JP6765268B2 - Rechargeable battery - Google Patents

Rechargeable battery Download PDF

Info

Publication number
JP6765268B2
JP6765268B2 JP2016192513A JP2016192513A JP6765268B2 JP 6765268 B2 JP6765268 B2 JP 6765268B2 JP 2016192513 A JP2016192513 A JP 2016192513A JP 2016192513 A JP2016192513 A JP 2016192513A JP 6765268 B2 JP6765268 B2 JP 6765268B2
Authority
JP
Japan
Prior art keywords
electrode
negative electrode
mixture layer
insulating layer
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016192513A
Other languages
Japanese (ja)
Other versions
JP2018056022A (en
Inventor
博行 戸城
博行 戸城
有島 康夫
康夫 有島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vehicle Energy Japan Inc
Original Assignee
Vehicle Energy Japan Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vehicle Energy Japan Inc filed Critical Vehicle Energy Japan Inc
Priority to JP2016192513A priority Critical patent/JP6765268B2/en
Publication of JP2018056022A publication Critical patent/JP2018056022A/en
Application granted granted Critical
Publication of JP6765268B2 publication Critical patent/JP6765268B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

本発明は、二次電池及び電極の製造方法に関し、特に電気自動車やハイブリッド型電気自動車等の動力用電源に用いる二次電池に関する。 The present invention relates to a method for manufacturing a secondary battery and an electrode, and more particularly to a secondary battery used as a power source for power of an electric vehicle, a hybrid electric vehicle, or the like.

近年、ハイブリッド型の電気自動車や純粋な電気自動車等の動力源として大容量(Wh)の二次電池が開発されており、その中でもエネルギー密度(Wh/kg)の高い非水溶液系のリチウムイオン二次電池が注目されている。また、排気ガスを抑制し環境性能を重視する観点からも、自動車には電動化による走行が指向されており、大容量の電池が求められている。また、電気モーターを駆動する電源として用いられる電池には大電流を出力できるような特性が求められている。 In recent years, large-capacity (Wh) secondary batteries have been developed as power sources for hybrid electric vehicles and pure electric vehicles. Among them, non-aqueous lithium-ion batteries with high energy density (Wh / kg) have been developed. The next battery is drawing attention. In addition, from the viewpoint of suppressing exhaust gas and emphasizing environmental performance, automobiles are oriented toward running by electrification, and a large capacity battery is required. Further, a battery used as a power source for driving an electric motor is required to have characteristics capable of outputting a large current.

角形リチウムイオン二次電池の電池容器内には、一般に、扁平な捲回電極群が収容されている。捲回電極群は、捲回されてロール状に積層された正極電極と負極電極とそれらを電気的に絶縁するためのセパレータから構成されている。正極、負極電極が備えるそれぞれの帯状の金属箔の表面には、リチウムイオンを挿入・脱離可能な活物質合剤が塗布されて合剤層が形成されている。捲回電極群は、これらの正極、負極電極を、それぞれセパレータを介して重ねた状態で、軸周りに捲回して扁平に成形することで設けられている。 A group of flat wound electrodes is generally housed in a battery container of a square lithium ion secondary battery. The wound electrode group is composed of a positive electrode and a negative electrode which are wound and laminated in a roll shape, and a separator for electrically insulating them. An active material mixture capable of inserting and removing lithium ions is applied to the surfaces of the strip-shaped metal foils of the positive electrode and the negative electrode to form a mixture layer. The wound electrode group is provided by winding these positive electrode and negative electrode electrodes around an axis in a state of being overlapped with each other via a separator and forming them flat.

扁平に成形された捲回電極群は金属缶などの容器に収納される。例えば特許文献1には高容量化を指向するうえで厚みを薄膜化したセパレータを使用しても電極間での短絡を防止するため、電極表面に多孔性絶縁層を有する電極を形成して耐短絡性を向上させることが開示されている。 The flatly formed winding electrode group is housed in a container such as a metal can. For example, in Patent Document 1, in order to prevent a short circuit between electrodes even if a separator having a thin thickness is used in order to increase the capacity, an electrode having a porous insulating layer is formed on the electrode surface to withstand resistance. It is disclosed to improve the short circuit property.

特開2008-226566号公報Japanese Unexamined Patent Publication No. 2008-226566

角形金属缶などの容器に捲回電極群を収納する二次電池の作製工程では、リチウムイオンを挿入・脱離可能な活物質を含む合剤をスラリー化し、塗布などによって帯状の金属箔の表面に合剤層を形成した、正極および負極の電極を製造する。そして、それらを電気的に絶縁し、かつリチウムイオンおよび電解液が通過することのできる微多孔性樹脂フィルムセパレータを介して扁平状に捲回することにより捲回電極群が形成される。その後、缶に収納される捲回電極群は、外部と電気接続される集電板が捲回電極群に溶接などの方法で接合されて電流を通すことができるように電気的に接続されていることが必要である。 In the process of manufacturing a secondary battery in which a group of wound electrodes is stored in a container such as a square metal can, a mixture containing an active material capable of inserting and removing lithium ions is slurried and applied to the surface of a band-shaped metal foil. The positive electrode and the negative electrode having the mixture layer formed in the above are manufactured. Then, the wound electrode group is formed by electrically insulating them and winding them flatly through a microporous resin film separator through which lithium ions and an electrolytic solution can pass. After that, the winding electrode group housed in the can is electrically connected so that the current collector plate electrically connected to the outside is joined to the winding electrode group by a method such as welding to allow current to pass through. It is necessary to be there.

