JP2017098017A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
JP2017098017A
JP2017098017A JP2015227501A JP2015227501A JP2017098017A JP 2017098017 A JP2017098017 A JP 2017098017A JP 2015227501 A JP2015227501 A JP 2015227501A JP 2015227501 A JP2015227501 A JP 2015227501A JP 2017098017 A JP2017098017 A JP 2017098017A
Authority
JP
Japan
Prior art keywords
electrode body
annular member
wound electrode
secondary battery
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015227501A
Other languages
Japanese (ja)
Inventor
山本 雄治
Yuji Yamamoto
雄治 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2015227501A priority Critical patent/JP2017098017A/en
Publication of JP2017098017A publication Critical patent/JP2017098017A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a nonaqueous electrolyte secondary battery reduced in the risk of precipitation of a charge carrier-originating substance.SOLUTION: A nonaqueous electrolyte secondary battery 100 according to the present invention comprises: a wound electrode body 20; a nonaqueous electrolyte solution; and a battery case 30. The wound electrode body 20 has a pair of R parts 22, and a center flat part 24 having a pair of flat surfaces 26 located between the paired R parts. The outer surface of the wound electrode body 20 is partially covered with a heat shrinkable annular member 80 which is disposed to be opposed to the outer surface of the pair of R parts 22 and the pair of flat surfaces 26. In the nonaqueous electrolyte secondary battery, the annular member 80 is disposed around the wound electrode body 20 in the state of being shrunk by heat. The annular member 80 has holes formed therein. A total opening area (S) of the holes formed in the annular member 80 is 40% of an area (S) of the outer surface of the wound electrode body 20 covered by the annular member 80.SELECTED DRAWING: Figure 4

Description

本発明は非水電解液二次電池に関する。   The present invention relates to a non-aqueous electrolyte secondary battery.

近年、リチウム二次電池等の非水電解液二次電池は、車両搭載用電源、或いはパソコンおよび携帯端末の電源等として重要性が高まっている。特に、軽量で高エネルギー密度が得られるリチウム二次電池は車両搭載用高出力電源として好ましく用いられている。   In recent years, non-aqueous electrolyte secondary batteries such as lithium secondary batteries have become increasingly important as power sources for mounting on vehicles or power sources for personal computers and portable terminals. In particular, a lithium secondary battery that is lightweight and has a high energy density is preferably used as a high-output power source for mounting on a vehicle.

この種の非水電解液二次電池の一つの典型的な例として、正極と負極とがセパレータを介して捲回された捲回電極体を備えた電池が挙げられる。かかる非水電解液二次電池では、負極に形成された負極活物質層と正極に形成された正極活物質層とが対向するように配置されている。
この種の非水電解液二次電池は、一般的に、正極活物質を含む正極活物質層と負極活物質を含む負極活物質層との間を電荷担体(例えばリチウムイオン)が行き来することによって、充電および放電が行われる。負極活物質層に着目すると、充電時には負極活物質層中に電荷担体が吸蔵され、放電時には充電時に吸蔵された電荷担体が負極活物質層中から非水電解液中に放出される。
A typical example of this type of non-aqueous electrolyte secondary battery is a battery including a wound electrode body in which a positive electrode and a negative electrode are wound through a separator. In such a non-aqueous electrolyte secondary battery, the negative electrode active material layer formed on the negative electrode and the positive electrode active material layer formed on the positive electrode are arranged to face each other.
In this type of non-aqueous electrolyte secondary battery, generally, charge carriers (for example, lithium ions) travel between a positive electrode active material layer containing a positive electrode active material and a negative electrode active material layer containing a negative electrode active material. Thus, charging and discharging are performed. Focusing on the negative electrode active material layer, charge carriers are occluded in the negative electrode active material layer during charging, and charge carriers occluded during charging are discharged from the negative electrode active material layer into the non-aqueous electrolyte during discharging.

特開2014−086293号公報JP 2014-086293 A 特開平10−241743号公報Japanese Patent Laid-Open No. 10-241743

ところで、上述の構成の非水電解液二次電池では、該電池の構成または電池の使用用途によって、負極活物質層上に電荷担体に由来する物質(例えば金属リチウム)が析出する場合がある。負極活物質層上に析出した電荷担体に由来する物質(例えば、金属リチウム)は電池反応に使用されないため、電池容量が低下する虞がある。また、析出した電荷担体に由来する物質は内部短絡の原因となるため好ましくない。   By the way, in the non-aqueous electrolyte secondary battery having the above-described configuration, a substance (for example, metallic lithium) derived from the charge carrier may be deposited on the negative electrode active material layer depending on the configuration of the battery or the intended use of the battery. Since the substance (for example, metallic lithium) derived from the charge carrier deposited on the negative electrode active material layer is not used for the battery reaction, the battery capacity may be reduced. In addition, substances derived from the deposited charge carriers are not preferable because they cause an internal short circuit.

例えば、非水電解液二次電池は一般的に、負極活物質層の幅および長さが正極活物質層より広くなるように形成し、該負極活物質層が正極活物質層を覆うように正極および負極が重ねあわせられる。即ち、かかる構成の電池では、負極活物質層は、正極活物質層と対向する対向部分と、正極活物質と対向しない非対向部分とからなる。
かかる非水電解液二次電池について、充放電(特に高い入出力密度での充放電)を短い間隔で頻繁に繰り返す用途(例えば、車載用電池のように、ハイレート充放電を繰り返す用途)に用いると、負極活物質層の対向部分のうちの非対向部分に近い端部(典型的には負極活物質層の対向部分のうち非対向部分と隣接する端部)における電荷担体の濃度が局所的に増大する傾向にある。一般的に、負極活物質層のうちの電荷担体濃度が局所的に高濃度となった部分は、局所的な過充電状態となり、該部分に電荷担体に由来する物質(例えば金属リチウム)が析出しがちである。
特許文献1には、負極活物質層に対向するセパレータのうちの上記負極活物質層の非対向部分に対向する部分の非水電解液の保持性を低下させることで、上記負極活物質層上にの電荷担体由来の物質が析出することを低減する技術が記載されている。
For example, a non-aqueous electrolyte secondary battery is generally formed such that the width and length of the negative electrode active material layer are wider than the positive electrode active material layer, and the negative electrode active material layer covers the positive electrode active material layer. A positive electrode and a negative electrode are overlaid. That is, in the battery having such a configuration, the negative electrode active material layer includes a facing portion that faces the positive electrode active material layer and a non-facing portion that does not face the positive electrode active material.
About such a non-aqueous electrolyte secondary battery, it is used for applications in which charging / discharging (charging / discharging at a high input / output density in particular) is frequently repeated at short intervals (for example, applications in which high-rate charging / discharging is repeated, such as in-vehicle batteries) And the concentration of charge carriers at the end portion of the opposing portion of the negative electrode active material layer close to the non-opposing portion (typically, the end portion adjacent to the non-opposing portion of the opposing portion of the negative electrode active material layer) is locally It tends to increase. In general, a portion of the negative electrode active material layer where the charge carrier concentration is locally high is locally overcharged, and a substance derived from the charge carrier (for example, metallic lithium) is deposited on the portion. It tends to be.
Patent Document 1 discloses that on the negative electrode active material layer, the retention of the non-aqueous electrolyte in the portion facing the non-facing portion of the negative electrode active material layer in the separator facing the negative electrode active material layer is reduced. Describes a technique for reducing the precipitation of substances derived from charge carriers.

しかしながら、上記特許文献1に記載の技術によって、上記負極活物質層の非対向部分において電荷担体に由来する物質が析出することを低減し得るものの、捲回電極体の構成によっては、上記電荷担体に由来する物質が負極活物質層上に析出してしまう場合があった。
非水電解液二次電池の一態様として、対向する2つの扁平部と、それら2つの扁平部の間に介在する2つの湾曲部(R部)とを有する扁平形状の捲回電極体を備えた例が挙げられる。かかる扁平形状の捲回電極体では、典型的に、上記湾曲部における電極間の距離(対向する負極と正極との間の距離)が、上記扁平部における電極間の距離と比較して大きくなる傾向にある。このように電極間の距離にムラがある電極体を備えた非水電解液二次電池を充電すると、上記電極間距離が大きいところでは負極の抵抗が高くなり、負極活物質層上に電荷担体由来の物質(典型的には金属リチウム)が析出しがちである。そこで、特許文献2には、捲回電極体が外径方向に緩むことを低減するために、捲回電極体の外周面に熱収縮性の環状部材を配置する技術について記載されている。
However, although the technique described in Patent Document 1 can reduce the deposition of a substance derived from the charge carrier in the non-opposing portion of the negative electrode active material layer, depending on the configuration of the wound electrode body, the charge carrier In some cases, the material derived from the material was deposited on the negative electrode active material layer.
As one aspect of the non-aqueous electrolyte secondary battery, a flat wound electrode body having two flat portions facing each other and two curved portions (R portion) interposed between the two flat portions is provided. Examples are given. In such a flat wound electrode body, typically, the distance between the electrodes in the curved portion (the distance between the negative electrode and the positive electrode facing each other) is larger than the distance between the electrodes in the flat portion. There is a tendency. When a non-aqueous electrolyte secondary battery having an electrode body with uneven distance between the electrodes is charged as described above, the resistance of the negative electrode is increased where the distance between the electrodes is large, and the charge carrier is formed on the negative electrode active material layer. The derived material (typically metallic lithium) tends to precipitate. Therefore, Patent Document 2 describes a technique in which a heat-shrinkable annular member is disposed on the outer peripheral surface of the wound electrode body in order to reduce the looseness of the wound electrode body in the outer diameter direction.

