JP6766334B2 - Organosilicon compounds, thermosetting compositions containing the organosilicon compounds, and encapsulants for opto-semiconductors. - Google Patents

Organosilicon compounds, thermosetting compositions containing the organosilicon compounds, and encapsulants for opto-semiconductors. Download PDF

Info

Publication number
JP6766334B2
JP6766334B2 JP2015205742A JP2015205742A JP6766334B2 JP 6766334 B2 JP6766334 B2 JP 6766334B2 JP 2015205742 A JP2015205742 A JP 2015205742A JP 2015205742 A JP2015205742 A JP 2015205742A JP 6766334 B2 JP6766334 B2 JP 6766334B2
Authority
JP
Japan
Prior art keywords
formula
compound
thermosetting composition
phenyl
carbon atoms
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015205742A
Other languages
Japanese (ja)
Other versions
JP2017078103A5 (en
JP2017078103A (en
Inventor
清志 坂井
清志 坂井
孝志 松尾
孝志 松尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JNC Corp
Original Assignee
JNC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JNC Corp filed Critical JNC Corp
Priority to JP2015205742A priority Critical patent/JP6766334B2/en
Publication of JP2017078103A publication Critical patent/JP2017078103A/en
Publication of JP2017078103A5 publication Critical patent/JP2017078103A5/ja
Application granted granted Critical
Publication of JP6766334B2 publication Critical patent/JP6766334B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、有機ケイ素化合物、および該化合物を含む、光学材料、電気絶縁材料などの用途に有用な熱硬化性組成物、これを熱硬化させた硬化物、並びにこれを用いた光半導体用の封止材料に関する。 The present invention relates to an organosilicon compound, a thermosetting composition containing the compound, which is useful for applications such as an optical material and an electrically insulating material, a cured product obtained by thermosetting the compound, and an optical semiconductor using the same. Regarding sealing materials.

近年、発光ダイオード(LED)等の発光装置は、種々の表示板、画像読み取り用光源、交通信号、大型ディスプレイ用ユニット、携帯電話のバックライト等に実用化されている。これら発光装置は、芳香族エポキシ樹脂と硬化剤である脂環式酸無水物とを硬化させて得られた硬化性樹脂で封止されているのが一般的である。しかし、この芳香族エポキシ樹脂系では脂環式酸無水物が酸で変色しやすいことや、硬化するまでに長時間を要することが問題として知られている。また、発光装置が屋外に放置される場合や、紫外線を発生する光源に曝される場合に、封止した硬化性樹脂が黄変するという問題を有している。 In recent years, light emitting devices such as light emitting diodes (LEDs) have been put into practical use in various display boards, light sources for reading images, traffic signals, large display units, backlights of mobile phones, and the like. These light emitting devices are generally sealed with a curable resin obtained by curing an aromatic epoxy resin and an alicyclic acid anhydride which is a curing agent. However, in this aromatic epoxy resin system, it is known that the alicyclic acid anhydride is easily discolored by an acid and that it takes a long time to cure. Further, when the light emitting device is left outdoors or exposed to a light source that generates ultraviolet rays, there is a problem that the sealed curable resin turns yellow.

このような問題を解消するために、脂環式エポキシ樹脂またはアクリル樹脂と、カチオン重合開始剤とを用いた硬化性樹脂でLED等を封止する方法が試みられている(特許文献1および2を参照)。しかし、上記カチオン重合した硬化性樹脂は、非常に脆く、冷熱サイクル試験(ヒートサイクル試験ともいう。)により亀裂破壊を生じやすい欠点を有している。また、この硬化性樹脂は、従来の芳香族エポキシ樹脂と酸無水物とを用いる硬化性樹脂と比べて、硬化後の封止した硬化性樹脂の着色が著しいという欠点を有している。そのため、この硬化性樹脂は、無色透明性を要求される用途、特に耐熱性と透明性が要求されるLEDの封止用途には不向きである。 In order to solve such a problem, a method of sealing an LED or the like with a curable resin using an alicyclic epoxy resin or an acrylic resin and a cationic polymerization initiator has been attempted (Patent Documents 1 and 2). See). However, the cationically polymerized curable resin is very brittle and has a drawback that crack fracture is likely to occur in a cold heat cycle test (also referred to as a heat cycle test). Further, this curable resin has a drawback that the sealed curable resin after curing is significantly colored as compared with the conventional curable resin using an aromatic epoxy resin and an acid anhydride. Therefore, this curable resin is not suitable for applications requiring colorless transparency, particularly for LED encapsulation applications requiring heat resistance and transparency.

そこで、冷熱サイクル試験による亀裂破壊の発生が改良され、耐光性に優れたLED封止材用樹脂組成物が検討されている(特許文献3を参照)。ここに示された樹脂組成物は、水素化エポキシ樹脂や脂環式エポキシ樹脂をマトリックス成分とするものではあるが、未だ硬化後の着色が大きく更なる変色に対する改善が望まれている。 Therefore, a resin composition for an LED encapsulant, which has improved the occurrence of crack fracture by the thermal cycle test and has excellent light resistance, has been studied (see Patent Document 3). Although the resin composition shown here contains a hydrogenated epoxy resin or an alicyclic epoxy resin as a matrix component, the coloration after curing is still large, and improvement against further discoloration is desired.

一方、白色LEDが照明等の用途に用いられ、その大出力化に伴いLEDパッケージの発熱が無視できなくなっている。エポキシ樹脂を封止材料に用いた場合にはその発熱による黄変が避けられなくなったため、エポキシ樹脂に代わってシリコーン樹脂が白色LEDの封止材料に用いられてきている。LEDに用いられるシリコーン樹脂は大きく分けて、メチルシリコーン樹脂、フェニルシリコーン樹脂の2種類に分けられる。メチルシリコーン樹脂は、耐熱性・耐候性は非常に優れているものの、屈折率が低いためLEDの光取り出し効率が悪いという欠点がある。さらに硬化したメチルシリコーン樹脂は非常に脆く、冷熱サイクル試験により亀裂破壊を生じやすい、ガス透過性が高いという欠点がある。一方、フェニルシリコーン樹脂は、屈折率は満足するものである。ガス透過性についてはメチルシリコーン樹脂よりは優れている。冷熱サイクル試験についても同様であるが、LEDの大出力化に対応するには十分ではない。特にガス透過性と冷熱サイクル試験の特性は相反する関係を持つため、改善を行うのは困難であった。 On the other hand, white LEDs are used for lighting and the like, and the heat generation of the LED package cannot be ignored as the output increases. When an epoxy resin is used as a sealing material, yellowing due to its heat generation is unavoidable. Therefore, a silicone resin has been used as a sealing material for white LEDs instead of the epoxy resin. Silicone resins used for LEDs can be broadly divided into two types: methyl silicone resins and phenyl silicone resins. Although the methyl silicone resin is extremely excellent in heat resistance and weather resistance, it has a drawback that the light extraction efficiency of the LED is poor because of its low refractive index. Further, the cured methyl silicone resin has a drawback that it is very brittle, easily cracks are easily broken by a thermal cycle test, and has high gas permeability. On the other hand, the phenylsilicone resin has a satisfactory refractive index. It is superior to methyl silicone resin in gas permeability. The same applies to the thermal cycle test, but it is not sufficient to cope with the increase in LED output. In particular, it was difficult to improve because the gas permeability and the characteristics of the thermal cycle test have a contradictory relationship.

そのため、白色LEDの大出力化に対応できる、高屈折率、耐熱性等の性能を保持ちながら、ガス透過性および冷熱サイクル試験の特性を両立させた封止材料、およびそれに用いられる熱硬化性組成物が求められていた。 Therefore, a sealing material that has both gas permeability and cold cycle test characteristics while maintaining high refractive index, heat resistance, etc., which can cope with high output of white LEDs, and thermosetting used for it. The composition was sought after.

特開昭61−112334号公報、Japanese Unexamined Patent Publication No. 61-1234, 特開平02−289611号公報Japanese Patent Application Laid-Open No. 02-289611 特開2003−277473号公報Japanese Unexamined Patent Publication No. 2003-277473 特開2006−070049号公報Japanese Unexamined Patent Publication No. 2006-070049 国際公開2004/081084号International Publication No. 2004/081084 特開2004−331647号公報Japanese Unexamined Patent Publication No. 2004-331647 国際公開2003/24870号International Publication No. 2003/24870 国際公開2004/24741号International Publication No. 2004/24741

本発明は、ガス透過性の性能を維持しつつ、冷熱サイクル試験に対する良好な硬化物を得ることができる熱硬化性組成物を提供することを課題の一つとし、また、この熱硬化性組成物に含有させる有機ケイ素化合物、熱硬化性組成物からなる硬化物、成形体、および発光ダイオード用などの封止材料を提供することを課題の一つとする。 One of the problems of the present invention is to provide a thermosetting composition capable of obtaining a good cured product for a cold cycle test while maintaining the performance of gas permeability, and this thermosetting composition One of the problems is to provide a sealing material for an organosilicon compound to be contained in a product, a cured product made of a thermosetting composition, a molded product, and a light emitting diode.

本発明者は、上記課題を解決すべく鋭意検討を行った。その結果、ダブルデッカー型のケイ素化合物の構造を含み、該化合物と硬化剤とを含む熱硬化性組成物の硬化物が、ガス透過性の性能を維持しつつ、冷熱サイクル試験に優れることを見出し、本発明を完成するに至った。
即ち、本発明は下記の構成を有する。
The present inventor has made diligent studies to solve the above problems. As a result, it was found that the cured product of the thermosetting composition containing the structure of the double-decker type silicon compound and containing the compound and the curing agent is excellent in the thermal cycle test while maintaining the gas permeability performance. , The present invention has been completed.
That is, the present invention has the following configuration.

