JP2020057597A - Battery pack - Google Patents

Battery pack Download PDF

Info

Publication number
JP2020057597A
JP2020057597A JP2019144639A JP2019144639A JP2020057597A JP 2020057597 A JP2020057597 A JP 2020057597A JP 2019144639 A JP2019144639 A JP 2019144639A JP 2019144639 A JP2019144639 A JP 2019144639A JP 2020057597 A JP2020057597 A JP 2020057597A
Authority
JP
Japan
Prior art keywords
region
battery
positive electrode
inter
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019144639A
Other languages
Japanese (ja)
Other versions
JP7441013B2 (en
Inventor
邦彦 峯谷
Kunihiko Minetani
邦彦 峯谷
実央 野坂
Mio Nosaka
実央 野坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Publication of JP2020057597A publication Critical patent/JP2020057597A/en
Application granted granted Critical
Publication of JP7441013B2 publication Critical patent/JP7441013B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Mounting, Suspending (AREA)

Abstract

To prevent an increase in internal resistance in both high-rate cycle and low-rate cycle in a battery cell including a separator with a protrusion.SOLUTION: A battery pack, which is one example of an embodiment, is formed by stacking a plurality of nonaqueous electrolyte secondary batteries via inter-battery separators 30. The inter-battery separators include a protrusion group protruding from a body plate portion 31 in a lamination direction. In the inter-battery separators, a second region S2, a fifth region S5, and eighth region S8 overlap with a center potion in a wound axis direction of an electrode body 13 when viewed from one side in the lamination direction. The protrusion group includes a plurality of end side protrusions overlapping with all regions S1-S3 and S7-S9 of a first group G1 and a third group G3 and a plurality of center side protrusions overlapping with a fourth region S4 and a sixth region S6. Formation density of the protrusion group is lower in the fifth region S5 than the fourth region S4 and the sixth region S6.SELECTED DRAWING: Figure 4

Description

本開示は、組電池に関する。   The present disclosure relates to a battery pack.

近年、環境保護運動の高まりを背景として、非水電解質二次電池を搭載した電気自動車(EV)やハイブリッド電気自動車(HEV、PHEV)の開発が活発に行われている。リチウムイオン電池に代表される非水電解質二次電池がEV、HEV、PHEV等に搭載される際には、複数の電池が、電気的に直列または並列で接続されて組電池を形成して使用される。   In recent years, against the background of a growing environmental protection movement, development of electric vehicles (EV) and hybrid electric vehicles (HEV, PHEV) equipped with non-aqueous electrolyte secondary batteries has been actively performed. When a non-aqueous electrolyte secondary battery represented by a lithium ion battery is mounted on an EV, HEV, PHEV, or the like, a plurality of batteries are electrically connected in series or parallel to form an assembled battery and used. Is done.

組電池が使用される際、電池の充放電時の自己発熱により、電池が高温状態にさらされると、電池の劣化が促進されることが一般的に知られている。このため、隣り合う電池間に、リブ(突起)と、リブ間の隙間(溝)とを有する電池間セパレータを使用して溝に空気等の気体を流すことで、電池を冷却する場合がある(特許文献1参照)。   It is generally known that, when a battery pack is used, when the battery is exposed to a high temperature state due to self-heating when the battery is charged and discharged, the deterioration of the battery is promoted. For this reason, the battery may be cooled by flowing gas such as air into the groove using an inter-cell separator having ribs (projections) and gaps (grooves) between the ribs between adjacent cells. (See Patent Document 1).

特許第5813656号公報Japanese Patent No. 5813656

非水電解質二次電池は、充電時に負極活物質がリチウムイオンを吸収することにより負極活物質が膨張し、負極活物質を含む負極板が膨張する。一方、特許文献1に記載された電池間セパレータを使用すると、電池が電池間セパレータの突起により略均等に押圧される。これにより、電極体の膨張が抑制される。このため、充電時に負極板が膨張した場合、電極体内に存在する非水電解質が電極体外に押し出される。また、放電時に負極板が収縮しても、電極体外に存在する非水電解質は電極体内に戻り難く、特にハイレートサイクルと呼ばれる充放電電流が大きく、充電深度(SOC)の変動が大きく負極板の膨張収縮が大きいサイクルモードでは内部抵抗が上昇しやすい。   In a non-aqueous electrolyte secondary battery, the negative electrode active material expands due to the absorption of lithium ions by the negative electrode active material during charging, and the negative electrode plate containing the negative electrode active material expands. On the other hand, when the inter-battery separator described in Patent Literature 1 is used, the battery is pressed substantially uniformly by the protrusion of the inter-battery separator. Thereby, expansion of the electrode body is suppressed. Therefore, when the negative electrode plate expands during charging, the non-aqueous electrolyte present in the electrode body is pushed out of the electrode body. In addition, even if the negative electrode plate shrinks during discharging, the non-aqueous electrolyte existing outside the electrode body does not easily return to the electrode body, and particularly the charge / discharge current called a high rate cycle is large, and the depth of charge (SOC) fluctuates greatly. In the cycle mode in which the expansion and contraction is large, the internal resistance tends to increase.

また、電池間セパレータに形成される突起の位置によっては、ローレートサイクルと呼ばれる充放電電流が小さいサイクルモードで内部抵抗が上昇する場合があることも分かった。   Further, it was also found that depending on the position of the protrusion formed on the inter-battery separator, the internal resistance may increase in a cycle mode called a low rate cycle in which the charge / discharge current is small.

本開示の一態様である組電池は、複数の非水電解質二次電池が、電池間セパレータを介して積層されて構成される組電池であって、複数の非水電解質二次電池のそれぞれは、正極活物質を含む正極合材層を有する正極板、及び負極板を有する巻回型の電極体と、非水電解質と、電極体及び非水電解質を収容するケースとを備え、電極体は、外周面が平坦な平坦部と、平坦部の第1方向両端に配置された外周面が曲面である2つの曲面部を有し、電池間セパレータは、本体板部と、本体板部から積層方向に突出する突起群と、を含み、電池間セパレータを積層方向一方側から見た場合に、本体板部において、電極体の平坦部内に配置された正極合材層と重なる領域を、第1方向に直交する第1辺に沿う第1辺方向と、第1方向と平行な第2辺に沿う第2辺方向とのそれぞれで3つに等分割することで得られた9個の領域に分割し、9個の領域が、電池間セパレータの第1方向一端から他端に向かって第1領域、第2領域、及び第3領域からなる第1群と、第4領域、第5領域、及び第6領域からなる第2群と、第7領域、第8領域、及び第9領域からなる第3群とで分けられた場合において、積層方向一方側から見た場合に、第2領域、第5領域、及び第8領域が電極体の巻回軸方向中央部と重なっており、突起群は、第1群及び第3群の全ての領域に重なる複数の端側突起と、第4領域及び第6領域に重なる複数の中央側突起とを有し、突起群の形成密度は、第5領域で、第4領域及び第6領域のそれぞれより低い、組電池である。   An assembled battery according to an embodiment of the present disclosure is an assembled battery in which a plurality of nonaqueous electrolyte secondary batteries are stacked with an inter-cell separator interposed therebetween, and each of the plurality of nonaqueous electrolyte secondary batteries is A positive electrode plate having a positive electrode mixture layer containing a positive electrode active material, and a wound electrode body having a negative electrode plate, a non-aqueous electrolyte, and a case accommodating the electrode body and the non-aqueous electrolyte. A flat portion having a flat outer peripheral surface and two curved surface portions having curved outer peripheral surfaces disposed at both ends in the first direction of the flat portion, and the inter-battery separator is laminated from the main body plate portion and the main body plate portion A protrusion group that projects in the direction, and when the inter-battery separator is viewed from one side in the stacking direction, a region overlapping with the positive electrode mixture layer disposed in the flat portion of the electrode body in the main body plate portion, The first side direction along the first side orthogonal to the direction and the second side parallel to the first direction The battery is divided into nine regions obtained by equally dividing into three in each of the second side directions, and the nine regions are divided into first regions from one end in the first direction to the other end of the inter-battery separator. A first group consisting of a region, a second region, and a third region; a second group consisting of a fourth region, a fifth region, and a sixth region; and a seventh group, an eighth region, and a ninth region. When divided from the third group, when viewed from one side in the stacking direction, the second region, the fifth region, and the eighth region overlap the central portion in the winding axis direction of the electrode body, and the projection group Has a plurality of end-side protrusions overlapping all the regions of the first and third groups, and a plurality of center-side protrusions overlapping the fourth region and the sixth region. In the region, the battery pack is lower than each of the fourth region and the sixth region.

なお、「突起群の形成密度」とは、積層方向一方側から見た場合のその領域の面積に対する、積層方向一方側から見た場合にその領域に配置された突起が形成されている部分の面積の合計の割合である。   The “density of formation of the protrusion group” is defined as the area of the region when viewed from one side in the stacking direction with respect to the area of the region when viewed from one side in the stacking direction. It is the ratio of the total area.

本開示の一態様によれば、突起付のセパレータを備える組電池において、ハイレートサイクル及びローレートサイクルの両方で内部抵抗の上昇を抑制できる。   According to an embodiment of the present disclosure, in an assembled battery including a separator with projections, an increase in internal resistance can be suppressed in both a high-rate cycle and a low-rate cycle.

実施形態の一例である組電池の斜視図であって、エンドプレート、バインドバー、及びバスバを省略して示す図である。It is a perspective view of an assembled battery which is an example of an embodiment, and is a figure which omits and shows an end plate, a bind bar, and a bus bar. 図1の組電池を構成する非水電解質二次電池の断面図である。FIG. 2 is a sectional view of a non-aqueous electrolyte secondary battery constituting the battery pack of FIG. 1. 図2の非水電解質二次電池の平面図である。FIG. 3 is a plan view of the nonaqueous electrolyte secondary battery in FIG. 2. 実施例の組電池に組み込まれる電池間セパレータの正面図(a)と、電池間セパレータにケースを介して重ねられる電極体の巻回軸方向に直交する平面での断面図(b)である。FIG. 3A is a front view of an inter-battery separator incorporated in the assembled battery of the embodiment, and FIG. 2B is a cross-sectional view of a plane orthogonal to the direction of the winding axis of an electrode body stacked on the inter-battery separator via a case. 参考例1の組電池に組み込まれる電池間セパレータの正面図である。FIG. 4 is a front view of an inter-cell separator incorporated in the battery pack of Reference Example 1. 実施例2の組電池に組み込まれる電池間セパレータの正面図(a)と、電池間セパレータにケースを介して重ねられる電極体の巻回軸方向に直交する平面での断面図(b)である。FIG. 5A is a front view of an inter-battery separator incorporated in the assembled battery of Example 2 and FIG. 7B is a cross-sectional view of a plane orthogonal to the winding axis direction of an electrode body stacked on the inter-battery separator via a case. . 参考例1において、電極体を巻回軸方向に沿って5分割した状態を示す模式図である。FIG. 6 is a schematic diagram showing a state in which an electrode body is divided into five along a winding axis direction in Reference Example 1. 参考例2の組電池における1つの非水電解質二次電池の、電極体の巻回軸方向に直交する平面での断面画像を示す図である。FIG. 9 is a diagram showing a cross-sectional image of one nonaqueous electrolyte secondary battery in the battery pack of Reference Example 2 on a plane orthogonal to the direction of the winding axis of the electrode body.

