレスなどの種々の金属基板を用いることができる。上述したとおり、本発明では、焼成温度が低い非晶質無機酸化物3を用いているため、融点の高い金属(例えば鉄の融点は約1538℃;ステンレスの融点は種類によっても相違するが、約1370〜1460℃;銅の融点は約1084℃)から、融点の低い金属(例えばアルミニウムの融点は約660℃)まで、種々の金属で構成された金属基板を用いることができる。これらのうち、熱伝導性が高いアルミニウム、銅の使用が、より好ましい。   As the metal substrate 1, various metal substrates such as aluminum, iron, copper, and stainless steel can be used. As described above, since the amorphous inorganic oxide 3 having a low firing temperature is used in the present invention, a metal having a high melting point (for example, iron has a melting point of about 1538 ° C .; stainless steel has a different melting point depending on the type. From about 1370 to 1460 ° C .; the melting point of copper is about 1084 ° C.) to a metal having a low melting point (for example, the melting point of aluminum is about 660 ° C.), a metal substrate composed of various metals can be used. Of these, use of aluminum or copper having high thermal conductivity is more preferable.

放熱性能を表す指標の1つである熱抵抗を下げるには、金属基板1の厚みも適切に制御されていることが好ましい。ここで、熱抵抗は、下式で算出される。
th=L/(A×λ)
式中、Rth:熱抵抗(K/W)、L:厚み(m)、A:断面積(m2)、λ:熱伝導率(W/m・K)を意味する。
In order to reduce the thermal resistance, which is one of the indexes representing the heat dissipation performance, it is preferable that the thickness of the metal substrate 1 is also appropriately controlled. Here, the thermal resistance is calculated by the following equation.
R th = L / (A × λ)
In the formula, R th : thermal resistance (K / W), L: thickness (m), A: cross-sectional area (m 2 ), λ: thermal conductivity (W / m · K).

具体的には、使用する金属基板1の種類に応じて、以下のように適切に制御することが好ましい。   Specifically, it is preferable to appropriately control as follows according to the type of the metal substrate 1 to be used.

金属基板1としてアルミニウム基板を用いる場合、厚みは10mm以下に制御することが好ましい。厚みが10mmを超えると、アルミニウム自体の熱抵抗が高くなり、放熱膜2を十分な厚みで塗装することが出来ない。より好ましいアルミニウム基板の厚みは5mm以下である。なお、その下限は、おおむね、0.1mm以上であることが好ましい。   When an aluminum substrate is used as the metal substrate 1, the thickness is preferably controlled to 10 mm or less. If the thickness exceeds 10 mm, the thermal resistance of the aluminum itself increases, and the heat dissipation film 2 cannot be coated with a sufficient thickness. A more preferable thickness of the aluminum substrate is 5 mm or less. In addition, it is preferable that the minimum is about 0.1 mm or more in general.

金属基板1として鉄基板を用いる場合、厚みは5mm以下に制御することが好ましい。厚みが5mmを超えると、鉄自体の熱抵抗が高くなり、放熱膜2を十分な厚みで塗装することが出来ない。また、鉄基板の重量が重くなり、製造効率が低下する。より好ましい鉄基板の厚みは4mm以下であり、更に好ましくは2mm以下であり、更により好ましくは1mm以下である。なお、その下限は、おおむね、0.1mm以上であることが好ましい。   When an iron substrate is used as the metal substrate 1, the thickness is preferably controlled to 5 mm or less. If the thickness exceeds 5 mm, the thermal resistance of the iron itself increases, and the heat dissipation film 2 cannot be coated with a sufficient thickness. Moreover, the weight of the iron substrate is increased, and the production efficiency is reduced. The thickness of the iron substrate is more preferably 4 mm or less, further preferably 2 mm or less, and still more preferably 1 mm or less. In addition, it is preferable that the minimum is about 0.1 mm or more in general.

金属基板1として銅基板を用いる場合、厚みは20mm以下に制御することが好ましい。厚みが20mmを超えると、銅自体の熱抵抗が高くなり、放熱膜2を十分な厚みで塗装することが出来ない。製造コストなども考慮すると、より好ましい銅基板の厚みは10mm以下であり、更に好ましくは5mm以下である。なお、その下限は、おおむね、0.1mm以上であることが好ましい。   When a copper substrate is used as the metal substrate 1, the thickness is preferably controlled to 20 mm or less. If the thickness exceeds 20 mm, the thermal resistance of the copper itself increases, and the heat dissipation film 2 cannot be coated with a sufficient thickness. Considering the manufacturing cost and the like, the thickness of the copper substrate is more preferably 10 mm or less, and further preferably 5 mm or less. In addition, it is preferable that the minimum is about 0.1 mm or more in general.