正極、負極集電板は、絶縁材を介して電池容器の電池蓋の内側に固定され、電池蓋の外側に設けられた正極、負極外部端子と電気的に接続されている。電池蓋に集電板を介して固定された捲回電極群は、電池容器の電池缶の上部開口から電池缶内に収容され、電池蓋が電池缶の上部開口に封止溶接されることで、電池容器内に収容される。電池容器は、電池蓋に設けられた注液口から内部に電解液を注入した後、注液口に注液栓を封止溶接することで密閉される。 The positive electrode and negative electrode current collector plates are fixed to the inside of the battery lid of the battery container via an insulating material, and are electrically connected to the positive electrode and negative electrode external terminals provided on the outside of the battery lid. The winding electrode group fixed to the battery lid via the current collector plate is housed in the battery can through the upper opening of the battery can of the battery container, and the battery lid is sealed and welded to the upper opening of the battery can. , Housed in a battery container. The battery container is sealed by injecting an electrolytic solution into the inside through a liquid injection port provided on the battery lid and then sealing and welding a liquid injection plug to the liquid injection port.

しかしながら、大容量化するために缶内に備える電極の内容積を増大させることが必要である。即ち、合剤層を厚く形成したり、電極面積を広くするために電極長を伸ばして捲回電極群の巻き数を増やしたりする。また、高出力化に対応するためには同様に電極長を伸ばすか電極幅を広げたりして電極面積を広くすることが有効である。さらには、外部へ大電流を取り出すために溶接箇所の接合面積を増やしたり集電体を厚くしたりする必要があり、電池缶内部には捲回電極群以外の必要部品も備えている。 However, in order to increase the capacity, it is necessary to increase the internal volume of the electrodes provided in the can. That is, the mixture layer is formed thick, or the electrode length is extended to increase the number of turns of the wound electrode group in order to increase the electrode area. Further, in order to cope with high output, it is also effective to increase the electrode area by extending the electrode length or widening the electrode width. Furthermore, it is necessary to increase the joint area of the welded portion and thicken the current collector in order to take out a large current to the outside, and the battery can is provided with necessary parts other than the wound electrode group.

本発明に関する二次電池は、それぞれ電極箔上に配置された合剤層と、当該合剤層上に設けられた絶縁層とを有する正極電極及び負極電極を備えた二次電池において、前記正極電極及び前記負極電極の一端には、それぞれ前記合剤層から前記電極箔が露出した露出部が設けられ、前記正極電極及び前記負極電極の他端には、それぞれ前記電極箔の端部に向かうにつれて前記合剤層の厚みが減少する傾斜部が設けられ、前記傾斜部を含む各前記合剤層上にはそれぞれ前記絶縁層が配置され、前記正極電極及び前記負極電極から構成される電極捲回群の前記正極電極及び前記負極電極間に介在するセパレータは、前記絶縁層の厚みよりも薄い膜厚に形成されたことを特徴とする。
The secondary battery according to the present invention is a secondary battery provided with a positive electrode and a negative electrode having a mixture layer arranged on the electrode foil and an insulating layer provided on the mixture layer, respectively. An exposed portion is provided at one end of the electrode and the negative electrode electrode so that the electrode foil is exposed from the mixture layer, and the other ends of the positive electrode electrode and the negative electrode electrode are directed toward the end of the electrode foil, respectively. As the thickness of the mixture layer decreases, an inclined portion is provided, and the insulating layer is arranged on each of the mixture layers including the inclined portion, and the electrode winding composed of the positive electrode and the negative electrode. The separator interposed between the positive electrode and the negative electrode of the group is formed to have a thickness thinner than the thickness of the insulating layer.

特許文献1には、電極表面上に絶縁層を設けて電極間の短絡の保護する点について記載されている。一方で、電極加工時に生じる切断端部の保護についてまでは記載が無い。 Patent Document 1 describes a point of providing an insulating layer on the surface of electrodes to protect short circuits between electrodes. On the other hand, there is no description about the protection of the cut end portion that occurs during electrode processing.

本発明は、上記の点に鑑みてなされたものであり、露出しやすくなる電極切断端部についても絶縁層を効率よく形成することができ、より絶縁信頼性を向上させた電池を提供することを課題とする。 The present invention has been made in view of the above points, and provides a battery in which an insulating layer can be efficiently formed even at an electrode cut end portion that is easily exposed, and the insulation reliability is further improved. Is the subject.

本発明に関する二次電池は、電極箔上に配置された合剤層と、合剤層上に設けられた絶縁層を有する電極を備え、電極の一端には活物質から電極集電箔が露出した露出部を有し、電極の他端には電極箔の端部に向かうにつれて合剤層の厚みが減少する傾斜部を有し、傾斜部上には絶縁層が配置されることを特徴とする。 The secondary battery according to the present invention includes an electrode having a mixture layer arranged on the electrode foil and an insulating layer provided on the mixture layer, and the electrode current collecting foil is exposed from the active material at one end of the electrode. It is characterized in that it has an exposed portion, and the other end of the electrode has an inclined portion in which the thickness of the mixture layer decreases toward the end of the electrode foil, and an insulating layer is arranged on the inclined portion. To do.

本発明を用いることによって、絶縁信頼性を向上させた二次電池を提供することが可能となる。 By using the present invention, it is possible to provide a secondary battery having improved insulation reliability.

本発明によれば、露出しやすくなる電極切断端部についても絶縁層を効率よく形成することができ、より絶縁信頼性を向上させた電池を提供することが可能となる。 According to the present invention, an insulating layer can be efficiently formed even at an electrode cut end portion that is easily exposed, and it is possible to provide a battery with further improved insulation reliability.