上述のように、電池が電池間セパレータの突起により略均等に押圧される場合、ハイレートサイクルで内部抵抗が上昇しやすい。一方、電池間セパレータにおいて、電極体の平坦部における一方の曲面部近傍であって、巻回軸方向中央部と重なる部分の突起をなくす場合にはローレートサイクルで内部抵抗が上昇することが分かった。   As described above, when the battery is pressed substantially evenly by the protrusion of the inter-battery separator, the internal resistance tends to increase in a high-rate cycle. On the other hand, in the inter-battery separator, when the protrusion near the one curved surface portion of the flat portion of the electrode body and overlapping with the central portion in the winding axis direction is eliminated, the internal resistance increases at a low rate cycle. Was.

本発明者は、上述の課題を解決するために鋭意検討した結果、電極体の平坦部における一方の曲面部の近傍領域であって巻回軸方向中央部が押圧され、電極体の平坦部における他方の曲面部の近傍領域であって巻回軸方向中央部が押圧され、電極体の平坦部の中央部が押圧され難い構成とすることで、ハイレートサイクル及びローレートサイクルの両方で内部抵抗の上昇を抑制できることを見出した。具体的には、巻回型の電極体は、外周面が平坦な平坦部と、平坦部の第1方向両端に配置された外周面が曲面である2つの曲面部を有する構成とする。電池間セパレータを積層方向一方側から見た場合に、電池間セパレータの本体板部において、電極体の平坦部内に配置された正極合材層と重なる領域を、第1方向に直交する第1辺に沿う第1辺方向と、第1方向と平行な第2辺に沿う第2辺方向とのそれぞれで3つに等分割することで得られた9個の領域に分割する。9個の領域を、電池間セパレータの第1方向一端から他端に向かって第1領域、第2領域、及び第3領域からなる第1群と、第4領域、第5領域、及び第6領域からなる第2群と、第7領域、第8領域、及び第9領域からなる第3群とで分ける。この場合において、積層方向一方側から見た場合に、第2領域、第5領域、及び第8領域が電極体の巻回軸方向中央部と重なっている。突起群は、第1群及び第3群の全ての領域に重なる複数の端側突起と、第4領域及び第6領域に重なる複数の中央側突起とを有する構成とする。突起群の形成密度は、第5領域で、第4領域及び第6領域のそれぞれより低くする。本開示に係る組電池によれば、突起付の電池間セパレータを備える組電池において、電池のハイレートサイクル及びローレートサイクルの両方で内部抵抗の上昇を抑制できる。これについては、後で詳しく説明する。   The present inventor has conducted intensive studies to solve the above-described problems, and as a result, the central portion in the winding axis direction in the vicinity of one curved surface portion in the flat portion of the electrode body is pressed, and the flat portion of the electrode body is In the vicinity of the other curved surface portion, the central portion in the winding axis direction is pressed, and the central portion of the flat portion of the electrode body is hardly pressed, so that the internal resistance of both the high rate cycle and the low rate cycle is reduced. It has been found that the rise can be suppressed. More specifically, the wound electrode body has a flat portion with a flat outer peripheral surface and two curved surface portions having curved outer peripheral surfaces disposed at both ends in the first direction of the flat portion. When the inter-battery separator is viewed from one side in the stacking direction, a region overlapping with the positive electrode mixture layer disposed in the flat portion of the electrode body is defined as a first side orthogonal to the first direction in the main body plate portion of the inter-battery separator. Are divided into nine regions obtained by equally dividing into three in each of a first side direction along the second direction and a second side direction along a second side parallel to the first direction. The nine regions are divided into a first group including a first region, a second region, and a third region from one end of the inter-battery separator in the first direction to the other end, and a fourth region, a fifth region, and a sixth region. The second group of regions is divided into the third group of seventh, eighth, and ninth regions. In this case, when viewed from one side in the stacking direction, the second region, the fifth region, and the eighth region overlap the center of the electrode body in the winding axis direction. The projection group is configured to have a plurality of end-side projections overlapping all the regions of the first and third groups, and a plurality of center-side projections overlapping the fourth and sixth regions. The formation density of the projection group is set lower in the fifth region than in each of the fourth region and the sixth region. ADVANTAGE OF THE INVENTION According to the assembled battery which concerns on this indication, in the assembled battery provided with the protrusion-to-battery separator, the increase in internal resistance can be suppressed in both the high rate cycle and the low rate cycle of the battery. This will be described in detail later.

以下、本開示の実施形態の一例について詳細に説明する。以下の説明において、具体的な形状、材料、方向、数値等は、本開示の理解を容易にするための例示であって、用途、目的、仕様等に合わせて適宜変更することができる。以下では、巻回型の電極体13(図2)が角形の金属製ケースである電池ケース100に収容された角形電池を例示するが、電池ケースは、金属層及び樹脂層を含むラミネートシートで構成された電池ケースであってもよい。   Hereinafter, an example of an embodiment of the present disclosure will be described in detail. In the following description, specific shapes, materials, directions, numerical values, and the like are examples for facilitating understanding of the present disclosure, and can be appropriately changed according to uses, purposes, specifications, and the like. Hereinafter, a rectangular battery in which the wound electrode body 13 (FIG. 2) is housed in a battery case 100 which is a square metal case will be exemplified. The battery case is a laminate sheet including a metal layer and a resin layer. It may be a configured battery case.

図1は、実施形態の組電池1の斜視図であって、エンドプレート、バインドバー、及びバスバを省略して示す図である。図1に例示するように、組電池1は、複数の電池である非水電解質二次電池10が、電池間セパレータ30を介して積層されて構成される。なお、組電池1において、非水電解質二次電池10の積層方向における両端には、それぞれエンドプレートが配置される。そして、エンドプレート同士がバインドバーにより固定される。隣接する非水電解質二次電池10同士は、バスバにより電気的に接続される。   FIG. 1 is a perspective view of the battery pack 1 of the embodiment, in which an end plate, a bind bar, and a bus bar are omitted. As illustrated in FIG. 1, the assembled battery 1 is configured by stacking a plurality of nonaqueous electrolyte secondary batteries 10 as batteries, with an inter-battery separator 30 interposed therebetween. In the battery pack 1, end plates are arranged at both ends of the nonaqueous electrolyte secondary battery 10 in the stacking direction. Then, the end plates are fixed by the bind bar. Adjacent nonaqueous electrolyte secondary batteries 10 are electrically connected by a bus bar.

図2は、非水電解質二次電池10の断面図であり、図3は、非水電解質二次電池10の平面図である。以下では、非水電解質二次電池10は、電池10と記載する。電池10は、上方に開口を有する角形外装体11と、当該開口を封口する封口板12を備える。角形外装体11及び封口板12により電池ケース100が構成されている。角形外装体11及び封口板12は、それぞれ金属製であり、アルミニウム製又はアルミニウム合金製であることが好ましい。電池10は、正極板14及び負極板15がセパレータ(図示せず)を介して巻回された偏平状の巻回型の電極体13と、非水電解質とを備える。電極体13及び非水電解質は、電池ケース100内に収容されている。   FIG. 2 is a cross-sectional view of the non-aqueous electrolyte secondary battery 10, and FIG. 3 is a plan view of the non-aqueous electrolyte secondary battery 10. Hereinafter, the nonaqueous electrolyte secondary battery 10 is referred to as a battery 10. The battery 10 includes a rectangular exterior body 11 having an opening on the upper side, and a sealing plate 12 for closing the opening. The battery case 100 is constituted by the rectangular exterior body 11 and the sealing plate 12. The rectangular exterior body 11 and the sealing plate 12 are each made of metal, and are preferably made of aluminum or an aluminum alloy. The battery 10 includes a flat wound electrode body 13 in which a positive electrode plate 14 and a negative electrode plate 15 are wound via a separator (not shown), and a non-aqueous electrolyte. The electrode body 13 and the non-aqueous electrolyte are housed in the battery case 100.

非水電解質は、非水溶媒と、非水溶媒に溶解した電解質塩とを含む。非水溶媒には、例えばエステル類、エーテル類、ニトリル類、アミド類、及びこれらの2種以上の混合溶媒等を用いてもよい。非水溶媒は、これら溶媒の水素の少なくとも一部をフッ素等のハロゲン原子で置換したハロゲン置換体を含有していてもよい。電解質塩には、例えばLiPF等のリチウム塩が使用される。 The non-aqueous electrolyte includes a non-aqueous solvent and an electrolyte salt dissolved in the non-aqueous solvent. As the non-aqueous solvent, for example, esters, ethers, nitriles, amides, and a mixed solvent of two or more thereof may be used. The non-aqueous solvent may contain a halogen-substituted product in which at least a part of hydrogen of these solvents is substituted with a halogen atom such as fluorine. As the electrolyte salt, for example, a lithium salt such as LiPF 6 is used.

正極板14は、金属製の正極芯体と、芯体の両面に形成された正極合材層とを有し、短手方向の一方の端部には、長手方向に沿って正極芯体が露出する正極芯体露出部14aが形成されたものである。同様に、負極板15は、金属製の負極芯体と、芯体の両面に形成された負極合材層とを有し、短手方向の一方の端部には、長手方向に沿って負極芯体が露出する負極芯体露出部15aが形成されたものである。電極体13は、巻回軸方向一端側(図2の右側)に正極芯体露出部14aが、巻回軸方向他端側(図2の左側)に負極芯体露出部15aがそれぞれ配置された状態で、正極板14及び負極板15が扁平状に巻回された構造を有する。これによって、後述の図4(b)の巻回軸に直交する平面での断面で示すように、電極体13は、外周面が平坦な平坦部13bと、平坦部13bの第1方向両端に配置された外周面が曲面である2つの曲面部13aを有する。   The positive electrode plate 14 has a metal positive electrode core, and a positive electrode mixture layer formed on both surfaces of the core, and a positive electrode core is formed at one end in the short direction along the longitudinal direction. The exposed positive electrode core exposed portion 14a is formed. Similarly, the negative electrode plate 15 has a metal negative electrode core and negative electrode mixture layers formed on both surfaces of the core, and one end in the short direction has a negative electrode along the long direction. A negative electrode core exposed portion 15a from which the core is exposed is formed. In the electrode body 13, a positive electrode core exposed portion 14a is arranged on one end side in the winding axis direction (right side in FIG. 2), and a negative electrode core exposed portion 15a is arranged on the other end side in the winding axis direction (left side in FIG. 2). In this state, the positive electrode plate 14 and the negative electrode plate 15 are wound flat. Thereby, as shown by a cross section in a plane perpendicular to the winding axis in FIG. 4B described later, the electrode body 13 has a flat portion 13b having a flat outer peripheral surface and both ends in the first direction of the flat portion 13b. The disposed outer peripheral surface has two curved surface portions 13a that are curved surfaces.