しかしながら、発明者らの検討によると、上記特許文献2に記載の技術では、上記捲回電極体の外周面に上記熱収縮性の部材を配置することによって、捲回電極体内へ非水電解液が含浸(浸透)しにくくなる場合があることが確認された。非水電解液は、主に、捲回電極体の捲回軸方向の両端部から捲回軸方向の中央へ向かう方向で捲回電極体内へ含浸(浸透)するが、捲回電極体内へ浸透する非水電解液の一部は、上記捲回軸方向の両端部以外(即ち、R部および扁平部の表面)からも捲回電極体内へ含浸(浸透)し得る。例えば、通常捲回電極体の最外周に配置される多孔質のセパレータの細孔や、捲回電極体の捲回終端から捲回電極体内へ含浸(浸透)し得る。このため、捲回電極体の外周面が上記環状部材で覆われると、捲回電極体の外周面のうちの上記環状部材が配置された部分において、非水電解液が含浸(浸透)し難くなる場合があると考える。
捲回電極体の一部において非水電解液の浸透性(浸潤性)が低下すると、捲回電極体内で非水電解液の液量ムラが生じやすくなる。一般的に、電極体のうち非水電解液が相対的に多く存在する部分に電池反応が集中しがちであり、該部分において負極活物質層上に電荷担体に由来する物質(例えば金属リチウム)が析出する虞がある。
However, according to the study by the inventors, in the technique described in Patent Document 2, the non-aqueous electrolyte is introduced into the wound electrode body by disposing the heat-shrinkable member on the outer peripheral surface of the wound electrode body. It has been confirmed that impregnation (penetration) may be difficult. The non-aqueous electrolyte is mainly impregnated (penetrated) into the wound electrode body in the direction from both ends of the wound electrode body in the winding axis direction toward the center in the winding axis direction, but penetrates into the wound electrode body. A part of the non-aqueous electrolyte solution can be impregnated (penetrated) into the wound electrode body from other than both ends in the winding axis direction (that is, the surface of the R portion and the flat portion). For example, it is possible to impregnate (penetrate) into the wound electrode body from the pores of a porous separator that is usually disposed on the outermost periphery of the wound electrode body or from the winding end of the wound electrode body. For this reason, when the outer peripheral surface of the wound electrode body is covered with the annular member, the nonaqueous electrolytic solution is less likely to be impregnated (penetrated) in the portion of the outer peripheral surface of the wound electrode body where the annular member is disposed. I think it may be.
When the permeability (infiltration property) of the nonaqueous electrolytic solution is lowered in a part of the wound electrode body, the liquid amount unevenness of the nonaqueous electrolytic solution easily occurs in the wound electrode body. In general, the battery reaction tends to concentrate on a portion of the electrode body where a relatively large amount of non-aqueous electrolyte exists, and a substance derived from charge carriers on the negative electrode active material layer (for example, metallic lithium) May be deposited.

本発明はかかる点に鑑みてなされたものであり、その主な目的は、電荷担体に由来する物質が負極活物質層上に析出することが高度に抑制された電池を提供することである。   This invention is made | formed in view of this point, The main objective is to provide the battery in which it was highly suppressed that the substance derived from a charge carrier precipitated on a negative electrode active material layer.

上記の目的を実現すべく、本発明により、扁平な捲回電極体と、非水電解液と、上記電極体および上記非水電解液を収容する電池ケースと、を備える非水電解液二次電池が提供される。上記捲回電極体は、捲回軸に対して直交する方向の両端部であって該捲回電極体の積層面を除く外表面が曲面からなる2つのR部と、両R部に挟まれている中央部分であって幅広な2つの扁平表面を有する中央扁平部と、を有するものであり、上記捲回電極体は、該捲回電極体の外表面の一部が、上記2つのR部の外表面および上記中央扁平部の2つの扁平表面に対向するように配置された熱収縮性の環状部材によって覆われている。ここで、上記環状部材は、熱により収縮した状態で上記捲回電極体の周囲に配置されている。そして、上記環状部材は、熱収縮された状態で、複数の孔が形成されており、且つ、捲回電極体の外表面のうちの上記熱収縮された状態の環状部材によって覆われた部分の面積(S)を100%とした場合に対する上記熱収縮された状態の環状部材に形成された孔の開口面積の総和(S)の比率が40%である。 To achieve the above object, according to the present invention, a non-aqueous electrolyte secondary comprising a flat wound electrode body, a non-aqueous electrolyte, and a battery case containing the electrode body and the non-aqueous electrolyte. A battery is provided. The wound electrode body is sandwiched between two R parts which are both ends in a direction orthogonal to the winding axis and whose outer surface excluding the laminated surface of the wound electrode body is a curved surface. A central flat portion having two flat surfaces, and the wound electrode body has a portion of the outer surface of the wound electrode body, the two R And a heat-shrinkable annular member disposed so as to face the two flat surfaces of the central flat part. Here, the annular member is disposed around the wound electrode body in a state of being contracted by heat. The annular member has a plurality of holes formed in a thermally contracted state, and a portion of the outer surface of the wound electrode body that is covered by the annular member in the thermally contracted state. The ratio of the total opening area (S A ) of the holes formed in the annular member in the heat-shrinked state with respect to the area (S B ) of 100% is 40%.

かかる構成の非水電解液二次電池によると、捲回電極体が、2つのR部の外表面および上記中央扁平部の2つの扁平表面に対向するように配置された熱収縮性の部材により、捲回電極体の外表面から捲回軸に向かう方向に拘束(押圧)しているため、電極間の距離にムラが生じる(典型的には上記R部における電極間距離が上記中央扁平部における電極間距離と比較して大きくなる)虞を低減することができる。これにより、捲回電極体の全体に亘って電極間距離をほぼ一定とすることができ、電極間距離のムラに起因して負極活物質層上に電荷担体由来の物質が析出することを好適に低減することができる。
また上記構成の非水電解液二次電池によると、上記環状部材に孔が形成されているため、該孔を介して捲回電極体内へ非水電解液を供給し得る。これにより、上記捲回電極体の外表面の一部を上記環状部材で覆うことによって該捲回電極体内への非水電解液の含浸性(浸透性)が低下する虞を低減することができる。即ち、上記の構成の非水電解液二次電池によると、捲回電極体内における非水電解の液量のムラに起因して負極活物質層上に電荷担体由来の物質が析出する虞を低減することができる。
従って、ここで開示する非水電解液二次電池によると、電極間の距離が一定に保たれ、且つ、電極体へ非水電解液が良好に含浸(浸透)し得る電池を提供することができる。即ち、ここで開示する非水電解液二次電池によると、電荷担体に由来する物質が負極活物質層上に析出することが高度に抑制された電池を提供することができる。
According to the non-aqueous electrolyte secondary battery having such a configuration, the wound electrode body is provided with a heat-shrinkable member arranged so as to face the outer surfaces of the two R portions and the two flat surfaces of the central flat portion. In addition, since it is constrained (pressed) in the direction from the outer surface of the wound electrode body toward the winding axis, unevenness occurs in the distance between the electrodes (typically, the distance between the electrodes in the R portion is the central flat portion. The risk of becoming larger than the distance between the electrodes in (1) can be reduced. Thereby, the distance between the electrodes can be made substantially constant over the entire wound electrode body, and it is preferable that the substance derived from the charge carrier is deposited on the negative electrode active material layer due to the unevenness of the distance between the electrodes. Can be reduced.
Moreover, according to the non-aqueous electrolyte secondary battery having the above-described configuration, since the hole is formed in the annular member, the non-aqueous electrolyte can be supplied into the wound electrode body through the hole. Thereby, the possibility that the impregnation property (penetration) of the non-aqueous electrolyte into the wound electrode body may be reduced by covering a part of the outer surface of the wound electrode body with the annular member. . That is, according to the non-aqueous electrolyte secondary battery having the above-described configuration, the possibility that the charge carrier-derived substance is deposited on the negative electrode active material layer due to non-uniformity in the amount of non-aqueous electrolysis in the wound electrode body is reduced. can do.
Therefore, according to the nonaqueous electrolyte secondary battery disclosed herein, it is possible to provide a battery in which the distance between the electrodes can be kept constant and the electrode body can be satisfactorily impregnated (penetrated) with the nonaqueous electrolyte. it can. That is, according to the non-aqueous electrolyte secondary battery disclosed here, a battery in which the substance derived from the charge carrier is highly suppressed from being deposited on the negative electrode active material layer can be provided.