[1] 式(1)で表される有機ケイ素化合物。

Figure 0006766334

式(1)中、Rは独立して、炭素数1〜4のアルキル、シクロペンチル、シクロヘキシル、またはフェニルであり、Rは独立して、水素または式(2)で表される基であり、4つのRのうちの少なくとも1つは、式(2)で表される基である。

Figure 0006766334

式(2)中、Rは炭素数1〜20の炭化水素基であり、Rは独立して、炭素数1〜20のアルキル、フェニル、シクロペンチル、またはシクロヘキシルであり、Rは、炭素数1〜20のアルキルまたはフェニルであり、nは0〜1,000の整数である。 [1] An organosilicon compound represented by the formula (1).

Figure 0006766334

In formula (1), R 1 is independently an alkyl, cyclopentyl, cyclohexyl, or phenyl having 1 to 4 carbon atoms, and R 2 is independently a hydrogen or a group represented by the formula (2). at least one of the four R 2 is a group represented by the formula (2).

Figure 0006766334

In formula (2), R 3 is a hydrocarbon group having 1 to 20 carbon atoms, R 4 is independently an alkyl, phenyl, cyclopentyl, or cyclohexyl having 1 to 20 carbon atoms, and R 5 is carbon. The number 1 to 20 is alkyl or phenyl, where n is an integer from 0 to 1,000.

[2] 式(3)で表される化合物と、式(4)で表される化合物とを、ヒドロシリル化反応することで得られる有機ケイ素化合物の製造方法。

Figure 0006766334

式(3)中、Rは独立して、炭素数1〜4のアルキル、シクロペンチル、シクロヘキシル、またはフェニルである。

Figure 0006766334

式(4)中、
は独立して、炭素数1〜20のアルキル、フェニル、シクロペンチル、またはシクロヘキシルであり、Rは炭素数1〜20のアルキルまたはフェニルであり、Rは炭素数〜20の不飽和炭化水素基であり、nは0〜1,000の整数である。
[2] A method for producing an organosilicon compound obtained by hydrosilylating a compound represented by the formula (3) and a compound represented by the formula (4).

Figure 0006766334

In formula (3), R 1 is independently an alkyl, cyclopentyl, cyclohexyl, or phenyl having 1 to 4 carbon atoms.

Figure 0006766334

In equation (4),
R 4 is independently an alkyl, phenyl, cyclopentyl, or cyclohexyl with 1 to 20 carbon atoms, R 5 is an alkyl or phenyl with 1 to 20 carbon atoms, and R 6 is unsaturated with 2 to 20 carbon atoms. It is a hydrocarbon group, and n is an integer of 0 to 1,000.

[3] [1]に記載の有機ケイ素化合物または[2]に記載の製造方法により製造された有機ケイ素化合物(A)、と少なくとも2つのビニル基を有するケイ素化合物(B)、とを含有する熱硬化性組成物。 [3] The organosilicon compound according to [1] or the organosilicon compound (A) produced by the production method according to [2], and the silicon compound (B) having at least two vinyl groups are contained. Thermosetting composition.

[4] さらに、白金触媒(C)、を含有する[3]記載の熱硬化性組成物。 [4] The thermosetting composition according to [3], which further contains a platinum catalyst (C).

[5] さらに、末端に少なくとも2つのSiH基を有するケイ素化合物(D)、を含有する[3]または[4]に記載の熱硬化性組成物。 [5] The thermosetting composition according to [3] or [4], which further contains a silicon compound (D) having at least two SiH groups at the terminal.

[6] さらに、金属酸化物または蛍光体を分散させた、[3]〜[5]のいずれか1項に記載の熱硬化性組成物。 [6] The thermosetting composition according to any one of [3] to [5], wherein a metal oxide or a phosphor is further dispersed.

[7] [3]〜[6]のいずれか1項に記載の熱硬化性組成物を熱硬化させてなる硬化物。 [7] A cured product obtained by thermosetting the thermosetting composition according to any one of [3] to [6].

[8] [7]に記載の硬化物を成形して得られる成形体。 [8] A molded product obtained by molding the cured product according to [7].

[9] [3]〜[6]のいずれか1項に記載の熱硬化性組成物を塗布してなる塗膜。 [9] A coating film formed by applying the thermosetting composition according to any one of [3] to [6].

[10] [3]〜[6]のいずれか1項に記載の熱硬化性組成物からなる、光半導体用封止材。 [10] A sealing material for an optical semiconductor, which comprises the thermosetting composition according to any one of [3] to [6].

本発明の熱硬化性組成物を用いて得られた硬化物は、高透明、および高屈折率の特性を持ち合わせており、従来のフェニルシリコーン系封止材と比較して、耐熱性に優れ、さらに接着強さにも優れている。また、この硬化物はダブルデッカー型のシルセスキオキサンの骨格を有することから、絶縁性にも優れている。 The cured product obtained by using the thermosetting composition of the present invention has the characteristics of high transparency and high refractive index, and is excellent in heat resistance as compared with the conventional phenyl silicone-based sealing material. It also has excellent adhesive strength. In addition, since this cured product has a double-decker type silsesquioxane skeleton, it is also excellent in insulating properties.

図1は、合成例2で合成したSi4VのH−NMRスペクトルである。FIG. 1 is a 1 H-NMR spectrum of Si4V synthesized in Synthesis Example 2. 図2は、合成例2で合成したSi4Vの29Si−NMRスペクトルである。FIG. 2 is a 29 Si-NMR spectrum of Si4V synthesized in Synthesis Example 2. 図3は、実施例1で合成した化合物(1−1)の29Si−NMRスペクトルである。FIG. 3 is a 29 Si-NMR spectrum of the compound (1-1) synthesized in Example 1. 図4は、実施例2で合成した化合物(1−2)の29Si−NMRスペクトルである。FIG. 4 is a 29 Si-NMR spectrum of the compound (1-2) synthesized in Example 2. 図5は、実施例3で合成した化合物(1−3)の29Si−NMRスペクトルである。FIG. 5 is a 29 Si-NMR spectrum of the compound (1-3) synthesized in Example 3.

<本発明の有機ケイ素化合物>
本発明の有機ケイ素化合物は、式(1)で表される。

Figure 0006766334
<Organosilicon compound of the present invention>
The organosilicon compound of the present invention is represented by the formula (1).

Figure 0006766334

式(1)中、Rは独立して、炭素数1〜4のアルキル、シクロペンチル、シクロヘキシル、またはフェニルであり、Rは独立して、水素または式(2)で表される基であり、4つのRのうちの少なくとも1つは、式(2)で表される基である。

Figure 0006766334

は炭素数〜20までの炭化水素基であり、Rは独立して、炭素数1〜20のアルキル、フェニル、シクロペンチル、またはシクロヘキシルであり、Rは炭素数1〜20のアルキルまたはフェニルであり、nは0〜1,000の整数である。
In formula (1), R 1 is independently an alkyl, cyclopentyl, cyclohexyl, or phenyl having 1 to 4 carbon atoms, and R 2 is independently a hydrogen or a group represented by the formula (2). at least one of the four R 2 is a group represented by the formula (2).

Figure 0006766334

R 3 is a hydrocarbon group having 2 to 20 carbon atoms, R 4 is independently an alkyl having 1 to 20 carbon atoms, phenyl, cyclopentyl, or cyclohexyl, and R 5 is an alkyl having 1 to 20 carbon atoms. Alternatively, it is phenyl, where n is an integer from 0 to 1,000.

本発明の有機ケイ素化合物は、式(3)で表される化合物(シルセスキオキサン誘導体)と式(4)で表されるオルガノポリシロキサンとを、ヒドロシリル化反応することで得られる。

Figure 0006766334

式(3)中、Rは独立して、炭素数1〜4のアルキル、シクロペンチル、シクロヘキシル、またはフェニルである。

Figure 0006766334

式(4)中、Rは独立して、炭素数1〜20のアルキル、フェニル、シクロペンチル、またはシクロヘキシルであり、Rは炭素数1〜20のアルキルまたはフェニルら選択される基であり、Rは炭素数〜20の不飽和炭化水素基であり、nは0〜1,000の整数である。
The organosilicon compound of the present invention can be obtained by hydrosilylating a compound represented by the formula (3) (silsesquioxane derivative) and an organopolysiloxane represented by the formula (4).

Figure 0006766334

In formula (3), R 1 is independently an alkyl, cyclopentyl, cyclohexyl, or phenyl having 1 to 4 carbon atoms.

Figure 0006766334

In formula (4), R 4 is independently an alkyl, phenyl, cyclopentyl, or cyclohexyl having 1 to 20 carbon atoms, and R 5 is a group selected from alkyl or phenyl having 1 to 20 carbon atoms. R 6 is an unsaturated hydrocarbon group having 2 to 20 carbon atoms, and n is an integer of 0 to 1,000.

式(3)で表される化合物と式(4)で表される化合物とのヒドロシリル化反応は、公知の方法が使用でき、溶剤は必ずしも必要としない。使用する際は、反応の進行を阻害しないものであれば特に制限されない。好ましい溶剤は、ヘキサン、ヘプタンなどの炭化水素系溶剤、ベンゼン、トルエン、キシレンなどの芳香族炭化水素系溶剤、ジエチルエーテル、テトラハイドロフラン(THF)、ジオキサンなどのエーテル系溶剤、塩化メチレン、四塩化炭素などのハロゲン化炭化水素系溶剤、酢酸エチルなどのエステル系溶剤などである。これらの溶剤は単独で使用しても、その複数を組み合わせて使用してもよい。これらの溶剤の中でも、芳香族炭化水素系溶剤、その中でもトルエンが最も好ましい。 A known method can be used for the hydrosilylation reaction between the compound represented by the formula (3) and the compound represented by the formula (4), and a solvent is not always required. When used, it is not particularly limited as long as it does not inhibit the progress of the reaction. Preferred solvents are hydrocarbon solvents such as hexane and heptane, aromatic hydrocarbon solvents such as benzene, toluene and xylene, ether solvents such as diethyl ether, tetrahydrofuran (THF) and dioxane, methylene chloride and tetrachloride. These include halogenated hydrocarbon solvents such as carbon and ester solvents such as ethyl acetate. These solvents may be used alone or in combination of two or more. Among these solvents, aromatic hydrocarbon-based solvents, among which toluene is most preferable.

ヒドロシリル化反応は、室温、常圧で実施することができ、反応を促進させるために加熱してもよい。反応による発熱または好ましくない反応等を制御するために冷却してもよい。ヒドロシリル化反応では、必要に応じて触媒を用いることができる。ヒドロシリル化触媒を添加することによって、反応をより容易に進行させることができる。好ましいヒドロシリル化触媒の例は、カルステッド(Karsted’t)触媒、スパイヤー(Spier)触媒、ヘキサクロロプラチニック酸などであり、これらは一般的によく知られた触媒である。これらのヒドロシリル化触媒は、反応性が高いので、少量添加すれば十分に反応を進めることができる。その使用量は、触媒に含まれる遷移金属のヒドロシリル基に対する割合で、10−9〜1モル%である。好ましい添加割合は10−7〜10−3モル%である。 The hydrosilylation reaction can be carried out at room temperature and normal pressure and may be heated to accelerate the reaction. Cooling may be performed to control heat generation due to the reaction or an unfavorable reaction. A catalyst can be used in the hydrosilylation reaction if necessary. The reaction can proceed more easily by adding a hydrosilylation catalyst. Examples of preferred hydrosilylation catalysts are Karsted't catalysts, Spier catalysts, hexachloroplatinic acids and the like, which are generally well known catalysts. Since these hydrosilylation catalysts are highly reactive, the reaction can be sufficiently proceeded by adding a small amount. The amount used is 10-9 to 1 mol% as a ratio of the transition metal contained in the catalyst to the hydrosilyl group. The preferred addition ratio is 10-7 to 10-3 mol%.

本発明の有機ケイ素化合物の分子量は重量平均分子量(Mw)で1,000〜100,000であることが好ましい。 The molecular weight of the organosilicon compound of the present invention is preferably 1,000 to 100,000 in terms of weight average molecular weight (Mw).

また、本発明の有機ケイ素化合物は、該化合物を含有する熱硬化性組成物を調製して硬化させた硬化物が屈折率、透明性、耐熱性(耐熱黄変性、耐透明性)、および冷熱サイクル特性に優れており、従来使用されていたフェニルシリコーン樹脂やメチルシリコーン樹脂からなる硬化物の欠点が改善された、優れた硬化物の原料である。
LED等に用いる場合には、硬化物の屈折率は、1.4以上であれば特に問題なく利用でき、好ましくは、1.49以上であり、上限は特に制限されない。
Further, in the organic silicon compound of the present invention, a cured product obtained by preparing and curing a thermosetting composition containing the compound has a refractive index, transparency, heat resistance (heat-resistant yellowing, transparency resistance), and cold heat. It is an excellent raw material for a cured product that has excellent cycle characteristics and has improved the drawbacks of a cured product made of a conventionally used phenyl silicone resin or methyl silicone resin.
When used for LEDs and the like, the refractive index of the cured product can be used without any problem as long as it is 1.4 or more, preferably 1.49 or more, and the upper limit is not particularly limited.

式(3)で表される化合物であるシルセスキオキサン誘導体は、例えば国際公開2004/024741号に開示されている方法により合成することができる。式(3)で表される化合物の例(以下DD−4Hと表記する。)を示す。構造式中のMeはメチルである。

Figure 0006766334
The silsesquioxane derivative, which is a compound represented by the formula (3), can be synthesized, for example, by the method disclosed in International Publication No. 2004/024741. An example of the compound represented by the formula (3) (hereinafter referred to as DD-4H) is shown. Me in the structural formula is methyl.

Figure 0006766334

式(4)で表される不飽和炭化水素基を有するオルガノポリシロキサンは公知の方法により合成することができ、また市販の化合物を用いてもよい。
式(4)で表される化合物としては、例えば式(5)で表されるトリメチルビニルシランがある。また、式(6)で表される1−ブチル−1、1、3、3、5、5、7、7−7−ビニルテトラシロキサンなどが例示できる。構造式中のBuはブチルである。さらに、市販の化合物としてはGelest Inc.から入手可能な“MonoVinyl Terminated PolyDimethylsiloxanes”で分子量が5,500〜6,500、55,000〜65,000も例示できる。好ましくは、炭化水素基の末端に不飽和基を持つような化合物、さらに好ましくは、CH=CH−基やCH=CH−CH−基である。式(4)中のnは、0〜1,000の整数であり、0〜10であることが好ましい。

Figure 0006766334

Figure 0006766334
The organopolysiloxane having an unsaturated hydrocarbon group represented by the formula (4) can be synthesized by a known method, or a commercially available compound may be used.
Examples of the compound represented by the formula (4) include trimethylvinylsilane represented by the formula (5). Further, 1-butyl-1,1,3,3,5,5,7,7-7-vinyltetrasiloxane represented by the formula (6) can be exemplified. Bu in the structural formula is butyl. Further, as a commercially available compound, Gelest Inc. Examples of "MonoVinyl Terminated PolyDimethicyloxynes" available from, with molecular weights of 5,500 to 6,500 and 55,000 to 65,000. Preferably, compounds like having an unsaturated group in ends of the hydrocarbon group, more preferably, CH 2 = CH- group and CH 2 = CH-CH 2 - is a radical. N in the formula (4) is an integer of 0 to 1,000, and is preferably 0 to 10.

Figure 0006766334

Figure 0006766334

本発明の熱硬化性組成物は、式(1)で表される有機ケイ素化合物、または式(3)で表される化合物と式(4)で表される化合物とをヒドロシリル化反応することで得られる有機ケイ素化合物(A)、と1分子中に少なくとも2つのビニル基を有するケイ素化合物(B)、とを含有する。
熱硬化性組成物に、さらに硬化触媒(C)を加え、加熱することで、硬化物となる。また、この熱硬化性組成物に、末端に少なくとも2つSiH基を有するケイ素化合物(D)、をさらに含有することも好ましい態様である。
The thermocurable composition of the present invention hydrosilylates an organosilicon compound represented by the formula (1) or a compound represented by the formula (3) with a compound represented by the formula (4). It contains the obtained organosilicon compound (A) and the silicon compound (B) having at least two vinyl groups in one molecule.
A curing catalyst (C) is further added to the thermosetting composition and heated to obtain a cured product. It is also a preferred embodiment that the thermosetting composition further contains a silicon compound (D) having at least two SiH groups at the terminal.

少なくとも2つのビニル基を有するケイ素化合物(B)は、架橋用のビニル基を少なくとも2つ有するケイ素化合物であれば特に限定はされず、例えば両末端にビニル基を有する直鎖ポリシロキサンや末端に少なくとも2つのビニル基を有する分岐ポリシロキサンを用いることができる。具体的には、1,1,3,3−ジビニルテトラメチルジシロキサン、1,1,5,5−ジビニルヘキサメチルトリシロキサン、両末端にビニル基を有する直鎖状ポリシロキサン、T構造を持ち末端ビニル基を有する分岐ポリシロキサンなどが挙げられ、分子量が150〜10,000、好ましくは分子量が200〜5,000の化合物を用いることが好ましい。 The silicon compound (B) having at least two vinyl groups is not particularly limited as long as it is a silicon compound having at least two vinyl groups for cross-linking, for example, a linear polysiloxane having vinyl groups at both ends or a terminal. A branched polysiloxane having at least two vinyl groups can be used. Specifically, it has 1,1,3,3-divinyltetramethyldisiloxane, 1,1,5,5-divinylhexamethyltrisiloxane, a linear polysiloxane having vinyl groups at both ends, and a T structure. Examples thereof include branched polysiloxane having a terminal vinyl group, and it is preferable to use a compound having a molecular weight of 150 to 10,000, preferably 200 to 5,000.

少なくとも2つのビニル基を有するケイ素化合物(B)は、1種類でも、異なる2種類以上の化合物をブレンドして使用してもよい。 The silicon compound (B) having at least two vinyl groups may be used alone or in a blend of two or more different compounds.

また、末端に少なくとも2つのSiH基を有するケイ素化合物(D)は、架橋用のSiH基を少なくとも2つ有するケイ素化合物であれば特に限定はされず、例えば両末端にSiH基を有する直鎖ポリシロキサンや、側鎖にSiH基を有する直鎖ポリシロキサン、末端に少なくとも2つのSiH基を有する分岐ポリシロキサンや式(3)で表されるような化合物を用いることができる。具体的には、1,3,5,7−テトラメチルシクロテトラシロキサン、1,1,3,3,5,5−ヘキサメチルトリシロキサン、両末端にSiH基を持つ直鎖状ポリシロキサン、T構造を持ち末端SiH基を持つ分岐ポリシロキサンなどが挙げられ、分子量が150〜10,000、好ましくは分子量が200〜5,000の化合物を用いることが好ましい。末端に少なくとも2つのSiH基を有するケイ素化合物は、1種類でも、異なる2種類以上の化合物をブレンドして使用してもよい。 The silicon compound (D) having at least two SiH groups at the ends is not particularly limited as long as it is a silicon compound having at least two SiH groups for cross-linking. For example, a linear poly having SiH groups at both ends. A siloxane, a linear polysiloxane having a SiH group in the side chain, a branched polysiloxane having at least two SiH groups at the end, or a compound represented by the formula (3) can be used. Specifically, 1,3,5,7-tetramethylcyclotetrasiloxane, 1,1,3,3,5,5-hexamethyltrisiloxane, linear polysiloxane having SiH groups at both ends, T. Examples thereof include branched polysiloxane having a structure and a terminal SiH group, and it is preferable to use a compound having a molecular weight of 150 to 10,000, preferably 200 to 5,000. The silicon compound having at least two SiH groups at the terminal may be used alone or in a blend of two or more different compounds.

これらの分子量は、GPCで測定できる範囲の場合には、重量平均分子量であり、GPCで測定できない低分子量の場合には、化合物の構造から算出した分子量である。 These molecular weights are weight average molecular weights in the range that can be measured by GPC, and are molecular weights calculated from the structure of the compound in the case of low molecular weights that cannot be measured by GPC.

本発明の熱硬化性組成物中、化合物(A)の含有量は、耐熱性の観点から、化合物(A)、化合物(B)、および化合物(D)の全量に対し、0.1重量%以上であることが好ましく、1重量%以上であることがより好ましく、5重量%以上であることがより一層好ましい。また、化合物(B)の含有量は、化合物(A)、化合物(B)、および化合物(D)の全量に対し、1〜50重量%であることが好ましく、3〜30重量%であることがより好ましく、5〜15重量%であることがより一層好ましい。本発明の熱硬化性組成物中、SiH基合計とビニル基合計の含有比はSiH基とビニル基の官能基モル比で1:2〜2:1であることが好ましい。 The content of compound (A) in the thermosetting composition of the present invention is 0.1% by weight based on the total amount of compound (A), compound (B), and compound (D) from the viewpoint of heat resistance. The above is preferable, 1% by weight or more is more preferable, and 5% by weight or more is further preferable. The content of the compound (B) is preferably 1 to 50% by weight, preferably 3 to 30% by weight, based on the total amount of the compound (A), the compound (B), and the compound (D). Is more preferable, and 5 to 15% by weight is even more preferable. In the thermosetting composition of the present invention, the content ratio of the total SiH group and the total vinyl group is preferably 1: 2 to 2: 1 in terms of the molar ratio of functional groups of SiH group and vinyl group.

硬化触媒(C)は、通常、反応触媒として用いられる遷移金属触媒であれば特に限定されないが、白金触媒を用いることが好ましい。白金触媒の例としては、通常のヒドロシリル化触媒が選択できる。好ましいヒドロシリル化触媒の例は、カルステッド(Karsted’t)触媒、スパイヤー(Spier)触媒、ヘキサクロロプラチニック酸などである。 The curing catalyst (C) is not particularly limited as long as it is a transition metal catalyst usually used as a reaction catalyst, but it is preferable to use a platinum catalyst. As an example of the platinum catalyst, a conventional hydrosilylation catalyst can be selected. Examples of preferred hydrosilylation catalysts are Karsted't catalysts, Spier catalysts, hexachloroplatinic acids and the like.

その使用量は、触媒に含まれる遷移金属の、熱硬化性組成物に対する重量比で、0.1ppm〜10ppmである。添加割合が0.1ppm以上であれば、硬化が良好である。また添加割合が10ppm以下であれば、熱硬化性組成物調製後のポットライフが短くなりすぎることがなく、好適に使用でき、また得られる硬化物の着色も生じにくい。好ましい添加割合は0.5ppm〜4ppmである。 The amount of the transition metal contained in the catalyst is 0.1 ppm to 10 ppm in terms of weight ratio with respect to the thermosetting composition. When the addition ratio is 0.1 ppm or more, the curing is good. Further, when the addition ratio is 10 ppm or less, the pot life after preparing the thermosetting composition is not too short, the pot life can be preferably used, and the obtained cured product is less likely to be colored. The preferred addition ratio is 0.5 ppm to 4 ppm.

本発明の熱硬化性組成物は溶媒を必要としない。本発明の熱硬化性組成物は、溶媒の混入が好まれない用途に使用することができるため、用途が大幅に拡がる。 The thermosetting composition of the present invention does not require a solvent. Since the thermosetting composition of the present invention can be used in applications where mixing of solvents is not preferred, the applications are greatly expanded.

本発明の熱硬化性組成物には、さらに下記成分を配合してもよい。
(i) 粉末状の補強剤や充填剤、例えば、酸化アルミニウム、酸化マグネシウムなどの金属酸化物、微粉末シリカ、溶融シリカ、結晶シリカなどのケイ素化合物、ガラスビーズ等の透明フィラー、水酸化アルミニウムなどの金属水酸化物、その他、カオリン、マイカ、石英粉末、グラファイト、二硫化モリブデン等。これらは、好ましくは、本発明の熱硬化性組成物の透明性を損なわない範囲で配合される。これらを配合するときの好ましい割合は、本発明の熱硬化性組成物全量に対する重量比で、0.1〜0.6の範囲である。
The following components may be further added to the thermosetting composition of the present invention.
(I) Powdered reinforcing agents and fillers, for example, metal oxides such as aluminum oxide and magnesium oxide, silicon compounds such as fine powder silica, molten silica and crystalline silica, transparent fillers such as glass beads, aluminum hydroxide and the like. Metal hydroxides, other kaolin, mica, quartz powder, graphite, molybdenum disulfide, etc. These are preferably blended within a range that does not impair the transparency of the thermosetting composition of the present invention. The preferable ratio when these are blended is in the range of 0.1 to 0.6 as a weight ratio to the total amount of the thermosetting composition of the present invention.

(ii) 着色剤または顔料、例えば、二酸化チタン、モリブデン赤、紺青、群青、カドミウム黄、カドミウム赤および有機色素等。
(iii) 難燃剤、例えば、三酸化アンチモン、ブロム化合物およびリン化合物等。
(iv) イオン吸着体。
(ii)〜(iv)の成分を配合するときの好ましい割合は、熱硬化性組成物全量に対する重量比で0.0001〜0.30である。
(Ii) Colorants or pigments such as titanium dioxide, molybdenum red, dark blue, ultramarine, cadmium yellow, cadmium red and organic pigments.
(Iii) Flame retardants such as antimony trioxide, brom compounds and phosphorus compounds.
(Iv) Ion adsorbent.
The preferable ratio when the components (ii) to (iv) are blended is 0.0001 to 0.30 by weight with respect to the total amount of the thermosetting composition.

(v) シランカップリング剤。
(vi) ジルコニア、チタニア、アルミナ、シリカなどの金属酸化物のナノ粒子分散液。
(v)〜(vi)の成分を配合するときの好ましい割合は、熱硬化性組成物全量に対する重量比で0.01〜0.50である。
(V) Silane coupling agent.
(Vi) Nanoparticle dispersion of metal oxides such as zirconia, titania, alumina and silica.
The preferable ratio when the components (v) to (vi) are blended is 0.01 to 0.50 in terms of weight ratio to the total amount of the thermosetting composition.

(vii) フェノール系、硫黄系、リン系などの酸化防止剤。
硬化促進剤を使用するときの好ましい割合は、本発明の熱硬化性組成物全量に対する重量比で、0.0001〜0.1の範囲である。
(viii) 耐光性を向上させるための紫外線吸収剤。
紫外線吸収剤を使用するときの好ましい割合は、本発明の熱硬化性組成物全量に対する重量比で、0.0001〜0.1の範囲である。
(Vii) Phenolic, sulfur, phosphorus and other antioxidants.
The preferable ratio when the curing accelerator is used is in the range of 0.0001 to 0.1 as a weight ratio to the total amount of the thermosetting composition of the present invention.
(Viii) An ultraviolet absorber for improving light resistance.
The preferable ratio when the ultraviolet absorber is used is in the range of 0.0001 to 0.1 as a weight ratio to the total amount of the thermosetting composition of the present invention.

本発明の熱硬化性組成物は、例えば以下の方法で作製できる。
(A) 本発明の有機ケイ素化合物、
(B) 少なくとも両末端にビニル基を有するケイ素化合物、
(C) 硬化触媒、
さらには必要に応じて上記任意成分を攪拌し混合した後、減圧して脱泡する。そしてこの混合物を型に流し込み、100℃で1時間加熱し、最後に150℃で1〜2時間加熱することで硬化させることができる。
The thermosetting composition of the present invention can be produced, for example, by the following method.
(A) The organosilicon compound of the present invention,
(B) A silicon compound having at least vinyl groups at both ends,
(C) Curing catalyst,
Further, if necessary, the above optional components are stirred and mixed, and then the pressure is reduced to defoam. Then, this mixture is poured into a mold, heated at 100 ° C. for 1 hour, and finally heated at 150 ° C. for 1 to 2 hours to cure.

硬化物の耐熱性は、耐熱透明性と耐熱黄変性を評価する。耐熱透明性は、耐熱試験前後の硬化物の透過率を紫外可視分光光度計で測定し、その光線透過率の保持率により評価した。また、耐熱黄変性は、耐熱試験前後の硬化物の黄色度(YI値)の保持率により評価した。180℃での黄色度(YI値)および光線透過率の保持率が、それぞれ5以下、90%以上であることが好ましい。これらの範囲内にそれぞれの値が入る場合には、硬化物は、無色で透明性が高いことを示しており、透明性が要求されるような光半導体封止剤などの分野に特に好ましく利用できる。 The heat resistance of the cured product is evaluated for heat resistance transparency and heat resistance yellowing. The heat-resistant transparency was evaluated by measuring the transmittance of the cured product before and after the heat-resistant test with an ultraviolet-visible spectrophotometer and measuring the light transmittance retention rate. The heat-resistant yellowing was evaluated by the retention rate of the yellowness (YI value) of the cured product before and after the heat-resistant test. The retention rates of yellowness (YI value) and light transmittance at 180 ° C. are preferably 5 or less and 90% or more, respectively. When each value falls within these ranges, it indicates that the cured product is colorless and has high transparency, and is particularly preferably used in fields such as optical semiconductor encapsulants where transparency is required. it can.

本発明の熱硬化性組成物を熱硬化させてなる硬化物の、耐熱透明性に非常に良好な特性は、式(3)で表される化合物であるシルセスキオキサン誘導体の構造に起因している。すなわち、ダブルデッカー型シルセスキオキサン骨格は、その立体構造により、通常のランダム構造であるシルセスキオキサンに較べて耐熱透明性に優れた性質を与えているとともに、硬化物の加熱における着色を抑制する効果を与える。 The extremely good properties of the cured product obtained by thermosetting the thermosetting composition of the present invention in terms of heat resistance and transparency are due to the structure of the silsesquioxane derivative which is a compound represented by the formula (3). ing. That is, the double-decker type silsesquioxane skeleton has a property of being superior in heat resistance and transparency as compared with silsesquioxane, which is a normal random structure, due to its three-dimensional structure, and the cured product is colored by heating. Gives a suppressive effect.

本発明の熱硬化性組成物を熱硬化させてなる硬化物を成形し、成形体とすることで、様々な用途に用いることができる。上記組成物に金属酸化物または蛍光体を分散させることで発光機能を有し、LED組成物として用いることができる。また、用途としては、光半導体封止材、半導体封止材、絶縁膜、シール材、接着剤、光学レンズなどが挙げられる。 By molding a cured product obtained by thermosetting the thermosetting composition of the present invention into a molded product, it can be used for various purposes. By dispersing a metal oxide or a phosphor in the above composition, it has a light emitting function and can be used as an LED composition. In addition, examples of applications include optical semiconductor encapsulants, semiconductor encapsulants, insulating films, sealing materials, adhesives, optical lenses, and the like.

本発明を実施例に基づいてさらに詳細に説明する。なお、本発明は以下の実施例によって限定されない。 The present invention will be described in more detail based on examples. The present invention is not limited to the following examples.

[合成例1]
<シルセスキオキサン誘導体(DD−4H)の合成>
環流冷却器、温度計、及び滴下漏斗を取り付けた反応容器に、フェニルトリメトキシシラン(6,540g)、水酸化ナトリウム(880g)、イオン交換水(660g)、および2−プロパノール(26.3L)を仕込んだ。窒素気流下、撹拌しながら加熱(80℃)を開始した。還流開始から6時間撹拌し、室温(25℃)で1晩静置した。そして反応混合物を濾過器に移し、窒素ガスで加圧して濾過した。得られた固体を2−プロピルアルコールで1回洗浄、濾過した後、80℃で減圧乾燥を行ない、下式で表される無色固体(DD−ONa)(3,300g)を得た。

Figure 0006766334
[Synthesis Example 1]
<Synthesis of silsesquioxane derivative (DD-4H)>
Phenyltrimethoxysilane (6,540 g), sodium hydroxide (880 g), ion-exchanged water (660 g), and 2-propanol (26.3 L) in a reaction vessel equipped with a reflux condenser, thermometer, and dropping funnel. Was prepared. Heating (80 ° C.) was started with stirring under a nitrogen stream. The mixture was stirred for 6 hours from the start of reflux and allowed to stand overnight at room temperature (25 ° C.). Then, the reaction mixture was transferred to a filter, pressurized with nitrogen gas, and filtered. The obtained solid was washed once with 2-propyl alcohol, filtered, and then dried under reduced pressure at 80 ° C. to obtain a colorless solid (DD-ONa) (3,300 g) represented by the following formula.
Figure 0006766334

次に、環流冷却器、温度計、および滴下漏斗を取り付けた反応容器に、シクロペンチルメチルエーテル(2,005g)、2−プロパノール(243g)、イオン交換水(1,400g)、塩酸(461g)を仕込み、窒素雰囲気下、室温(25℃)で攪拌した。続いて滴下ロートに、上記得られた化合物(DD−ONa)(800g)、シクロペンチルメチルエーテル(2,003g)を仕込み、スラリー状にして30分かけて反応器に滴下し、滴下終了後30分間攪拌した。その後、静置して有機層と水層に分けた。得られた有機層は水洗により中性とした後、メンブレンフィルタにてゴミを取り除き、ロータリーエバポレーターを用いて60℃で減圧濃縮して、678gの無色固体を得た。この無色固体を酢酸メチル(980g)で洗浄し、減圧乾燥して下式で表される無色粉末状固体(DD−4OH)(496g)を得た。

Figure 0006766334
Next, cyclopentyl methyl ether (2,005 g), 2-propanol (243 g), ion-exchanged water (1,400 g), and hydrochloric acid (461 g) were placed in a reaction vessel equipped with a reflux condenser, a thermometer, and a dropping funnel. The mixture was charged and stirred at room temperature (25 ° C.) under a nitrogen atmosphere. Subsequently, the above-mentioned compound (DD-ONa) (800 g) and cyclopentyl methyl ether (2,003 g) were charged into the dropping funnel to form a slurry, which was added dropwise to the reactor over 30 minutes, and 30 minutes after the completion of the dropping. Stirred. Then, it was allowed to stand and separated into an organic layer and an aqueous layer. The obtained organic layer was made neutral by washing with water, dust was removed with a membrane filter, and concentrated under reduced pressure at 60 ° C. using a rotary evaporator to obtain 678 g of a colorless solid. This colorless solid was washed with methyl acetate (980 g) and dried under reduced pressure to obtain a colorless powder solid (DD-4OH) (496 g) represented by the following formula.

Figure 0006766334

次に、滴下漏斗、温度計、および還流冷却器を取り付けた反応器に、上記得られた化合物(DD−4OH)(7,160g)、トルエン(72,600g)、ジメチルクロロシラン(2,850g)を仕込み、乾燥窒素にてシールした。次いでトリエチルアミン(3,230g)を滴下漏斗から約20分間かけて滴下した。このときの、溶液温度は35℃〜40℃である。滴下終了後、1時間攪拌し、その後、イオン交換水(16,700gを)加え、過剰量のジメチルクロロシランを加水分解し、有機層と水層に分けた。有機層を水洗により中性とした後、ロータリーエバポレーターを用いて85℃で減圧濃縮を行い、得られた残渣をメタノール(19,950g)で洗浄し、8,588gの無色固体を得た。この無色固体を酢酸メチル(9,310g)で洗浄し、減圧乾燥して無色粉末状固体(7,339g)を得た。得られた無色粉末状固体は下記の分析結果から下記の構造(DD−4H)を有すると判断される。1H−NMR(溶剤:CDCl3):δ(ppm);0.16(d,24H)、4.84−4.89(m,4H)、7.05−7.50(m,40H).29Si−NMR(溶剤:CDCl3):δ(ppm);3.85(s,4Si)、−71.90(s,4Si)、−75.05(s,4Si).

Figure 0006766334
Next, the compound (DD-4OH) (7,160 g), toluene (72,600 g), dimethylchlorosilane (2,850 g) obtained above were placed in a reactor equipped with a dropping funnel, a thermometer, and a reflux condenser. Was charged and sealed with dry nitrogen. Triethylamine (3,230 g) was then added dropwise from the dropping funnel over about 20 minutes. At this time, the solution temperature is 35 ° C to 40 ° C. After completion of the dropping, the mixture was stirred for 1 hour, then ion-exchanged water (16,700 g) was added, and an excess amount of dimethylchlorosilane was hydrolyzed to separate an organic layer and an aqueous layer. After the organic layer was washed with water to neutralize it, it was concentrated under reduced pressure at 85 ° C. using a rotary evaporator, and the obtained residue was washed with methanol (19,950 g) to obtain 8,588 g of a colorless solid. This colorless solid was washed with methyl acetate (9,310 g) and dried under reduced pressure to obtain a colorless powder solid (7,339 g). The obtained colorless powder solid is judged to have the following structure (DD-4H) from the following analysis results. 1 1 H-NMR (solvent: CDCl 3 ): δ (ppm); 0.16 (d, 24H), 4.84-4.89 (m, 4H), 7.05-7.50 (m, 40H) .. 29 Si-NMR (solvent: CDCl 3 ): δ (ppm); 3.85 (s, 4Si), -71.90 (s, 4Si), -75.05 (s, 4Si).

Figure 0006766334

[合成例2]
<Si4Vの合成>
1Lの4つ口フラスコに磁気攪拌子、冷却管、温度計、滴下ロートを取り付け、ヘキサメチルシクロテトラシロキサンを89g、テトラヒドロフランを200g仕込んだ。温度を0℃に冷却し、滴下ロートにn−ブチルリチウムを174g仕込み、滴下した。1時間反応させた後、滴下ロートにビニルジメチルクロロシランを52g仕込み、滴下した。その後、室温で15時間反応させた。トルエン201gをフラスコ内に添加し、水101gを滴下ロートに仕込み、滴下した。内容液を分液ロートに移し、水を用いて有機層を5回洗浄した。回収した有機層を蒸留により精製することで、無色透明の液体を96g得た。図1のH−NMRと図2の29Si−NMR分析の結果から、構造(Si4V)を有すると同定された。

Figure 0006766334
[Synthesis Example 2]
<Synthesis of Si4V>
A magnetic stirrer, a cooling tube, a thermometer, and a dropping funnel were attached to a 1 L four-necked flask, and 89 g of hexamethylcyclotetrasiloxane and 200 g of tetrahydrofuran were charged. The temperature was cooled to 0 ° C., and 174 g of n-butyllithium was charged into the dropping funnel and dropped. After reacting for 1 hour, 52 g of vinyldimethylchlorosilane was charged into the dropping funnel and added dropwise. Then, it reacted at room temperature for 15 hours. 201 g of toluene was added into the flask, and 101 g of water was charged into the dropping funnel and dropped. The content was transferred to a separatory funnel and the organic layer was washed 5 times with water. The recovered organic layer was purified by distillation to obtain 96 g of a colorless and transparent liquid. From the results of 1 H-NMR in FIG. 1 and 29 Si-NMR analysis in FIG. 2, it was identified as having a structure (Si4V).

Figure 0006766334

[実施例1]
式(3)で表される化合物である、合成例1で合成したシルセスキオキサン誘導体(DD−4H)と、式(4)で表される化合物である、合成例2で合成した片末端にビニル基を有するSi4Vとを、モル数の比率で1:4となるように仕込み比率を調整し、下記のとおりヒドロシリル化反応により化合物(1−1)を合成した。
[Example 1]
The silsesquioxane derivative (DD-4H) synthesized in Synthesis Example 1, which is a compound represented by the formula (3), and the one-ended terminal synthesized in Synthesis Example 2, which is a compound represented by the formula (4). The compound (1-1) was synthesized by hydrosilylation reaction as described below by adjusting the charging ratio of Si4V having a vinyl group to 1: 4 in terms of the number of moles.

温度計、還流冷却器、および磁気撹拌子を備えた内容積100mLの反応容器にDD−4Hを5.2g、およびSi4Vを5.9g(DD−4Hの4倍モル)を仕込んだ。
窒素雰囲気下、加熱攪拌を開始した。内容物の温度が100℃に達した後、カルステッド触媒μLを加えて、そのまま5時間加熱攪拌を行った。その後、IR測定を行い、さらに1時間加熱撹拌を行った。Si−Hの構造に由来するピーク(2130cm−1)が変化しなくなったことを確認して反応を終了させた。エバポレーターにて180℃、0.1kPaの減圧条件下で未反応成分を留去し、透明液体を得た。
図3の29Si−NMR分析の結果から、式(1)中のRが4つとも式(2)で表される化合物で置換されている化合物(1−1)を得ることができた。

Figure 0006766334
A reaction vessel having an internal volume of 100 mL equipped with a thermometer, a reflux condenser, and a magnetic stir bar was charged with 5.2 g of DD-4H and 5.9 g of Si4V (4 times the mole of DD-4H).
Heating and stirring were started in a nitrogen atmosphere. After the temperature of the contents reached 100 ° C., 1 μL of the calstead catalyst was added, and the mixture was heated and stirred as it was for 5 hours. Then, IR measurement was carried out, and heating and stirring were further carried out for 1 hour. Peak derived from the structure of the Si-H (2130cm -1), the reaction was terminated sure that was Tsu kuna such changes. The unreacted component was distilled off under a reduced pressure condition of 180 ° C. and 0.1 kPa with an evaporator to obtain a transparent liquid.
The results of 29 Si-NMR analysis of FIG. 3, it was possible to obtain compounds wherein R 2 in the formula (1) is replaced by compounds represented by 4 together formula (2) (1-1) ..

Figure 0006766334

[実施例2〜3]
実施例1において、式(4)で表される化合物であるDD−4Hと、合成例2で製造した片末端にビニル基を有するオルガノポリシロキサン(Si4V)の仕込みモル比率を変更した以外は実施例1と同様に行い、化合物(1−2)、(1−3)を得た。表1にDD−4HとSi4Vの仕込み量および仕込み比率を示した。下記図4、図5の29Si−NMR分析の結果から、式(1)中のRが式(2)で表1中に記載されるような数で置換されている化合物(1−2、1−3)を得ることができた。
[Examples 2 to 3]
In Example 1, the molar ratios of DD-4H, which is a compound represented by the formula (4), and organopolysiloxane (Si4V) having a vinyl group at one end produced in Synthesis Example 2 were changed. The same procedure as in Example 1 was carried out to obtain compounds (1-2) and (1-3). Table 1 shows the charging amount and charging ratio of DD-4H and Si4V. Figure 4 below, the results of 29 Si-NMR analysis of FIG. 5, the formula (1) compound substituted by the number as described in the table 1 with R 2 has the formula (2) in (1-2 1-3) could be obtained.

表1

Figure 0006766334
Table 1
Figure 0006766334

[実施例4〜6]
実施例1および2において、Si4Vを片末端にビニル基を有し、分子量が6,000のオルガノポリシロキサン(製品名:MCR−V21、製造メーカー:Gelest Inc.)に変更し、溶剤としてトルエンを使用した以外は、実施例1および2と同様に行った。表2にDD−4H、MCR−V21、トルエンの仕込み量およびDD−4HとMCR−V21の仕込み比率を示した。その結果、実施例1および2記載の化合物と同様で、式(1)中のRが式(2)で表2に記載されるような数で置換されている化合物(2−1、2−2、2−3)を得ることができた。
[Examples 4 to 6]
In Examples 1 and 2, Si4V was changed to an organopolysiloxane having a vinyl group at one end and a molecular weight of 6,000 (product name: MCR-V21, manufacturer: Gelest Inc.), and toluene was used as the solvent. It was carried out in the same manner as in Examples 1 and 2 except that it was used. Table 2 shows the amount of DD-4H, MCR-V21 and toluene charged, and the ratio of DD-4H and MCR-V21 charged. As a result, the same as the compounds shown in Examples 1 and 2, R 2 in the formula (1) was replaced with the number shown in Table 2 in the formula (2) (2-1, 2). -2, 2-3) could be obtained.

表2

Figure 0006766334
Table 2
Figure 0006766334

[実施例7]
実施例1および2において、Si4Vの代わりにビニルペンタメチルジシロキサン(MV)(製造メーカー:Gelest Inc.)を使用した以外は、実施例1および2と同様に行った。表3にDD−4H、MV、トルエンの仕込み量およびDD−4HとMVの仕込み比率を示した。その結果、実施例1および2記載の化合物と同様で、式(1)中のRが式(2)で表3に記載されるような数で置換されている化合物(3)を得ることができた。
[Example 7]
Examples 1 and 2 were carried out in the same manner as in Examples 1 and 2 except that vinylpentamethyldisiloxane (MV) (manufacturer: Gelest Inc.) was used instead of Si4V. Table 3 shows the amount of DD-4H, MV, and toluene charged and the ratio of DD-4H and MV charged. As a result, a compound (3) in which R 2 in the formula (1) is replaced with a number as shown in Table 3 in the formula (2) is obtained in the same manner as the compounds shown in Examples 1 and 2. Was made.

表3

Figure 0006766334
Table 3
Figure 0006766334

[実施例8]
実施例1および2において、Si4Vの代わりにビニルフェニルジメチルシラン(VPDMS)(製造メーカー:Gelest Inc.)を使用した以外は、実施例1および2と同様に行った。表4に(DD−4H)、VPDMS、トルエンの仕込み量、およびDD−4HとVPDMSの仕込み比率を示した。その結果、実施例1および2記載の化合物と同様で、式(1)中のRが式(2)で表4に記載されるような数で置換されている化合物(4)を得ることができた。
[Example 8]
Examples 1 and 2 were carried out in the same manner as in Examples 1 and 2 except that vinyl phenyldimethylsilane (VPDMS) (manufacturer: Gelest Inc.) was used instead of Si4V. Table 4 shows the amount of (DD-4H), VPDMS, and toluene charged, and the ratio of DD-4H and VPDMS charged. As a result, a compound (4) in which R 2 in the formula (1) is replaced with a number as shown in Table 4 in the formula (2) is obtained in the same manner as the compounds shown in Examples 1 and 2. I was able to do it.

表4

Figure 0006766334
Table 4
Figure 0006766334

以下、熱硬化性組成物の調製、この組成物から得られる硬化物、および物性評価試験方法について説明する。 Hereinafter, preparation of a thermosetting composition, a cured product obtained from this composition, and a physical property evaluation test method will be described.

使用した主な材料は以下のとおりである。
有機ケイ素化合物:実施例で合成した化合物(1−1)〜(1−3)
PSQポリマー:特再公表WO2011/145638の実施例1に記載された方法で合成したPSQ誘導体
DVTS:1、5−ジビニル−1、1、3、3、5、5−ヘキサメチルトリシロキサン(Gelest社から入手)
ビニルシロキサン:分子鎖両末端にビニル基を有する、分子量750の直鎖状ジメチルポリシロキサン。(ViMeSiO1/21.5(MeSiO2/21.5。公知の方法で合成することができる。
接着付与剤:3−グリシドキシプロピルトリメトキシシラン(JNC株式会社性S510)
The main materials used are as follows.
Organosilicon compounds: Compounds (1-1) to (1-3) synthesized in Examples
PSQ Polymer: PSQ Derivative DVTS: 1,5-Divinyl-1, 1, 3, 3, 5, 5-Hexamethyltrisiloxane (Gelest) synthesized by the method described in Example 1 of WO2011 / 145638. Obtained from)
Vinylsiloxane: A linear dimethylpolysiloxane having a molecular weight of 750 and having vinyl groups at both ends of the molecular chain. (ViMe 2 SiO 1/2 ) 1.5 (Me 2 SiO 2/2 ) 1.5 . It can be synthesized by a known method.
Adhesive imparting agent: 3-glycidoxypropyltrimethoxysilane (JNC Corporation S510)

<熱硬化性組成物の調製>
スクリュー管に表5に示した通りの化合物を入れた。スクリュー管を自転・公転ミキサー(株式会社シンキー製 あわとり練太郎ARE−250)にセットし、混合・脱泡を行い、ワニスとした。白金触媒を白金が1ppmになるように加え、ふたたび自転・公転ミキサーにて混合・脱泡を行い、熱硬化性の組成物1〜3、および比較組成物1を得た。
表5に各組成物の配合比を示す。
<Preparation of thermosetting composition>
The compounds as shown in Table 5 were placed in the screw tube. The screw tube was set in a rotation / revolution mixer (Awatori Rentaro ARE-250 manufactured by Shinky Co., Ltd.), and mixed and defoamed to obtain a varnish. A platinum catalyst was added so that the amount of platinum was 1 ppm, and the mixture was mixed and defoamed again with a rotation / revolution mixer to obtain thermosetting compositions 1 to 3 and comparative composition 1.
Table 5 shows the compounding ratio of each composition.

<硬化物の作成>
ガラス2枚を、スペーサーとしてニチアス(株)製ナフロンSPパッキン(4mm径)で挟み、この中に上記熱硬化性組成物を流し込み、減圧脱泡後、80℃で1時間、120℃で1時間、150℃で2時間の順に加熱することにより硬化させ、ガラスをはがして4mm厚の表面が平滑な硬化物を得た。
なお、OE−6630(東レダウコーニングシリコーン製)をA液:B液=1:4の比率で混合し、比較組成物2を得て、同様に硬化させたものを比較硬化物2とした。
<Creation of cured product>
Two pieces of glass are sandwiched between Nichias Corporation's Naflon SP packing (4 mm diameter) as a spacer, and the thermosetting composition is poured therein. After defoaming under reduced pressure, 80 ° C. for 1 hour and 120 ° C. for 1 hour. The glass was cured by heating at 150 ° C. for 2 hours in that order, and the glass was peeled off to obtain a cured product having a thickness of 4 mm and a smooth surface.
OE-6630 (manufactured by Toray Dow Corning Silicone) was mixed at a ratio of solution A: solution B = 1: 4 to obtain a comparative composition 2, and the same cured product was used as the comparative cured product 2.

<硬化パッケージの作成>
エノモト(株)製リードフレーム5050 D/G PKGに、青色LEDチップ、金ワイヤーを実装したものに、上記熱硬化性組成物およびOE−6630を武蔵エンジニアリング(株)製ディスペンサーMEASURING MASTER MPP−1を用いて注入し、同様に硬化させ硬化パッケージとした。
<Creation of curing package>
Enomoto Co., Ltd. lead frame 5050 D / G PKG with a blue LED chip and gold wire mounted on it with the above thermosetting composition and OE-6630 with Musashi Engineering Co., Ltd. dispenser MEASURING MASTER MPP-1. It was injected using and cured in the same manner to obtain a cured package.

<光線透過率測定>
島津製作所(株)製紫外可視分光光度計 UV−1650にて透過率を測定した。また、400nm−800nmの透過率から全光線透過率を計算した。
硬化物の透明性は、目視により着色の有無で判断し、着色がない場合には、透明性がよいと判断した。
<Measurement of light transmittance>
The transmittance was measured with an ultraviolet-visible spectrophotometer UV-1650 manufactured by Shimadzu Corporation. Moreover, the total light transmittance was calculated from the transmittance of 400 nm-800 nm.
The transparency of the cured product was visually judged by the presence or absence of coloring, and when there was no coloring, it was judged that the transparency was good.

<屈折率>
試験片は厚さ4mmの硬化物をバンドソーにて切断し、JIS K7142に従って試験片を作製した。この試験片を用いて、アッベ屈折計((株)アタゴ製NAR−2T)によりナトリウムランプのD線(586nm)を用いて屈折率を測定した。中間液はヨウ化メチレンを用いた。
<Refractive index>
As the test piece, a cured product having a thickness of 4 mm was cut with a band saw to prepare a test piece according to JIS K7142. Using this test piece, the refractive index was measured using the D line (586 nm) of a sodium lamp with an Abbe refractometer (NAR-2T manufactured by Atago Co., Ltd.). Methylene iodide was used as the intermediate solution.

<硬度>
JIS K6253に従い、西東京精密(株)製デュロメータWR−105Dにより測定した。
<Hardness>
It was measured by a durometer WR-105D manufactured by Nishi Tokyo Precision Co., Ltd. according to JIS K6253.

<ガラス転移温度(Tg)>
厚さ0.9mmの硬化物フィルムを同様に加熱硬化して作成し、エスアイアイ・ナノテクノロジー(株)製熱機械的分析装置TMA/SS6100により測定した。
<Glass transition temperature (Tg)>
A cured product film having a thickness of 0.9 mm was similarly heat-cured to prepare a film, which was measured by a thermomechanical analyzer TMA / SS6100 manufactured by SII Nanotechnology Co., Ltd.

<耐熱試験>
耐熱試験は、以下の方法にて実施、評価した。
厚さ4mmの硬化物を2個作製し、得られた硬化物を180℃のオーブン(定温乾燥機:ヤマト科学(株)製DX302)に入れ、160時間加熱処理することにより実施した。160時間経過後、ほとんど着色が見られなかったものを○、着色が見られたものを×とした。
<Heat resistance test>
The heat resistance test was carried out and evaluated by the following method.
Two cured products having a thickness of 4 mm were prepared, and the obtained cured products were placed in an oven at 180 ° C. (constant temperature dryer: DX302 manufactured by Yamato Scientific Co., Ltd.) and heat-treated for 160 hours. After 160 hours, those with almost no coloring were marked with ◯, and those with almost no coloring were marked with x.

<冷熱サイクル試験>
冷熱サイクル試験は、上記方法により作成した硬化パッケージを、エスペック(株)製冷熱衝撃装置TSA−101S−Wのテストエリアに入れ、−40℃で30分間さらし、105℃で30分間さらしを1サイクルとして、100サイクル繰り返すことにより実施した。なお、両さらし温度の間の移動時間は5分間で実施した。100サイクル後、点灯試験を行い全数点灯したものを◎、半数以上点灯したものを○、半数以下点灯したものを△、すべて不灯になったものを×とした。
<Cold heat cycle test>
In the cold cycle test, the cured package prepared by the above method is placed in the test area of the cold shock device TSA-101S-W manufactured by ESPEC CORPORATION, exposed at -40 ° C for 30 minutes, and exposed at 105 ° C for 30 minutes for one cycle. As a result, it was carried out by repeating 100 cycles. The moving time between the two exposure temperatures was 5 minutes. After 100 cycles, a lighting test was conducted, and those that were all lit were marked with ⊚, those that were lit more than half were marked with ◯, those that were lit less than half were marked with Δ, and those that were all turned off were marked with x.

<耐硫黄試験>
耐硫黄試験は、上記方法により作成した硬化パッケージを、硫黄粉末5gを入れた450ml密閉容器に入れ、80℃で16時間置いた後に、硫黄による黒変の度合いを観察することにより実施した。変色が見られなかったものを◎、うすい灰色になったものを○、濃い灰色になったものを△、黒変したものを◎とした。
<Sulfur resistance test>
The sulfur resistance test was carried out by placing the cured package prepared by the above method in a 450 ml airtight container containing 5 g of sulfur powder, leaving it at 80 ° C. for 16 hours, and then observing the degree of blackening due to sulfur. Those that did not show discoloration were marked with ◎, those that turned light gray were marked with ○, those that turned dark gray were marked with △, and those that turned black were marked with ◎.

表6に、表5の各組成物1〜3、比較組成物1、およびOE−6630を硬化させて得られた硬化物1〜3、比較硬化物1〜2の各種物性評価試験の結果を示す。
硬化物1〜3は硬度が高く、耐熱性に優れ、優れた耐ガス透過性、耐冷熱サイクル性の特長を持つ硬化物であることが明らかとなった。
これは、本発明のダブルデッカー型シルセスキオキサン構造を持つ化合物を配合することにより、比較硬化物1の耐ガス透過性を維持しつつ、耐冷熱サイクル性を改善する効果を発揮することを示している。
Table 6 shows the results of various physical property evaluation tests of the cured products 1 to 3 and the comparative cured products 1 and 2 obtained by curing the compositions 1 to 3 and the comparative compositions 1 and OE-6630 of Table 5. Shown.
It has been clarified that the cured products 1 to 3 are cured products having high hardness, excellent heat resistance, excellent gas permeability resistance, and cold heat cycle resistance.
By blending the compound having the double-decker type silsesquioxane structure of the present invention, it is possible to exert the effect of improving the cold heat cycle resistance while maintaining the gas permeability of the comparative cured product 1. Shown.

表5

Figure 0006766334
Table 5
Figure 0006766334

表6

Figure 0006766334
Table 6
Figure 0006766334

このことから、本発明の熱硬化性組成物を用いて得られた硬化物は、透明性が良好で、1.49以上の高屈折率であるなどの良好な特性を持ち合わせており、従来のフェニルシリコーン系封止用材と比較して、耐ガス透過性を維持しつつも、冷熱サイクル試験の特性を改善できることが明らかとなった。 From this, the cured product obtained by using the thermosetting composition of the present invention has good transparency, high refractive index of 1.49 or more, and other good properties. It was clarified that the characteristics of the thermal cycle test can be improved while maintaining the gas permeability resistance as compared with the phenylsilicone-based sealing material.

本発明の硬化物からなる成形体は、半導体の封止材、光半導体の封止材、絶縁膜、シール材、光学レンズなどの用途に好適に用いることができる。また、接着剤、電子材料、絶縁材料、層間絶縁膜、塗料、インク、コーティング材料、成形材料、ポッティング材料、液晶シール材、表示デバイス用シール材、太陽電池封止材料、レジスト材料、カラーフィルター、電子ペーパー用材料、ホログラム用材料、太陽電池用材料、燃料電池用材料、記録材料、防水材料、防湿材料、電池用固体電解質、ガス分離膜に用いることができる。また、他の樹脂への添加剤等に用いることができる。 The molded product made of the cured product of the present invention can be suitably used for applications such as semiconductor encapsulants, opto-semiconductor encapsulants, insulating films, sealing materials, and optical lenses. In addition, adhesives, electronic materials, insulating materials, interlayer insulating films, paints, inks, coating materials, molding materials, potting materials, liquid crystal sealing materials, sealing materials for display devices, solar cell sealing materials, resist materials, color filters, etc. It can be used as a material for electronic paper, a material for holograms, a material for solar cells, a material for fuel cells, a recording material, a waterproof material, a moisture-proof material, a solid electrolyte for batteries, and a gas separation membrane. Further, it can be used as an additive to other resins.

Claims (10)

式(1)で表される有機ケイ素化合物。

Figure 0006766334

式(1)中、Rは独立して、炭素数1〜4のアルキル、シクロペンチル、シクロヘキシル、またはフェニルであり、Rは独立して、水素または式(2)で表される基であり、4つのRのうちの少なくとも1つは式(2)で表される基である。

Figure 0006766334

式(2)中、Rは炭素数2〜20の炭化水素基であり、Rは独立して、炭素数1〜20のアルキル、フェニル、シクロペンチル、またはシクロヘキシルであり、Rは、炭素数1〜20のアルキルまたはフェニルであり、nは0〜1,000の整数である
An organosilicon compound represented by the formula (1).

Figure 0006766334

In formula (1), R 1 is independently an alkyl, cyclopentyl, cyclohexyl, or phenyl having 1 to 4 carbon atoms, and R 2 is independently a hydrogen or a group represented by the formula (2). at least one of the four R 2 is a group represented by the formula (2).

Figure 0006766334

In formula (2), R 3 is a hydrocarbon group having 2 to 20 carbon atoms, R 4 is independently an alkyl, phenyl, cyclopentyl, or cyclohexyl having 1 to 20 carbon atoms, and R 5 is carbon. The number 1 to 20 is alkyl or phenyl, where n is an integer from 0 to 1,000 .
式(3)で表される化合物と、式(4)で表される化合物とを、ヒドロシリル化反応することで得られる有機ケイ素化合物の製造方法。

Figure 0006766334

式(3)中、Rは独立して、炭素数1〜4のアルキル、シクロペンチル、シクロヘキシル、またはフェニルである。

Figure 0006766334

式(4)中、Rは独立して、炭素数1〜20のアルキル、フェニル、シクロペンチル、またはシクロヘキシルであり、Rは炭素数1〜20のアルキルまたはフェニルであり、Rは炭素数2〜20の不飽和炭化水素基であり、nは0〜1,000の整数である
A method for producing an organosilicon compound obtained by hydrosilylating a compound represented by the formula (3) and a compound represented by the formula (4).

Figure 0006766334

In formula (3), R 1 is independently an alkyl, cyclopentyl, cyclohexyl, or phenyl having 1 to 4 carbon atoms.

Figure 0006766334

In formula (4), R 4 is independently an alkyl, phenyl, cyclopentyl, or cyclohexyl having 1 to 20 carbon atoms, R 5 is an alkyl or phenyl having 1 to 20 carbon atoms, and R 6 is an alkyl or phenyl group having 1 to 20 carbon atoms. It is an unsaturated hydrocarbon group of 2 to 20, and n is an integer of 0 to 1,000 .
請求項1に記載の有機ケイ素化合物または請求項2に記載の製造方法により製造された有機ケイ素化合物(A)、と少なくとも2つのビニル基を有するケイ素化合物(B)、とを含有する熱硬化性組成物。 Thermosetting containing the organosilicon compound according to claim 1 or the organosilicon compound (A) produced by the production method according to claim 2, and the silicon compound (B) having at least two vinyl groups. Composition. さらに、硬化触媒(C)、を含有する請求項3に記載の熱硬化性組成物。 The thermosetting composition according to claim 3, further comprising a curing catalyst (C). さらに、末端に少なくとも2つのSiH基を有するケイ素化合物(D)、を含有する請求項3または4に記載の熱硬化性組成物。 The thermosetting composition according to claim 3 or 4, further comprising a silicon compound (D) having at least two SiH groups at the ends. さらに、金属酸化物または蛍光体を分散させた、請求項3〜5のいずれか1項に記載の熱硬化性組成物。 The thermosetting composition according to any one of claims 3 to 5, further comprising a metal oxide or a phosphor dispersed therein. 請求項3〜6のいずれか1項に記載の熱硬化性組成物を熱硬化させてなる硬化物。 A cured product obtained by thermosetting the thermosetting composition according to any one of claims 3 to 6. 請求項7に記載の硬化物を成形して得られる成形体。 A molded product obtained by molding the cured product according to claim 7. 請求項3〜6のいずれか1項に記載の熱硬化性組成物を塗布してなる塗膜。 A coating film formed by applying the thermosetting composition according to any one of claims 3 to 6. 請求項3〜6のいずれか1項に記載の熱硬化性組成物からなる光半導体用封止材。 An encapsulant for an optical semiconductor comprising the thermosetting composition according to any one of claims 3 to 6.
JP2015205742A 2015-10-19 2015-10-19 Organosilicon compounds, thermosetting compositions containing the organosilicon compounds, and encapsulants for opto-semiconductors. Active JP6766334B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015205742A JP6766334B2 (en) 2015-10-19 2015-10-19 Organosilicon compounds, thermosetting compositions containing the organosilicon compounds, and encapsulants for opto-semiconductors.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015205742A JP6766334B2 (en) 2015-10-19 2015-10-19 Organosilicon compounds, thermosetting compositions containing the organosilicon compounds, and encapsulants for opto-semiconductors.

Publications (3)

Publication Number Publication Date
JP2017078103A JP2017078103A (en) 2017-04-27
JP2017078103A5 JP2017078103A5 (en) 2018-09-27
JP6766334B2 true JP6766334B2 (en) 2020-10-14

Family

ID=58666070

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015205742A Active JP6766334B2 (en) 2015-10-19 2015-10-19 Organosilicon compounds, thermosetting compositions containing the organosilicon compounds, and encapsulants for opto-semiconductors.

Country Status (1)

Country Link
JP (1) JP6766334B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022239271A1 (en) * 2021-05-14 2022-11-17 Jnc株式会社 Thermosetting resin composition, organosilicon compound, molded body, and optical semiconductor device

Also Published As

Publication number Publication date
JP2017078103A (en) 2017-04-27

Similar Documents

Publication Publication Date Title
JP5704168B2 (en) Novel organosilicon compound, thermosetting resin composition containing the organosilicon compound, cured resin, and sealing material for optical semiconductor
JP5793824B2 (en) Organosilicon compound, thermosetting composition containing the organosilicon compound, and sealing material for optical semiconductor
JP5784618B2 (en) Modified polyhedral polysiloxane, polyhedral polysiloxane composition, cured product, and optical semiconductor device
KR20130094715A (en) Polysiloxane composition, hardened material and optical device
JP5643009B2 (en) Optical device using organopolysiloxane composition
US9115243B2 (en) Organosilicon compound, thermosetting resin composition containing the organosilicon compound, hardening resin and encapsulation material for optical semiconductor
JP2012162666A (en) Polysiloxane-based composition of polyhedral structure
WO2015118594A1 (en) Curable composition, semiconductor device, and ester-bond-containing organic silicon compound
JP6766334B2 (en) Organosilicon compounds, thermosetting compositions containing the organosilicon compounds, and encapsulants for opto-semiconductors.
JP2013209565A (en) Polysiloxane-based composition containing modified polyhedral-structure polysiloxane, and cured product obtained by curing the composition
JP6161252B2 (en) Modified polyorganosiloxane, composition containing the modified product, and cured product obtained by curing the composition
JP5616147B2 (en) Organopolysiloxane composition and optical device using the same.
JP5620151B2 (en) Optical device
JP5710998B2 (en) Modified polyhedral polysiloxane, composition containing the modified product, and cured product obtained by curing the composition
JP5912352B2 (en) Modified polyhedral polysiloxane, composition containing the modified product, and cured product obtained by curing the composition
JP5819089B2 (en) Modified polyhedral polysiloxane, composition containing the modified product, and cured product obtained by curing the composition
JP2013194184A (en) Polysiloxane variant having polyhedral structure, method for producing the variant, composition including the variant and cured material obtained by curing the composition
JP6075939B2 (en) Polysiloxane composition
JP2012224744A (en) Polysiloxane modified compound with polyhedral structure, composition containing the same, cured product, and optical device using the composition
JP2016204559A (en) Novel organosilicon compound, thermosetting resin composition comprising the organosilicon compound and cured product of the same
JP2013079337A (en) Polyhedron-structured modified polysiloxane, composition containing the same, and cured material obtained by curing the composition

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180816

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180816

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190412

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190423

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190515

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191001

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200407

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200428

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200818

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200831

R150 Certificate of patent or registration of utility model

Ref document number: 6766334

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150