図2に示すように、正極芯体露出部14aの積層部には正極集電体(正極タブ)16が、負極芯体露出部15aの積層部には負極集電体18がそれぞれ接続される。好適な正極集電体16は、アルミニウム製又はアルミニウム合金製である。好適な負極集電体18は、銅又は銅合金製である。正極端子17は、封口板12の電池外部側に配置される鍔部17a(図3)と、封口板12に設けられた貫通穴に挿入される挿入部とを有し、正極集電体16と電気的に接続されている。また、負極端子19は、封口板12の電池外部側に配置される鍔部19a(図3)と、封口板12に設けられた貫通穴に挿入される挿入部とを有し、負極集電体18と電気的に接続されている。   As shown in FIG. 2, a positive electrode current collector (positive electrode tab) 16 is connected to the laminated portion of the positive electrode core exposed portion 14a, and a negative electrode current collector 18 is connected to the laminated portion of the negative electrode core exposed portion 15a. . A suitable positive electrode current collector 16 is made of aluminum or an aluminum alloy. Suitable negative electrode current collectors 18 are made of copper or a copper alloy. The positive electrode terminal 17 has a flange portion 17 a (FIG. 3) arranged outside the battery of the sealing plate 12 and an insertion portion inserted into a through hole provided in the sealing plate 12. Is electrically connected to Further, the negative electrode terminal 19 has a flange portion 19 a (FIG. 3) arranged on the outside of the battery of the sealing plate 12, and an insertion portion inserted into a through hole provided in the sealing plate 12. It is electrically connected to the body 18.

正極端子17及び正極集電体16は、それぞれ内部側絶縁部材20及び外部側絶縁部材21を介して封口板12に固定される。内部側絶縁部材20は、封口板12と正極集電体16の間に配置され、外部側絶縁部材21は封口板12と正極端子17の間に配置される。同様に、負極端子19及び負極集電体18は、それぞれ内部側絶縁部材22及び外部側絶縁部材23を介して封口板12に固定される。内部側絶縁部材22は封口板12と負極集電体18の間に配置され、外部側絶縁部材23は封口板12と負極端子19の間に配置される。   The positive electrode terminal 17 and the positive electrode current collector 16 are fixed to the sealing plate 12 via the inner insulating member 20 and the outer insulating member 21, respectively. The inner insulating member 20 is arranged between the sealing plate 12 and the positive electrode current collector 16, and the outer insulating member 21 is arranged between the sealing plate 12 and the positive electrode terminal 17. Similarly, the negative electrode terminal 19 and the negative electrode current collector 18 are fixed to the sealing plate 12 via the inner insulating member 22 and the outer insulating member 23, respectively. The inner insulating member 22 is arranged between the sealing plate 12 and the negative electrode current collector 18, and the outer insulating member 23 is arranged between the sealing plate 12 and the negative terminal 19.

電極体13は、絶縁シート24に覆われた状態で角形外装体11内に収容される。封口板12は、角形外装体11の開口縁部にレーザー溶接等により溶接接続される。封口板12は電解液注液孔26を有し、この電解液注液孔26は電池ケース100内に非水電解質を注液した後、封止栓27により封止される。封口板12には、電池内部の圧力が所定値以上となった場合にガスを排出するためのガス排出弁25が形成されている。   The electrode body 13 is accommodated in the rectangular exterior body 11 in a state of being covered with the insulating sheet 24. The sealing plate 12 is welded to the opening edge of the rectangular exterior body 11 by laser welding or the like. The sealing plate 12 has an electrolyte injection hole 26. The electrolyte injection hole 26 is sealed with a sealing plug 27 after the non-aqueous electrolyte is injected into the battery case 100. The sealing plate 12 is provided with a gas discharge valve 25 for discharging gas when the pressure inside the battery becomes equal to or higher than a predetermined value.

複数の電池10は、厚み方向に電池間セパレータ30を介して積層されて電池積層体2を形成する。複数の電池10は、正極端子17と負極端子19とが電池10の積層方向に交互に並ぶように、その向きを交互に変えて配置される。そして、積層方向に隣接する正極端子17と負極端子19とをバスバ(図示せず)で接続することで、複数の電池10が電気的に直列に接続される。   The batteries 10 are stacked in the thickness direction with the inter-battery separator 30 interposed therebetween to form the battery stack 2. The plurality of batteries 10 are arranged with their directions alternately changed so that the positive electrode terminals 17 and the negative electrode terminals 19 are alternately arranged in the stacking direction of the batteries 10. The plurality of batteries 10 are electrically connected in series by connecting the positive electrode terminal 17 and the negative electrode terminal 19 adjacent in the stacking direction with a bus bar (not shown).

電池間セパレータ30は、樹脂等の絶縁性材料により形成され、略平板状の本体板部31と、本体板部31の周縁から厚み方向に張り出して連結された枠部50とを含んで形成される。本体板部31は、電池10間に配置される部分であり、厚み方向(積層方向)の片面に突起である複数のリブを含むリブ群32(図4)が形成されている。リブ群32は、突起群に相当する。複数のリブは、隣り合う電池10間を所定距離だけ離し、隣り合う電池10間にリブ間を通じて空気等の気体を流し電池10を冷却するために用いられる。   The inter-battery separator 30 is formed of an insulating material such as a resin, and is formed to include a substantially flat main body plate portion 31 and a frame portion 50 protruding from the periphery of the main body plate portion 31 in the thickness direction and connected thereto. You. The main body plate portion 31 is a portion disposed between the batteries 10, and has a rib group 32 (FIG. 4) including a plurality of ribs as protrusions formed on one surface in a thickness direction (stacking direction). The rib group 32 corresponds to a projection group. The plurality of ribs are used to cool the battery 10 by separating adjacent batteries 10 by a predetermined distance and flowing a gas such as air between the adjacent batteries 10 through the space between the ribs.

電池積層体2の積層方向両端には、一対のエンドプレート(図示せず)が配置される。エンドプレートは、アルミニウム等の金属または硬質樹脂等により形成される。一対のエンドプレートの積層方向の外側からは電池10を積層方向に圧縮する方向に拘束力が加えられる。例えば、金属製のバインドバーで一対のエンドプレートが固定される。この状態で、拘束力を加えない状態での電池積層体2の積層方向長さより、一対のエンドプレート間の距離を短くすることにより、電池積層体2に圧縮方向に拘束力を加えることができる。この状態で、電池間セパレータ30の表面のリブと隣接する電池10の表面が密着する。   A pair of end plates (not shown) are arranged at both ends in the stacking direction of the battery stack 2. The end plate is formed of a metal such as aluminum or a hard resin. From the outside of the pair of end plates in the stacking direction, a restraining force is applied in a direction to compress the battery 10 in the stacking direction. For example, a pair of end plates is fixed by a metal bind bar. In this state, the binding force can be applied to the battery stack 2 in the compression direction by shortening the distance between the pair of end plates from the length in the stacking direction of the battery stack 2 without applying the binding force. . In this state, the ribs on the surface of the inter-battery separator 30 and the surface of the adjacent battery 10 are in close contact with each other.

別例として、組電池を収容する組電池ケースの内面において、組電池の積層方向における長さを、拘束前の組電池の長さより小さくすることで、電池積層体に圧縮方向に拘束力を加えることもできる。   As another example, on the inner surface of the battery pack case accommodating the battery pack, by making the length of the battery pack in the stacking direction smaller than the length of the battery pack before restraint, a restraining force is applied to the battery stack in the compression direction. You can also.

電池積層体2において、複数の電池10のガス排出弁25の上側に対応する位置には、ガス排出弁25から排出されたガスを外部に排出するための、積層方向に長い排出ダクト(図示せず)を配置してもよい。   In the battery stack 2, at positions corresponding to the upper side of the gas discharge valves 25 of the plurality of batteries 10, a discharge duct long in the stacking direction (shown in the drawing) for discharging the gas discharged from the gas discharge valves 25 to the outside. ) May be arranged.

次に、図4を用いて電池間セパレータ30のリブの形状を説明する。図4は、実施例の電池間セパレータ30の正面図(a)と、電池間セパレータ30に電池ケース100を介して重ねられる電極体13の巻回軸方向に直交する平面での断面図(b)である。図4では、電池間セパレータ30の枠部の図示を省略する。   Next, the shape of the rib of the inter-cell separator 30 will be described with reference to FIG. FIG. 4 is a front view (a) of the inter-battery separator 30 of the embodiment, and a cross-sectional view (b) of a plane orthogonal to the direction of the winding axis of the electrode body 13 stacked on the inter-battery separator 30 via the battery case 100 ). In FIG. 4, the illustration of the frame portion of the inter-battery separator 30 is omitted.

図4では、砂地部分によりリブ群32を示している。リブ群32は、本体板部31の片面から電池10の積層方向に突出するように形成される。図4(a)では、破線枠α1により、組電池1が形成された場合に電池10の電極体13の平坦部13bに含まれる正極合材層に重なる領域を示している。   In FIG. 4, the rib group 32 is indicated by a sand portion. The rib group 32 is formed so as to protrude from one surface of the main body plate portion 31 in the stacking direction of the battery 10. In FIG. 4A, a region overlapping with the positive electrode mixture layer included in the flat portion 13b of the electrode body 13 of the battery 10 when the battery pack 1 is formed is indicated by a broken line frame α1.

リブ群32は、上下方向両端部に配置された端側リブ33,34、35と、幅方向(図4の左右方向)両端で上下方向に並んで配置された複数の中央側リブ36、37とを含む。各リブ33〜37は、幅方向に延びている。2つの端側リブ33,34は、他のリブ35〜37より長く、本体板部31の幅方向の全長に近い長さを有する。   The rib group 32 includes end ribs 33, 34, 35 arranged at both ends in the vertical direction, and a plurality of central ribs 36, 37 arranged vertically at both ends in the width direction (left-right direction in FIG. 4). And Each of the ribs 33 to 37 extends in the width direction. The two end ribs 33 and 34 are longer than the other ribs 35 to 37 and have a length close to the entire length of the main body plate portion 31 in the width direction.

複数のリブ33〜37は、上下方向に所定の間隔をあけて配置される。これにより、隣り合うリブ33〜37の間には溝40が形成される。組電池1が形成された場合に、この溝40は、電池10を冷却する空気等の気体が流れる冷媒流路を形成する。   The plurality of ribs 33 to 37 are arranged at predetermined intervals in the vertical direction. Thereby, the groove 40 is formed between the adjacent ribs 33 to 37. When the battery pack 1 is formed, the groove 40 forms a refrigerant flow path through which a gas such as air for cooling the battery 10 flows.