一実施形態に係る非水電解液二次電池の外形を模式的に示す斜視図である。It is a perspective view which shows typically the external shape of the nonaqueous electrolyte secondary battery which concerns on one Embodiment. 図1中のII−II線に沿う縦断面図である。It is a longitudinal cross-sectional view which follows the II-II line | wire in FIG. 一実施形態に係る捲回電極体と該捲回電極体の周囲に配置された環状部材との関係を模式的に示す斜視図である。It is a perspective view which shows typically the relationship between the winding electrode body which concerns on one Embodiment, and the annular member arrange | positioned around this winding electrode body. 図2中のIV−IV線に沿う縦断面図である。FIG. 4 is a longitudinal sectional view taken along line IV-IV in FIG. 2.

以下、適宜図面を参照しながら、本発明の一実施形態に係る非水電解液二次電池として、リチウム二次電池を例として本発明を詳細に説明する。なお、本明細書において特に言及している事項以外の事柄であって本発明の実施に必要な事柄は、当該分野における従来技術に基づく当業者の設計事項として把握され得る。本発明は、本明細書に開示されている内容と当該分野における技術常識とに基づいて実施することができる。また、リチウム二次電池は一例であり、本発明の技術思想は、その他の電荷担体(例えばナトリウムイオン)を備える他の非水電解液二次電池(例えばナトリウム二次電池)にも適用される。
なお、以下の図面において、同じ作用を奏する部材・部位には同じ符号を付して説明し、重複する説明は省略または簡略化することがある。また、各図における寸法関係(長さ、幅、厚さ等)は必ずしも実際の寸法関係を反映するものではない。
Hereinafter, the present invention will be described in detail by taking a lithium secondary battery as an example as a non-aqueous electrolyte secondary battery according to an embodiment of the present invention with appropriate reference to the drawings. Note that matters other than matters specifically mentioned in the present specification and necessary for the implementation of the present invention can be grasped as design matters of those skilled in the art based on the prior art in this field. The present invention can be carried out based on the contents disclosed in this specification and common technical knowledge in the field. Further, the lithium secondary battery is an example, and the technical idea of the present invention is also applied to other non-aqueous electrolyte secondary batteries (for example, sodium secondary batteries) having other charge carriers (for example, sodium ions). .
In the following drawings, members / parts having the same action are described with the same reference numerals, and redundant descriptions may be omitted or simplified. Further, the dimensional relationship (length, width, thickness, etc.) in each drawing does not necessarily reflect the actual dimensional relationship.

なお、本明細書において「二次電池」とは、繰り返し充放電可能な電池一般をいい、リチウム二次電池、ナトリウム二次電池、ニッケル水素二次電池等のいわゆる化学電池ならびに電気二重層キャパシタ等の物理電池を包含する用語である。また、本明細書において「リチウム二次電池」とは、電荷担体(支持塩、支持電解液)としてリチウムイオンを利用し、正負極間におけるリチウムイオンの移動により充放電する二次電池をいう。   In the present specification, the “secondary battery” generally refers to a battery that can be repeatedly charged and discharged, such as a so-called chemical battery such as a lithium secondary battery, a sodium secondary battery, and a nickel hydride secondary battery, and an electric double layer capacitor. It is a term encompassing the physical battery. In the present specification, the “lithium secondary battery” refers to a secondary battery that uses lithium ions as a charge carrier (supporting salt, supporting electrolyte) and is charged and discharged by the movement of lithium ions between the positive and negative electrodes.

図1は、本発明の一実施形態に係るリチウム二次電池(リチウムイオン二次電池)100を示している。このリチウム二次電池100は、図2に示すように、外表面の一部が環状部材によって覆われた扁平な捲回電極体20が、図示しない電解液とともに、電池ケース(即ち外装容器)30に収容されている。   FIG. 1 shows a lithium secondary battery (lithium ion secondary battery) 100 according to an embodiment of the present invention. As shown in FIG. 2, in the lithium secondary battery 100, a flat wound electrode body 20 having a part of the outer surface covered with an annular member, together with an electrolyte solution (not shown), is a battery case (that is, an outer container) 30. Is housed in.

電池ケース30の形状は特に限定されず、例えば円筒形状、立方体形状(箱型)等であり得る。電池ケース30は、例えば、図1および図2に示すように、一端(電池の通常の使用状態における上端部に相当する。)に開口部を有する箱形(すなわち有底直方体状)のケース本体32と、該ケース本体32の開口部を封口する蓋体34とから構成されるものであり得る。図示するように、蓋体34には外部接続用の外部端子(正極端子42および負極端子44)が、それら端子の一部が蓋体34から電池100の外方に突出するように設けられている。また、蓋体34には、電解液を当該電池ケース内に注入するための注入口(図示せず)が設けられている。また、上記電池ケース30の一部(典型的には上記蓋体34の一部)には、電池ケース30内の圧力が所定の圧力以上になった場合に、電池ケース30の内圧を開放するように設定された安全弁36が設けられている。このような電池ケースの材質としては、例えば、軽量で熱伝導性の良い金属材料(例えばアルミニウム)が好適である。   The shape of the battery case 30 is not particularly limited, and may be, for example, a cylindrical shape or a cubic shape (box shape). The battery case 30 is, for example, as shown in FIGS. 1 and 2, a box-shaped (that is, a bottomed rectangular parallelepiped) case body having an opening at one end (corresponding to the upper end in a normal use state of the battery) 32 and a lid 34 that seals the opening of the case body 32. As shown in the figure, the lid 34 is provided with external terminals (a positive terminal 42 and a negative terminal 44) for external connection so that a part of the terminals protrudes from the lid 34 to the outside of the battery 100. Yes. In addition, the lid 34 is provided with an inlet (not shown) for injecting the electrolytic solution into the battery case. In addition, the internal pressure of the battery case 30 is released to a part of the battery case 30 (typically, a part of the lid 34) when the pressure in the battery case 30 becomes equal to or higher than a predetermined pressure. A safety valve 36 set as described above is provided. As a material of such a battery case, for example, a metal material (for example, aluminum) that is lightweight and has good thermal conductivity is suitable.

捲回電極体20は、図3および図4に示すように、捲回軸方向に直交する方向の両端部であって該捲回電極体20の積層面を除く外表面が曲面からなる2つのR部22と、両R部に挟まれている中央部分であって幅広な2つの扁平表面26を有する中央扁平部24とを有する扁平形状である。   As shown in FIGS. 3 and 4, the wound electrode body 20 has two end portions in a direction orthogonal to the winding axis direction, and the outer surface excluding the laminated surface of the wound electrode body 20 has a curved surface. It has a flat shape having an R portion 22 and a central flat portion 24 having two wide flat surfaces 26 that are sandwiched between both R portions.

特に限定するものではないが、本実施形態にかかる捲回電極体20は、図2および図4に示すように、捲回軸方向に対して直交する方向が上記電池ケース30(電池ケース本体32)の上下方向となり(該捲回電極体20の捲回軸WLが横倒しとなる姿勢、即ち、捲回電極体20の捲回軸WLの法線方向に上記電池ケース本体32の開口が形成されている。)、上記2つのR部22が、電池ケース30の底面又は蓋体34に対向するように、電池ケース30内に収容されている。   Although not particularly limited, as shown in FIGS. 2 and 4, the wound electrode body 20 according to the present embodiment has the battery case 30 (battery case body 32) in a direction orthogonal to the winding axis direction. The opening of the battery case main body 32 is formed in a posture in which the winding axis WL of the wound electrode body 20 lies sideways, that is, in the normal direction of the winding axis WL of the wound electrode body 20. The two R portions 22 are accommodated in the battery case 30 so as to face the bottom surface of the battery case 30 or the lid 34.