金属基板1としてステンレス基板を用いる場合、厚みは1mm以下に制御することが好ましい。厚みが1mmを超えると、ステンレス自体の熱抵抗が高くなり、放熱膜2を十分な厚みで塗装することが出来ない。より好ましいステンレス基板の厚みは0.7mm以下である。なお、その下限は、おおむね、0.1mm以上であることが好ましい。   When a stainless steel substrate is used as the metal substrate 1, the thickness is preferably controlled to 1 mm or less. If the thickness exceeds 1 mm, the thermal resistance of the stainless steel itself increases, and the heat dissipation film 2 cannot be coated with a sufficient thickness. A more preferable thickness of the stainless steel substrate is 0.7 mm or less. In addition, it is preferable that the minimum is about 0.1 mm or more in general.

以下、実施例を挙げて本発明をより具体的に説明するが、本発明は下記実施例によって制限されず、前・後記の趣旨に適合し得る範囲で変更を加えて実施することも可能であり、それらはいずれも本発明の技術的範囲に包含される。   Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited by the following examples, and can be implemented with modifications within a range that can meet the purpose described above and below. They are all included in the technical scope of the present invention.

実施例1
本実施例では、放熱材料として、昭和電工社製の丸み状アルミナAS−30(平均粒子径18μm)を用いた。非晶質無機酸化物として日本フリット株式会社製VQ0028の低融点ガラス粉末(基準焼成温度:520℃)を用いて、絶縁性の放熱膜を有する絶縁放熱基板を作製し、上記放熱膜中に占める放熱材料の含有率と、放熱材料の熱伝導率および隣接する放熱材料の最小距離の平均値との関係を調べた。
Example 1
In this example, round alumina AS-30 (average particle diameter 18 μm) manufactured by Showa Denko KK was used as the heat dissipation material. An insulating heat dissipation substrate having an insulating heat dissipation film is produced using low melting point glass powder (standard firing temperature: 520 ° C.) of VQ0028 manufactured by Nippon Frit Co., Ltd. as an amorphous inorganic oxide, and occupies the heat dissipation film. The relationship between the content of the heat dissipation material, the thermal conductivity of the heat dissipation material, and the average value of the minimum distance between adjacent heat dissipation materials was investigated.

まず、上記非晶質無機酸化物300gを、平均粒径が約10〜20μmになるまで、ボールミルを用いて乾式条件で粉砕した。   First, 300 g of the amorphous inorganic oxide was pulverized using a ball mill under dry conditions until the average particle size became about 10 to 20 μm.

このようにして粉砕した上記非晶質無機酸化物および上記放熱材料の各粉末を、(非晶質無機酸化物+放熱材料)の合計中に占める放熱材料の含有率(体積%)が表1の範囲となるように混合し、水中に分散させて種々の分散液を得た。このようにして得られた種々の分散液を、板厚2mmのJIS1000系アルミニウム基板の上に、スプレー法により噴霧した後、450℃で加熱焼結を行って絶縁性の放熱膜を形成した。このようにして得られた放熱膜中に含まれる放熱材料の含有率は、表1に記載の「放熱材料の含有率」と同じである。   Table 1 shows the content (volume%) of the heat radiating material in the total of (amorphous inorganic oxide + heat radiating material) of each powder of the amorphous inorganic oxide and the heat radiating material thus pulverized. These were mixed so as to be in the range, and dispersed in water to obtain various dispersions. The various dispersions thus obtained were sprayed onto a JIS1000 series aluminum substrate having a thickness of 2 mm by a spray method, and then heated and sintered at 450 ° C. to form an insulating heat dissipation film. The content ratio of the heat dissipation material contained in the heat dissipation film thus obtained is the same as the “content ratio of the heat dissipation material” described in Table 1.