リブ33〜37の配置位置について、さらに詳しく説明する。図4(a)に示すように、電池間セパレータ30を積層方向一方側から見た場合に、本体板部31において、電極体13の平坦部13b内に配置された正極合材層と重なる領域(図4(a)の破線枠α1内の領域)を、正極合材重畳領域とする。そして、正極合材重畳領域を、上下方向に直交する第1辺A1に沿う第1辺方向と上下方向と平行な第2辺A2の方向(第2辺方向)とのそれぞれで3つに等分割することで得られた9個の領域S1、S2,S3・・・S9に等分割する。9個の領域S1、S2,S3・・・S9は、電池間セパレータ30の上下方向一端(図4(a)の上端)から他端(図4(a)の下端)に向かって第1群G1、第2群G2、及び第3群G3に分けられる。第1群G1は、第1領域S1、第2領域S2、及び第3領域S3からなる。第2群G2は、第4領域S4、第5領域S5、及び第6領域S6からなる。第3群G3は、第7領域S7、第8領域S8、及び第9領域S9からなる。そして、組電池1を積層方向一方側から見た場合に、第2領域S2、第5領域S5、及び第8領域S8が電極体13の巻回軸方向中央部と重なっている。この場合において、電池間セパレータ30の本体板部31から積層方向に突出するリブ群32は、第1群G1及び第3群G3の全ての領域S1〜S3、S7〜S9に重なる複数の端側リブ33,34,35と、第4領域S4及び第6領域S6に重なる複数の中央側リブ36,37とを有する。リブ群32の形成密度は、第5領域S5で、第4領域S4及び第6領域S6のそれぞれより低い。即ち、積層方向一方側から見た場合の第5領域S5の面積に対する、積層方向一方側から見た場合に第5領域S5においてリブが形成されている部分の面積の合計の割合が、積層方向一方側から見た場合の第4領域S4の面積に対する、積層方向一方側から見た場合に第4領域S4においてリブが形成されている部分の面積の合計の割合よりも低く、積層方向一方側から見た場合に第6領域S6においてリブが形成されている部分の面積の合計の割合よりも低い。これにより、後述のように、充放電におけるハイレートサイクル及びローレートサイクルの両方で電池10の内部抵抗の上昇を抑制できる。   The arrangement positions of the ribs 33 to 37 will be described in more detail. As shown in FIG. 4A, when the inter-battery separator 30 is viewed from one side in the stacking direction, a region of the main body plate portion 31 that overlaps with the positive electrode mixture layer arranged in the flat portion 13 b of the electrode body 13. (A region within the broken line frame α1 in FIG. 4A) is defined as a positive electrode mixture overlapping region. Then, the positive electrode mixture overlapping region is divided into three in the first side direction along the first side A1 orthogonal to the vertical direction and the direction of the second side A2 parallel to the vertical direction (second side direction). It is equally divided into nine areas S1, S2, S3,... S9 obtained by the division. The nine regions S1, S2, S3,..., S9 form a first group from one end (upper end in FIG. 4A) in the vertical direction of the inter-battery separator 30 to the other end (lower end in FIG. 4A). G1, a second group G2, and a third group G3. The first group G1 includes a first area S1, a second area S2, and a third area S3. The second group G2 includes a fourth area S4, a fifth area S5, and a sixth area S6. The third group G3 includes a seventh area S7, an eighth area S8, and a ninth area S9. When the battery pack 1 is viewed from one side in the stacking direction, the second region S2, the fifth region S5, and the eighth region S8 overlap the center of the electrode body 13 in the winding axis direction. In this case, the rib group 32 protruding from the main body plate portion 31 of the inter-battery separator 30 in the stacking direction has a plurality of end sides overlapping all the regions S1 to S3 and S7 to S9 of the first group G1 and the third group G3. It has ribs 33, 34, 35 and a plurality of central ribs 36, 37 overlapping the fourth region S4 and the sixth region S6. The formation density of the rib group 32 is lower in the fifth region S5 than in each of the fourth region S4 and the sixth region S6. That is, the ratio of the total area of the rib-formed portion in the fifth region S5 when viewed from one side in the stacking direction to the area of the fifth region S5 when viewed from one side in the stacking direction is equal to the ratio in the stacking direction. The ratio of the total area of the ribs formed in the fourth region S4 to the area of the fourth region S4 when viewed from one side in the stacking direction is lower than the area of the fourth region S4 when viewed from one side. Is lower than the total ratio of the area of the portion where the rib is formed in the sixth region S6. Thereby, as described later, an increase in the internal resistance of the battery 10 can be suppressed in both the high rate cycle and the low rate cycle in charging and discharging.

電極体13は、曲面部13aと平坦部13bとの境界に、連結部Eを有する。組電池1を積層方向一方側から見た場合に、複数の端側リブ33,34,35の少なくとも一部の端側リブ33,34は、平坦部13bにおける連結部Eの近傍と重なる部分に配置される。端側リブ33,34は、第1辺方向と平行に延びており、第1、第2、及び第3領域S1,S2,S3にわたって連続する端側リブ33と、第7、第8、及び第9領域S7,S8,S9にわたって連続する端側リブ34とを有する。   The electrode body 13 has a connecting portion E at a boundary between the curved surface portion 13a and the flat portion 13b. When the battery pack 1 is viewed from one side in the stacking direction, at least some of the end ribs 33, 34, 35 of the plurality of end ribs 33, 34, 35 are in a portion overlapping the vicinity of the connection portion E in the flat portion 13b. Be placed. The end ribs 33 and 34 extend in parallel to the first side direction, and are continuous with the end ribs 33 over the first, second, and third regions S1, S2, and S3, and the seventh, eighth, and eighth ribs. End ribs 34 are provided continuously over the ninth regions S7, S8, and S9.

端側リブ33,34の全長の合計は、破線枠αで示す正極合材層の第1辺方向長さの50%以上であることが好ましい。   It is preferable that the total length of the end ribs 33 and 34 is 50% or more of the length of the positive electrode mixture layer indicated by the broken line frame α in the first side direction.

組電池1を積層方向一方側から見た場合における平坦部13bと重なる部分に設けられたリブ群32の合計の面積は、積層方向一方側から見た場合の平坦部13b内に配置された正極合材層の面積の40〜60%であることが好ましい。   When the battery pack 1 is viewed from one side in the stacking direction, the total area of the rib group 32 provided in a portion overlapping the flat part 13b is the positive electrode disposed in the flat part 13b when viewed from one side in the stacking direction. Preferably, it is 40 to 60% of the area of the mixture layer.

以下、電極体13を構成する正極板14、負極板15、セパレータについて詳説する。   Hereinafter, the positive electrode plate 14, the negative electrode plate 15, and the separator constituting the electrode body 13 will be described in detail.

[正極板]
正極板14は、上述のように、正極芯体と、正極芯体の両面に形成された正極合材層とを有する。正極芯体には、アルミニウム、アルミニウム合金など、正極の電位範囲で安定な金属の箔等を用いることができる。正極合材層は、正極活物質、導電材、及び結着材等を含む。正極板14は、正極芯体上に正極活物質、導電材、結着材、及び分散媒等を含む正極合材スラリーを塗布し、塗膜を乾燥させて分散媒を除去した後、圧縮して正極合材層を正極芯体の両面に形成することにより製造できる。
[Positive electrode plate]
As described above, the positive electrode plate 14 has the positive electrode core and the positive electrode mixture layers formed on both surfaces of the positive electrode core. For the positive electrode core, a metal foil or the like that is stable in the potential range of the positive electrode, such as aluminum or an aluminum alloy, can be used. The positive electrode mixture layer includes a positive electrode active material, a conductive material, a binder, and the like. The positive electrode plate 14 is formed by applying a positive electrode mixture slurry containing a positive electrode active material, a conductive material, a binder, and a dispersion medium on a positive electrode core, drying the coating film to remove the dispersion medium, and then compressing. Thus, it can be manufactured by forming the positive electrode mixture layer on both surfaces of the positive electrode core.

正極活物質は、リチウム含有金属複合酸化物を主成分として構成される。リチウム含有金属複合酸化物に含有される金属元素としては、Ni、Co、Mn、Al、B、Mg、Ti、V、Cr、Fe、Cu、Zn、Ga、Sr、Zr、Nb、In、Sn、Ta、W等が挙げられる。好適なリチウム含有金属複合酸化物の一例は、Ni、Co、Mn、Alの少なくとも1種を含有する複合酸化物である。なお、リチウム含有金属複合酸化物の粒子表面には、酸化アルミニウム、ランタノイド含有化合物等の無機化合物粒子などが固着していてもよい。   The positive electrode active material is mainly composed of a lithium-containing metal composite oxide. Examples of metal elements contained in the lithium-containing metal composite oxide include Ni, Co, Mn, Al, B, Mg, Ti, V, Cr, Fe, Cu, Zn, Ga, Sr, Zr, Nb, In, and Sn. , Ta, W and the like. One example of a suitable lithium-containing metal composite oxide is a composite oxide containing at least one of Ni, Co, Mn, and Al. In addition, inorganic compound particles such as aluminum oxide and lanthanoid-containing compounds may be fixed to the surface of the particles of the lithium-containing metal composite oxide.

正極合材層に含まれる導電材としては、カーボンブラック、アセチレンブラック、ケッチェンブラック、黒鉛等の炭素材料が例示できる。正極合材層に含まれる結着材としては、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVdF)等のフッ素樹脂、ポリアクリロニトリル(PAN)、ポリイミド、アクリル樹脂、ポリオレフィンなどが例示できる。これらの樹脂と、カルボキシメチルセルロース(CMC)又はその塩等のセルロース誘導体、ポリエチレンオキシド(PEO)などが併用されてもよい。   Examples of the conductive material contained in the positive electrode mixture layer include carbon materials such as carbon black, acetylene black, Ketjen black, and graphite. Examples of the binder contained in the positive electrode mixture layer include fluorine resins such as polytetrafluoroethylene (PTFE) and polyvinylidene fluoride (PVdF), polyacrylonitrile (PAN), polyimide, acrylic resin, and polyolefin. These resins may be used in combination with cellulose derivatives such as carboxymethyl cellulose (CMC) or a salt thereof, polyethylene oxide (PEO), and the like.

[負極板]
負極板15は、負極芯体と、負極芯体の両面に形成された負極合材層とを有する。負極合材層は、負極活物質、及び結着材を含む。
[Negative electrode plate]
The negative electrode plate 15 has a negative electrode core and negative electrode mixture layers formed on both surfaces of the negative electrode core. The negative electrode mixture layer includes a negative electrode active material and a binder.

負極芯体には、銅、銅合金など、負極の電位範囲で安定な金属の箔等を用いることができる。負極板15は、負極芯体上に負極活物質、結着材、及び分散媒等を含む負極合材スラリーを塗布し、塗膜を乾燥させ分散媒を除去した後、圧縮して負極合材層を負極芯体の両面に形成することにより製造できる。   A metal foil, such as copper or a copper alloy, which is stable in the potential range of the negative electrode can be used for the negative electrode core. The negative electrode plate 15 is formed by applying a negative electrode mixture slurry containing a negative electrode active material, a binder, a dispersion medium, and the like on a negative electrode core, drying the coating film and removing the dispersion medium, and then compressing the negative electrode mixture. It can be manufactured by forming layers on both sides of the negative electrode core.

負極合材層には、負極活物質として、例えばリチウムイオンを可逆的に吸蔵、放出する炭素系活物質が含まれる。好適な炭素系活物質は、鱗片状黒鉛、塊状黒鉛、土状黒鉛等の天然黒鉛、塊状人造黒鉛(MAG)、黒鉛化メソフェーズカーボンマイクロビーズ(MCMB)等の人造黒鉛などの黒鉛である。また、負極活物質には、Si及びSi含有化合物の少なくとも一方で構成されるSi系活物質が用いられてもよく、炭素系活物質とSi系活物質が併用されてもよい。負極合材層に含まれる結着材としては、スチレンブタジエンゴム(SBR)、カルボキシメチルセルロース(CMC)などが例示できる。   The negative electrode mixture layer contains, for example, a carbon-based active material that reversibly stores and releases lithium ions as a negative electrode active material. Suitable carbon-based active materials are natural graphite such as flaky graphite, massive graphite and earthy graphite, artificial graphite such as massive artificial graphite (MAG) and graphitized mesophase carbon microbeads (MCMB). Further, as the negative electrode active material, a Si-based active material composed of at least one of Si and a Si-containing compound may be used, or a carbon-based active material and a Si-based active material may be used in combination. Examples of the binder contained in the negative electrode mixture layer include styrene butadiene rubber (SBR) and carboxymethyl cellulose (CMC).