捲回電極体20は、長尺状の正極集電体52の片面または両面(ここでは両面)に長手方向に沿って形成された少なくとも正極活物質を含む正極活物質層54を備える正極50と、長尺状の負極集電体62の片面または両面(ここでは両面)に長手方向に沿って形成された少なくとも負極活物質を含む負極活物質層64を備える負極60とを、2枚の長尺状のセパレータ70を介して積層して(重ね合わせて)長手方向に捲回されている。かかる扁平形状の捲回電極体20は、例えば正極50、負極60およびセパレータ70を積層して捲回した後で、当該捲回体を捲回軸に対して直交する一の方向に(典型的には側面方向から)押しつぶして(プレスして)拉げさせることによって成形することができる。   The wound electrode body 20 includes a positive electrode 50 including a positive electrode active material layer 54 including at least a positive electrode active material formed along a longitudinal direction on one side or both sides (here, both sides) of an elongated positive electrode current collector 52; The negative electrode 60 provided with the negative electrode active material layer 64 containing at least the negative electrode active material formed along the longitudinal direction on one side or both sides (here, both sides) of the long negative electrode current collector 62, They are stacked (overlapped) via a scale separator 70 and wound in the longitudinal direction. The flat wound electrode body 20 is formed by, for example, laminating the positive electrode 50, the negative electrode 60, and the separator 70 and winding the wound body in one direction orthogonal to the winding axis (typically Can be formed by crushing (pressing) and abating from the side.

特に限定するものではないが、本実施態様において、上記正極50は、正極集電体52の幅方向片側の縁部に沿って正極活物質層54が形成されずに正極集電体52が露出した正極集電体露出端部53が設定される。また、上記負極60も同様に、負極集電体62の幅方向片側の縁部に沿って負極活物質層64が形成されずに負極集電体62が露出した負極集電体露出端部63が設定される。そして、図2に示すように、上記捲回電極体20は、上記正極集電体露出端部53と上記負極集電体露出端部63とが捲回軸方向の両端から外方にはみ出すように重ねあわされて捲回されたものであり得る。その結果、捲回電極体20の捲回軸方向の中央部には、正極50と負極60とセパレータ70とが積層されて捲回された捲回コアが形成される。まそして、図2に示すように、正極集電体露出端部53と正極端子42(例えばアルミニウム製)が正極集電板42aを介して電気的に接続され、負極集電体露出端部63と負極端子44(例えばニッケル製)が負極集電板44aを介して電気的に接続され得る。なお、正負極集電板42a,44aと正負極集電体露出端部53、63(典型的には正負極集電体52,62)とは、例えば、超音波溶接、抵抗溶接等によりそれぞれ接合することができる。   Although not particularly limited, in the present embodiment, the positive electrode 50 has the positive electrode current collector 52 exposed without forming the positive electrode active material layer 54 along the edge on one side in the width direction of the positive electrode current collector 52. The exposed positive electrode current collector exposed end 53 is set. Similarly, in the negative electrode 60, the negative electrode current collector exposed end portion 63 where the negative electrode current collector 62 is exposed without forming the negative electrode active material layer 64 along the edge portion on one side in the width direction of the negative electrode current collector 62. Is set. As shown in FIG. 2, the wound electrode body 20 has the positive electrode current collector exposed end portion 53 and the negative electrode current collector exposed end portion 63 protruding outward from both ends in the winding axis direction. It may have been rolled over and rolled up. As a result, a wound core in which the positive electrode 50, the negative electrode 60, and the separator 70 are laminated and wound is formed at the center of the wound electrode body 20 in the winding axis direction. As shown in FIG. 2, the positive electrode current collector exposed end 53 and the positive electrode terminal 42 (for example, made of aluminum) are electrically connected via the positive electrode current collector plate 42 a, and the negative electrode current collector exposed end 63. And a negative electrode terminal 44 (for example, made of nickel) can be electrically connected via a negative electrode current collector plate 44a. The positive and negative electrode current collector plates 42a and 44a and the positive and negative electrode current collector exposed end portions 53 and 63 (typically the positive and negative electrode current collectors 52 and 62) are respectively formed by, for example, ultrasonic welding or resistance welding. Can be joined.

ここで開示する態様において、上記捲回電極体20は、図3および図4に示すように、該捲回電極体20の外表面の一部が、上記捲回電極体20の上記2つのR部22の外表面および上記2つの扁平表面26に対向するように配置された熱収縮性の環状部材80によって覆われている。そして、かかる環状部材80は、熱により収縮された状態で上記捲回電極体20の周囲に配置されている。即ち、上記熱収縮性の環状部材80は、上記捲回電極体20の外表面から捲回軸WLに向かう方向に収縮された状態で、上記捲回電極体20の外表面の一部を覆うように配置されている。これにより、上記捲回電極体20は、上記環状部材80によって該捲回電極体20の外表面から捲回軸に向かう方向に拘束(圧縮)されるため、電極間の距離にムラが生じることが高度に低減される。   In the embodiment disclosed herein, the wound electrode body 20 is configured so that a part of the outer surface of the wound electrode body 20 has the two Rs of the wound electrode body 20 as shown in FIGS. 3 and 4. It is covered with a heat-shrinkable annular member 80 disposed so as to face the outer surface of the portion 22 and the two flat surfaces 26. The annular member 80 is disposed around the wound electrode body 20 while being contracted by heat. That is, the heat-shrinkable annular member 80 covers a part of the outer surface of the wound electrode body 20 while being contracted in the direction from the outer surface of the wound electrode body 20 toward the winding axis WL. Are arranged as follows. As a result, the wound electrode body 20 is constrained (compressed) by the annular member 80 in the direction from the outer surface of the wound electrode body 20 toward the winding axis, resulting in unevenness in the distance between the electrodes. Is highly reduced.

加熱により収縮される前の状態の上記環状部材80を上記捲回電極体20の外表面の所定の位置に配置し、その後、該環状部材80を加熱することで、熱により収縮された状態の上記環状部材80を上記捲回電極体20の周囲に配置することができる。
かかる環状部材80を所定の温度(熱収縮温度)に加熱する手段は特に限定されず、従来公知の加熱手段を採用し得る。例えば、上記環状部材80に熱風(温風)を当てる、通電した電熱線等の高温のヒーターを上記環状部材80に近づける、赤外線(遠赤外線)等の電磁波を上記環状部材80に照射する等の手段が挙げられる。上記環状部材80を効率よく加熱する観点からは、温風機を利用して上記環状部材80に熱風(温風)を当てる手段が好ましい。
The annular member 80 in a state before being contracted by heating is disposed at a predetermined position on the outer surface of the wound electrode body 20, and then the annular member 80 is heated so that the annular member 80 is contracted by heat. The annular member 80 can be disposed around the wound electrode body 20.
Means for heating the annular member 80 to a predetermined temperature (heat shrinkage temperature) is not particularly limited, and conventionally known heating means may be employed. For example, hot air (warm air) is applied to the annular member 80, a high-temperature heater such as a heated heating wire is brought close to the annular member 80, and electromagnetic waves such as infrared rays (far infrared rays) are irradiated to the annular member 80. Means are mentioned. From the viewpoint of efficiently heating the annular member 80, means for applying hot air (hot air) to the annular member 80 using a warm air machine is preferable.

好適な一態様において、上記環状部材80は、上記捲回電極体20の捲回軸方向の中央部に形成された捲回コアの外表面の少なくとも一部を覆うように配置される。より好ましくは、上記負極活物質層64のうちの上記正極活物質層54に対向しない部分(即ち、上記非対向部分)が積層された部分を覆うように配置されることが好ましい。これにより、捲回電極体20を好適に拘束(押圧)することが可能であり、電極間距離が不均一となることを好適に抑制し得る。なお、図3に示す例では、上記環状部材80として、一つの部材によって上記捲回電極体20を拘束する例を示したが、これに限定されず、二つ以上の環状部材80によって捲回電極体20を拘束してもよい。例えば、捲回電極体20の捲回コアのうちの捲回軸方向の両端部(好ましくは負極活物質層64の上記非対向部分を含む)を2つの環状部材80によって拘束してもよい。捲回電極体20の全体に亘って電極間距離をほぼ一定とする目的からは、捲回電極体20のうちの少なくとも負極活物質層64が積層された部分の外表面の全体を上記環状部材80によって覆う(拘束)することが好ましい。
また、上記環状部材80は、上記正極端子42と上記正極集電体露出端部53との接続、および、上記負極端子44と上記負極集電体露出端部63との接続を邪魔しない(より好ましくは、上記正負極端子と上記正負極露出端部との接続箇所を被覆しない)サイズが好ましい。
In a preferred aspect, the annular member 80 is disposed so as to cover at least a part of the outer surface of the wound core formed at the center in the winding axis direction of the wound electrode body 20. More preferably, the anode active material layer 64 is preferably disposed so as to cover a portion where the portion not facing the cathode active material layer 54 (that is, the non-facing portion) is laminated. Thereby, it is possible to restrain (press) suitably the wound electrode body 20, and it can suppress suitably that the distance between electrodes becomes non-uniform | heterogenous. In the example shown in FIG. 3, the example in which the wound electrode body 20 is restrained by one member as the annular member 80 is shown, but the present invention is not limited to this, and the wound member is wound by two or more annular members 80. The electrode body 20 may be restrained. For example, both ends in the winding axis direction of the wound core of the wound electrode body 20 (preferably including the non-opposing portion of the negative electrode active material layer 64) may be constrained by the two annular members 80. For the purpose of making the distance between the electrodes substantially constant over the entire wound electrode body 20, the entire outer surface of the portion of the wound electrode body 20 where the negative electrode active material layer 64 is laminated is formed on the annular member. It is preferable to cover (restrain) with 80.
The annular member 80 does not interfere with the connection between the positive terminal 42 and the positive current collector exposed end 53 and the connection between the negative terminal 44 and the negative current collector exposed end 63 (more Preferably, the size does not cover the connection portion between the positive and negative electrode terminals and the exposed end of the positive and negative electrodes.