本発明の二次電池の実施形態1に係る角形二次電池の外観斜視図。The external perspective view of the square secondary battery which concerns on Embodiment 1 of the secondary battery of this invention. 図1に示す角形二次電池の分解斜視図。An exploded perspective view of the square secondary battery shown in FIG. 図2に示す角形二次電池の電極捲回群の分解斜視図。It is an exploded perspective view of the electrode winding group of the square secondary battery shown in FIG. 図3に示す電極捲回群を構成する電極対向部を示す断面摸式図。FIG. 3 is a cross-sectional model diagram showing an electrode facing portion constituting the electrode winding group shown in FIG. 実施形態1を示す電極断面摸式図および電極表面外観図。An electrode cross-sectional schematic diagram and an electrode surface external view showing the first embodiment. 実施形態2を示す電極断面摸式図および電極表面外観図。An electrode cross-sectional schematic diagram and an electrode surface external view showing the second embodiment.

以下、図面を参照して本発明の二次電池の実施の形態について説明する。 Hereinafter, embodiments of the secondary battery of the present invention will be described with reference to the drawings.

[実施形態1]
図1は、本実施形態の角形二次電池100の外観斜視図である。電池缶11は、一対の幅広面11b、一対の幅狭面11c、及び底面11dを備える。上面部には開口を有しており、電極群40を収納する。電池缶11の上面部は電池蓋12により覆われている。また、この電池蓋12には負極が外部端子21、正極外部端子22、注液孔14を塞ぐ注液栓15、及びガス排出弁13が設けられている。
[Embodiment 1]
FIG. 1 is an external perspective view of the square secondary battery 100 of the present embodiment. The battery can 11 includes a pair of wide surfaces 11b, a pair of narrow surfaces 11c, and a bottom surface 11d. The upper surface portion has an opening for accommodating the electrode group 40. The upper surface of the battery can 11 is covered with the battery lid 12. Further, the battery lid 12 is provided with an external terminal 21, a positive electrode external terminal 22, a liquid injection plug 15 for closing the liquid injection hole 14, and a gas discharge valve 13.

続いて図2について説明する。図2は、図1に示す角形二次電池100から電池缶11を取り外し、正負の電極を捲回した扁平な電極群40と、該電極群40を収容する扁平角形の電池缶11と、該電池缶11の開口部11aを封止する電池蓋12と、該電池蓋12に固定されて電池缶11に収容される絶縁部材3とを備えた二次電池の分解状態を示す分解斜視図である。負極外部端子21は、絶縁部材2を介して電池蓋12上に配置され、電池缶11の内部で負極集電板31と接続される。この負極集電板31は電極群40の負極集電箔と溶接されて接続される。正極外部端子22側も同様であり、正極外部端子22は、絶縁部材2を介して電池蓋12上に配置され、電池缶11の内部で正極集電板32と接続される。この正極集電板32は電極群40の正極集電箔と溶接されて接続される。電極群40は袋状に形成された絶縁シート4に収容された状態で電池缶11に収容される。このような構成を取ることによって集電板や電極群が電池缶11に短絡しない構造となっている。なお、絶縁シート4は、側面部4c、底面部4b、開口部4aから構成されている。 Next, FIG. 2 will be described. FIG. 2 shows a flat electrode group 40 in which the battery can 11 is removed from the square secondary battery 100 shown in FIG. 1 and positive and negative electrodes are wound around, a flat square battery can 11 accommodating the electrode group 40, and the like. An exploded perspective view showing an exploded state of a secondary battery including a battery lid 12 that seals an opening 11a of the battery can 11 and an insulating member 3 that is fixed to the battery lid 12 and housed in the battery can 11. is there. The negative electrode external terminal 21 is arranged on the battery lid 12 via the insulating member 2, and is connected to the negative electrode current collector plate 31 inside the battery can 11. The negative electrode current collector plate 31 is welded and connected to the negative electrode current collector foil of the electrode group 40. The same applies to the positive electrode external terminal 22 side, and the positive electrode external terminal 22 is arranged on the battery lid 12 via the insulating member 2 and is connected to the positive electrode current collector plate 32 inside the battery can 11. The positive electrode current collector plate 32 is welded and connected to the positive electrode current collector foil of the electrode group 40. The electrode group 40 is housed in the battery can 11 in a state of being housed in the bag-shaped insulating sheet 4. With such a configuration, the current collector plate and the electrode group are not short-circuited to the battery can 11. The insulating sheet 4 is composed of a side surface portion 4c, a bottom surface portion 4b, and an opening portion 4a.

図3は、図2に示す電極群40の一部を展開した捲回構造を示す分解斜視図である。 FIG. 3 is an exploded perspective view showing a wound structure in which a part of the electrode group 40 shown in FIG. 2 is developed.

負極集電箔411に負極合剤層412が形成されて成る負極電極41と、正極集電箔421に正極合剤層422が形成されて成る正極電極42は、セパレータ43,44を介して対向した配置を保ちながら軸Aの周りに捲回されて電極が積層されており、電極群40を構成している。 The negative electrode 41 formed by forming the negative electrode mixture layer 412 on the negative electrode current collecting foil 411 and the positive electrode 42 formed by forming the positive electrode mixture layer 422 on the positive electrode current collecting foil 421 face each other via the separators 43 and 44. The electrodes are laminated around the shaft A while maintaining the arranged arrangement, forming the electrode group 40.

より詳細には、電極群40は、セパレータ43,44を介在させて積層した正負の電極41,42を、捲回軸Aに平行な軸芯の周りに捲回して扁平形状に成形した電極群40である。セパレータ43,44は、例えば、多孔質のポリエチレン樹脂によって製作され、負極電極41と正極電極42との間を絶縁すると共に、最外周に捲回された負極電極41の外側にもセパレータ43,44が捲回されている。 More specifically, the electrode group 40 is an electrode group formed into a flat shape by winding positive and negative electrodes 41 and 42 laminated with separators 43 and 44 around an axis parallel to the winding axis A. It is 40. The separators 43 and 44 are made of, for example, a porous polyethylene resin to insulate between the negative electrode 41 and the positive electrode 42, and the separators 43 and 44 are also provided on the outside of the negative electrode 41 wound around the outermost periphery. Is being rolled up.