[セパレータ]
セパレータには、イオン透過性及び絶縁性を有する多孔性シートが用いられる。多孔性シートの具体例としては、微多孔薄膜、織布、不織布等が挙げられる。セパレータの材質としては、ポリエチレン、ポリプロピレン等のオレフィン樹脂、セルロースなどが好適である。セパレータは、単層構造、積層構造のいずれであってもよい。セパレータの表面には、耐熱層などが形成されていてもよい。
[Separator]
As the separator, a porous sheet having ion permeability and insulating properties is used. Specific examples of the porous sheet include a microporous thin film, a woven fabric, and a nonwoven fabric. As the material of the separator, olefin resins such as polyethylene and polypropylene, cellulose, and the like are preferable. The separator may have either a single-layer structure or a laminated structure. A heat-resistant layer or the like may be formed on the surface of the separator.

[実施例及び参考例]
以下、実施形態により得られる効果を確認するために作製した、参考例1,2及び実施例1,2の組電池を説明する。
[Examples and Reference Examples]
Hereinafter, the assembled batteries of Reference Examples 1 and 2 and Examples 1 and 2 manufactured to confirm the effects obtained by the embodiment will be described.

<参考例1>
[正極板の作製]
LiNi0.35Co0.35Mn0.30で表されるリチウム含有金属複合酸化物と、アセチレンブラックと、ポリフッ化ビニリデン(PVdF)とを、91:7:2の固形分質量比で混合し、N−メチル−2−ピロリドン(NMP)を適量加えた後、これを混練して正極合材スラリーを調製した。当該正極合材スラリーを厚みが15μmのアルミニウム合金箔からなる正極芯体の両面に塗布し、塗膜を乾燥させた後、圧縮ローラーを用いて塗膜を圧延し、所定の電極サイズに切断して、正極芯体の両面に正極合材層が形成された正極板を作製した。正極板の幅は120mmとした。正極板は、塗膜の塗布幅を104mmとして、幅方向の一方端部側に芯体露出部を形成した。
<Reference Example 1>
[Preparation of positive electrode plate]
A lithium-containing metal composite oxide represented by LiNi 0.35 Co 0.35 Mn 0.30 O 2 , acetylene black, and polyvinylidene fluoride (PVdF) in a solid content mass ratio of 91: 7: 2. After mixing and adding an appropriate amount of N-methyl-2-pyrrolidone (NMP), the mixture was kneaded to prepare a positive electrode mixture slurry. The positive electrode mixture slurry is applied to both surfaces of a positive electrode core made of an aluminum alloy foil having a thickness of 15 μm, and after the coating film is dried, the coating film is rolled using a compression roller and cut into a predetermined electrode size. Thus, a positive electrode plate having positive electrode mixture layers formed on both surfaces of the positive electrode core was produced. The width of the positive electrode plate was 120 mm. In the positive electrode plate, the coating width of the coating film was 104 mm, and a core exposed portion was formed on one end side in the width direction.

[負極板の作製]
黒鉛粉末と、カルボキシメチルセルロース(CMC)のナトリウム塩と、スチレンブタジエンゴム(SBR)のディスパージョンとを、固形分質量比で、99:0.8:0.2で混合して、水を分散媒として用いて負極合材スラリーを調製した。当該負極合材スラリーを厚みが8μmの銅箔からなる負極芯体の両面に塗布し、塗膜を乾燥させた後、圧縮ローラーを用いて塗膜を圧延し、所定の電極サイズに切断して、負極芯体の両面に負極合材層が形成された負極板を作製した。負極板の幅は122mmとした。負極板は、塗膜の塗布幅を109mmとして、幅方向の一方端部側に芯体露出部を形成した。
[Preparation of negative electrode plate]
A graphite powder, a sodium salt of carboxymethyl cellulose (CMC), and a dispersion of styrene butadiene rubber (SBR) are mixed at a solid content mass ratio of 99: 0.8: 0.2, and water is dispersed in a dispersion medium. To prepare a negative electrode mixture slurry. The negative electrode mixture slurry is applied to both surfaces of a negative electrode core body made of copper foil having a thickness of 8 μm, and after the coating film is dried, the coating film is rolled using a compression roller and cut into a predetermined electrode size. Then, a negative electrode plate having negative electrode mixture layers formed on both surfaces of the negative electrode core was produced. The width of the negative electrode plate was 122 mm. On the negative electrode plate, the coating width of the coating film was 109 mm, and a core exposed portion was formed on one end side in the width direction.

[非水電解質(電解液)の調製]
エチレンカーボネート(EC)と、メチルエチルカーボネート(MEC)と、ジメチルカーボネート(DMC)とを、3:3:4の体積比(25℃、1気圧)で混合した混合溶媒に、LiPFを1.15mol/Lの濃度になるように添加し、さらにビニレンカーボネートを0.3質量%の濃度となるように添加して、非水電解質を調製した。
[Preparation of non-aqueous electrolyte (electrolyte solution)]
LiPF 6 was added to a mixed solvent obtained by mixing ethylene carbonate (EC), methyl ethyl carbonate (MEC), and dimethyl carbonate (DMC) at a volume ratio of 3: 3: 4 (25 ° C., 1 atm). A non-aqueous electrolyte was prepared by adding so as to have a concentration of 15 mol / L, and further adding vinylene carbonate so as to have a concentration of 0.3% by mass.

[電池の作製]
上記正極板及び上記負極板を、ポリプロピレン(PP)、ポリエチレン(PE)、ポリプロピレン(PP)の3層構造からなり厚みが20μmのセパレータを介して巻回した後、径方向に押し潰して巻回型の扁平形状の電極体を作製した。このとき、正極板の芯体露出部と、負極板の芯体露出部とはそれぞれに対向する電極の活物質層と重ならないようにずらし、電極体の巻回軸方向の一方端部側に正極板の芯体露出部を配置し、巻回軸方向の他方端部側に負極板の芯体露出部を配置した。封口板に正極端子を取り付けると共に、正極端子に正極集電体を接続した。また、封口板に負極端子を取り付けると共に、負極端子に負極集電体を接続した。そして、正極板の芯体露出部に正極集電体を、負極板の芯体露出部に負極集電体をそれぞれ溶接した。この電極体を角形の外装缶内に収容し、外装缶の開口部を封口板で塞いだ。封口板と外装缶との間は、例えばレーザー溶接により溶接した。上記非水電解質を45g、封口板の電解液注液孔から注液した後、注液孔に封止栓を取り付けて、角形の電池を作製した。電池の外形は、厚みを13mm、幅を140mm、上下方向の高さを65mmとした。また、電池の満充電容量は、4Ahとした。
[Production of Battery]
The positive electrode plate and the negative electrode plate are wound through a separator having a three-layer structure of polypropylene (PP), polyethylene (PE), and polypropylene (PP) and having a thickness of 20 μm, and then crushed in a radial direction to be wound. A flat electrode body of a mold was produced. At this time, the exposed portion of the core of the positive electrode plate and the exposed portion of the core of the negative electrode plate are shifted so as not to overlap with the active material layers of the electrodes facing each other, and are moved to one end side in the winding axis direction of the electrode body. The exposed core portion of the positive electrode plate was disposed, and the exposed core portion of the negative electrode plate was disposed on the other end side in the winding axis direction. A positive electrode terminal was attached to the sealing plate, and a positive electrode current collector was connected to the positive electrode terminal. Further, a negative electrode terminal was attached to the sealing plate, and a negative electrode current collector was connected to the negative electrode terminal. Then, the positive electrode current collector was welded to the exposed core of the positive electrode plate, and the negative electrode current collector was welded to the exposed core of the negative electrode plate. The electrode body was housed in a rectangular outer can, and the opening of the outer can was closed with a sealing plate. The gap between the sealing plate and the outer can was welded by, for example, laser welding. After injecting 45 g of the non-aqueous electrolyte from the electrolyte injection hole of the sealing plate, a sealing plug was attached to the injection hole to produce a prismatic battery. The external shape of the battery was 13 mm in thickness, 140 mm in width, and 65 mm in the vertical direction. The full charge capacity of the battery was 4 Ah.

[組電池の作製]
そして、上記の電池を複数個、電池間セパレータを介して積層することで、電池積層体を形成し、電池積層体の積層方向両端にエンドプレートを配置し、適宜の拘束手段で電池を積層方向に加圧した。電池積層体には、図5に示す電池間セパレータ30aを用いた。電池間セパレータ30aは、本体板部31と、本体板部31の片面から電池の積層方向に突出するように形成された複数のリブ60とを含む。複数のリブ60は、それぞれ電極体の巻回軸方向と平行な方向に伸びており、上下方向(図5の上下方向)に所定の間隔をあけて配置される。複数のリブ60の長さは、互いに略同じである。
[Preparation of assembled battery]
Then, by stacking a plurality of the above-described batteries via an inter-cell separator, a battery stack is formed, and end plates are arranged at both ends in the stacking direction of the battery stack, and the batteries are stacked in the stacking direction by appropriate restraining means. Pressurized. The inter-battery separator 30a shown in FIG. 5 was used for the battery stack. The inter-battery separator 30a includes a main body plate portion 31 and a plurality of ribs 60 formed to protrude from one surface of the main body plate portion 31 in the battery stacking direction. The plurality of ribs 60 extend in a direction parallel to the direction of the winding axis of the electrode body, and are arranged at predetermined intervals in a vertical direction (vertical direction in FIG. 5). The lengths of the plurality of ribs 60 are substantially the same as each other.

このような参考例1の電池間セパレータ30aでは、積層方向一方側から見た場合に、本体板部31において電極体13の平坦部13b(図4参照)内に配置された正極合材層と重なる領域(図5の破線枠α2内の領域)を正極合材重畳領域とする。この正極合材重畳領域には、等分割で分けられた9個の領域S1〜S9の全てにリブ60が配置される。このため、電池間セパレータ30は、全領域S1〜S9に突起がある形状である。   In such an inter-battery separator 30a of Reference Example 1, when viewed from one side in the laminating direction, the positive electrode mixture layer disposed in the flat portion 13b (see FIG. 4) of the electrode body 13 in the main body plate portion 31 The overlapping region (the region within the broken line frame α2 in FIG. 5) is defined as the positive electrode mixture overlapping region. In the positive electrode mixture overlapping region, the ribs 60 are arranged in all of the nine regions S1 to S9 divided by equal division. Therefore, the inter-battery separator 30 has a shape having protrusions in all the regions S1 to S9.

また、参考例1では、複数のリブ60のうち、図4を参照して電極体13の平坦部13bにおいて連結部Eの近傍に重なる部分に位置するリブ60の全長(図5の左右方向長さ)は、正極合材層の第1辺方向(図5の左右方向)長さの100%である。なお、電極体13の平坦部13bにおける連結部Eの近傍とは、電極体13の平坦部13bにおいて、一方の連結部Eと一方の連結部Eから他方の連結部Eに向かって10mm離れた位置との間の領域をいう。   Further, in Reference Example 1, of the plurality of ribs 60, referring to FIG. 4, the entire length of the rib 60 located in a portion overlapping the vicinity of the connecting portion E in the flat portion 13b of the electrode body 13 (length in the horizontal direction in FIG. 5) Is 100% of the length of the positive electrode mixture layer in the first side direction (the left-right direction in FIG. 5). In the flat portion 13b of the electrode body 13, one flat portion 13b of the electrode body 13 is separated from one connecting portion E by 10 mm from the one connecting portion E toward the other connecting portion E. It refers to the area between the location.