上記環状部材80の材質は、所定の温度(熱収縮温度)以上に加熱することにより収縮する性質を持つ材質により形成されている。典型的には、公知の熱収縮性の樹脂材料により形成されたものであり得る。また、かかる環状部材80は、非水電解液の溶媒(典型的には有機溶媒)に耐性があることが好ましく、上記熱収縮温度がセパレータ70に影響を与えない温度(典型的には、セパレータ70がシャットダウンする温度よりも低い温度)であることが好ましい。かかる熱収縮性の樹脂材料としては、ポリエチレンやポリプロピレン等のポリオレフィン系樹脂、ポリエチレンテレフタレート等のポリエステル系樹脂、ポリスチレン系樹脂、ポリ塩化ビニル系樹脂、ポリイミド系樹脂等の材質が挙げられる。これら熱収縮性の樹脂材料として多種の材料が市販されており、これらの市販材料から適当なものを選択して用いればよい。   The material of the annular member 80 is formed of a material having a property of contracting when heated to a predetermined temperature (heat shrinkage temperature) or higher. Typically, it may be formed of a known heat-shrinkable resin material. Further, the annular member 80 is preferably resistant to a solvent (typically an organic solvent) of a non-aqueous electrolyte, and a temperature at which the heat shrink temperature does not affect the separator 70 (typically, a separator). Preferably, the temperature is lower than the temperature at which 70 shuts down. Examples of such heat-shrinkable resin materials include polyolefin resins such as polyethylene and polypropylene, polyester resins such as polyethylene terephthalate, polystyrene resins, polyvinyl chloride resins, and polyimide resins. Various materials are commercially available as these heat-shrinkable resin materials, and appropriate materials may be selected from these commercially available materials.

また、上記環状部材80は、上記捲回電極体20が挿入される環以外に、複数の孔が形成されている。これにより、上記捲回電極体20のうちの上記環状部材80によって覆われた部分にも好適に非水電解液を含浸(浸透)させることが可能であり、該環状部材80を捲回電極体20の周囲に配置することによって捲回電極体内への非水電解液の含浸性が低下する虞を低減し得る。
かかる環状部材80に形成された孔のサイズは、熱収縮された状態(即ち、捲回電極体20の外周に配置された後で熱収縮された状態)で、非水電解液を透過し得るサイズが好ましい。例えば、上記熱収縮された状態で平均直径が1mm以上であることが好ましい。一方で、上記環状部材80に形成される孔の多きさが大きすぎると、該環状部材80の強度が低下し破れやすくなる。また、大きすぎる孔が形成された環状部材80によると、捲回電極体20を該捲回電極体20の外表面から捲回軸に向かう方向に圧縮(拘束)する効果を十分に発揮できない場合がある。このため、上記環状部材80に形成される孔の平均直径は、熱収縮された状態で、上記捲回電極体20の捲回軸方向のサイズ(図3中のL)、若しくは上記捲回電極体20の2つのR部22の頂点を結ぶサイズ(図3中のL)のうちの小さいほうのサイズの1/2以下とすることが好ましい。
The annular member 80 has a plurality of holes other than the ring in which the wound electrode body 20 is inserted. Thereby, it is possible to suitably impregnate (penetrate) the non-aqueous electrolyte into the portion of the wound electrode body 20 covered with the annular member 80, and the annular member 80 can be By disposing around 20, it is possible to reduce the possibility that the impregnation property of the non-aqueous electrolyte into the wound electrode body is lowered.
The size of the hole formed in the annular member 80 can permeate the non-aqueous electrolyte in a thermally contracted state (that is, a state in which the hole is thermally contracted after being disposed on the outer periphery of the wound electrode body 20). Size is preferred. For example, it is preferable that an average diameter is 1 mm or more in the heat-shrinked state. On the other hand, if the number of holes formed in the annular member 80 is too large, the strength of the annular member 80 is lowered and easily broken. In addition, according to the annular member 80 in which a hole that is too large is formed, the effect of compressing (constraining) the wound electrode body 20 in the direction from the outer surface of the wound electrode body 20 toward the winding axis cannot be exhibited sufficiently. There is. Therefore, the average diameter of holes formed in the annular member 80 is in a state of being heat-shrinkable, (L A in FIG. 3) Kaijiku direction size wound of the wound electrode body 20, or the wound It is preferable to set it to 1/2 or less of the smaller one of the sizes connecting the vertices of the two R portions 22 of the electrode body 20 (L B in FIG. 3).

また、上記環状部材80に形成される孔は、熱収縮された状態で、該環状部材80に形成された孔の開口面積の総和(S)が、捲回電極体20の外表面の面積であって上記熱収縮された状態の環状部材80によって覆われた部分の面積(S)に対して10%以上50%以下の比率となるように形成されることが好ましい。例えば、捲回電極体20の外表面のうちの上記熱収縮された状態の環状部材80によって覆われた部分の面積(S)を100%とした場合に対する上記熱収縮された状態の環状部材80に形成された孔の開口面積の総和(S)の比率を40%とし得る。
上記捲回電極体20の外表面のうちの上記環状部材80によって覆われた部分の面積(S)を100%とした場合に対する上記環状部材80に形成された孔の開口面積の総和(S)の比率が小さすぎると、捲回電極体20への非水電解液の含浸性(浸透性)を向上する効果を十分に発揮できない場合がある。また、上記捲回電極体20の外表面のうちの上記環状部材80によって覆われた部分の面積(S)を100%とした場合に対する上記環状部材80に形成された孔の開口面積の総和(S)の比率が大きすぎると、該環状部材80によって覆われた捲回電極体20を、該環状部材によって該捲回電極体20の外表面から捲回軸に向かう方向に圧縮(拘束)する効果を十分に発揮できない場合がある。
In addition, the holes formed in the annular member 80 are heat-shrinked, and the sum of the opening areas of the holes formed in the annular member 80 (S A ) is the area of the outer surface of the wound electrode body 20. In addition, it is preferable that the ratio is 10% or more and 50% or less with respect to the area (S B ) of the portion covered by the heat-shrinked annular member 80. For example, the annular member in the heat-shrinked state with respect to the case where the area (S B ) of the outer surface of the wound electrode body 20 covered with the annular member 80 in the thermally-shrinked state is 100%. The ratio of the total opening area (S A ) of the holes formed in 80 can be 40%.
The total sum of the opening areas of the holes formed in the annular member 80 (S B ) when the area (S B ) of the outer surface of the wound electrode body 20 covered by the annular member 80 is 100% (S If the ratio of A ) is too small, the effect of improving the impregnation property (penetration) of the nonaqueous electrolytic solution into the wound electrode body 20 may not be sufficiently exhibited. A sum of the opening areas of the holes formed in the annular member 80 for the case where the area of the portion covered by the annular member 80 (S B) is 100% of the outer surface of the wound electrode body 20 If the ratio of (S A ) is too large, the wound electrode body 20 covered by the annular member 80 is compressed (restrained) by the annular member in the direction from the outer surface of the wound electrode body 20 toward the winding axis. ) May not be fully effective.

なお、上記電極体(捲回電極体)20を構成する材料および部材自体は、従来のリチウムイオン二次電池の電極体と同様でよく、特に制限はない。かかる捲回電極体20の好適な一態様について以下に説明する。   In addition, the material and member itself which comprise the said electrode body (winding electrode body) 20 may be the same as that of the electrode body of the conventional lithium ion secondary battery, and there is no restriction | limiting in particular. A preferred embodiment of the wound electrode body 20 will be described below.