上記放熱膜について、以下の方法により、その厚み及び熱伝導率を測定すると共に、塗布形態を評価した。また、上記放熱膜中に分散して存在する放熱材料の最小距離の平均値を、以下のようにして測定した。   About the said heat radiating film, while measuring the thickness and thermal conductivity with the following method, the coating form was evaluated. Moreover, the average value of the minimum distance of the heat dissipation material dispersed and present in the heat dissipation film was measured as follows.

(放熱膜の膜厚)
渦電流膜厚計を用いて、任意に合計5点測定し、その平均値を求めた。
(Heat dissipation film thickness)
A total of five points were arbitrarily measured using an eddy current film thickness meter, and the average value was obtained.

(放熱膜の熱伝導率)
アルバック理工社製の熱定数測定装置TC−7000を用いて、レーザーフラッシュ法にて測定した。本実施例では、上記熱伝導率が1.0W/m・K以上のものを合格とした。
(Thermal conductivity of heat dissipation film)
It measured by the laser flash method using the thermal constant measuring apparatus TC-7000 by ULVAC-RIKO. In the present example, a sample having a thermal conductivity of 1.0 W / m · K or more was regarded as acceptable.

(放熱膜の塗布形態)
上記非晶質無機酸化物および上記放熱材料の各粉末を混合し、水中に分散させた分散液を上記基板上にスプレーして塗装した後、加熱焼結した。このようにして得られた放熱膜を目視で観察し、剥離が見られないものを良、剥離が見られたものを不良とした。
(Applying form of heat dissipation film)
Each powder of the amorphous inorganic oxide and the heat-dissipating material was mixed, and a dispersion liquid dispersed in water was sprayed onto the substrate for coating, and then heated and sintered. The heat radiating film thus obtained was visually observed, and those in which peeling was not observed were judged good and those in which peeling was seen were judged as defective.

(放熱膜中に分散して存在する放熱材料の最小距離の平均値)
上記放熱膜の膜厚方向断面を走査型電子顕微鏡(Scanning Electron Microscope、SEM)で観察し、倍率500倍、観察範囲35mmでSEM像を撮影した。上記SEM像について、放熱膜中に含まれる放熱材料の重心から、最も近い放熱材料の重心までの距離(重心間距離)を測定した。全ての放熱材料について、上記と同様にして重心間距離を測定して、その平均値を求めて「隣接放熱材料の重心間距離の平均値」を算出した。更に、上記放熱材料の直径の平均値を測定し、下記式より、隣接する放熱材料の最小距離の平均値を求めた。
隣接放熱材料の最小距離の平均値=(隣接放熱材料重心間距離の平均値)−(放熱材料の直径の平均値)
(Average value of the minimum distance of heat dissipating material dispersed in the heat dissipating film)
A cross section in the film thickness direction of the heat dissipation film was observed with a scanning electron microscope (SEM), and an SEM image was taken at a magnification of 500 times and an observation range of 35 mm. For the SEM image, the distance from the center of gravity of the heat dissipation material contained in the heat dissipation film to the center of gravity of the nearest heat dissipation material (distance between the centers of gravity) was measured. For all the heat dissipation materials, the distance between the centers of gravity was measured in the same manner as described above, and the average value thereof was calculated to calculate “the average value of the distances between the centers of gravity of adjacent heat dissipation materials”. Furthermore, the average value of the diameter of the said heat dissipation material was measured, and the average value of the minimum distance of the adjacent heat dissipation material was calculated | required from the following formula.
Average value of minimum distance of adjacent heat dissipation material = (Average value of distance between adjacent heat dissipation material centers of gravity)-(Average value of diameter of heat dissipation material)

本実施例では、このようにして算出された隣接放熱材料の最小距離の平均値が1.5μm以下のものを合格とした。   In this example, the average value of the minimum distances of the adjacent heat dissipation materials calculated in this way was determined to be 1.5 μm or less.

これらの結果を表1に併記する。表1の最右欄に「総合評価」の欄を設け、上記の測定・評価項目が全て合格のものに「合格」、いずれか一つでも不合格のものは「不合格」と判定した。   These results are also shown in Table 1. The column of “Comprehensive evaluation” was provided in the rightmost column of Table 1, and all the above measurement / evaluation items were determined to be “Pass”, and any one failed was determined to be “Fail”.

