JP2011233408A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
JP2011233408A
JP2011233408A JP2010103709A JP2010103709A JP2011233408A JP 2011233408 A JP2011233408 A JP 2011233408A JP 2010103709 A JP2010103709 A JP 2010103709A JP 2010103709 A JP2010103709 A JP 2010103709A JP 2011233408 A JP2011233408 A JP 2011233408A
Authority
JP
Japan
Prior art keywords
separator
positive electrode
electrode
electrolyte secondary
curved portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010103709A
Other languages
Japanese (ja)
Other versions
JP5459048B2 (en
Inventor
Yoshihiro Shibuya
佳宏 渋谷
Takuya Morimoto
卓弥 森本
Hideyuki Inomata
秀行 猪俣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2010103709A priority Critical patent/JP5459048B2/en
Publication of JP2011233408A publication Critical patent/JP2011233408A/en
Application granted granted Critical
Publication of JP5459048B2 publication Critical patent/JP5459048B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To provide a nonaqueous electrolyte secondary battery which has improved discharge load characteristics and charge discharge cycle characteristics which normally deteriorate when a sectionally oval shaped electrode body is formed, thereby providing superior reliability against dropping.SOLUTION: A nonaqueous electrolyte secondary battery comprises an electrode body which has wound around it via a separator having micropores a cathode and an anode each consisting of an active material layer formed on a metal foil, the electrode body being accommodated in an outer container. In this battery, the electrode body is oval shaped in cross section, a straight part on one side thereof consisting of the cathode, the separator, and the anode which are stratified in order from the periphery toward the center of winding, a curved part on one side thereof consisting of the cathode, an insulating member to protect the electrode plate, the separator, and the terminal of the anode which are stratified in order, a straight part on the other side thereof consisting of the cathode, the separator, the cathode, the separator, and the anode which are stratified in order, and a curved part on the other side thereof consisting of the terminal of the cathode, the terminal of the separator, the cathode, the separator, and the anode which are stratified in order.

Description

本発明は非水電解質二次電池に関する。   The present invention relates to a non-aqueous electrolyte secondary battery.

リチウムイオン電池に代表される非水電解質二次電池は、高エネルギー密度を特徴とすることから、携帯機器などの電源のみならず、電動工具やハイブリッド電気自動車などの電源にも、その用途を拡大しつつある。   Non-aqueous electrolyte secondary batteries typified by lithium-ion batteries are characterized by high energy density, so they can be used not only for power supplies for portable devices, but also for power tools and hybrid electric vehicles. I am doing.

このような非水電解質二次電池は、正極活物質として、リチウムイオンを可逆的に吸蔵放出可能なコバルト酸リチウム、ニッケル酸リチウム、マンガン酸リチウムなど、リチウム遷移金属酸化物が用いられる。そして正極活物質は結着剤や導電剤等と混合され、正極芯体としてのアルミニウム箔上に塗布されて正極板として用いられる。   In such a non-aqueous electrolyte secondary battery, a lithium transition metal oxide such as lithium cobaltate, lithium nickelate, or lithium manganate capable of reversibly occluding and releasing lithium ions is used as a positive electrode active material. The positive electrode active material is mixed with a binder, a conductive agent, and the like, applied on an aluminum foil as a positive electrode core, and used as a positive electrode plate.

一方、負極活物質としては、天然黒鉛、人造黒鉛、コークスなどの炭素質材料が用いられる。そして負極活物質は結着剤等と混合され、負極芯体としての銅箔上に塗布されて負極板として用いられる。   On the other hand, as the negative electrode active material, carbonaceous materials such as natural graphite, artificial graphite and coke are used. And a negative electrode active material is mixed with a binder etc., and it apply | coated on the copper foil as a negative electrode core, and is used as a negative electrode plate.

正極板と負極板は所定の寸法に加工されて、ポリエチレンなどの樹脂製微多孔セパレータを介して巻き取られて電極体をなし、電解質とともに外装容器へ封入される。   The positive electrode plate and the negative electrode plate are processed to a predetermined size, wound up through a resin microporous separator such as polyethylene to form an electrode body, and enclosed in an outer container together with an electrolyte.

電極体の正極板と負極板はそれぞれ集電タブを備え、集電タブは外部電極へ接続される。集電タブの形状としては、例えば特許文献1や図6に示すように、電極体の最外周にアルミニウム箔を配置し、アルミニウム箔の一部にコ字状に切り欠いて、この切り欠きをコ字の根元で折り返して集電タブとなすものがある。この場合、アルミニウム箔を切り欠いた集電タブと負極部分とが短絡しないように、切り欠きを設けたアルミニウム箔の下層もアルミニウム箔となるように電極体が構成される。   Each of the positive electrode plate and the negative electrode plate of the electrode body includes a current collecting tab, and the current collecting tab is connected to an external electrode. As the shape of the current collecting tab, for example, as shown in Patent Document 1 and FIG. 6, an aluminum foil is arranged on the outermost periphery of the electrode body, and a notch is cut out in a U-shape on a part of the aluminum foil. There are things that fold back at the base of the U-shaped and become current collecting tabs. In this case, the electrode body is configured so that the lower layer of the aluminum foil provided with the cutout is also an aluminum foil so that the current collecting tab cut out of the aluminum foil and the negative electrode portion are not short-circuited.

近年に見られる携帯機器の高機能化、小型化にともない、それらの機器の電源としての電池にはさらなる高エネルギー密度化が求められると共に、安全性も求められている。高エネルギー密度化の手法として、電池に仕込む活物質量を増量する方法がある。この方法では、外装容器の限られた内容積に多くの活物質を仕込むために、極板芯体に塗布された活物質は高密度に圧縮され、充填密度が高められる。   With the increase in functionality and miniaturization of portable devices found in recent years, batteries as power sources for these devices are required to have higher energy density and safety. As a technique for increasing the energy density, there is a method of increasing the amount of active material charged in the battery. In this method, in order to charge a large amount of active material into the limited internal volume of the outer container, the active material applied to the electrode plate core is compressed to a high density, and the filling density is increased.

一方、特許文献2〜4のような電池では、電極体を外装容器に効率よく収納するために、電極体はプレス機などを用いて圧力が加えられて成型される。   On the other hand, in batteries such as Patent Documents 2 to 4, in order to efficiently store the electrode body in the outer container, the electrode body is molded by applying pressure using a press machine or the like.

電池の安全性に関しては、特許文献5のように、負極の活物質塗布部分と正極のアルミニウム箔露出部分との間を絶縁部材で隔てることで、当該部分で内部短絡が発生すると被害が大きくなるところ、この手段で内部短絡の発生を防止し、電池の安全性を高める技術が開示されている。   Regarding the safety of the battery, as in Patent Document 5, when the active material application part of the negative electrode and the aluminum foil exposed part of the positive electrode are separated by an insulating member, the damage increases when an internal short circuit occurs in the part. However, a technique for preventing the occurrence of an internal short circuit by this means and improving the safety of the battery is disclosed.