上記正極50を構成する正極集電体52としては、例えばアルミニウム箔等を好適に使用し得る。上記正極活物質としては、例えば層状構造やスピネル構造等のリチウム複合金属酸化物(例えば、LiNi1/3Co1/3Mn1/3、LiNiO、LiCoO、LiFeO、LiMn、LiNi0.5Mn1.5、LiFePO等)が挙げられる。また、正極活物質層54は、活物質以外の成分、例えば導電材やバインダ等を含み得る。導電材としては、アセチレンブラック(AB)等のカーボンブラックやその他(グラファイト等)の炭素材料を好適に使用し得る。バインダとしては、PVdF等を使用し得る。 As the positive electrode current collector 52 constituting the positive electrode 50, for example, an aluminum foil or the like can be suitably used. Examples of the positive electrode active material include lithium composite metal oxides such as a layered structure and a spinel structure (for example, LiNi 1/3 Co 1/3 Mn 1/3 O 2 , LiNiO 2 , LiCoO 2 , LiFeO 2 , LiMn 2 O 4 , LiNi 0.5 Mn 1.5 O 4 , LiFePO 4, etc.). Further, the positive electrode active material layer 54 can include components other than the active material, such as a conductive material and a binder. As the conductive material, carbon black such as acetylene black (AB) and other (such as graphite) carbon materials can be suitably used. As the binder, PVdF or the like can be used.

上記負極60を構成する負極集電体62としては、例えば銅箔等を好適に使用し得る。負極活物質としては、例えば、少なくとも一部にグラファイト構造(層状構造)を有する炭素材料、リチウム遷移金属窒化物等が挙げられる。いわゆる黒鉛質のもの(グラファイト)、難黒鉛化炭素質のもの(ハードカーボン)、易黒鉛化炭素質のもの(ソフトカーボン)、これらを組み合わせた構造を有するもの等の炭素材料を好適に使用し得る。また、負極活物質層64は、活物質以外の成分、例えばバインダや増粘剤等を含み得る。バインダとしては、スチレンブタジエンラバー(SBR)等を使用し得る。増粘剤としては、例えばカルボキシメチルセルロース(CMC)等を使用し得る。   As the negative electrode current collector 62 constituting the negative electrode 60, for example, a copper foil or the like can be suitably used. Examples of the negative electrode active material include a carbon material having a graphite structure (layered structure) at least partially, lithium transition metal nitride, and the like. Carbon materials such as so-called graphitic materials (graphite), non-graphitizable carbon materials (hard carbon), graphitizable carbon materials (soft carbon), and materials having a combination of these are preferably used. obtain. Moreover, the negative electrode active material layer 64 may contain components other than the active material, such as a binder and a thickener. As the binder, styrene butadiene rubber (SBR) or the like can be used. As the thickener, for example, carboxymethyl cellulose (CMC) can be used.

セパレータ70としては、例えばポリエチレン(PE)、ポリプロピレン(PP)、ポリエステル、セルロース、ポリアミド等の樹脂から成る多孔性シート(フィルム)が挙げられる。かかる多孔性シートは、単層構造であってもよく、二層以上の積層構造(例えば、PE層の両面にPP層が積層された三層構造)であってもよい。   Examples of the separator 70 include a porous sheet (film) made of a resin such as polyethylene (PE), polypropylene (PP), polyester, cellulose, and polyamide. Such a porous sheet may have a single-layer structure or a laminated structure of two or more layers (for example, a three-layer structure in which PP layers are laminated on both sides of a PE layer).

非水電解液としては、典型的には、有機溶媒(非水溶媒)中に支持塩を含有する非水電解液を用いることができる。
非水溶媒としては、例えばエチレンカーボネート(EC)、プロピレンカーボネート(PC)、ジエチルカーボネート(DEC)、ジメチルカーボネート(DMC)、エチルメチルカーボネート(EMC)等のうちの1種を単独で、あるいは2種以上を適宜組み合わせて(例えばECとEMCとDMCとを3:4:3の体積比で含む混合溶媒)用いることができる。支持塩としては、例えばLiPF、LiBF、LiClO等のリチウム塩(好ましくはLiPF)を用いることができる。支持塩の濃度は、例えば0.7mol/L以上1.3mol/L以下(好ましくは凡そ1.1mol/L)である。
As the nonaqueous electrolytic solution, typically, a nonaqueous electrolytic solution containing a supporting salt in an organic solvent (nonaqueous solvent) can be used.
As the non-aqueous solvent, for example, one kind of ethylene carbonate (EC), propylene carbonate (PC), diethyl carbonate (DEC), dimethyl carbonate (DMC), ethyl methyl carbonate (EMC), etc. may be used alone or in two kinds. The above can be combined as appropriate (for example, a mixed solvent containing EC, EMC, and DMC at a volume ratio of 3: 4: 3). As the supporting salt, for example, a lithium salt (preferably LiPF 6 ) such as LiPF 6 , LiBF 4 , or LiClO 4 can be used. The concentration of the supporting salt is, for example, 0.7 mol / L or more and 1.3 mol / L or less (preferably about 1.1 mol / L).

ここで開示される非水電解液二次電池は、上記のとおり、負極活物質層の表面に電荷担体由来の物質が析出することが高度に抑制された電池が提供される。したがって、当該電池は各種用途に利用可能であるが、このような性質を活かして、例えば、車両に搭載される駆動用電源として好適に用いることができる。車両の種類は特に限定されないが、例えばプラグインハイブリッド自動車(PHV)、ハイブリッド自動車(HV)、電気自動車(EV)、電気トラック、原動機付自転車、電動アシスト自転車、電動車いす、電気鉄道等が挙げられる。したがって、本発明によれば、ここで開示されるいずれかの非水電解液二次電池を、好ましくは動力源として備えた車両が提供される。車両に備えられる非水電解液二次電池は、複数個が接続された組電池の形態であり得る。   As described above, the non-aqueous electrolyte secondary battery disclosed herein provides a battery in which the deposition of a charge carrier-derived substance on the surface of the negative electrode active material layer is highly suppressed. Therefore, although the said battery can be utilized for various uses, it can use suitably as a drive power supply mounted in a vehicle, for example using such a property. The type of vehicle is not particularly limited, and examples include plug-in hybrid vehicles (PHV), hybrid vehicles (HV), electric vehicles (EV), electric trucks, motorbikes, electric assist bicycles, electric wheelchairs, electric railways, and the like. . Therefore, according to the present invention, there is provided a vehicle equipped with any of the nonaqueous electrolyte secondary batteries disclosed herein, preferably as a power source. The non-aqueous electrolyte secondary battery provided in the vehicle may be in the form of an assembled battery in which a plurality are connected.

以下、本発明に関するいくつかの実施例(試験例)を説明するが、本発明をかかる具体例に示すものに限定することを意図したものではない。   Several examples (test examples) relating to the present invention will be described below, but the present invention is not intended to be limited to those shown in the specific examples.

[リチウム二次電池の構築]
以下の材料およびプロセスによって、例1〜4に係るリチウム二次電池(非水電解液二次電池)を構築した。
[Construction of lithium secondary battery]
The lithium secondary battery (nonaqueous electrolyte secondary battery) according to Examples 1 to 4 was constructed by the following materials and processes.

<例1>
正極活物質としてのLiNi1/3Co1/3Mn1/3(LNCM)と、導電材としてのアセチレンブラック(AB)と、バインダとしてのポリフッ化ビニリデン(PVdF)とを、LNCM:AB:PVdF=94:3:3の質量比でN−メチルピロリドン(NMP)と混合し、ペースト状(スラリー状)の正極活物質層形成用組成物を調製した。この組成物を、平均厚さ15μmの長尺状のアルミニウム箔(正極集電体)の両面に帯状に塗布し、乾燥、プレスすることにより、正極を作製した。
<Example 1>
LiNi 1/3 Co 1/3 Mn 1/3 O 2 (LNCM) as a positive electrode active material, acetylene black (AB) as a conductive material, and polyvinylidene fluoride (PVdF) as a binder are combined with LNCM: AB Was mixed with N-methylpyrrolidone (NMP) at a mass ratio of: PVdF = 94: 3: 3 to prepare a paste-like (slurry) positive electrode active material layer forming composition. This composition was applied in a strip shape on both sides of a long aluminum foil (positive electrode current collector) having an average thickness of 15 μm, dried and pressed to produce a positive electrode.

次に、負極活物質としての、球形化黒鉛(C)と、バインダとしてのスチレンブタジエンゴム(SBR)と、増粘材としてのカルボキシルメチルセルロース(CMC)とを、C:SBR:CMC=98:1:1の質量比で水中に分散させてペースト状(スラリー状)の負極活物質層形成用組成物を調製した。この組成物を、平均厚み10μmの長尺状の銅箔(負極集電体)の両面に帯状に塗布し、乾燥、プレスすることにより、負極を作製した。   Next, spheroidized graphite (C) as a negative electrode active material, styrene butadiene rubber (SBR) as a binder, and carboxymethyl cellulose (CMC) as a thickener, C: SBR: CMC = 98: 1 The composition for forming a paste-like (slurry) negative electrode active material layer was prepared by dispersing in water at a mass ratio of 1: 1. The composition was applied in a strip shape on both sides of a long copper foil (negative electrode current collector) having an average thickness of 10 μm, dried and pressed to prepare a negative electrode.

上述の方法で作製した正極および負極を、セパレータ2枚を介して長尺方向に重ねあわせ、長尺方向に捲回した後に押しつぶして拉げることで扁平形状の捲回電極体を作製した。ここで、上記セパレータとしては、平均厚みが20μmであって、多孔質ポリエチレン層の両面に多孔質ポリプロピレン層が形成された三層構造のものを用いた。
次いで、上記捲回電極体と非水電解液とを、角型の電池ケース(アルミニウム製)の内部に収容し、例1にかかるリチウム二次電池を構築した。なお、上記非水電解液としては、エチレンカーボネート(EC)とジメチルカーボネート(DMC)とエチルメチルカーボネート(EMC)とをEC:DMC:EMC=1:1:1の体積比で含む混合溶媒に、支持塩としてのLiPFを1mol/Lの濃度で溶解させたものを用いた。また、かかる例1に係るリチウム二次電池の電池容量は30Ahであった。
The positive electrode and the negative electrode manufactured by the above-described method were overlapped in the longitudinal direction via two separators, wound in the longitudinal direction, and then crushed and ablated to produce a flat wound electrode body. Here, as the separator, a three-layer structure having an average thickness of 20 μm and a porous polypropylene layer formed on both sides of the porous polyethylene layer was used.
Next, the wound electrode body and the nonaqueous electrolytic solution were accommodated in a rectangular battery case (made of aluminum), and a lithium secondary battery according to Example 1 was constructed. As the non-aqueous electrolyte, a mixed solvent containing ethylene carbonate (EC), dimethyl carbonate (DMC), and ethyl methyl carbonate (EMC) at a volume ratio of EC: DMC: EMC = 1: 1: 1, of LiPF 6 as a supporting salt was used dissolved at a concentration of 1 mol / L. Moreover, the battery capacity of the lithium secondary battery according to Example 1 was 30 Ah.

<例2>
ポリプロピレン製の環状部材を準備し、該環状部材の環内に上記扁平形状の捲回電極体を捲回軸方向に挿入したあとで、該環状部材を加熱して収縮させた以外は、上記例1と同様の材料およびプロセスにより、例2に係るリチウム二次電池を作製した。即ち、上記環状部材は、上記環の内側が、上記捲回電極体のR部の外表面および扁平表面に対向するように配置されている。ここで、上記環状部材は、捲回電極体を挿入する環以外に孔が形成されていないものを用いた。なお、上記環状部材は、温風機から吹き出される温風を当てて加熱した。
<Example 2>
The above example except that a polypropylene ring member is prepared, and the flat wound electrode body is inserted into the ring of the ring member in the winding axis direction, and then the ring member is heated and contracted. A lithium secondary battery according to Example 2 was fabricated using the same material and process as in Example 1. That is, the annular member is disposed so that the inner side of the ring faces the outer surface and the flat surface of the R portion of the wound electrode body. Here, as the annular member, a member having no hole other than the ring into which the wound electrode body is inserted was used. The annular member was heated by applying hot air blown from a warm air machine.

<例3>
ポリプロピレン製の環状部材であって、孔が複数形成されたものを準備し、該環状部材の環内に上記扁平形状の捲回電極体を捲回軸方向に挿入した以外は、上記例1と同様の材料およびプロセスにより、例3に係るリチウム二次電池を作製した。即ち、例3に係るリチウム二次電池は、上記環状部材の環内に上記捲回電極体を挿入した後で、該環状部材を加熱しなかった。ここで、上記環状部材に形成された孔の平均直径は2mmであり、該孔の開口面積の総和(S)は、捲回電極体の外表面のうちの該環状部材によって覆われる部分の面積(S)に対して40%である。
<Example 3>
Example 1 except that a polypropylene ring member having a plurality of holes is prepared and the flat wound electrode body is inserted in the ring axis direction into the ring of the ring member. A lithium secondary battery according to Example 3 was manufactured using the same material and process. That is, the lithium secondary battery according to Example 3 did not heat the annular member after inserting the wound electrode body into the ring of the annular member. Here, the average diameter of the holes formed in the annular member is 2 mm, and the total opening area (S A ) of the holes is the portion of the outer surface of the wound electrode body covered by the annular member. It is 40% with respect to the area (S B ).

<例4>
ポリプロピレン製の環状部材であって孔が複数形成されたものを準備し、該環状部材の環内に上記扁平形状の捲回電極体を捲回軸方向に挿入した後で該環状部材を加熱して収縮させた以外は、上記例1と同様の材料およびプロセスにより、例4に係るリチウム二次電池を作製した。即ち、上記環状部材は、上記環の内側が、上記捲回電極体のR部の外表面および扁平表面に対向するように配置されている。ここで、上記環状部材は、加熱により収縮された後の状態で、孔の平均直径は2mmであり、該環状部材に形成された孔の開口面積の総和(S)は、捲回電極体の外表面のうちの該環状部材によって覆われる部分の面積(S)に対して40%であった。なお、上記環状部材は、温風機から吹き出される温風を当てて加熱した。
<Example 4>
A polypropylene ring member having a plurality of holes formed therein is prepared, and after the flat wound electrode body is inserted into the ring of the ring member in the winding axis direction, the ring member is heated. A lithium secondary battery according to Example 4 was manufactured using the same materials and processes as in Example 1 except that the lithium secondary battery was contracted. That is, the annular member is disposed so that the inner side of the ring faces the outer surface and the flat surface of the R portion of the wound electrode body. Here, the annular member is in a state after being contracted by heating, the average diameter of the holes is 2 mm, and the total opening area (S A ) of the holes formed in the annular member is a wound electrode body. was 40% of the area of the portion covered by the annular member of the outer surface (S B). The annular member was heated by applying hot air blown from a warm air machine.

[Li析出耐性評価試験]
25℃の温度条件下において、上記例1〜4に係るリチウム二次電池に対し、1Cの充電レートで充電上限電圧(4.1V)まで定電流充電(CC充電)を行い、さらに電流値が1/10Cになるまで定電圧充電(CV充電)を行う定電流定電圧充電(CCCV充電)を行った。そして、上記CCCV充電を行った後の各例に係る電池をそれぞれ分解して負極を取り出し、負極活物質層上における電荷担体に由来する物質(ここでは金属リチウム)の析出の有無を目視にて確認した。
ここで、各例に係るリチウム二次電池を各々5個ずつ準備し、上記Li析出耐久性評価試験において金属リチウムの析出を確認した電池の個数を数えた。表1に、各例に係る電池について、試験に供した電池の個数(ここでは5個)に対する金属リチウムの析出が確認された電池の発生数を「Li析出発生数(個)/試験数(個)」の欄に示す。
[Li precipitation resistance evaluation test]
Under the temperature condition of 25 ° C., the lithium secondary batteries according to Examples 1 to 4 are subjected to constant current charging (CC charging) at a charging rate of 1 C up to the charging upper limit voltage (4.1 V), and the current value is Constant current constant voltage charging (CCCV charging) was performed in which constant voltage charging (CV charging) was performed until 1/10 C. Then, the batteries according to the respective examples after performing the CCCV charge are respectively disassembled, the negative electrode is taken out, and the presence or absence of deposition of a substance (here, metallic lithium) derived from the charge carrier on the negative electrode active material layer is visually observed. confirmed.
Here, five lithium secondary batteries according to each example were prepared, and the number of batteries in which the deposition of metallic lithium was confirmed in the Li deposition durability evaluation test was counted. Table 1 shows the number of generations of batteries in which the deposition of metallic lithium was confirmed with respect to the number of batteries used in the test (here, 5) for the batteries according to each example: “Li precipitation generation number (pieces) / test number ( Number)).