表1より以下のように考察することができる。まず、No.1および2のように、放熱材料の含有率が本発明の好ましい下限(20体積%以上)を下回ると、隣接する放熱材料の最小距離の平均値が大きくなり、放熱膜の熱伝導率も低くなった。   From Table 1, it can be considered as follows. First, no. As in 1 and 2, when the content of the heat dissipation material is below the preferable lower limit (20% by volume or more) of the present invention, the average value of the minimum distance between adjacent heat dissipation materials is increased, and the heat conductivity of the heat dissipation film is also low. became.

これに対し、表1のNo.3〜8のように放熱材料の含有率が多くなり、本発明の好ましい下限(20体積%以上)を超えると、隣接する放熱材料の最小距離の平均値が好ましい範囲(1.5μm以下)に抑えられ、放熱膜の熱伝導率も高くなる傾向が見られた。   In contrast, No. 1 in Table 1. When the content of the heat dissipation material increases as in 3 to 8 and exceeds the preferable lower limit (20% by volume or more) of the present invention, the average value of the minimum distances of adjacent heat dissipation materials is in a preferable range (1.5 μm or less). It was suppressed, and the heat conductivity of the heat dissipation film tended to increase.

しかし、No.9のように放熱材料の含有率が多くなり過ぎて、本発明で規定する好ましい上限(45体積%以下)を超えると、熱伝導率および最小距離の平均値はいずれも良好であったが、放熱膜の塗布形態が低下し、放熱膜が剥離した。以上の結果より、放熱材料の含有率、および隣接する放熱材料の最小距離の平均値を好ましい範囲に制御することによって上記放熱材料が放熱膜中に適切に分散するようになるため、所望とする高い熱伝導性を確保できることが分かった。   However, no. When the content of the heat dissipation material is too large as in FIG. 9 and exceeds the preferable upper limit (45% by volume or less) defined in the present invention, the average values of the thermal conductivity and the minimum distance were both good. The application form of the heat dissipation film was lowered, and the heat dissipation film was peeled off. From the above results, the heat dissipation material is appropriately dispersed in the heat dissipation film by controlling the content ratio of the heat dissipation material and the average value of the minimum distances of adjacent heat dissipation materials within a preferable range. It was found that high thermal conductivity can be secured.

実施例2
本実施例では、金属基板として表2に記載の種々の金属基板を;放熱材料として前述した表1のNo.8(放熱材料の含有率45体積%)のものを用い、前述した実施例1と同様にして、表2に記載の膜厚を有する種々の放熱膜を有する絶縁放熱基板を作製した。なお、放熱膜の膜厚は、基板上への分散液のスプレー塗層回数を変化させることによって制御した。
Example 2
In this example, the various metal substrates described in Table 2 were used as the metal substrates; Insulating heat radiating substrates having various heat radiating films having the film thicknesses shown in Table 2 were prepared in the same manner as in Example 1 described above using 8 (heat radiating material content 45% by volume). The film thickness of the heat dissipation film was controlled by changing the number of spray coatings of the dispersion liquid on the substrate.

このようにして得られた絶縁放熱基板について、以下のようにして、熱抵抗および絶縁耐圧を測定した。   With respect to the insulated heat dissipation substrate thus obtained, the thermal resistance and withstand voltage were measured as follows.

(熱抵抗)
図3の装置を用い、絶縁放熱基板の熱抵抗を、JPCA−TMC−LED02T−2010 10.6項に基づいて測定した。具体的には、ステージ5上に絶縁放熱基板6を載せ、その表面に、熱源として坂口電熱株式会社製の窒化アルミヒーター「WALN−4」7を、放熱膜がヒーター7と当接するように搭載して固定した。なお、ステージの周囲は水で覆われており、強制的に水冷されている。
(Thermal resistance)
Using the apparatus shown in FIG. 3, the thermal resistance of the insulating heat dissipation substrate was measured based on JPCA-TMC-LED02T-2010 10.6. Specifically, an insulating heat dissipation substrate 6 is mounted on the stage 5, and an aluminum nitride heater “WALN-4” 7 manufactured by Sakaguchi Electric Heat Co., Ltd. is mounted as a heat source on the surface so that the heat dissipation film contacts the heater 7. And fixed. The periphery of the stage is covered with water and is forcibly cooled with water.