特開平09−171809号公報Japanese Patent Laid-Open No. 09-171809 特開2002−289257号公報JP 2002-289257 A 特開2005−347125号公報JP-A-2005-347125 特開2005−327550号公報JP 2005-327550 A 特開2004−259625号公報JP 2004-259625 A

上述の高エネルギー密度化手法により、電池の高容量化が可能になった一方で、高負荷での放電特性や充放電サイクル特性が低下するという問題が生じた。また、上述の安全性を向上させるための手法により内部短絡に対する安全性は向上したが、電池を落下させた時に依然として短絡が発生することが判明した。発明者らがこの原因を究明したところ、以下のことが明らかになった。   While the above-described high energy density technique has made it possible to increase the capacity of the battery, there has been a problem in that the discharge characteristics at high loads and the charge / discharge cycle characteristics deteriorated. Moreover, although the safety | security with respect to an internal short circuit improved by the method for improving the above-mentioned safety | security, when the battery was dropped, it turned out that a short circuit still occurs. When the inventors investigated the cause of this, the following became clear.

すなわち、電池の特性低下に関して、上述のように電極体を外装容器に収納するために、電極体は圧力を加えられて成型されるが、極板の充填密度が高くない時は、粉体粒子の集合である極板も柔軟性を備えるために、極板でも圧力が吸収されるために、セパレータの微孔が成型圧力により過度に潰れるのを防いでいた。   That is, regarding the deterioration of the battery characteristics, in order to store the electrode body in the outer container as described above, the electrode body is molded by applying pressure, but when the packing density of the electrode plate is not high, the powder particles Since the electrode plate, which is an assembly of the above, also has flexibility, pressure is absorbed by the electrode plate, so that the pores of the separator are prevented from being excessively crushed by the molding pressure.

ところが、極板の充填密度が高くなると、極板の柔軟性が失われて、セパレータに成型圧力が加えられる。そうなると、セパレータの微孔が過度に潰れ、リチウムイオンの通過経路が塞がれ、電池の放電特性や充放電サイクル特性が低下することが判明した。   However, when the packing density of the electrode plate increases, the flexibility of the electrode plate is lost, and molding pressure is applied to the separator. As a result, it was found that the pores of the separator were excessively crushed, the lithium ion passage was blocked, and the discharge characteristics and charge / discharge cycle characteristics of the battery deteriorated.

また、電池の落下安全性に関して、電極体外周側における負極終端周辺部分には短絡防止のために絶縁部材が貼付されている。角形電池の電極体は断面が長円形であり、負極終端は長円形の2つある曲部の一方に位置する。電極体の曲部は、電池が落下されたときに落下衝撃を受けて変形しやすい部分であり、負極終端が存在する一方の曲部付近には、上述の絶縁部材が貼付されており、この絶縁部材が落下衝撃での電極体曲部の変形を防止する役割も備えている。一方、変形負極終端が存在しない他方の曲部には一方の曲部のような絶縁部材がなく、落下衝撃を受けて変形して短絡が発生しやすいことが判明した。   In addition, regarding the safety of dropping the battery, an insulating member is attached to the periphery of the negative electrode terminal on the outer periphery side of the electrode body to prevent a short circuit. The electrode body of the prismatic battery has an oval cross section, and the negative electrode terminal is located at one of two oval curved portions. The curved part of the electrode body is a part that is easily deformed due to a drop impact when the battery is dropped, and the insulating member described above is attached to the vicinity of one curved part where the negative electrode terminal exists. The insulating member also has a role of preventing deformation of the electrode body curved portion due to a drop impact. On the other hand, it has been found that the other curved portion having no deformed negative electrode end does not have an insulating member like the one curved portion, and is easily deformed by a drop impact to cause a short circuit.

本発明は上述の課題を解決するためになされたもので、その目的は、高容量であり、放電特性、充放電サイクル特性、安全性の向上を図った非水電解質二次電池を提供することにある。   The present invention has been made to solve the above-described problems, and an object thereof is to provide a non-aqueous electrolyte secondary battery having high capacity and improving discharge characteristics, charge / discharge cycle characteristics, and safety. It is in.

上述の課題を解決するために、本発明の第1の態様の非水電解質二次電池は、正極と、負極とが、微多孔セパレータを介して巻回された電極体を外装容器に収納してなる非水電解質二次電池であって、前記電極体は、その断面が、一方の直線部と他方の直線部からなる一対の直線部と、前記一方の直線部の一方端と前記他方の直線部の一方端を接続する一方の曲部と、前記一方の直前部の他方端と前記他方の直線部の他方端を接続する他方の曲部からなる長円形であり、前記正極、負極およびセパレータは、前記一方の直線部、前記一方の曲部、前記他方の直線部、前記他方の曲部の順に巻回されており、前記一方の直線部は、外周から巻回中心に向かって、正極、セパレータ、負極が順に層をなし、前記一方の曲部は、外周から巻回中心に向かって、正極、極板を保護する絶縁部材、セパレータ、負極の終端が順に層をなし、前記他方の直線部は、外周から巻回中心に向かって、正極、セパレータ、正極、セパレータ、負極が順に層をなし、前記他方の曲部は、外周から巻回中心に向かって、正極の終端、セパレータの終端、正極、セパレータ、負極が順に層をなしていることを特徴とする。   In order to solve the above-described problem, the nonaqueous electrolyte secondary battery according to the first aspect of the present invention includes an electrode body in which a positive electrode and a negative electrode are wound via a microporous separator in an outer container. The electrode body has a cross-section of a pair of straight portions including one straight portion and the other straight portion, one end of the one straight portion, and the other An ellipse comprising one curved portion connecting one end of the straight portion, the other curved portion connecting the other end of the one immediately preceding portion and the other end of the other straight portion, the positive electrode, the negative electrode, The separator is wound in the order of the one straight portion, the one curved portion, the other straight portion, and the other curved portion, and the one straight portion is directed from the outer periphery toward the winding center. The positive electrode, the separator, and the negative electrode are sequentially layered, and the one curved portion extends from the outer periphery to the winding center. Thus, the positive electrode, the insulating member that protects the electrode plate, the separator, and the terminal end of the negative electrode sequentially form a layer, and the other straight portion is formed in order of the positive electrode, the separator, the positive electrode, the separator, and the negative electrode from the outer periphery toward the winding center. A layer is formed, and the other curved portion is characterized in that the terminal of the positive electrode, the terminal of the separator, the positive electrode, the separator, and the negative electrode are sequentially formed from the outer periphery toward the winding center.

さらに、本発明の第2の態様の非水電解質二次電池は、第1の態様の非水電解質二次電池において、他方の直線部は、外周から巻回中心に向かって、金属箔からなる正極、セパレータ、外周側が金属箔である正極、セパレータ、負極の順に層をなすことを特徴とする。   Furthermore, the nonaqueous electrolyte secondary battery according to the second aspect of the present invention is the nonaqueous electrolyte secondary battery according to the first aspect, wherein the other straight portion is made of a metal foil from the outer periphery toward the winding center. It is characterized in that layers are formed in the order of a positive electrode, a separator, a positive electrode whose outer peripheral side is a metal foil, a separator, and a negative electrode.