さらに、参考例1では、組電池を積層方向一方側から見た場合における平坦部13bと重なる部分に設けられた複数のリブ60の合計面積は、積層方向一方側から見た場合の平坦部13b内に配置された正極合材層の面積の60%である。   Further, in Reference Example 1, the total area of the plurality of ribs 60 provided in a portion overlapping the flat portion 13b when the battery pack is viewed from one side in the stacking direction is the flat portion 13b when viewed from one side in the stacking direction. This is 60% of the area of the positive electrode mixture layer disposed therein.

<参考例2>
参考例2は、図示は省略するが、参考例1の電池間セパレータ30aにおいて、第5領域S5及び第8領域S8に設けられたリブ60を部分的に除去した電池間セパレータを用いた。
<Reference Example 2>
In reference example 2, although not shown, the inter-battery separator in which the ribs 60 provided in the fifth region S5 and the eighth region S8 were partially removed from the inter-battery separator 30a of reference example 1 was used.

<実施例1>
実施例1では図4に示す電池間セパレータ30を用いた。電池間セパレータ30のリブ群32は、電極体13の両方の曲面部13a側の第1群G1及び第3群G3の全ての領域S1〜S3、S7〜S9に重なる複数の端側リブ33,34と、電極体13の巻回軸方向両端側の第4領域S4及び第6領域S6に重なる複数の中央側リブ36,37とを有する。さらに、リブ群32の形成密度は、第5領域S5で、第4領域S4及び第6領域S6のそれぞれより低くなっている。実施例1において、その他の構成は、参考例1と同様である。
<Example 1>
In Example 1, the inter-cell separator 30 shown in FIG. 4 was used. The rib group 32 of the inter-battery separator 30 has a plurality of end ribs 33 overlapping all the regions S1 to S3 and S7 to S9 of the first group G1 and the third group G3 on both curved surface portions 13a of the electrode body 13. 34, and a plurality of central ribs 36 and 37 overlapping the fourth region S4 and the sixth region S6 at both ends in the winding axis direction of the electrode body 13. Furthermore, the formation density of the rib group 32 is lower in the fifth region S5 than in each of the fourth region S4 and the sixth region S6. In the first embodiment, other configurations are the same as those of the first embodiment.

<実施例2>
実施例2は、図6に示す電池間セパレータ30bを用いた。図6は、実施例2の組電池に組み込まれる電池間セパレータ30bの正面図(a)と、電池間セパレータ30bに電池ケースを介して重ねられる電極体13の巻回軸方向に直交する平面での断面図(b)である。実施例2の場合には、電池間セパレータ30bにおいて、リブ群32aのうち、上下方向両端に位置する端側リブ33a、34aが、上下方向両側のそれぞれで、巻回軸方向に隙間をあけて配置される。これにより、電池間セパレータ30bを含む組電池では、この隙間(溝40)を通じて隣り合う電池間に空気等の気体を流通させることができる。実施例2の場合も、図4に示した実施例の構成と同様に、電池間セパレータ30bの上下方向両側のそれぞれにおいて、電極体13の平坦部13bにおける連結部E近傍に重なる部分にある端側リブ33a、34aの全長のそれぞれの合計が、破線枠αで示す正極合材層の第1辺方向長さの50%以上であることが好ましい。実施例2において、その他の構成は、実施例1と同様である。
<Example 2>
Example 2 used the inter-battery separator 30b shown in FIG. FIG. 6 is a front view (a) of the inter-battery separator 30b incorporated in the assembled battery according to the second embodiment, and a plane orthogonal to the winding axis direction of the electrode body 13 stacked on the inter-battery separator 30b via the battery case. (B) of FIG. In the case of the second embodiment, in the inter-battery separator 30b, of the rib group 32a, the end side ribs 33a and 34a located at both ends in the vertical direction are separated from each other on both sides in the vertical direction in the winding axis direction. Be placed. Thereby, in the assembled battery including the inter-battery separator 30b, gas such as air can flow between the adjacent batteries through the gap (groove 40). In the case of the second embodiment as well, similarly to the configuration of the embodiment shown in FIG. 4, on both sides in the vertical direction of the inter-battery separator 30 b, the ends at the portions overlapping the vicinity of the connection portion E in the flat portion 13 b of the electrode body 13. It is preferable that the total of the total lengths of the side ribs 33a and 34a is 50% or more of the length in the first side direction of the positive electrode mixture layer indicated by the broken line frame α. Other configurations in the second embodiment are the same as those in the first embodiment.

[試験方法]
上記の参考例1、2及び実施例1、2の組電池を用いて、ハイレート抵抗評価試験とローレート抵抗評価試験とを行った。ハイレート抵抗評価試験は、25℃の環境で行った。ハイレート抵抗評価試験は、ハイレートサイクルで電池の充放電を繰り返した。具体的には、ハイレート抵抗評価試験は、電池を電池電圧が所定電圧に達するまで40Cのハイレートの定電流で充電し(CC充電)、次いで電流値が所定電流に減衰するまで定電圧で充電した(CV充電)。また、充電深度(SOC)は、60%±10%とした。充電後、電池を電池電圧が所定電圧になるまで40Cの定電流で放電した(CC放電)。このような充放電サイクルを1サイクルから2000サイクルまで繰り返した。充電と放電との間には休止時間を設けなかった。このようにしてハイレートサイクルを行った参考例1、2、実施例1、2の組電池を用いてそれぞれの内部抵抗値を測定し、初期時点の内部抵抗値からの上昇量を検出した。以下の表1において、参考例1、2、実施例1、2のそれぞれの「ハイレート抵抗上昇」の欄には、初期時点の内部抵抗値に対する内部抵抗値の上昇量の割合(ハイレート抵抗上昇割合)を示している。
[Test method]
Using the assembled batteries of Reference Examples 1 and 2 and Examples 1 and 2, a high-rate resistance evaluation test and a low-rate resistance evaluation test were performed. The high-rate resistance evaluation test was performed in a 25 ° C. environment. In the high-rate resistance evaluation test, charging and discharging of the battery were repeated in a high-rate cycle. Specifically, in the high-rate resistance evaluation test, the battery was charged at a high-rate constant current of 40 C until the battery voltage reached a predetermined voltage (CC charging), and then charged at a constant voltage until the current value attenuated to the predetermined current. (CV charging). The depth of charge (SOC) was set to 60% ± 10%. After charging, the battery was discharged at a constant current of 40 C until the battery voltage reached a predetermined voltage (CC discharge). Such a charge / discharge cycle was repeated from 1 cycle to 2000 cycles. There was no pause between charging and discharging. The internal resistance of each of the assembled batteries of Reference Examples 1 and 2 and Examples 1 and 2 subjected to the high-rate cycle in this way was measured, and the amount of increase from the initial internal resistance was detected. In Table 1 below, the column of “high-rate resistance rise” of each of Reference Examples 1 and 2 and Examples 1 and 2 indicates the ratio of the increase amount of the internal resistance value to the internal resistance value at the initial stage (high-rate resistance increase ratio). ).

Figure 2020057597
Figure 2020057597

さらに、ローレート抵抗評価試験は、70℃の環境で行った。ローレート抵抗評価試験は、ローレートサイクルで電池の充放電を繰り返した。具体的には、ローレート抵抗評価試験は、電池を電池電圧が所定電圧に達するまで20Cのローレートの定電流で充電し(CC充電)、次いで電流値が所定電流に減衰するまで定電圧で充電した(CV充電)。また、充電深度(SOC)は、60%±1%とした。充電後、電池を電池電圧が所定電圧になるまで20Cの定電流で放電した(CC放電)。このような充放電サイクルを1サイクルから9000サイクルまで繰り返した。充電と放電との間には休止時間を設けなかった。このようにしてローレートサイクルを行った参考例1、2、実施例1、2の組電池を用いてそれぞれの内部抵抗値を測定し、初期時点の内部抵抗値からの上昇量を検出した。表1において、参考例1、2、実施例1、2のそれぞれの「ローレート抵抗上昇」の欄に、初期時点の内部抵抗値に対する内部抵抗値の上昇量の割合(ローレート抵抗上昇割合)を示している。   Further, the low-rate resistance evaluation test was performed in an environment of 70 ° C. In the low-rate resistance evaluation test, charging and discharging of the battery were repeated in a low-rate cycle. Specifically, in the low-rate resistance evaluation test, the battery was charged at a low-rate constant current of 20 C until the battery voltage reached a predetermined voltage (CC charging), and then charged at a constant voltage until the current value attenuated to the predetermined current. (CV charging). The charge depth (SOC) was set to 60% ± 1%. After charging, the battery was discharged at a constant current of 20 C until the battery voltage reached a predetermined voltage (CC discharge). Such a charge / discharge cycle was repeated from 1 cycle to 9000 cycles. There was no pause between charging and discharging. The internal resistance of each of the battery packs of Reference Examples 1 and 2 and Examples 1 and 2 subjected to the low rate cycle was measured, and the amount of increase from the internal resistance at the initial stage was detected. In Table 1, the ratio of the increase amount of the internal resistance value to the internal resistance value at the initial stage (low-rate resistance increase ratio) is shown in the column of “low rate resistance increase” of each of Reference Examples 1 and 2 and Examples 1 and 2. ing.

[試験結果]
ここで、ハイレート抵抗上昇割合の目標値は、3.5%以下であり、ローレート抵抗上昇割合の目標値は、18%以下である。表1に示したように、参考例1では、ハイレート抵抗上昇割合、ローレート抵抗上昇割合がそれぞれ6%、18%となり、特にハイレート抵抗上昇割合が高くなった。一方、参考例2では、ハイレート抵抗上昇割合が5%となり、参考例1よりは低くなったが、ローレート抵抗上昇割合が22%と高くなった。表1では、ハイレート抵抗上昇、またはローレート抵抗上昇の欄で、目標値から大きく外れた値に「×」を付している。さらに実施例1、2ではハイレート抵抗上昇割合がともに3%となり、ローレート抵抗上昇割合がそれぞれ17%、13%となった。これを参考例1、2と比較すると、ハイレート抵抗上昇割合は実施例1、2ともに同等程度低くなり、ローレート抵抗上昇割合は実施例2でより低くなった。
[Test results]
Here, the target value of the high rate resistance increase ratio is 3.5% or less, and the target value of the low rate resistance increase ratio is 18% or less. As shown in Table 1, in Reference Example 1, the high-rate resistance increase rate and the low-rate resistance increase rate were 6% and 18%, respectively, and the high-rate resistance increase rate was particularly high. On the other hand, in Reference Example 2, the rate of increase in high-rate resistance was 5%, which was lower than in Reference Example 1, but the rate of increase in low-rate resistance was as high as 22%. In Table 1, in the column of high-rate resistance rise or low-rate resistance rise, a value that largely deviates from the target value is indicated by “x”. Further, in Examples 1 and 2, the rate of increase in high-rate resistance was 3%, and the rate of increase in low-rate resistance was 17% and 13%, respectively. Compared with Reference Examples 1 and 2, the rate of increase in high-rate resistance was about the same as in Examples 1 and 2, and the rate of increase in low-rate resistance was lower in Example 2.

このような試験結果を解析するために、本発明者は、参考例1でハイレートサイクル試験の終了後、速やかに参考例1の電池を解体し、5分割されたそれぞれの部分の負極板中の非水電解質(電解液)を構成するECの量と、電解質塩であるLiPFの量とを測定した。なお、それぞれ負極板の単位面積当たりの量を測定した。図7は、参考例1において、電極体を巻回軸方向に沿って5分割した状態を示す模式図である。図7の左右方向は、図5の巻回軸方向と一致する。電池が、巻回軸方向一方端(図7の右端)から巻回軸方向他方端(図7の左端)に向かって、正極芯体露出部側端部領域(正極芯体露出部側端部)、正極芯体露出部の内側領域(正極芯体露出部内側)、中央領域、負極芯体露出部の内側領域(負極芯体露出部内側)、負極芯体露出部側端部領域(負極芯体露出部側端部)の5つの領域に分割された。 In order to analyze such test results, the present inventor disassembled the battery of Reference Example 1 immediately after the completion of the high-rate cycle test in Reference Example 1, and divided each of the five parts into the negative electrode plate. The amount of EC constituting the non-aqueous electrolyte (electrolyte solution) and the amount of LiPF 6 as an electrolyte salt were measured. The amount per unit area of the negative electrode plate was measured. FIG. 7 is a schematic diagram showing a state in which the electrode body is divided into five along the winding axis direction in Reference Example 1. The horizontal direction in FIG. 7 matches the winding axis direction in FIG. The battery extends from one end in the winding axis direction (right end in FIG. 7) to the other end in the winding axis direction (left end in FIG. 7) in the positive electrode core exposed portion side end region (positive electrode core exposed portion side end portion). ), The inner region of the positive electrode core exposed portion (inside of the positive electrode core exposed portion), the central region, the inner region of the negative electrode core exposed portion (inside of the negative electrode core exposed portion), the end region of the negative electrode core exposed portion side (the negative electrode) (The end on the side of the core body exposed portion).

表2には、電池の初期時と劣化後とのそれぞれでの、5つの領域におけるEC量、LiPF量の測定値を示している。表2では、正極芯体露出部側端部を「正極端」、正極芯体露出部内側を「正極内」、負極芯体露出部内側を「負極内」、負極芯体露出部側端部を「負極端」と示している。表2では、EC量に対するLiPF量を、「LiPF量/EC量」で示している。 Table 2 shows the measured values of the EC amount and the LiPF 6 amount in the five regions at the initial stage and after the deterioration of the battery. In Table 2, the end of the exposed portion of the positive electrode core is “positive electrode end”, the inside of the exposed portion of the positive electrode core is “inside the positive electrode”, the inside of the exposed portion of the negative electrode core is “inside the negative electrode”, and the end of the exposed portion of the negative electrode core is Is shown as “negative electrode end”. In Table 2, the amount of LiPF 6 relative to the amount of EC is indicated by “LiPF 6 amount / EC amount”.

Figure 2020057597
Figure 2020057597

表2の測定結果から理解されるように、参考例1では、EC量が、電極体の巻回軸方向の内外で、初期と劣化後との両方でほぼ均一に存在している。一方、電解質塩であるLiPFの量は、劣化後において、電極体の巻回軸方向両端部で大きく減少している。表2では、劣化後に大きく値が減少した欄の数値に「×」を付している。これにより、本発明者は、表1で示した参考例1のハイレートサイクルでの抵抗上昇の主要因は、電極体の巻回軸方向両端部における、この電解質中の塩濃度の減少により、直流液抵抗が上昇することであると考えた。そして、本発明者は、この抵抗上昇を抑えるために、図1〜図4の実施形態のように、電池間セパレータ30において中央の領域(第5領域S5)のリブをなくす、または少なくすることで、充電時に、電解質を電極体の外部でなく中央に逃れやすくすると共に、放電時に電極体内部で電解質を拡散しやすくすることで、電極体中に存在する電解質の塩濃度の減少及び偏りを比較的素早く解消でき、それによりハイレートサイクルの抵抗上昇を抑制できると考えた。このような効果は、参考例2によってもある程度は得られると考えられる。 As understood from the measurement results in Table 2, in Reference Example 1, the EC amount is substantially uniform both inside and outside in the winding axis direction of the electrode body both at the initial stage and after the deterioration. On the other hand, the amount of LiPF 6 as the electrolyte salt is greatly reduced at both ends in the winding axis direction of the electrode body after deterioration. In Table 2, "x" is attached to the numerical value in the column where the value has greatly decreased after deterioration. As a result, the present inventor believes that the main cause of the resistance increase in the high-rate cycle of Reference Example 1 shown in Table 1 is that the DC concentration is reduced due to the decrease in the salt concentration in the electrolyte at both ends in the winding axis direction of the electrode body. It was thought that the liquid resistance increased. In order to suppress the resistance increase, the inventor eliminates or reduces the rib in the central region (fifth region S5) in the inter-battery separator 30 as in the embodiment of FIGS. Therefore, during charging, the electrolyte easily escapes to the center of the electrode body instead of to the outside, and the electrolyte easily diffuses inside the electrode body at the time of discharging, so that the salt concentration of the electrolyte present in the electrode body is reduced and biased. We thought that it could be resolved relatively quickly, thereby suppressing the increase in resistance during high rate cycling. It is considered that such an effect can be obtained to some extent by the reference example 2.

さらに、本発明者は、参考例2を用いて、充放電サイクルの試験後、X線CT装置を用いて組電池の電池10部分の巻回軸方向に直交する平面についての断面画像を観察した。図8は、参考例2の組電池における1つの電池10の、電極体13の巻回軸方向に直交する平面での断面画像を示す図である。図8に示す断面画像の図から理解されるように、参考例2では、電極体13の平坦部のうち一方の曲面部側の端部近傍(図8の右端部)において、一点鎖線の丸βで囲んだ部分に、電池10の座屈が発生した。本発明者は、この要因は、電池間セパレータ30cにおいて、電極体13の平坦部のうち一方の曲面部側の端部近傍に重なる部分のリブを省略したことにより、電極体13に加圧力が加わらず、この部分における電極間の隙間が大きくなったためであると考えた。本発明者は、このような要因により、表1で示した参考例2のローレートサイクルでの抵抗上昇が生じると考えた。ローレートサイクルでは、ハイレートサイクルの場合と異なり、電池の化学劣化の影響がほとんどないため、座屈による影響が大きく現れると考えられる。   Furthermore, the inventor observed a cross-sectional image of a plane orthogonal to the winding axis direction of the battery 10 part of the battery pack using an X-ray CT apparatus after the charge / discharge cycle test using Reference Example 2. . FIG. 8 is a diagram showing a cross-sectional image of one battery 10 in the battery pack of Reference Example 2 on a plane orthogonal to the winding axis direction of the electrode body 13. As can be understood from the cross-sectional image shown in FIG. 8, in Reference Example 2, the dashed-dotted circle near the one curved surface side end (the right end in FIG. 8) of the flat portion of the electrode body 13. Buckling of the battery 10 occurred in a portion surrounded by β. The inventor of the present invention has identified that the pressurizing force is applied to the electrode body 13 by omitting the ribs of the flat part of the electrode body 13 near the end near one curved surface side in the inter-battery separator 30c. It was considered that this was because the gap between the electrodes in this portion was increased. The present inventor has considered that such factors cause a resistance increase in the low rate cycle of Reference Example 2 shown in Table 1. Unlike the high-rate cycle, the low-rate cycle is hardly affected by the chemical degradation of the battery, so it is considered that the buckling greatly affects the battery.

上記の図1〜図4に示した実施形態によれば、電池間セパレータ30のリブ群32は、電極体13の両方の曲面部13a側の第1群G1及び第3群G3の全ての領域S1〜S3、S7〜S9に重なる複数の端側リブ33,34と、電極体13の巻回軸方向両端側の第4領域S4及び第6領域S6に重なる複数の中央側リブ36,37とを有する。さらに、リブ群32の形成密度は、第5領域S5で、第4領域S4及び第6領域S6のそれぞれより低くなっている。これにより、ハイレートサイクル及びローレートサイクルの両方で電池10の内部抵抗の上昇を抑制できることが推測される。なお、リブ群32の形成密度が、第5領域S5で、第4領域S4及び第6領域S6のそれぞれより低くなるのであれば、第5領域S5にリブを配置することもできる。一方、第5領域S5のリブの数を0とすることで、電池10の内部抵抗の上昇をさらに抑制できる。   According to the embodiment shown in FIGS. 1 to 4 described above, the rib group 32 of the inter-cell separator 30 includes all the regions of the first group G1 and the third group G3 on both the curved surface portions 13a side of the electrode body 13. A plurality of end ribs 33, 34 overlapping S1 to S3, S7 to S9; a plurality of center ribs 36, 37 overlapping the fourth region S4 and the sixth region S6 at both ends in the winding axis direction of the electrode body 13; Having. Furthermore, the formation density of the rib group 32 is lower in the fifth region S5 than in each of the fourth region S4 and the sixth region S6. Thus, it is estimated that the increase in the internal resistance of the battery 10 can be suppressed in both the high rate cycle and the low rate cycle. If the formation density of the rib group 32 is lower in the fifth region S5 than in each of the fourth region S4 and the sixth region S6, the ribs can be arranged in the fifth region S5. On the other hand, by setting the number of ribs in the fifth region S5 to 0, the increase in the internal resistance of the battery 10 can be further suppressed.

さらに、積層方向一方側から見た場合に、複数の端側リブ33,34,35の少なくとも一部の端側リブ33,34は、電極体13の座屈が発生しやすい、平坦部13bにおける連結部Eの近傍に重なる部分にあるので、電極体13の座屈をより抑制できる。これにより、ローレートサイクルにおける内部抵抗の上昇をさらに抑制できる。   Further, when viewed from one side in the stacking direction, at least some of the end ribs 33, 34, 35 of the plurality of end ribs 33, 34, 35 are in the flat portion 13b where buckling of the electrode body 13 is likely to occur. Since it is located in a portion overlapping the vicinity of the connecting portion E, buckling of the electrode body 13 can be further suppressed. Thereby, an increase in the internal resistance in the low rate cycle can be further suppressed.

なお、実施形態において、端側リブ33,34は、第1辺方向に対し傾斜させることもできるが、第1辺方向に沿って延びていることが、内部抵抗の上昇を抑制する面からより好ましい。   In the embodiment, the end side ribs 33 and 34 can be inclined with respect to the first side direction. However, extending along the first side direction is more effective from the viewpoint of suppressing an increase in internal resistance. preferable.

さらに、実施形態によれば、上下方向両側のそれぞれにおいて、平坦部13bにおける連結部E近傍に重なる部分にある各端側リブ33,34の全長が、正極合材層の第1辺方向長さの50%以上であることが好ましい。この好ましい構成によれば、電極体13の平坦部13bにおける連結部E近傍の座屈をより抑制できるので、ローレートサイクルにおける内部抵抗の上昇をさらに抑制できる。   Furthermore, according to the embodiment, on both sides in the up-down direction, the total length of each end-side rib 33, 34 in a portion overlapping the vicinity of the connection portion E in the flat portion 13b is the length of the positive electrode mixture layer in the first side direction. Is preferably 50% or more. According to this preferred configuration, buckling in the vicinity of the connection portion E in the flat portion 13b of the electrode body 13 can be further suppressed, so that an increase in internal resistance in a low rate cycle can be further suppressed.

さらに、組電池1を積層方向一方側から見た場合における平坦部13bと重なる部分に設けられたリブ群32の合計の面積は、積層方向一方側から見た場合の平坦部13b内に配置された正極合材層の面積の40〜60%であることが好ましい。この好ましい構成によれば、ハイレートサイクル及びローレートサイクルの両方でよりバランスよく、電池10の内部抵抗の上昇をより効果的に抑制できる。   Furthermore, the total area of the rib group 32 provided in a portion overlapping the flat portion 13b when the battery pack 1 is viewed from one side in the stacking direction is arranged in the flat portion 13b when viewed from one side in the stacking direction. It is preferably 40 to 60% of the area of the positive electrode mixture layer. According to this preferred configuration, an increase in the internal resistance of the battery 10 can be suppressed more effectively in both the high rate cycle and the low rate cycle.