負極電極41は、集電箔411の表面に負極合剤層412が設けられており、図3では明示されていないが、負極合剤層412を被覆するように絶縁層413が設けられている。また、正極電極42は、集電箔421の表面に正極合剤層422が設けられている。 The negative electrode electrode 41 is provided with a negative electrode mixture layer 412 on the surface of the current collector foil 411, and although not specified in FIG. 3, an insulating layer 413 is provided so as to cover the negative electrode mixture layer 412. .. Further, the positive electrode electrode 42 is provided with a positive electrode mixture layer 422 on the surface of the current collector foil 421.

続いて図4及び図5を用いて、本発明の特徴となる点について説明する。図4は負極電極41の切断加工前の図である。 Subsequently, the features of the present invention will be described with reference to FIGS. 4 and 5. FIG. 4 is a view of the negative electrode electrode 41 before cutting.

負極集電箔411の両面に、負極合剤層412が塗布により形成されており、さらに負極合剤層412の表面には、絶縁層413が形成され負極合剤層412を被覆している状態である。図4−aは断面図で、図4−bに負極電極を上面から見た平面図を示すものである。 Negative electrode mixture layers 412 are formed by coating on both sides of the negative electrode current collector foil 411, and an insulating layer 413 is formed on the surface of the negative electrode mixture layer 412 to cover the negative electrode mixture layer 412. Is. FIG. 4-a is a cross-sectional view, and FIG. 4-b shows a plan view of the negative electrode as viewed from above.

図4−bは切断加工前の電極であり、電極切断端部にかかるS−S’の点線で示す部分が、合剤層平坦部分よりもわずかに厚みが薄くなった溝部415が設けられている。 FIG. 4-b shows the electrode before the cutting process, and the portion indicated by the dotted line of SS ′ on the cut end portion of the electrode is provided with a groove portion 415 whose thickness is slightly thinner than that of the flat portion of the mixture layer. There is.

その後、負極合剤層412上の全体に絶縁層413を塗布し、切断部分にかかる溝部415の絶縁層413の被覆部分にも合わせて絶縁層413を形成する。切断部をS−S’の点線で示す。このような構造にすることによって、切断面の一部の合剤層は露出するが、切断により形成される傾斜部415aについては絶縁層413で覆われることとなる。そのため、電極加工成形して切断端部が現れても、負極電極41の端部で絶縁層413の被覆を残すことができ、露出する部分を抑制することが可能となる。 After that, the insulating layer 413 is applied to the entire surface of the negative electrode mixture layer 412 to form the insulating layer 413 together with the covering portion of the insulating layer 413 of the groove portion 415 over the cut portion. The cut portion is indicated by the dotted line of SS'. With such a structure, a part of the mixture layer of the cut surface is exposed, but the inclined portion 415a formed by the cutting is covered with the insulating layer 413. Therefore, even if the cut end portion appears after electrode processing and molding, the coating of the insulating layer 413 can be left at the end portion of the negative electrode electrode 41, and the exposed portion can be suppressed.

また、単純に切断面が垂直となる構造よりは露出部の面積が少なくなる。そのため、負極電極41の端部での絶縁信頼性が向上する。 In addition, the area of the exposed portion is smaller than that of a structure in which the cut surface is simply vertical. Therefore, the insulation reliability at the end of the negative electrode electrode 41 is improved.

もう一方の合剤層端部414部分は、負極集電箔411の露出部を形成する側の端部になるため、合剤層の外側まで絶縁層413を設けるように形成することにより、合剤層の露出は防止できる。こちら側の合剤層端部は後の工程で、図2で示す外部端子21と接続した集電板31と溶着して接合されるため切断されない。 Since the other end portion 414 of the mixture layer is the end portion on the side where the exposed portion of the negative electrode current collector foil 411 is formed, the insulating layer 413 is provided to the outside of the mixture layer. The exposure of the agent layer can be prevented. The end of the mixture layer on this side is not cut because it is welded and joined to the current collector plate 31 connected to the external terminal 21 shown in FIG. 2 in a later step.

続いて図5の説明をする。図5は図4に記載のS部で切断した後の負極電極41を正極電極42と対向させた電極対向部を示す断面摸式図である。 Subsequently, FIG. 5 will be described. FIG. 5 is a cross-sectional model diagram showing an electrode facing portion in which the negative electrode electrode 41 after cutting at the S portion shown in FIG. 4 faces the positive electrode electrode 42.

図4で、溝部415に沿って切断加工される切断部S−S´の点線で示す部分は、図5の切断部S−S´で示す端面であり、合剤層の傾斜部415aが形成されている。つまり、溝部415の絶縁層413の厚みは、合剤層平坦部上にある絶縁層413の厚みよりも厚くすることができ絶縁性が向上する。このような構造にすることによって、切断により形成される傾斜部415aについては絶縁層413で覆われることとなる。従って、従来平坦部の厚みT1分だけ合剤層端部が露出していたが、合剤層端部の露出部厚みをT2と薄くすることが出来る。そのため、従来のものと比較してT2分だけしか合剤層が露出しなくなるので、より絶縁信頼性を向上することが可能となる。 In FIG. 4, the portion indicated by the dotted line of the cutting portion S—S ′ that is cut along the groove portion 415 is the end face indicated by the cutting portion S—S ′ in FIG. Has been done. That is, the thickness of the insulating layer 413 of the groove portion 415 can be made thicker than the thickness of the insulating layer 413 on the flat portion of the mixture layer, and the insulating property is improved. With such a structure, the inclined portion 415a formed by cutting is covered with the insulating layer 413. Therefore, conventionally, the end portion of the mixture layer is exposed by the thickness T1 of the flat portion, but the thickness of the exposed portion at the end portion of the mixture layer can be reduced to T2. Therefore, the mixture layer is exposed only for T2 as compared with the conventional one, so that the insulation reliability can be further improved.

負極集電箔411の表面には負極合剤層412が設けられていて、さらに負極合剤層412表面の上には被覆されるように絶縁層413が設けられている。負極電極41は、図4に示す通り、図4のS部で切断加工されて成形されている。 A negative electrode mixture layer 412 is provided on the surface of the negative electrode current collector foil 411, and an insulating layer 413 is provided on the surface of the negative electrode mixture layer 412 so as to be covered. As shown in FIG. 4, the negative electrode electrode 41 is formed by cutting at the S portion of FIG.

本実施形態では、負極合剤層412が切断端面に向かって合剤層の厚みが減少し、傾斜があるように設けられているため、絶縁層413は平坦部分から広がり切断端面部近傍まで被覆されていて、合剤層の露出は抑制されている。 In the present embodiment, since the negative electrode mixture layer 412 is provided so that the thickness of the mixture layer decreases toward the cut end face and is inclined, the insulating layer 413 spreads from the flat portion and covers the vicinity of the cut end face. The exposure of the mixture layer is suppressed.

負極電極41はセパレータ43,44を介して正極電極42と対向するように捲回電極群40が構成されている。正極集電箔421の表面には正極合剤層422が設けられており負極電極41と対向するように捲回電極群40が構成されている。合剤層部分はセパレータ43,44を介在して対向するように配置されていて、集電箔部分は電極接合部となるため、セパレータ43,44から出るように導出されて配置される。導出された集電箔部分は図2の31に示される集電板に接合されて外部端子21に接続される。 The winding electrode group 40 is configured so that the negative electrode electrode 41 faces the positive electrode 42 via the separators 43 and 44. A positive electrode mixture layer 422 is provided on the surface of the positive electrode current collector foil 421, and the wound electrode group 40 is configured so as to face the negative electrode electrode 41. The mixture layer portion is arranged so as to face each other with the separators 43 and 44 interposed therebetween, and since the current collector foil portion serves as an electrode joint portion, it is derived and arranged so as to come out of the separators 43 and 44. The derived current collector foil portion is joined to the current collector plate shown in FIG. 2 and connected to the external terminal 21.

図4、図5に示される負極合剤層412は、例えば、以下のように製作することができる。まず、負極活物質として黒鉛質炭素粉末100重量部に対して、増粘調整剤としてカルボキシメチルセルロース(CMC)水溶液を添加、混合後に、結着剤として1重量部のSBRを添加し、混練後に粘度調整して負極スラリーを作製する。次に、この負極スラリーを、例えば、厚さ10μmの銅箔の両面に箔露出部を残して塗布することで負極合剤層412を形成する。絶縁層413は負極合剤層412を塗布、乾燥後に絶縁層を構成する絶縁性粒子を分散させた分散液を塗布して形成することができる。その後、乾燥、プレス、裁断の各工程を経て、例えば、銅箔を含まない負極活物質塗布部の厚さ(表裏両面の合計)が40μmの負極電極41を得ることができる。なお、負極合剤層を形成する際に図5に示した溝部415を作成する必要がある。この溝部415は負極合剤層412を形成する際に作成しても良いし、負極合剤層412と絶縁層413を同時に形成する際にはその時塗布方向と同一の方向に溝部415が伸びるように作成する必要がある。 The negative electrode mixture layer 412 shown in FIGS. 4 and 5 can be manufactured, for example, as follows. First, to 100 parts by weight of graphite carbon powder as a negative electrode active material, an aqueous solution of carboxymethyl cellulose (CMC) was added as a thickening adjuster, and after mixing, 1 part by weight of SBR was added as a binder, and after kneading, the viscosity was increased. Adjust to prepare a negative electrode slurry. Next, the negative electrode mixture layer 412 is formed by applying this negative electrode slurry to, for example, on both sides of a copper foil having a thickness of 10 μm, leaving exposed foil portions. The insulating layer 413 can be formed by applying the negative electrode mixture layer 412, drying, and then applying a dispersion liquid in which the insulating particles constituting the insulating layer are dispersed. After that, through each step of drying, pressing, and cutting, for example, a negative electrode 41 having a thickness (total of both front and back surfaces) of a negative electrode active material coating portion containing no copper foil of 40 μm can be obtained. It is necessary to create the groove portion 415 shown in FIG. 5 when forming the negative electrode mixture layer. The groove portion 415 may be created when the negative electrode mixture layer 412 is formed, or when the negative electrode mixture layer 412 and the insulating layer 413 are formed at the same time, the groove portion 415 extends in the same direction as the coating direction at that time. Need to be created in.

絶縁層を構成する絶縁性粒子には多孔質の無機粒子を用いることが好ましく、セラミック粒子がより好ましく用いることができ、ベーマイト粒子を選択することができる。粒子の形状は球状粒子を用いることが安定な分散液を作製するには好ましいが、絶縁層の形成するにあたり、より薄い膜厚で被覆性の良好な絶縁層を設けるには角ばった菱面を有する多面体形状の粒子を用いることがより好ましい。 Porous inorganic particles are preferably used as the insulating particles constituting the insulating layer, ceramic particles can be more preferably used, and boehmite particles can be selected. It is preferable to use spherical particles for the shape of the particles in order to prepare a stable dispersion liquid, but when forming the insulating layer, an angular rhedron is used to provide an insulating layer having a thinner film thickness and good coating property. It is more preferable to use the polyhedral particles having.