ヒーター7の上に荷重500gをかけ、ヒーター7と絶縁放熱基板6、ステージ5を密着させて加温した。ヒーター7の温度とステージ5の温度が定常状態に達した後、ヒーター7の温度(Ts)、ステージ5の温度(Tb)、入力パワー(W)を計測し、下式に基づいて、絶縁放熱基板6の熱抵抗(Rth)を算出した。本実施例では、Rtが1.0×10-4K/W以下のものを合格とした。
Rth(K/W)=(Ts−Tb)/W
A load of 500 g was applied on the heater 7, and the heater 7, the insulating heat dissipation substrate 6 and the stage 5 were brought into close contact with each other and heated. After the temperature of the heater 7 and the temperature of the stage 5 reach a steady state, the temperature (Ts) of the heater 7, the temperature (Tb) of the stage 5, and the input power (W) are measured. The thermal resistance (Rth) of the substrate 6 was calculated. In this example, Rt of 1.0 × 10 −4 K / W or less was accepted.
Rth (K / W) = (Ts−Tb) / W

(絶縁耐圧)
JISC2110−1に基づき、絶縁耐圧を求めた。
(Insulation voltage)
Based on JISC2110-1, the withstand voltage was determined.

詳細には、上記絶縁放熱基板にφ20mmの球状電極を、加重500gをかけて接地し、交流電源を用いて20〜40秒内に絶縁破壊するように電流を印加したときの絶縁破壊電圧を測定した。本実施例では、このようにして測定される絶縁耐圧が1kV以上のものを合格(絶縁性あり)と評価した。   Specifically, the dielectric breakdown voltage is measured when a spherical electrode with a diameter of 20 mm is grounded on the insulated heat dissipation substrate with a weight of 500 g and an electric current is applied so as to break down within 20 to 40 seconds using an AC power supply. did. In this example, the dielectric breakdown voltage measured in this way was evaluated as acceptable (with insulation) when the dielectric breakdown voltage was 1 kV or higher.

これらの結果を表2に併記する。なお、表2の最右欄に「総合評価」の欄を設け、放熱膜の膜厚、熱抵抗、および絶縁耐圧がいずれも、合格のものに「合格」を付し、いずれか一つが不合格のものに「不合格」を付した。   These results are also shown in Table 2. In addition, the column “Comprehensive evaluation” is provided in the rightmost column of Table 2, and the film thickness, thermal resistance, and dielectric strength of the heat dissipation film are all marked “Pass”, and any one is not good. “Fail” was given to those that passed.

表2より、金属基板として、アルミニウム、鉄、銅、ステンレスのいずれを用いた場合であっても、放熱膜の膜厚が適切に制御されたNo.2〜11、14〜35は、熱抵抗も低く、且つ、絶縁性も良好となり、高い熱伝導性と高い放熱性の両方を確保することができた。   From Table 2, No. 1 in which the film thickness of the heat dissipation film was appropriately controlled even when any of aluminum, iron, copper, and stainless steel was used as the metal substrate. Nos. 2 to 11 and 14 to 35 had low thermal resistance and good insulating properties, and were able to ensure both high thermal conductivity and high heat dissipation.

これに対し、表2のNo.1(金属基板としてアルミニウムを使用)は、放熱膜の膜厚が本発明の下限(10μm)を下回ったため、放熱膜の絶縁耐圧が小さくなり、絶縁性が低下した。   On the other hand, No. 1 (using aluminum as the metal substrate), the thickness of the heat dissipating film was below the lower limit (10 μm) of the present invention, so that the withstand voltage of the heat dissipating film was reduced and the insulation was lowered.

また、表2のNo.12および13(金属基板としてアルミニウムを使用)は、いずれも放熱膜の膜厚が本発明の上限(250μm)を超えたため、熱抵抗が大きくなった。   In Table 2, No. In both Nos. 12 and 13 (using aluminum as the metal substrate), the thermal resistance increased because the thickness of the heat dissipation film exceeded the upper limit (250 μm) of the present invention.

また、表2のNo.36(金属基板としてステンレスを使用)は、基板の膜厚が本発明の好ましい上限(1mm以下)を超える例であり、熱抵抗が大きくなった。   In Table 2, No. 36 (using stainless steel as the metal substrate) is an example in which the film thickness of the substrate exceeds the preferable upper limit (1 mm or less) of the present invention, and the thermal resistance increased.