さらに、本発明の第3の態様の非水電解質二次電池は、第1または第2の態様の非水電解質二次電池において、他方の曲部のセパレータの終端は、2層のセパレータの終端であることを特徴とする。   Furthermore, the nonaqueous electrolyte secondary battery according to the third aspect of the present invention is the nonaqueous electrolyte secondary battery according to the first or second aspect, wherein the end of the other curved separator is the end of the two-layer separator. It is characterized by being.

さらに、本発明の第4の態様の非水電解質二次電池は、第1乃至第3のいずれかの態様の非水電解質二次電池において、他方の曲部に配置されるセパレータの終端は、曲部の1/2以上を覆っていることを特徴とする。   Furthermore, the nonaqueous electrolyte secondary battery according to the fourth aspect of the present invention is the nonaqueous electrolyte secondary battery according to any one of the first to third aspects. It is characterized by covering more than half of the music part.

本発明の第1の態様によれば、電極体の断面長円形の他方の直線部において、外周の正極に下層にあるセパレータが、電極体成型時の圧力を吸収するクッションの役割を果たし、このセパレータよりも電極体中心に方向にあるセパレータに過度の圧力が加えられることを防ぐ。したがって、電極を高充填密度とすることで電池容量が高くすることが可能となり、またセパレータの微孔が潰されにくく、リチウムイオンの経路が確保されて、電池特性が良好となる。さらに、電極体の断面長円形の他方の直線部における外周の正極の下層にあり、クッションの役割を備えるセパレータが曲部まで延長されて終端しているので、セパレータが落下衝撃による電極体の変形を防止する。したがって、電池の落下による短絡が減少する。   According to the first aspect of the present invention, the separator in the lower layer on the positive electrode on the outer periphery plays the role of a cushion that absorbs the pressure at the time of molding the electrode body in the other straight line portion of the oval cross section of the electrode body. An excessive pressure is prevented from being applied to the separator located in the center of the electrode body rather than the separator. Therefore, it is possible to increase the battery capacity by setting the electrode to a high packing density, and the micropores of the separator are not easily crushed, a lithium ion path is secured, and the battery characteristics are improved. Furthermore, since the separator having the role of a cushion is extended to the curved portion and terminates at the lower end of the positive electrode on the other straight line portion of the other oval cross section of the electrode body, the separator is deformed by the drop impact. To prevent. Therefore, short circuits due to battery dropping are reduced.

本発明の第2の態様によれば、外周の正極が金属箔であり、その下層の正極の外周側が金属箔であると、金属箔は電極体成型時のプレス圧力を吸収しないので、第1の態様の構成のようにセパレータが配置された時に、より効果が発現されて好ましい。   According to the second aspect of the present invention, when the outer peripheral positive electrode is a metal foil and the outer peripheral side of the lower positive electrode is a metal foil, the metal foil does not absorb the pressing pressure at the time of molding the electrode body. When the separator is arranged as in the configuration of the aspect, the effect is more preferable and preferable.

本発明の第3の態様によれば、第1または第2の態様の非水電解質二次電池において、外周の正極に下層にあるセパレータが、2層存在することになるので、電極体成型時の圧力をさらによく吸収することができることになるので、これらのセパレータよりも電極体中心に方向にあるセパレータに過度の圧力が加えられることをより効果的に防ぐことができる。したがって、電極が高充填密度であるので電池容量が高く、またセパレータの微孔が潰されにくくなり、リチウムイオンの通路が確保されて、電池特性が良好となり好ましい。また、電極体の断面長円形の他方の直線部における外周の正極の下層にあるクッションの役割を備える2層のセパレータ共に曲部まで延長されて終端しているので、セパレータが落下衝撃による電極体の変形をさらに効果的に防止できる。したがって、電池の落下による短絡が減少するので好ましい。   According to the third aspect of the present invention, in the nonaqueous electrolyte secondary battery according to the first or second aspect, since there are two layers of the separator in the lower layer on the outer peripheral positive electrode, the electrode body is molded. Therefore, it is possible to more effectively prevent an excessive pressure from being applied to the separator located in the center of the electrode body than these separators. Therefore, since the electrode has a high packing density, the battery capacity is high, the micropores of the separator are not easily crushed, a lithium ion passage is secured, and the battery characteristics are favorable, which is preferable. In addition, since the two layers of separators, which serve as cushions in the lower layer of the outer peripheral positive electrode in the other straight part having an elliptical cross section of the electrode body, are both extended to the curved portion and terminated, the electrode body due to drop impact Can be effectively prevented. Therefore, the short circuit due to the dropping of the battery is reduced, which is preferable.

本発明の第4の態様によれば、他方の曲部に配置されるセパレータの終端は、曲部の1/2以上を覆っているので、曲部の大半が外周の正極下層にあるセパレータに覆われることになり、セパレータが落下衝撃による電極体の変形をさらに効果的に防止することになり好ましい。   According to the fourth aspect of the present invention, since the end of the separator disposed in the other curved portion covers more than 1/2 of the curved portion, the majority of the curved portion is placed on the separator located in the outer peripheral positive electrode lower layer. This is preferable because the separator is more effectively prevented from being deformed by a drop impact.

本発明に係る非水電解質二次電池の縦断面図である。It is a longitudinal cross-sectional view of the nonaqueous electrolyte secondary battery which concerns on this invention. 実施例1に係る非水電解質二次電池の電極体断面図である。1 is a cross-sectional view of an electrode body of a nonaqueous electrolyte secondary battery according to Example 1. FIG. 実施例2に係る非水電解質二次電池の電極体断面図である。4 is a cross-sectional view of an electrode body of a nonaqueous electrolyte secondary battery according to Example 2. FIG. 実施例3に係る非水電解質二次電池の電極体断面図である。6 is a cross-sectional view of an electrode body of a nonaqueous electrolyte secondary battery according to Example 3. FIG. 比較例に係る非水電解質二次電池の電極体断面図である。It is electrode body sectional drawing of the nonaqueous electrolyte secondary battery which concerns on a comparative example. 外周の正極金属箔を用いて正極集電タブを作製した電池の構造を示す図である。It is a figure which shows the structure of the battery which produced the positive electrode current collection tab using the outer periphery positive electrode metal foil.

本発明を実施するための形態を、非水電解質二次電池を例として、図面に基づいて説明する。なお、本発明は下記の形態に限定されるものではなく、その要旨を変更しない範囲において適宜変更して実施することが可能である。   A mode for carrying out the present invention will be described with reference to the drawings, taking a non-aqueous electrolyte secondary battery as an example. In addition, this invention is not limited to the following form, In the range which does not change the summary, it can change suitably and can implement.

なお、図1は本発明に係る非水電解質二次電池の縦断面図である。図2〜5は実施例1〜3および比較例に係る非水電解質二次電池の電極体断面図である。図6は正極集電タブの構造を示す図である。   FIG. 1 is a longitudinal sectional view of a nonaqueous electrolyte secondary battery according to the present invention. 2 to 5 are cross-sectional views of electrode bodies of nonaqueous electrolyte secondary batteries according to Examples 1 to 3 and a comparative example. FIG. 6 is a view showing the structure of the positive electrode current collecting tab.

[実施の形態]
実施例の非水電解質二次電池10は、図1に示すように、正極板11と負極板12とがセパレータ13を介して渦巻き状に巻回した電極体14が電解液と共にアルミニウム合金製の角形有底外装容器15に収納されている。負極板12からは負極集電タブ19が導出されて封口蓋16の負極端子18に接続されている。図6のように、電極体の外周には正極板11のアルミニウム箔芯体が露出する部分が配置され、正極集電タブ20が配置されている。正極集電タブはアルミニウム箔芯体をコ字状に切り込みを入れ、その切り込みを折り返して正極集電タブをなしている。正極集電タブは、封口蓋16と外装容器15開口部とのかん合部の隙間に挟み込まれ、封口蓋16と外装容器15開口部とともにレーザ溶接されている。
[Embodiment]
As shown in FIG. 1, the nonaqueous electrolyte secondary battery 10 of the example is made of an aluminum alloy together with an electrolytic solution in which an electrode body 14 in which a positive electrode plate 11 and a negative electrode plate 12 are spirally wound through a separator 13. It is stored in a rectangular bottomed outer container 15. A negative electrode current collecting tab 19 is led out from the negative electrode plate 12 and connected to the negative electrode terminal 18 of the sealing lid 16. As shown in FIG. 6, a portion where the aluminum foil core body of the positive electrode plate 11 is exposed is disposed on the outer periphery of the electrode body, and the positive electrode current collecting tab 20 is disposed. The positive electrode current collecting tab is formed by cutting an aluminum foil core into a U-shape and turning the cut back to form a positive electrode current collecting tab. The positive electrode current collecting tab is sandwiched between gaps between the sealing lid 16 and the opening of the outer container 15 and is laser-welded together with the sealing lid 16 and the outer container 15 opening.

上記非水電解質二次電池の作製方法は以下のとおりである。   The method for producing the non-aqueous electrolyte secondary battery is as follows.

<正極板の作製>
コバルト酸リチウム(LiCoO)95質量部と、導電剤として炭素材料5質量部とを混合し、この混合物95質量部と、結着剤としてポリフッ化ビニリデン5質量部とをN−メチル−2−ピロリドン(NMP)に分散させて正極合剤スラリーを調製した。このスラリーをドクターブレード法により、厚さ15μmのアルミニウム箔の両面に均一に塗布した。このとき、電極体の外周部に位置する予定の部分にはスラリーを塗布せず、アルミニウム箔が露出するようにし、外周のアルミニウム箔のみの層のすぐ下層の正極になる予定の部分は片面のみにスラリーを塗布した。その後、アルミニウム箔に塗布したスラリーを加熱乾燥して、アルミニウム箔上に活物質層が形成された乾燥極板を作製した。乾燥極板をローラープレス機で圧縮し、所定の寸法に裁断し、正極板11を作製した。
<Preparation of positive electrode plate>
95 parts by mass of lithium cobaltate (LiCoO 2 ) and 5 parts by mass of a carbon material as a conductive agent are mixed, and 95 parts by mass of this mixture and 5 parts by mass of polyvinylidene fluoride as a binder are mixed with N-methyl-2- A positive electrode mixture slurry was prepared by dispersing in pyrrolidone (NMP). This slurry was uniformly applied to both surfaces of an aluminum foil having a thickness of 15 μm by a doctor blade method. At this time, the slurry is not applied to the portion of the electrode body that is to be positioned on the outer peripheral portion, so that the aluminum foil is exposed, and the portion that is to be the positive electrode immediately below the outer peripheral aluminum foil layer is only one side. The slurry was applied. Thereafter, the slurry applied to the aluminum foil was dried by heating to produce a dry electrode plate having an active material layer formed on the aluminum foil. The dried electrode plate was compressed with a roller press and cut into a predetermined size to produce a positive electrode plate 11.

<負極板の作製>
負極活物質として黒鉛と、結着剤としてスチレンブタジエンゴムと、粘度調整剤としてカルボキシメチルセルロースとを95:2:3(質量比)で混合し、この混合物を水に分散してスラリーを調製した。このスラリーをドクターブレード法により、厚さ10μmの銅箔の両面に均一に塗布した。このとき、集電タブ19を取り付ける予定の部分にはスラリーを塗布せず、銅箔が露出するようにした。その後、銅箔に塗布したスラリーを加熱乾燥して、銅箔上に活物質層が形成された乾燥極板を作製した。乾燥極板をローラープレス機で圧縮し、所定の寸法に裁断後、集電タブ19を取り付けて負極板12を作製した。
<Preparation of negative electrode plate>
Graphite as a negative electrode active material, styrene butadiene rubber as a binder, and carboxymethyl cellulose as a viscosity modifier were mixed at 95: 2: 3 (mass ratio), and the mixture was dispersed in water to prepare a slurry. This slurry was uniformly applied to both sides of a 10 μm thick copper foil by a doctor blade method. At this time, the slurry was not applied to the portion where the current collecting tab 19 is to be attached, and the copper foil was exposed. Then, the slurry apply | coated to copper foil was heat-dried, and the dry electrode plate in which the active material layer was formed on copper foil was produced. The dried electrode plate was compressed with a roller press and cut into a predetermined size, and then a current collecting tab 19 was attached to prepare the negative electrode plate 12.

<電極体の作製>
上記正極板11と負極板12とポリエチレン微多孔膜からなるセパレータ13とを、正極板11と負極板12がセパレータ13により絶縁されるように、巻き取り機を用いて円筒状に巻回し、その後断面が長円形状になるように成型して電極体を作製した。このとき、図2に示すように、電極体の断面長円形状の一方の直線部101が、外周から正極、セパレータ、負極の順に層をなし、一方の曲部102が、外周から正極、ポリプロピレンシートに粘着剤を塗布したポリプロピレンテープからなる絶縁部材23、セパレータ、負極の終端の順に層をなし、他方の直線部103が、外周から正極、セパレータ、セパレータの終端、正極、セパレータ、負極の順に層をなし、他方の曲部104が、外周から正極終端、セパレータの終端、正極、セパレータ、負極の順に層をなすように構成されるように巻回し、他方の曲部にある正極終端とセパレータ終端はポリプロピレンテープからなる終端固定テープ25で固定し、プレス機を用いて断面が長円形状になるように成型して電極体を作製した。このとき、他方の直線部の外周の正極アルミニウム箔にコ字状の切り込みを入れ、その切り込みを封口蓋側に起こした正極集電タブ20を作製し、さらに電極体の封口蓋側の一部にプロピレンテープからからなる正極集電タブ保護テープ24を貼付した。(図2では正極集電タブ20は不図示)なお、他方の曲部におけるセパレータの終端は、曲部をおよそ1/2覆うようにし、他方の直線部におけるセパレータの終端は、直線部をおよそ3/4覆うように配置した。
<Production of electrode body>
The positive electrode plate 11, the negative electrode plate 12, and the separator 13 made of a polyethylene microporous film are wound into a cylindrical shape using a winder so that the positive electrode plate 11 and the negative electrode plate 12 are insulated by the separator 13, and then An electrode body was fabricated by molding so that the cross section was an oval shape. At this time, as shown in FIG. 2, one linear portion 101 having an elliptical cross section of the electrode body forms layers in order of the positive electrode, the separator, and the negative electrode from the outer periphery, and one curved portion 102 is formed from the outer periphery to the positive electrode and polypropylene. Insulating member 23 made of polypropylene tape coated with an adhesive on the sheet, a layer is formed in the order of the separator and the end of the negative electrode, and the other straight portion 103 is in order of the positive electrode, the separator, the end of the separator, the positive electrode, the separator, and the negative electrode The other curved portion 104 is wound so that the other curved portion 104 is structured in order of the positive electrode termination, the separator termination, the positive electrode, the separator, and the negative electrode from the outer periphery, and the positive electrode termination and the separator in the other curved portion The end was fixed with an end fixing tape 25 made of polypropylene tape, and the electrode body was fabricated by using a press machine so that the cross section was an oval. At this time, a U-shaped cut was made in the positive electrode aluminum foil on the outer periphery of the other straight portion, and the positive electrode current collecting tab 20 was produced in which the cut was raised on the sealing lid side, and a part on the sealing lid side of the electrode body A positive current collector tab protective tape 24 made of propylene tape was affixed to the tape. (The positive electrode current collecting tab 20 is not shown in FIG. 2) Note that the end of the separator in the other curved portion covers about 1/2 of the curved portion, and the end of the separator in the other straight portion is approximately the straight portion. It was arranged to cover 3/4.

<電解質の調製>
エチレンカーボネートとエチルメチルカーボネートとジエチルカーボネートを体積比で20:50:30(25℃、1気圧)の割合で混合した非水溶媒に、電解質塩として六フッ化リン酸リチウムを0.9モル/リットル溶解した。
<Preparation of electrolyte>
In a non-aqueous solvent in which ethylene carbonate, ethyl methyl carbonate, and diethyl carbonate were mixed at a volume ratio of 20:50:30 (25 ° C., 1 atm), 0.9 mol / liter of lithium hexafluorophosphate as an electrolyte salt was added. 1 liter was dissolved.

<電池の組み立て>
上記電極体の負極板から導出される負極集電タブ19に負極端子18と絶縁スペーサ22を備える封口蓋16を溶接して、電極体を外装容器15に収納して外装容器15の開口と封口蓋16とをかん合して蓋をした。正極集電タブ20は外装容器15の開口と封口蓋16とをかん合させるときにそれらの間に挟み込んだ。そして、正極集電タブと共に外装容器15の開口と封口蓋16のかん合部分をレーザ溶接した。そして注液孔21から上記の電解液を所定量注入して、図示しない注液栓で密封した、このようにして、高さ43mm、幅34mm、厚さ4.3mmで、設計容量750mAhの角形非水電解質二次電池を作製した。
<Battery assembly>
The sealing lid 16 having the negative electrode terminal 18 and the insulating spacer 22 is welded to the negative electrode current collecting tab 19 led out from the negative electrode plate of the electrode body, and the electrode body is accommodated in the outer container 15 to open and seal the outer container 15. The lid 16 was mated with the lid 16. The positive electrode current collecting tab 20 was sandwiched between the opening of the outer container 15 and the sealing lid 16 when they were mated. And the opening part of the exterior container 15 and the sealing part of the sealing lid 16 were laser-welded with the positive electrode current collection tab. Then, a predetermined amount of the electrolytic solution was injected from the liquid injection hole 21 and sealed with a liquid injection stopper (not shown). Thus, a square having a height of 43 mm, a width of 34 mm, a thickness of 4.3 mm and a design capacity of 750 mAh. A non-aqueous electrolyte secondary battery was produced.

(実施例1)
上記のようにして実施例1の非水電解質二次電池を作製した。
Example 1
The nonaqueous electrolyte secondary battery of Example 1 was produced as described above.

(実施例2)
上記実施の形態において、図3のように、他方の直線部103が、外周から正極、セパレータの終端、セパレータ、正極、セパレータ、負極の順に層をなすこと以外、上記実施の形態と同様として実施例2の非水電解質二次電池を作製した。なお、他方の曲部におけるセパレータの終端は、曲部をおよそ1/2覆うようにし、他方の直線部に置けるセパレータの終端は、直線部をおよそ3/4覆うように配置した。
(Example 2)
In the above embodiment, as shown in FIG. 3, the other straight line portion 103 is implemented in the same manner as in the above embodiment except that the positive electrode, the terminal end of the separator, the separator, the positive electrode, the separator, and the negative electrode are formed in this order from the outer periphery. The nonaqueous electrolyte secondary battery of Example 2 was produced. In addition, the end of the separator in the other curved portion was arranged so as to cover about 1/2 of the curved portion, and the end of the separator placed on the other straight portion was arranged so as to cover about 3/4 of the straight portion.

(実施例3)
上記実施の形態において、図4のように、他方の直線部103が、外周から正極、セパレータ、セパレータ、正極、セパレータ、負極の順に層をなし、他方の曲部104が、外周から正極終端、セパレータの終端、セパレータの終端、正極、セパレータ、負極の順に層をなすこと以外、上記実施の形態と同様として実施例3の非水電解質二次電池を作製した。なお、他方の曲部におけるセパレータの終端は、曲部をおよそ1/2覆うように配置した。
(Example 3)
In the above embodiment, as shown in FIG. 4, the other straight portion 103 forms layers in order of the positive electrode, the separator, the separator, the positive electrode, the separator, and the negative electrode from the outer periphery, and the other curved portion 104 extends from the outer periphery to the positive electrode termination, A nonaqueous electrolyte secondary battery of Example 3 was produced in the same manner as in the above embodiment except that the layers were formed in the order of the end of the separator, the end of the separator, the positive electrode, the separator, and the negative electrode. In addition, the terminal end of the separator in the other curved portion was arranged so as to cover about 1/2 of the curved portion.

(比較例)
上記実施の形態において、図5のように、他方の直線部103が、外周から正極、セパレータの終端、セパレータの終端、正極、セパレータ、負極の順に層をなし、他方の曲部104が、外周から正極終端、正極、セパレータ、負極の順に層をなすこと以外、上記実施の形態と同様として比較例の非水電解質二次電池を作製した。なお、セパレータの終端は、他方の直線部をおよそ3/4覆うように配置した。
(Comparative example)
In the above embodiment, as shown in FIG. 5, the other straight portion 103 is formed in the order of the positive electrode, the end of the separator, the end of the separator, the positive electrode, the separator, and the negative electrode from the outer periphery, and the other curved portion 104 is the outer periphery. A non-aqueous electrolyte secondary battery of a comparative example was fabricated in the same manner as in the above embodiment except that the layers were formed in the order of positive electrode termination, positive electrode, separator, and negative electrode. The end of the separator was disposed so as to cover about 3/4 of the other straight line portion.

<放電負荷特性試験>
作製した非水電解質二次電池を25℃で、1It(750mA)の定電流で電池電圧が4.2Vになるまで充電し、さらに4.2Vで0.02It(15mA)になるまで定電圧充電を行った。その後、25℃で1Itの定電流で2.75Vになるまで定電流放電を行い、その時の放電容量を計測し、1サイクル目の放電容量とした。さらに25℃で、1Itの定電流で電池電圧が4.2Vになるまで充電し、4.2Vで0.02Itになるまで定電圧充電を行った。そして、25℃で3It(2250mA)の定電流で2.75Vになるまで定電流放電を行い、その時の放電容量を計測し、2サイクル目の放電容量とした。
そして、放電負荷特性を以下の式のように計算した。
・放電負荷特性(%)=(2サイクル目の放電容量)/(1サイクル目の放電容量)×100
<Discharge load characteristic test>
The prepared nonaqueous electrolyte secondary battery is charged at 25 ° C. with a constant current of 1 It (750 mA) until the battery voltage reaches 4.2 V, and further charged at 4.2 V with a constant voltage until 0.02 It (15 mA). Went. Then, constant current discharge was performed until it became 2.75V with a 1 It constant current at 25 degreeC, the discharge capacity at that time was measured, and it was set as the discharge capacity of the 1st cycle. Further, charging was performed at 25 ° C. with a constant current of 1 It until the battery voltage reached 4.2 V, and constant voltage charging was performed until it reached 0.02 It at 4.2 V. And constant current discharge was performed until it became 2.75V with the constant current of 3 It (2250mA) at 25 degreeC, the discharge capacity at that time was measured, and it was set as the discharge capacity of the 2nd cycle.
And the discharge load characteristic was computed like the following formula | equation.
Discharge load characteristics (%) = (discharge capacity at the second cycle) / (discharge capacity at the first cycle) × 100

<充放電サイクル特性>
作製した非水電解質二次電池を、25℃で1Itの定電流で4.2Vまで充電し、さらに4.2Vで0.02Itになるまで定電圧充電を行った。次に25℃で1Itの定電流で2.75Vまで定電流放電を行い、放電容量を測定した。また、放電終了状態で電池の厚みを、ノギスを用いて測定した。この充電と放電を1サイクルとし、300サイクル繰り返した。300サイクル目の放電が終了した状態で電池の厚みを測定した。そして、充放電サイクル特性として、300サイクル後の容量維持率と電池の膨化量を以下の式のように計算した。
・残存容量率(%)=(300サイクル目の放電容量)/(1サイクル目の放電容量)×100
・膨化量(%)=(300サイクル後の電池厚み)/(1サイクル目の電池厚み) × 100
<Charge / discharge cycle characteristics>
The produced non-aqueous electrolyte secondary battery was charged to 4.2 V with a constant current of 1 It at 25 ° C., and further subjected to constant voltage charging until it reached 0.02 It at 4.2 V. Next, constant current discharge was performed at 25 ° C. with a constant current of 1 It to 2.75 V, and the discharge capacity was measured. Moreover, the thickness of the battery was measured using a vernier caliper after the discharge was completed. This charge and discharge was defined as one cycle and repeated 300 cycles. The battery thickness was measured in the state where the discharge at the 300th cycle was completed. Then, as the charge / discharge cycle characteristics, the capacity retention rate after 300 cycles and the amount of expansion of the battery were calculated as in the following equations.
Residual capacity ratio (%) = (discharge capacity at the 300th cycle) / (discharge capacity at the first cycle) × 100
Expansion amount (%) = (Battery thickness after 300 cycles) / (Battery thickness at the first cycle) × 100

<落下試験>
実施例1〜3および比較例の非水電解質二次電池各10個を、それぞれ25℃で1Itの定電流で4.2Vまで充電し、さらに4.2Vで1/50Itになるまで定電圧充電を行った。次に25℃で1Itの定電流で2.75Vまで定電流放電を行った。放電後の電池は、電池電圧を測定し、封口蓋を下向きにして高さ2.0mからコンクリート床へ鉛直落下させた。1回落下させるごとに電池電圧を測定し、電池電圧が低下するまで(つまり電池内部で短絡が発生するまで)電池の落下を繰り返し、電池電圧の低下が発生した回数を記録した。
<Drop test>
Each of the nonaqueous electrolyte secondary batteries of Examples 1 to 3 and Comparative Example was charged to 4.2 V at a constant current of 1 It at 25 ° C., and further charged at a constant voltage until it became 1/50 It at 4.2 V. Went. Next, constant current discharge was performed at 25 ° C. to 2.75 V at a constant current of 1 It. The battery after discharge was measured for battery voltage and dropped vertically from a height of 2.0 m onto a concrete floor with the sealing lid facing downward. The battery voltage was measured each time the battery was dropped, and the battery was repeatedly dropped until the battery voltage decreased (that is, until a short circuit occurred inside the battery), and the number of times the battery voltage decreased was recorded.

上記の各実施例および比較例の試験結果を表1に示す。   Table 1 shows the test results of the above Examples and Comparative Examples.

セパレータの終端が電極体断面長円形状の曲部にある実施例1〜3とセパレータの終端が曲部になく直線部のみにある比較例とを比較すると、実施例1〜3の方が放電負荷特性、充放電サイクル特性ともに優れており、充放電サイクル後の電池膨化量も小さいことがわかる。さらに落下試験では、比較例よりも実施例1〜3の方が、電池電圧が低下する落下回数が多く、電池内部で短絡が発生し難いことがわかる。   When Examples 1 to 3 in which the end of the separator is an ellipse-shaped curved portion of the electrode body and a comparative example in which the end of the separator is not in the curved portion but only in the straight portion are compared, Examples 1 to 3 are more discharged. It can be seen that both the load characteristics and the charge / discharge cycle characteristics are excellent, and the amount of battery expansion after the charge / discharge cycles is small. Furthermore, in the drop test, it can be seen that in Examples 1 to 3, the battery voltage drops more times than in the comparative example, and a short circuit is less likely to occur inside the battery.

これは以下のように考えられる。すなわち、比較例では、電極体断面長円形状の直線部でセパレータが終端しており、外周から正極、正極、セパレータ、負極と層をなす部分が生じる。この部分に電極体成型時のプレス圧力が加わると、その圧力が電極体内部のセパレータにも加わり、セパレータの微多孔が潰れる。セパレータの微多孔が潰れると、微多孔を通じて行われるリチウムイオンの流通が阻害され抵抗となる。このために放電負荷特性、充放電サイクル特性が低下する。   This is considered as follows. That is, in the comparative example, the separator is terminated at a straight portion having an oval cross section of the electrode body, and a portion that forms a layer with the positive electrode, the positive electrode, the separator, and the negative electrode is generated from the outer periphery. When a pressing pressure at the time of molding the electrode body is applied to this portion, the pressure is also applied to the separator inside the electrode body, and the micropores of the separator are crushed. When the micropores of the separator are crushed, the flow of lithium ions performed through the micropores is hindered, resulting in resistance. For this reason, discharge load characteristics and charge / discharge cycle characteristics are deteriorated.

一方、実施例1〜3では、電極体外周の正極の下層では少なくとも1層のセパレータが電極体断面長円形状の曲部で終端しており、直線部全体にわたって外周の正極の下層に少なくとも1層のセパレータが存在している。このセパレータが、電極体成型時に加えられるプレスの圧力を吸収して、電極体内部のセパレータが圧力を受けるのを緩和する。したがって、セパレータ微多孔が潰れにくくなり、良好な電池特性が維持される。   On the other hand, in Examples 1 to 3, at least one separator in the lower layer of the positive electrode on the outer periphery of the electrode body is terminated with a curved portion having an elliptical cross section of the electrode body, and at least 1 is disposed on the lower layer of the outer peripheral positive electrode over the entire straight portion. A layer separator is present. This separator absorbs the pressure of the press applied at the time of electrode body shaping | molding, and relieve | moderates that the separator inside an electrode body receives a pressure. Therefore, the separator micropores are not easily crushed, and good battery characteristics are maintained.

また、落下試験において実施例1〜3では、変形の影響を受けやすい曲部において、外周の正極の下層に少なくとも1層のセパレータが存在するために、このセパレータが曲部での落下による変形を抑制し、短絡発生を防ぐ。一方、比較例は、外周の正極の下層にセパレータが存在しないので、落下による変形が抑制されず、短絡が発生しやすくなったものと考えられる。   Further, in Examples 1 to 3 in the drop test, in the curved portion that is susceptible to deformation, since there is at least one separator in the lower layer of the outer peripheral positive electrode, the separator is deformed by dropping at the curved portion. Suppress and prevent short circuit. On the other hand, in the comparative example, since there is no separator in the lower layer of the outer peripheral positive electrode, it is considered that deformation due to dropping is not suppressed and a short circuit is likely to occur.

また、電極体外周の正極の下層に1層のセパレータのみが電極体断面長円形状の曲部で終端している実施例1、2と、2層のセパレータが電極体断面長円形状の曲部で終端している実施例3とを比較すると、実施例3の方が、放電負荷特性、充放電サイクル特性が良好で、落下試験でも短絡発生が抑制されていることがわかる。これは、電極体断面長円形状の直線部、曲部の2層のセパレータが、1層のセパレータよりも電極体成型時のプレス圧力をより効率的に吸収でき、さらに落下による変形を効果的に抑制できるためと考えられる。   In addition, in Examples 1 and 2 in which only one separator is terminated at the curved portion of the electrode body cross section ellipse in the lower layer of the positive electrode on the outer periphery of the electrode body, and the two layers of separator are curved with the electrode body cross section oval shape. Comparing with Example 3 terminated at the part, it can be seen that Example 3 has better discharge load characteristics and charge / discharge cycle characteristics, and the occurrence of short circuit is suppressed even in a drop test. This is because the two-layer separator of the ellipse linear section and the curved section of the electrode body can absorb the press pressure at the time of molding the electrode body more efficiently than the one-layer separator, and the deformation due to dropping is more effective. It is thought that it can be suppressed.

(追加事項)
上記実施例においてセパレータの終端は、曲部の1/2程度を覆うようにしたが、曲部の1/4以上覆うようにセパレータの終端を配置すれば、本発明の効果が発現される。好ましくは、1/3以上、より好ましくは1/2以上、さらに好ましくは3/4以上曲部を覆うようにセパレータ終端を配置する。
(extra content)
In the above embodiment, the end of the separator covers about 1/2 of the curved portion. However, if the end of the separator is disposed so as to cover 1/4 or more of the curved portion, the effect of the present invention is exhibited. Preferably, the end of the separator is disposed so as to cover the curved portion, more preferably 1/3 or more, more preferably 1/2 or more, and even more preferably 3/4 or more.

本発明によれば、放電負荷特性、充放電サイクル特性、落下信頼性に優れる非水電解質二次電池を提供できるので、産業上の利用可能性が大である。   According to the present invention, a non-aqueous electrolyte secondary battery having excellent discharge load characteristics, charge / discharge cycle characteristics, and drop reliability can be provided, and therefore, industrial applicability is great.

10 非水電解質二次電池
11 正極板
12 負極板
13 セパレータ
14 電極体
15 外装容器
16 封口蓋
20 正極集電タブ
23 絶縁部材
24 保護テープ
25 終端固定テープ
101 一方の直線部
102 一方の曲部
103 他方の直線部
104 他方の曲部
DESCRIPTION OF SYMBOLS 10 Nonaqueous electrolyte secondary battery 11 Positive electrode plate 12 Negative electrode plate 13 Separator 14 Electrode body 15 Exterior container 16 Sealing lid 20 Positive electrode current collection tab 23 Insulating member 24 Protective tape 25 Termination fixing tape 101 One linear part 102 One curved part 103 The other straight part 104 The other curved part

Claims (4)

金属箔に活物質層が形成されてなる正極と、負極とが、微多孔を備えるセパレータを介して巻回された電極体を外装容器に収納してなる非水電解質二次電池であって、
前記電極体は、その断面が、一方の直線部と他方の直線部からなる一対の直線部と、前記一方の直線部の一方端と前記他方の直線部の一方端を接続する一方の曲部と、前記一方の直前部の他方端と前記他方の直線部の他方端を接続する他方の曲部からなる長円形であり、前記正極、負極およびセパレータは、前記一方の直線部、前記一方の曲部、前記他方の直線部、前記他方の曲部の順に巻回されており、
前記一方の直線部は、外周から巻回中心に向かって、正極、セパレータ、負極が順に層をなし、
前記一方の曲部は、外周から巻回中心に向かって、正極、極板を保護する絶縁部材、セパレータ、負極の終端が順に層をなし、
前記他方の直線部は、外周から巻回中心に向かって、正極、セパレータ、正極、セパレータ、負極が順に層をなし、
前記他方の曲部は、外周から巻回中心に向かって、正極の終端、セパレータの終端、正極、セパレータ、負極が順に層をなしていることを特徴とする、
非水電解質二次電池。
A positive electrode in which an active material layer is formed on a metal foil, and a negative electrode are nonaqueous electrolyte secondary batteries in which an electrode body wound through a separator having micropores is housed in an outer container,
The electrode body has a cross-section that connects a pair of linear portions including one linear portion and the other linear portion, and one curved portion connecting one end of the one linear portion and one end of the other linear portion. The other end of the one immediately preceding portion and the other curved portion connecting the other end of the other straight portion, and the positive electrode, the negative electrode, and the separator are the one straight portion, the one straight portion, It is wound in the order of the curved portion, the other straight portion, and the other curved portion,
The one straight line portion is composed of a positive electrode, a separator, and a negative electrode in order from the outer periphery toward the winding center,
From the outer periphery toward the winding center, the one curved portion has a positive electrode, an insulating member that protects the electrode plate, a separator, and a terminal end of the negative electrode in order,
The other straight line portion has a positive electrode, a separator, a positive electrode, a separator, and a negative electrode in order from the outer periphery toward the winding center,
The other curved portion is characterized in that the end of the positive electrode, the end of the separator, the positive electrode, the separator, and the negative electrode are sequentially layered from the outer periphery toward the winding center.
Non-aqueous electrolyte secondary battery.
前記他方の直線部は、外周から巻回中心に向かって、金属箔からなる正極、セパレータ、外周側が金属箔である正極、セパレータ、負極の順に層をなすことを特徴とする請求項1に記載の非水電解質二次電池。   The said other straight part makes a layer in order of the positive electrode which consists of metal foil, a separator, the positive electrode which is metal foil on the outer peripheral side, a separator, and a negative electrode toward the winding center from the outer periphery. Non-aqueous electrolyte secondary battery. 前記他方の曲部のセパレータの終端は、前記2層のセパレータの終端であることを特徴とする請求項1または2に記載の非水電解質二次電池。   3. The nonaqueous electrolyte secondary battery according to claim 1, wherein an end of the separator of the other curved portion is an end of the two-layer separator. 前記他方の曲部に配置されるセパレータの終端は、曲部の1/2以上を覆っていることを特徴とする請求項1から3のいずれかに記載の非水電解質二次電池。
4. The non-aqueous electrolyte secondary battery according to claim 1, wherein a terminal end of the separator disposed in the other curved portion covers 1/2 or more of the curved portion. 5.
JP2010103709A 2010-04-28 2010-04-28 Nonaqueous electrolyte secondary battery Active JP5459048B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010103709A JP5459048B2 (en) 2010-04-28 2010-04-28 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010103709A JP5459048B2 (en) 2010-04-28 2010-04-28 Nonaqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2011233408A true JP2011233408A (en) 2011-11-17
JP5459048B2 JP5459048B2 (en) 2014-04-02

Family

ID=45322534

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010103709A Active JP5459048B2 (en) 2010-04-28 2010-04-28 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP5459048B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021243581A1 (en) * 2020-06-02 2021-12-09 宁德时代新能源科技股份有限公司 Electrode assembly, related battery and apparatus thereof, and manufacturing method and manufacturing apparatus therefor
WO2021243583A1 (en) * 2020-06-02 2021-12-09 宁德时代新能源科技股份有限公司 Electrode assembly and related battery, device, manufacturing method, and manufacturing device
WO2022036721A1 (en) * 2020-08-21 2022-02-24 宁德时代新能源科技股份有限公司 Electrode assembly, battery cell, battery, and method and apparatus for manufacturing electrode assembly

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006278142A (en) * 2005-03-29 2006-10-12 Sanyo Electric Co Ltd Square battery with spiral electrode
JP2010015751A (en) * 2008-07-02 2010-01-21 Toyota Motor Corp Battery
WO2010022669A1 (en) * 2008-08-26 2010-03-04 Byd Company Limited Battery electrode plate, forming method thereof and battery having the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006278142A (en) * 2005-03-29 2006-10-12 Sanyo Electric Co Ltd Square battery with spiral electrode
JP2010015751A (en) * 2008-07-02 2010-01-21 Toyota Motor Corp Battery
WO2010022669A1 (en) * 2008-08-26 2010-03-04 Byd Company Limited Battery electrode plate, forming method thereof and battery having the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021243581A1 (en) * 2020-06-02 2021-12-09 宁德时代新能源科技股份有限公司 Electrode assembly, related battery and apparatus thereof, and manufacturing method and manufacturing apparatus therefor
WO2021243583A1 (en) * 2020-06-02 2021-12-09 宁德时代新能源科技股份有限公司 Electrode assembly and related battery, device, manufacturing method, and manufacturing device
CN114467211A (en) * 2020-06-02 2022-05-10 宁德时代新能源科技股份有限公司 Electrode assembly and related battery, device, manufacturing method and manufacturing device thereof
CN114503334A (en) * 2020-06-02 2022-05-13 宁德时代新能源科技股份有限公司 Electrode assembly and related battery, device, manufacturing method and manufacturing device thereof
WO2022036721A1 (en) * 2020-08-21 2022-02-24 宁德时代新能源科技股份有限公司 Electrode assembly, battery cell, battery, and method and apparatus for manufacturing electrode assembly
US11843119B2 (en) 2020-08-21 2023-12-12 Contemporary Amperex Technology Co., Limited Electrode assembly, battery cell, battery, and method and apparatus for manufacturing electrode assembly

Also Published As

Publication number Publication date
JP5459048B2 (en) 2014-04-02

Similar Documents

Publication Publication Date Title
US11515532B2 (en) Electrode, nonaqueous electrolyte battery and battery pack
US10468655B2 (en) Nonaqueous electrolyte secondary batteries
US20120202097A1 (en) Lithium ion secondary cell
JP2007273183A (en) Negative electrode and secondary battery
JP2013201077A (en) Nonaqueous electrolytic secondary battery
JP6877094B2 (en) Non-aqueous electrolyte batteries, battery modules and vehicles
JP7087488B2 (en) Non-aqueous electrolyte secondary battery and assembled battery using it
US20150263334A1 (en) Non-aqueous electrolyte secondary battery
JP5623073B2 (en) Secondary battery
JP6874472B2 (en) Lithium ion secondary battery
JP7197536B2 (en) lithium ion secondary battery
JP6862919B2 (en) Square lithium ion secondary battery
WO2018088204A1 (en) Electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP5459048B2 (en) Nonaqueous electrolyte secondary battery
JP5376036B2 (en) Nonaqueous electrolyte secondary battery
EP3273511B1 (en) Negative electrode for non-aqueous electrolyte secondary cell, and non-aqueous electrolyte secondary cell in which said negative electrode is used
KR102083712B1 (en) Flat-type secondary battery
JP7003775B2 (en) Lithium ion secondary battery
JP2006244833A (en) Lithium secondary battery and manufacturing method of the same
JP6765268B2 (en) Rechargeable battery
JP5334109B2 (en) Laminated battery
JP2013201094A (en) Nonaqueous electrolyte secondary battery
JP7079414B2 (en) Non-aqueous electrolyte secondary battery
JP2014241267A (en) Nonaqueous electrolyte secondary battery, and method for manufacturing the same
JP7365562B2 (en) Wound electrode body for secondary batteries

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20111117

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20111130

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130410

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20130628

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130911

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130917

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131016

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131217

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131230

R151 Written notification of patent or utility model registration

Ref document number: 5459048

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350