前記絶縁性粒子を樹脂系またはゴム系の一方または両方の結着剤を含有する溶媒に分散させて絶縁層用分散液を作製する。 The insulating particles are dispersed in a solvent containing one or both resin-based and rubber-based binders to prepare a dispersion liquid for an insulating layer.

正極合剤層422は、例えば、以下のように製作することができる。まず、正極活物質として層状ニッケルコバルトマンガン酸リチウム(化学式Li(NixCoyMn1-x-y)O)100重量部に対し、導電材として合計7重量部の鱗片状黒鉛やアセチレンブラックと結着剤として3重量部のポリフッ化ビニリデン(以下、PVDFという)とを添加し、これに分散溶媒としてN−メチルピロリドン(以下、NMPという)を添加し、混練して正極スラリーを製作する。次に、この正極スラリーを、例えば、厚さ15μmのアルミニウム箔の両面に箔露出部を残して塗布することで正極合剤層422を形成する。その後、乾燥、プレス、裁断の各工程を経て、例えば、アルミニウム箔を含まない正極活物質塗布部の厚さ(表裏両面の合計)が70μmの正極電極42を得ることができる。 The positive electrode mixture layer 422 can be manufactured, for example, as follows. First, the layered lithium nickel cobalt manganese oxide (chemical formula Li (Ni x Co y Mn 1 -xy) O 2) as a positive electrode active material relative to 100 parts by weight of scaly graphite and acetylene black and forming a total of 7 parts by weight as the conductive material 3 parts by weight of polyvinylidene fluoride (hereinafter referred to as PVDF) is added as a coating agent, N-methylpyrrolidone (hereinafter referred to as NMP) is added as a dispersion solvent, and the mixture is kneaded to prepare a positive electrode slurry. Next, the positive electrode mixture layer 422 is formed by applying this positive electrode slurry to, for example, on both sides of an aluminum foil having a thickness of 15 μm, leaving exposed foil portions. After that, through each step of drying, pressing, and cutting, for example, a positive electrode 42 having a thickness (total of both front and back surfaces) of a positive electrode active material coating portion containing no aluminum foil of 70 μm can be obtained.

セパレータ43,44を介して正極電極42と負極電極41を重ねて捲回し、捲回電極群40を製作するには、まず、図示しない軸芯にセパレータ43、44の各先端部を溶着させ、セパレータ43、44と、正極、負極電極42、41とを交互に重ねて捲回する。このとき、正極電極42の巻始め側端部が負極電極41の巻始め側端部よりも捲回後の捲回電極群40の内側に位置するように、正極電極42の巻始め側端部を負極電極41の巻始め側端部よりも軸芯側に配置して捲回する。 In order to manufacture the wound electrode group 40 by superimposing and winding the positive electrode 42 and the negative electrode 41 via the separators 43 and 44, first, the tips of the separators 43 and 44 are welded to a shaft core (not shown). The separators 43 and 44 and the positive and negative electrodes 42 and 41 are alternately stacked and wound. At this time, the winding start side end of the positive electrode 42 is located inside the winding electrode group 40 after winding so that the winding start side end of the positive electrode 42 is located inside the winding electrode group 40 after winding. Is arranged on the axis side of the negative electrode electrode 41 on the axis side of the winding start side end and wound.

図2に示すように捲回電極群40は絶縁袋4に収容され、電池蓋12が電池缶11に接合され、電池蓋12を電池缶11の上部開口に封止溶接し、注液口14から電池缶11内に非水電解液を注入し、その後、注液口14に注液栓15を封止溶接することによって角形電池100が製作される。注液口14から注入された非水電解液は、電池缶11に収納されている捲回電極群40へ浸潤することになる。非水電解液としては、例えばエチレンカーボネートとジメチルカーボネートとを体積比で1:2の割合で混合した混合溶液中へ六フッ化リン酸リチウム(LiPF)を1モル/リットルの濃度で溶解したものを用いることができる。 As shown in FIG. 2, the wound electrode group 40 is housed in the insulating bag 4, the battery lid 12 is joined to the battery can 11, the battery lid 12 is sealed and welded to the upper opening of the battery can 11, and the liquid injection port 14 The square battery 100 is manufactured by injecting a non-aqueous electrolytic solution into the battery can 11 and then sealing and welding the injection plug 15 to the injection port 14. The non-aqueous electrolyte solution injected from the injection port 14 infiltrates the winding electrode group 40 housed in the battery can 11. As a non-aqueous electrolyte solution, for example, lithium hexafluorophosphate (LiPF 6 ) was dissolved at a concentration of 1 mol / liter in a mixed solution in which ethylene carbonate and dimethyl carbonate were mixed at a volume ratio of 1: 2. Can be used.

[実施形態2]
実施形態1では負極合剤層を被覆する絶縁層について示したが、上述の絶縁層は、正極合剤層422の表面にも、図4に示すのと同様の形態で形成することができる。そのように正極絶縁層423を設けた構成にした場合を図6に示す。
[Embodiment 2]
Although the insulating layer covering the negative electrode mixture layer is shown in the first embodiment, the above-mentioned insulating layer can be formed on the surface of the positive electrode mixture layer 422 in the same manner as shown in FIG. FIG. 6 shows a case where the positive electrode insulating layer 423 is provided in this way.

図6に示すような電極構成である場合は、絶縁層の総厚みが、正極合剤層上に設けられた絶縁層と負極合剤層上に設けられた絶縁層の厚みの和となり、正極合剤層上か負極合剤層上の何れか一方にのみ設ける場合と比較して絶縁性が向上する。つまり、この構成とした場合にはセパレータ43、44を薄くすることが出来る。 In the case of the electrode configuration as shown in FIG. 6, the total thickness of the insulating layer is the sum of the thicknesses of the insulating layer provided on the positive electrode mixture layer and the insulating layer provided on the negative electrode mixture layer, and the positive electrode is positive. Insulation is improved as compared with the case where it is provided only on either the mixture layer or the negative electrode mixture layer. That is, in the case of this configuration, the separators 43 and 44 can be made thinner.

また当該構成とした場合、絶縁層の層厚みはセパレータ43、44よりも厚くした方がよい。すなわち(T3−T4)>T4となる。このような構成とした場合、電極間の抵抗を低減するといった効果が得られる。 Further, in the case of this configuration, the layer thickness of the insulating layer should be thicker than that of the separators 43 and 44. That is, (T3-T4)> T4. With such a configuration, an effect of reducing the resistance between the electrodes can be obtained.

また、上述した実施の形態では、電極の厚みを一定とする、つまり負極電極41のS−S'側絶縁層の厚みが他の部分の厚みよりも厚くなっている構成としたが、必ずしもこのような構成を取る必要はない。例えば合剤層の傾斜にあわせて絶縁層にも傾斜をつけるような構造としても良い。 Further, in the above-described embodiment, the thickness of the electrode is constant, that is, the thickness of the insulation layer on the SS'side of the negative electrode 41 is thicker than the thickness of other portions, but this is not necessarily the case. There is no need to take such a configuration. For example, the structure may be such that the insulating layer is also inclined according to the inclination of the mixture layer.

以上、簡単に本発明についてまとめる。本発明に記載の二次電池は、電極箔上に配置された合剤層と、合剤層上に設けられた絶縁層を有する電極を備え、電極の一端には合剤層から電極集電箔が露出した露出部を有し、電極の他端には電極箔の端部に向かうにつれて合剤層の厚みが減少する傾斜部415aを有し、傾斜部415a上には絶縁層が配置されることを特徴とする。このような構造とすることによって、単純に切断面が垂直となる構造より合剤層露出部の面積が少なくなる。そのため、負極電極41の端部での絶縁信頼性が向上する。 The present invention will be briefly summarized above. The secondary battery described in the present invention includes an electrode having a mixture layer arranged on an electrode foil and an insulating layer provided on the mixture layer, and one end of the electrode collects electrodes from the mixture layer. The foil has an exposed portion, and the other end of the electrode has an inclined portion 415a in which the thickness of the mixture layer decreases toward the end portion of the electrode foil, and an insulating layer is arranged on the inclined portion 415a. It is characterized by that. With such a structure, the area of the exposed portion of the mixture layer is smaller than that of a structure in which the cut surface is simply vertical. Therefore, the insulation reliability at the end of the negative electrode electrode 41 is improved.

また、本発明に記載の二次電池は、傾斜部415a上に設けられた絶縁層の厚みは、他の部分に設けられた絶縁層の厚み以上である。このような構造にすることによって、電極端部の絶縁層の厚みを確保することができ、電極端部の絶縁信頼性が向上する。 Further, in the secondary battery described in the present invention, the thickness of the insulating layer provided on the inclined portion 415a is equal to or larger than the thickness of the insulating layer provided on the other portion. With such a structure, the thickness of the insulating layer at the electrode end can be ensured, and the insulation reliability of the electrode end can be improved.

また、電極で構成される電極捲回群の電極間に介在するセパレータは前記絶縁層の厚みよりも薄い膜厚のセパレータを備えている。このような構成にした場合、電極間の抵抗を低減するといった効果が得られる。 Further, the separator interposed between the electrodes of the electrode winding group composed of the electrodes includes a separator having a film thickness thinner than the thickness of the insulating layer. With such a configuration, an effect of reducing the resistance between the electrodes can be obtained.

また、本発明に記載の電極の製造方法は、電極箔上に配置された合剤層と、合剤層上に設けられた絶縁層を有し、電極箔上に合剤層が塗布され、かつ当該合剤層が塗布された方向に連続して溝部が形成され、合剤層上に絶縁層が塗布され、溝部上で当該電極が切断されることを特徴とする。このような製造方法にすることによって、本発明に記載の電極を作成することが出来る。 Further, the method for manufacturing an electrode according to the present invention has a mixture layer arranged on the electrode foil and an insulating layer provided on the mixture layer, and the mixture layer is applied on the electrode foil. Further, a groove portion is continuously formed in the direction in which the mixture layer is applied, an insulating layer is applied on the mixture layer, and the electrode is cut on the groove portion. By adopting such a manufacturing method, the electrode described in the present invention can be produced.

以上、図面を用いて本発明の実施の形態を詳述してきたが、具体的な構成はこの実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲における設計変更等があっても、それらは本発明に含まれるものである。 Although the embodiment of the present invention has been described in detail with reference to the drawings, the specific configuration is not limited to this embodiment, and there are design changes and the like within a range not deviating from the gist of the present invention. Also, they are included in the present invention.

11…電池缶
12…電池蓋14…注液口
15…注液栓
21…負極外部端子
22…正極外部端子
31…負極集電板
32…正極集電板
40…捲回電極群
41…負極電極 411…負極集電箔 412…負極合剤層 413…絶縁層
42…正極電極 421…正極集電箔 422…正極合剤層
43、44…セパレータ
100…角形電池
11 ... Battery can 12 ... Battery lid 14 ... Liquid injection port 15 ... Liquid injection plug 21 ... Negative electrode external terminal 22 ... Positive electrode external terminal 31 ... Negative electrode current collector plate 32 ... Positive electrode current collector plate 40 ... Winding electrode group 41 ... Negative electrode 411 ... Negative electrode current collector foil 412 ... Negative electrode mixture layer 413 ... Insulation layer 42 ... Positive electrode electrode 421 ... Positive electrode current collector foil 422 ... Positive electrode mixture layer
43, 44 ... Separator 100 ... Square battery

Claims (4)

それぞれ電極箔上に配置された合剤層と、当該合剤層上に設けられた絶縁層とを有する正極電極及び負極電極を備えた二次電池において、
前記正極電極及び前記負極電極の一端には、それぞれ前記合剤層から前記電極箔が露出した露出部が設けられ、前記正極電極及び前記負極電極の他端には、それぞれ前記電極箔の端部に向かうにつれて前記合剤層の厚みが減少する傾斜部が設けられ、前記傾斜部を含む各前記合剤層上にはそれぞれ前記絶縁層が配置され、
前記正極電極及び前記負極電極から構成される電極捲回群の前記正極電極及び前記負極電極間に介在するセパレータは、前記絶縁層の厚みよりも薄い膜厚に形成されたことを特徴とする二次電池。
In a secondary battery provided with a positive electrode and a negative electrode having a mixture layer arranged on the electrode foil and an insulating layer provided on the mixture layer, respectively.
An exposed portion in which the electrode foil is exposed from the mixture layer is provided at one end of the positive electrode electrode and the negative electrode electrode, and the end portions of the electrode foil are provided at the other ends of the positive electrode electrode and the negative electrode electrode, respectively. An inclined portion is provided in which the thickness of the mixture layer decreases toward the direction, and the insulating layer is arranged on each of the mixture layers including the inclined portion.
The separator interposed between the positive electrode and the negative electrode of the electrode winding group composed of the positive electrode and the negative electrode is formed to have a thickness thinner than the thickness of the insulating layer. Next battery.
請求項1に記載の二次電池において、
前記傾斜部上に設けられた前記絶縁層の厚みは、他の部分に設けられた前記絶縁層の厚み以上であることを特徴とする二次電池。
In the secondary battery according to claim 1,
A secondary battery characterized in that the thickness of the insulating layer provided on the inclined portion is equal to or larger than the thickness of the insulating layer provided on the other portion.
請求項1又は2に記載の二次電池において、
前記負極電極の前記合剤層は負極合剤層であることを特徴とする二次電池。
In the secondary battery according to claim 1 or 2.
A secondary battery, wherein the mixture layer of the negative electrode is a negative electrode mixture layer.
請求項3に記載の二次電池において、
前記絶縁層はセラミックス粒子により形成されることを特徴とする二次電池。
In the secondary battery according to claim 3,
A secondary battery characterized in that the insulating layer is formed of ceramic particles.
JP2016192513A 2016-09-30 2016-09-30 Rechargeable battery Active JP6765268B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016192513A JP6765268B2 (en) 2016-09-30 2016-09-30 Rechargeable battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016192513A JP6765268B2 (en) 2016-09-30 2016-09-30 Rechargeable battery

Publications (2)

Publication Number Publication Date
JP2018056022A JP2018056022A (en) 2018-04-05
JP6765268B2 true JP6765268B2 (en) 2020-10-07

Family

ID=61836946

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016192513A Active JP6765268B2 (en) 2016-09-30 2016-09-30 Rechargeable battery

Country Status (1)

Country Link
JP (1) JP6765268B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019244401A1 (en) * 2018-06-19 2019-12-26 日立オートモティブシステムズ株式会社 Lithium ion secondary battery and method for producing same
JP7160436B2 (en) * 2019-02-21 2022-10-25 三洋電機株式会社 Electrodes, non-aqueous electrolyte secondary batteries

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5858325B2 (en) * 2010-09-03 2016-02-10 株式会社Gsユアサ battery
JP5765574B2 (en) * 2011-12-20 2015-08-19 トヨタ自動車株式会社 Secondary battery, method for producing the same, and method for producing negative electrode sheet used in the battery
JP6674657B2 (en) * 2016-03-04 2020-04-01 株式会社Gsユアサ Storage element

Also Published As

Publication number Publication date
JP2018056022A (en) 2018-04-05

Similar Documents

Publication Publication Date Title
JP5417241B2 (en) Rectangular lithium ion secondary battery and method for manufacturing prismatic lithium ion secondary battery
JP4863636B2 (en) Spiral electrode square battery
EP3036783B1 (en) Nonaqueous electrolyte battery and manufacturing method thereof
JP6173730B2 (en) battery
US9431680B2 (en) Electric storage device, electric storage system, and manufacturing method thereof
US20160254569A1 (en) Assembled battery
JP6173729B2 (en) Battery manufacturing method
JP6359454B2 (en) Nonaqueous electrolyte secondary battery
US20140023919A1 (en) Non-aqueous electrolyte secondary cell
JP2011192476A (en) Lithium ion secondary battery
CN110870106B (en) Method for manufacturing secondary battery
JP2023018128A (en) Electrode for lithium secondary battery and lithium secondary battery
JP6765268B2 (en) Rechargeable battery
JP6862919B2 (en) Square lithium ion secondary battery
US20180072165A1 (en) Battery
JP2020057597A (en) Battery pack
JP2011233408A (en) Nonaqueous electrolyte secondary battery
JP2019169331A (en) Power storage element
JP7365562B2 (en) Wound electrode body for secondary batteries
JP7079414B2 (en) Non-aqueous electrolyte secondary battery
WO2022185580A1 (en) Lithium ion secondary battery and method for producing same
JP7058180B2 (en) Method of manufacturing secondary batteries and secondary batteries
JP7303994B2 (en) Storage element
JP7157907B2 (en) Method for judging the bonding state of terminals
JP2017098017A (en) Nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161003

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170120

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170126

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180628

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180629

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20190222

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20190306

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190529

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190625

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190822

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200107

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20200303

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20200305

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200401

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200416

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200427

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200703

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200908

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200915

R150 Certificate of patent or registration of utility model

Ref document number: 6765268

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250