参考のため、表2のNo.10(本発明例)について、放熱膜の一部分を示す断面SEM画像を図2に示す。図2中、黒い部分は放熱膜の内部に空いた孔である。図2に示すように、放熱膜中に放熱材料が適切に分散していることが分かる。   For reference, no. FIG. 2 shows a cross-sectional SEM image showing a part of the heat dissipation film for No. 10 (Example of the present invention). In FIG. 2, the black part is a hole vacant inside the heat dissipation film. As shown in FIG. 2, it can be seen that the heat dissipation material is appropriately dispersed in the heat dissipation film.

1 金属基板
2 放熱膜
3 非晶質無機酸化物
4 放熱材料
5 ステージ
6 絶縁放熱基板
7 ヒーター
10 絶縁性の放熱基板
DESCRIPTION OF SYMBOLS 1 Metal substrate 2 Heat dissipation film 3 Amorphous inorganic oxide 4 Heat dissipation material 5 Stage 6 Insulation heat dissipation substrate 7 Heater 10 Insulation heat dissipation substrate

Claims (8)

金属基板の少なくとも片面に絶縁性の放熱膜を有する絶縁放熱基板であって、
前記放熱膜は、軟化して流動性が出現する温度が550℃以下である非晶質無機酸化物、熱伝導率が1.0W/m・K以上となるように前記非晶質無機酸化物中に分散した絶縁性の放熱材料とを含み、
前記放熱膜の膜厚は10〜250μmであることを特徴とする絶縁放熱基板。
An insulating heat dissipation substrate having an insulating heat dissipation film on at least one side of a metal substrate,
The heat radiation film is softened to an amorphous inorganic oxide temperature fluidity appears is 550 ° C. or less, the so thermal conductivity is 1.0 W / m · K or more amorphous inorganic oxide Insulating heat dissipation material dispersed in the object ,
The insulating heat dissipation substrate, wherein the heat dissipation film has a thickness of 10 to 250 μm.
隣接する前記放熱材料の最小距離の平均値は1.5μm以下である請求項1に記載の絶縁放熱基板。   The insulating heat dissipation board according to claim 1, wherein an average value of minimum distances between adjacent heat dissipation materials is 1.5 μm or less. 前記放熱膜中に占める前記放熱材料の含有率は、20体積%以上、45体積%以下である請求項1または2に記載の絶縁放熱基板。   The insulated heat dissipation substrate according to claim 1 or 2, wherein a content ratio of the heat dissipation material in the heat dissipation film is 20% by volume or more and 45% by volume or less. 前記放熱材料は、窒化アルミニウム、酸化アルミニウム、窒化ケイ素、炭化ケイ素、窒化ホウ素、酸化マグネシウム、およびダイヤモンドよりなる群から選択される少なくとも一種である請求項1〜3のいずれかに記載の絶縁放熱基板。   The insulated heat dissipation substrate according to any one of claims 1 to 3, wherein the heat dissipation material is at least one selected from the group consisting of aluminum nitride, aluminum oxide, silicon nitride, silicon carbide, boron nitride, magnesium oxide, and diamond. . 前記非晶質無機酸化物は、リン酸ガラスを主成分とするものである請求項1〜4のいずれかに記載の絶縁放熱基板。   The insulated heat dissipation substrate according to any one of claims 1 to 4, wherein the amorphous inorganic oxide is mainly composed of phosphate glass. 前記金属基板は、アルミニウム、鉄、銅、またはステンレスで構成されるものである請求項1〜5のいずれかに記載の絶縁放熱基板。   The insulated heat dissipation substrate according to any one of claims 1 to 5, wherein the metal substrate is made of aluminum, iron, copper, or stainless steel. 請求項1〜6のいずれかに記載の絶縁放熱基板を用いたLED素子。   The LED element using the insulated heat dissipation board in any one of Claims 1-6. 請求項7に記載のLED素子を備えたモジュール。   A module comprising the LED element according to claim 7.
JP2014013600A 2014-01-28 2014-01-28 Insulating heat dissipation substrate, and LED element and module using the insulating heat dissipation substrate Expired - Fee Related JP6211942B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014013600A JP6211942B2 (en) 2014-01-28 2014-01-28 Insulating heat dissipation substrate, and LED element and module using the insulating heat dissipation substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014013600A JP6211942B2 (en) 2014-01-28 2014-01-28 Insulating heat dissipation substrate, and LED element and module using the insulating heat dissipation substrate