1 組電池、2 電池積層体、10 非水電解質二次電池(電池)、11 角形外装体、12 封口板、13 電極体、13a 曲面部、13b 平坦部、14 正極板、14a 正極芯体露出部、15 負極板、15a 負極芯体露出部、16 正極集電体、17 正極端子、18 負極集電体、19 負極端子、20,22 内部側絶縁部材、21,23 外部側絶縁部材、24 絶縁シート、25 ガス排出弁、26 電解液注液孔、27 封止栓、30,30a,30b,30c 電池間セパレータ、31 本体板部、32,32a リブ群、33,33a,34,34a,35 端側リブ、36,37 中央側リブ、40 溝、50 枠部、60 リブ、100 電池ケース、   REFERENCE SIGNS LIST 1 battery pack, 2 battery stack, 10 non-aqueous electrolyte secondary battery (battery), 11 prismatic outer package, 12 sealing plate, 13 electrode assembly, 13 a curved surface portion, 13 b flat portion, 14 positive electrode plate, 14 a positive electrode core exposed Part, 15 negative electrode plate, 15a negative electrode core exposed part, 16 positive electrode current collector, 17 positive electrode terminal, 18 negative electrode current collector, 19 negative electrode terminal, 20, 22 internal insulating member, 21, 23 external insulating member, 24 Insulating sheet, 25 gas discharge valve, 26 electrolyte injection hole, 27 sealing stopper, 30, 30a, 30b, 30c inter-battery separator, 31 body plate, 32, 32a rib group, 33, 33a, 34, 34a, 35 end side rib, 36, 37 center side rib, 40 groove, 50 frame part, 60 rib, 100 battery case,

Claims (4)

複数の非水電解質二次電池が、電池間セパレータを介して積層されて構成される組電池であって、
複数の前記非水電解質二次電池のそれぞれは、正極活物質を含む正極合材層を有する正極板、及び負極板を有する巻回型の電極体と、非水電解質と、前記電極体及び前記非水電解質を収容するケースとを備え、
前記電極体は、外周面が平坦な平坦部と、前記平坦部の第1方向両端に配置された外周面が曲面である2つの曲面部を有し、
前記電池間セパレータは、本体板部と、前記本体板部から積層方向に突出する突起群と、を含み、
前記電池間セパレータを前記積層方向一方側から見た場合に、前記本体板部において、前記電極体の前記平坦部内に配置された前記正極合材層と重なる領域を、前記第1方向に直交する第1辺に沿う第1辺方向と、前記第1方向と平行な第2辺に沿う第2辺方向とのそれぞれで3つに等分割することで得られた9個の領域に分割し、前記9個の領域が、前記電池間セパレータの前記第1方向一端から他端に向かって第1領域、第2領域、及び第3領域からなる第1群と、第4領域、第5領域、及び第6領域からなる第2群と、第7領域、第8領域、及び第9領域からなる第3群とで分けられた場合において、前記積層方向一方側から見た場合に、前記第2領域、前記第5領域、及び前記第8領域が前記電極体の巻回軸方向中央部と重なっており、前記突起群は、前記第1群及び前記第3群の全ての前記領域に重なる複数の端側突起と、前記第4領域及び前記第6領域に重なる複数の中央側突起とを有し、前記突起群の形成密度は、前記第5領域で、前記第4領域及び前記第6領域のそれぞれより低い、
組電池。
A plurality of non-aqueous electrolyte secondary batteries are assembled batteries configured to be stacked via an inter-cell separator,
Each of the plurality of nonaqueous electrolyte secondary batteries has a positive electrode plate having a positive electrode mixture layer containing a positive electrode active material, and a wound electrode body having a negative electrode plate, a nonaqueous electrolyte, the electrode body and the And a case for containing a non-aqueous electrolyte,
The electrode body has a flat portion having a flat outer peripheral surface, and two curved surface portions each having a curved outer peripheral surface disposed at both ends in the first direction of the flat portion,
The inter-battery separator includes a main body plate portion, and a projection group protruding from the main body plate portion in the stacking direction,
When the inter-battery separator is viewed from one side in the stacking direction, a region of the main body plate portion that overlaps with the positive electrode mixture layer disposed in the flat portion of the electrode body is orthogonal to the first direction. Dividing into nine regions obtained by equally dividing into three in each of a first side direction along the first side and a second side direction along a second side parallel to the first direction, The nine regions are a first group including a first region, a second region, and a third region from one end to the other end in the first direction of the inter-battery separator, and a fourth region, a fifth region, And a second group composed of a sixth region and a third group composed of a seventh region, an eighth region, and a ninth region. The region, the fifth region, and the eighth region overlap with the center of the electrode body in the winding axis direction. The projection group includes a plurality of end projections overlapping all the regions of the first group and the third group, and a plurality of central projections overlapping the fourth region and the sixth region, The formation density of the protrusion group is lower in the fifth region than in each of the fourth region and the sixth region.
Battery pack.
前記積層方向一方側から見た場合に、前記複数の端側突起の少なくとも一部は、前記平坦部において、前記平坦部と前記曲面部の連結部の近傍に重なる部分にある、
請求項1に記載の組電池。
When viewed from one side in the stacking direction, at least a part of the plurality of end side protrusions is in a portion of the flat portion that overlaps near a connection portion between the flat portion and the curved surface portion,
The battery pack according to claim 1.
前記第1方向両側のそれぞれにおいて、前記複数の端側突起のうち、前記平坦部において前記連結部の近傍に重なる部分にある少なくとも1つの前記端側突起の全長の合計は、前記正極合材層の前記第1辺方向長さの50%以上である、
請求項2に記載の組電池。
On both sides of the first direction, the total length of at least one of the plurality of end-side protrusions in a portion overlapping the vicinity of the connecting portion in the flat portion is the positive-electrode mixture layer. 50% or more of the length in the first side direction of
The battery pack according to claim 2.
前記積層方向一方側から見た場合における前記平坦部と重なる部分に設けられた前記突起群の合計の面積は、前記積層方向一方側から見た場合の前記平坦部内に配置された前記正極合材層の面積の40〜60%である、
請求項1〜3のいずれか1項に記載の組電池。
The total area of the protrusion group provided in a portion overlapping the flat portion when viewed from one side in the stacking direction is the positive electrode mixture disposed in the flat portion when viewed from one side in the stacking direction. 40-60% of the area of the layer,
The battery pack according to claim 1.
JP2019144639A 2018-09-28 2019-08-06 assembled battery Active JP7441013B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018185383 2018-09-28
JP2018185383 2018-09-28

Publications (2)

Publication Number Publication Date
JP2020057597A true JP2020057597A (en) 2020-04-09
JP7441013B2 JP7441013B2 (en) 2024-02-29

Family

ID=70107606

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019144639A Active JP7441013B2 (en) 2018-09-28 2019-08-06 assembled battery

Country Status (1)

Country Link
JP (1) JP7441013B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114447343A (en) * 2020-10-30 2022-05-06 泰星能源解决方案有限公司 Battery with a battery cell
CN115133214A (en) * 2021-03-25 2022-09-30 泰星能源解决方案有限公司 Secondary battery
JP7481318B2 (en) 2021-12-07 2024-05-10 プライムプラネットエナジー&ソリューションズ株式会社 Battery module and separator member

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015125859A (en) * 2013-12-26 2015-07-06 三洋電機株式会社 Battery pack
JP2015138753A (en) * 2014-01-24 2015-07-30 日立オートモティブシステムズ株式会社 battery module
JP2018032581A (en) * 2016-08-26 2018-03-01 トヨタ自動車株式会社 Assembled battery
JP2018060755A (en) * 2016-10-07 2018-04-12 トヨタ自動車株式会社 Battery pack
JP2018181765A (en) * 2017-04-20 2018-11-15 トヨタ自動車株式会社 Battery pack

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015125859A (en) * 2013-12-26 2015-07-06 三洋電機株式会社 Battery pack
JP2015138753A (en) * 2014-01-24 2015-07-30 日立オートモティブシステムズ株式会社 battery module
JP2018032581A (en) * 2016-08-26 2018-03-01 トヨタ自動車株式会社 Assembled battery
JP2018060755A (en) * 2016-10-07 2018-04-12 トヨタ自動車株式会社 Battery pack
JP2018181765A (en) * 2017-04-20 2018-11-15 トヨタ自動車株式会社 Battery pack

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114447343A (en) * 2020-10-30 2022-05-06 泰星能源解决方案有限公司 Battery with a battery cell
US11824168B2 (en) 2020-10-30 2023-11-21 Prime Planet Energy & Solutions, Inc. Battery
CN114447343B (en) * 2020-10-30 2024-04-09 泰星能源解决方案有限公司 Battery cell
CN115133214A (en) * 2021-03-25 2022-09-30 泰星能源解决方案有限公司 Secondary battery
CN115133214B (en) * 2021-03-25 2024-04-05 泰星能源解决方案有限公司 Secondary battery
JP7481318B2 (en) 2021-12-07 2024-05-10 プライムプラネットエナジー&ソリューションズ株式会社 Battery module and separator member

Also Published As

Publication number Publication date
JP7441013B2 (en) 2024-02-29

Similar Documents

Publication Publication Date Title
KR101937580B1 (en) Lithium ion secondary battery and battery pack
US20160226106A1 (en) Method for producing a nonaqueous electrolyte secondary battery
US9960453B2 (en) Lithium ion secondary battery and system using same
KR102012626B1 (en) Nonaqueous electrolyte secondary battery
US9755206B2 (en) Nonaqueous electrolyte secondary battery having separators with base material and heat-resistant layer on coiling outer peripheral side
US11264649B2 (en) Cylindrical nonaqueous electrolyte secondary battery
JP6176500B2 (en) Secondary battery, method for producing the same, and method for producing negative electrode sheet used in the battery
JP2015115292A (en) Battery
US9917296B2 (en) Nonaqueous electrolyte secondary battery
EP3048661B1 (en) Nonaqueous electrolyte secondary battery
JP7441013B2 (en) assembled battery
US11374263B2 (en) Nonaqueous electrolyte secondary battery
JP7361340B2 (en) Negative electrode for non-aqueous electrolyte secondary batteries and non-aqueous electrolyte secondary batteries
JP6008188B2 (en) Non-aqueous electrolyte secondary battery
JP7212629B2 (en) lithium ion secondary battery
US20140023915A1 (en) Non-aqueous electrolyte secondary cell
US9680153B2 (en) Nonaqueous electrolyte secondary battery
WO2021065420A1 (en) Battery pack
JP6735036B2 (en) Lithium ion secondary battery
JP2018106981A (en) Secondary battery
JP6778396B2 (en) Non-aqueous electrolyte secondary battery
US10170797B2 (en) Nonaqueous electrolyte secondary battery
JP2019061782A (en) Nonaqueous electrolyte secondary battery and method for manufacturing the same
JP7462165B2 (en) Non-aqueous electrolyte secondary battery
JP2021022543A (en) Power storage element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220406

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230523

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230712

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231010

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240213

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240216

R151 Written notification of patent or utility model registration

Ref document number: 7441013

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151