Figure 2017098017
Figure 2017098017

表1に示すように、例4に係るリチウム二次電池は、例1〜3に係るリチウム二次電池と比較して、Liの析出が観察される電池の頻度が低かった。
ここで、例4に係るリチウム二次電池が例3に係るリチウム二次電池と比較してLiの析出が観察される頻度が低かったことは、捲回電極体の外表面の一部を覆うように配置した環状部材を加熱により収縮させることで、該環状部材によって上記捲回電極体は外表面から捲回軸に向かう方向に拘束(圧縮)され、該捲回電極体の電極間の幅をほぼ均一にすることができたためと考える。
また、例4に係るリチウム二次電池が例2に係るリチウム二次電池と比較してLiの析出が観察される頻度が低かったことは、上記環状部材として複数の孔が形成されたものを用いることで捲回電極体内へ非水電解液が好適に含浸(浸透)し、該捲回電極体内において生じ得る非水電解液の液量ムラが改善されたためと考える。また、例4の結果から、上記環状部材に形成される孔は、上記捲回電極体の外表面のうちの上記環状部材によって覆われた部分の面積(S)を100%とした場合に対する上記環状部材に形成された孔の開口面積の総和(S)の比率の40%となるように形成することが好ましいことが確認された。
このように、本発明によれば、負極活物質層上に電荷担体由来の物質が析出することが高度に低減された非水電解液二次電池を提供することができる。
As shown in Table 1, the lithium secondary battery according to Example 4 had a lower frequency of batteries in which Li deposition was observed than the lithium secondary batteries according to Examples 1 to 3.
Here, the fact that the lithium secondary battery according to Example 4 was observed less frequently than Li secondary battery according to Example 3 covered a part of the outer surface of the wound electrode body. The annular member arranged in this manner is contracted by heating, whereby the wound electrode body is constrained (compressed) by the annular member in the direction from the outer surface toward the winding axis, and the width between the electrodes of the wound electrode body This is considered to be due to the fact that it was made almost uniform.
In addition, the lithium secondary battery according to Example 4 was observed to have a lower frequency of Li deposition compared to the lithium secondary battery according to Example 2 because the annular member was formed with a plurality of holes. This is considered to be because the nonaqueous electrolyte solution was suitably impregnated (penetrated) into the wound electrode body and the non-aqueous electrolyte solution unevenness that could occur in the wound electrode body was improved. Moreover, from the result of Example 4, the hole formed in the annular member corresponds to the case where the area (S B ) of the portion covered by the annular member on the outer surface of the wound electrode body is 100%. It was confirmed that it is preferable to form the annular member so as to be 40% of the ratio of the total opening area (S A ) of the holes formed in the annular member.
Thus, according to the present invention, it is possible to provide a non-aqueous electrolyte secondary battery in which the deposition of a charge carrier-derived substance on the negative electrode active material layer is highly reduced.

以上、本発明の具体例を詳細に説明したが、上記実施形態及び実施例は例示にすぎず、請求の範囲を限定するものではない。請求の範囲に記載の技術には、以上に例示した具体例を様々に変形、変更したものが含まれる。   As mentioned above, although the specific example of this invention was demonstrated in detail, the said embodiment and Example are only illustrations and do not limit a claim. The technology described in the claims includes various modifications and changes of the specific examples illustrated above.

20 捲回電極体
22 R部
24 中央扁平部
26 扁平表面
30 電池ケース
32 電池ケース本体
34 蓋体
36 安全弁
42 正極端子
42a 正極集電板
44 負極端子
44a 負極集電板
50 正極
52 正極集電体
53 正極集電体露出端部
54 正極活物質層
60 負極
62 負極集電体
63 負極集電体露出端部
64 負極活物質層
70 セパレータ
80 環状部材
100 二次電池(リチウム二次電池)
WL 捲回軸
20 Winding electrode body 22 R part 24 Central flat part 26 Flat surface 30 Battery case 32 Battery case main body 34 Cover body 36 Safety valve 42 Positive electrode terminal 42a Positive electrode current collector plate 44 Negative electrode terminal 44a Negative electrode current collector plate 50 Positive electrode 52 Positive electrode current collector 53 Positive electrode current collector exposed end 54 Positive electrode active material layer 60 Negative electrode 62 Negative electrode current collector 63 Negative electrode current collector exposed end 64 Negative electrode active material layer 70 Separator 80 Ring member 100 Secondary battery (lithium secondary battery)
WL winding axis

Claims (1)

扁平な捲回電極体と、非水電解液と、前記電極体および前記非水電解液を収容する電池ケースと、を備える非水電解液二次電池であって、
前記捲回電極体は、捲回軸に対して直交する方向の両端部であって該捲回電極体の積層面を除く外表面が曲面からなる2つのR部と、両R部に挟まれている中央部分であって幅広な2つの扁平表面を有する中央扁平部と、を有するものであり、
前記捲回電極体は、該捲回電極体の外表面の一部が、前記2つのR部の外表面および前記中央扁平部の2つの扁平表面に対向するように配置された熱収縮性の環状部材によって覆われており、
前記環状部材は、熱により収縮した状態で前記捲回電極体の周囲に配置されており、
前記環状部材は、熱収縮された状態で、複数の孔が形成されており、且つ、捲回電極体の外表面のうちの前記熱収縮された状態の環状部材によって覆われた部分の面積(S)を100%とした場合に対する前記熱収縮された状態の環状部材に形成された孔の開口面積の総和(S)の比率が40%である、非水電解液二次電池。

A non-aqueous electrolyte secondary battery comprising a flat wound electrode body, a non-aqueous electrolyte, and a battery case containing the electrode body and the non-aqueous electrolyte,
The wound electrode body is sandwiched between two R portions, which are both ends in a direction orthogonal to the winding axis, and whose outer surface excluding the laminated surface of the wound electrode body is a curved surface. And a central flat portion having two broad flat surfaces,
The wound electrode body has a heat-shrinkable structure in which a part of the outer surface of the wound electrode body is arranged so as to face the outer surface of the two R parts and the two flat surfaces of the central flat part. Covered by an annular member,
The annular member is arranged around the wound electrode body in a contracted state by heat,
The annular member has a plurality of holes formed in a thermally contracted state, and the area of the outer surface of the wound electrode body covered with the annular member in the thermally contracted state ( A non-aqueous electrolyte secondary battery in which the ratio of the sum of the opening areas of the holes formed in the thermally contracted annular member (S A ) is 40% with respect to the case where S B ) is 100%.

JP2015227501A 2015-11-20 2015-11-20 Nonaqueous electrolyte secondary battery Pending JP2017098017A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015227501A JP2017098017A (en) 2015-11-20 2015-11-20 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015227501A JP2017098017A (en) 2015-11-20 2015-11-20 Nonaqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JP2017098017A true JP2017098017A (en) 2017-06-01

Family

ID=58804030

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015227501A Pending JP2017098017A (en) 2015-11-20 2015-11-20 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP2017098017A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019091604A (en) * 2017-11-14 2019-06-13 トヨタ自動車株式会社 Nonaqueous electrolyte secondary battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019091604A (en) * 2017-11-14 2019-06-13 トヨタ自動車株式会社 Nonaqueous electrolyte secondary battery

Similar Documents

Publication Publication Date Title
JP6208708B2 (en) Lithium ion secondary battery and system using the same
JP6086240B2 (en) Non-aqueous electrolyte battery and manufacturing method thereof
US9431680B2 (en) Electric storage device, electric storage system, and manufacturing method thereof
US9859534B2 (en) Secondary battery
JP2013093216A (en) Battery
JP7236035B2 (en) Secondary battery and manufacturing method thereof
JP2011210549A (en) Nonaqueous electrolyte secondary battery, vehicle, and device using the battery
JP2017142896A (en) Secondary battery
JP6765268B2 (en) Rechargeable battery
JP2011124058A (en) Lithium-ion secondary battery, vehicle and battery-equipped apparatus with the battery
KR102226890B1 (en) Non-aqueous electrolyte secondary battery
JP6489360B2 (en) Secondary battery
JP2017098017A (en) Nonaqueous electrolyte secondary battery
JP2017027837A (en) Lithium ion secondary battery
JP2011081973A (en) Lithium ion secondary battery, vehicle, and battery mounting equipment
JP2016225261A (en) Lithium secondary battery
CN112563681B (en) Nonaqueous electrolyte secondary battery
JP7365562B2 (en) Wound electrode body for secondary batteries
JP7240612B2 (en) Method for manufacturing secondary battery
JP7079413B2 (en) How to manufacture a secondary battery
JP6876248B2 (en) Electrode assembly
JP2017091623A (en) Secondary battery
JP4706186B2 (en) Square battery
JP2024092439A (en) Separator and power storage device including said separator
JP2018097980A (en) Lithium ion secondary battery