Publications (2)

Publication Number Publication Date
JP2015141987A JP2015141987A (en) 2015-08-03
JP6211942B2 true JP6211942B2 (en) 2017-10-11

Family

ID=53772173

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014013600A Expired - Fee Related JP6211942B2 (en) 2014-01-28 2014-01-28 Insulating heat dissipation substrate, and LED element and module using the insulating heat dissipation substrate

Country Status (1)

Country Link
JP (1) JP6211942B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101683255B1 (en) * 2016-03-30 2016-12-20 주식회사 에스티씨 LED Light Manufacturing Method of DPM Style and Apparatus thereof
WO2023190659A1 (en) * 2022-04-01 2023-10-05 日東電工株式会社 Laminate, heat-dissipating substrate, and method for producing laminate

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0212888A (en) * 1988-06-30 1990-01-17 Fujikura Ltd Enameled wiring board having high heat dissipating properties
JPH08274430A (en) * 1995-03-31 1996-10-18 Ube Ind Ltd Board for electric circuit
DE19833252C2 (en) * 1998-07-23 2002-01-31 Schott Glas Composite solder glass with a low melting temperature, a filler therefor, a process for its production and its use
JP4628877B2 (en) * 2005-06-07 2011-02-09 株式会社フジクラ Light-emitting element mounting enamel substrate, light-emitting element module, lighting device, display device, and traffic signal device
WO2012117978A1 (en) * 2011-02-28 2012-09-07 旭硝子株式会社 Airtight member and method for producing same
JP2013030662A (en) * 2011-07-29 2013-02-07 Nisshin Steel Co Ltd Insulating substrate for power semiconductor, method of manufacturing the same, and power semiconductor module

Also Published As

Publication number Publication date
JP2015141987A (en) 2015-08-03

Similar Documents

Publication Publication Date Title
US8044330B2 (en) Electrically conductive adhesive
JP5212298B2 (en) Power module substrate, power module substrate with cooler, power module, and method of manufacturing power module substrate
WO2013122126A1 (en) Solder joint structure, power module, heat-sink-attached substrate for power module, method for producing said substrate, and paste for forming solder underlayer
CN104696832B (en) Led street lamp
KR20130080418A (en) Heat dissipation plate, electronic device and battery
WO2014136615A1 (en) Heat-dissipating powder coating composition, heat-dissipating coating film, and coated article
JP2011023475A (en) Insulating substrate, insulating circuit board, semiconductor device, method of manufacturing the insulating substrate, and method of manufacturing the insulating circuit board
JP6211942B2 (en) Insulating heat dissipation substrate, and LED element and module using the insulating heat dissipation substrate
KR100865771B1 (en) Coating agent composition for heat sink
TWI593765B (en) Low firing temperature copper composition
JP5915233B2 (en) Solder joint structure, power module, power module substrate with heat sink, and manufacturing method thereof
TWI613843B (en) Heat dissipating substrate, device with heat dissipating substrate, and manufacturing method of heat dissipating substrate
CN106128548B (en) A kind of resistance slurry of high electric heating conversion ratio
KR20100073364A (en) Heat sink having high radiation ceramic coating layer, method of manufacturing the same and metal pcb
JP6345239B2 (en) Dielectric composition for aluminum substrate, electronic device, and manufacturing method thereof
JP6517103B2 (en) Heat dissipation substrate, device and method of manufacturing heat dissipation substrate
CN106133900B (en) Thermally conductive sheet and semiconductor device
JP2017028018A (en) Heat dissipation substrate, device and manufacturing method for heat dissipation substrate
JP2014179416A (en) Method of manufacturing heat dissipation substrate, heat dissipation substrate manufactured by that method
RU2384027C2 (en) Method of chip fabrication
JP2015086090A (en) Conductor paste and heat-dissipating substrate
JP2013030662A (en) Insulating substrate for power semiconductor, method of manufacturing the same, and power semiconductor module
JP6565673B2 (en) Circuit board manufacturing method, circuit board, and semiconductor device
JP2013125779A (en) Solder joint structure, power module, substrate for power module with radiation plate, and substrate for power module with cooler
JP5976577B2 (en) Heat sink for power device and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160901

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20170216

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170322

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170627

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170726

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170905

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170914

R150 Certificate of patent or registration of utility model

Ref document number: 6211942

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees