JP6764704B2 - 表示装置の作製方法 - Google Patents

表示装置の作製方法 Download PDF

Info

Publication number
JP6764704B2
JP6764704B2 JP2016120176A JP2016120176A JP6764704B2 JP 6764704 B2 JP6764704 B2 JP 6764704B2 JP 2016120176 A JP2016120176 A JP 2016120176A JP 2016120176 A JP2016120176 A JP 2016120176A JP 6764704 B2 JP6764704 B2 JP 6764704B2
Authority
JP
Japan
Prior art keywords
layer
substrate
electrode
transistor
display device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2016120176A
Other languages
English (en)
Other versions
JP2017033924A (ja
JP2017033924A5 (ja
Inventor
章裕 千田
章裕 千田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Priority to US15/213,767 priority Critical patent/US9941475B2/en
Priority to KR1020160095740A priority patent/KR102723104B1/ko
Publication of JP2017033924A publication Critical patent/JP2017033924A/ja
Publication of JP2017033924A5 publication Critical patent/JP2017033924A5/ja
Application granted granted Critical
Publication of JP6764704B2 publication Critical patent/JP6764704B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/10Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • H05B33/06Electrode terminals
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces

Landscapes

  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)
  • Thin Film Transistor (AREA)
  • Liquid Crystal (AREA)

Description

本発明は、表示装置に関する。または、表示装置の作製方法に関する。
なお、本発明の一態様は、上記の技術分野に限定されない。例えば、本発明の一態様は、物、方法、もしくは製造方法に関する。または、本発明は、プロセス、マシン、マニュファクチャ、もしくは組成物(コンポジション・オブ・マター)に関する。または、本発明の一態様は、記憶装置、プロセッサ、それらの駆動方法またはそれらの製造方法に関する。
なお、本明細書等において半導体装置とは、半導体特性を利用することで機能しうるもの全般を指す。よって、トランジスタやダイオードなどの半導体素子や半導体回路は半導体装置である。また、表示装置、発光装置、照明装置、電気光学装置、および電子機器などは、半導体素子や半導体回路を含む場合がある。よって、表示装置、発光装置、照明装置、電気光学装置、および電子機器なども半導体装置を有する場合がある。
近年、表示装置の表示領域に用いる表示素子として、液晶素子の研究開発が盛んに行われている。また、エレクトロルミネッセンス(Electroluminescence:EL)を利用した発光素子の研究開発も盛んに行われている。発光素子の基本的な構成は、一対の電極間に発光性の物質を含む層を挟んだものである。この発光素子に電圧を印加することにより、発光性の物質からの発光が得られる。
特に、上述の発光素子は自発光型であるため、これを用いた表示装置は、視認性に優れバックライトが不要であり、消費電力が少ない等の利点を有する。さらに、薄型軽量に作製でき、応答速度が高いなどの利点も有する。
また、上述の表示素子を有する表示装置としては、可撓性が図れることから、可撓性を有する基板の採用が検討されている。
可撓性を有する基板を用いた表示装置の作製方法としては、基板と半導体素子との間に酸化物層および金属層を形成し、酸化物層と金属層との界面における密着性が低いことを利用して基板を分離した後に他の基板(例えば可撓性を有する基板)へと半導体素子を転置する技術が開発されている(特許文献1)。
可撓性を有する基板上に形成された発光素子は、発光素子表面の保護や外部からの水分や不純物の浸入を防ぐため、発光素子上にさらに可撓性を有する基板を設けることがある。
特開2003−174153号公報
可撓性を有する基板を用いた表示装置へ信号や電力を供給するためには、可撓性を有する基板の一部をレーザー光や刃物を用いて除去して電極を露出させ、FPC(Flexible printed circuit)等の外部電極を接続する必要がある。
しかしながら、可撓性を有する基板の一部をレーザー光や刃物を用いて除去する方法では、表示装置が有する電極にダメージを与えやすく、表示装置の信頼性や作製歩留まりが低下しやすいという問題がある。また、上記方法による表示領域へのダメージを防ぐため、表示領域と電極を十分に離して設置する必要があり、配線抵抗の増加による信号や電力の減衰が生じやすい。
本発明の一態様は、電極にダメージを与えにくい表示装置の作製方法を提供することを課題の一つとする。または、本発明の一態様は、作製歩留りの高い表示装置の作製方法を提供することを課題の一つとする。または、本発明の一態様は、信頼性の良好な表示装置、およびその作製方法を提供することを課題の一つとする。
または、本発明の一態様は、視認性に優れた表示装置、もしくは電子機器などを提供することを課題の一つとする。または、本発明の一態様は、表示品位が良好な表示装置、もしくは電子機器などを提供することを課題の一つとする。または、本発明の一態様は、信頼性が高い表示装置、もしくは電子機器などを提供することを課題の一つとする。または、本発明の一態様は、破損しにくい表示装置、もしくは電子機器などを提供することを課題の一つとする。または、本発明の一態様は、消費電力が低い表示装置、もしくは電子機器などを提供することを課題の一つとする。
なお、これらの課題の記載は、他の課題の存在を妨げるものではない。なお、本発明の一態様は、これらの課題の全てを解決する必要はないものとする。なお、これら以外の課題は、明細書、図面、請求項などの記載から、自ずと明らかとなるものであり、明細書、図面、請求項などの記載から、これら以外の課題を抽出することが可能である。
本発明の一態様は、第1乃至第7の工程を有し、第1の工程は、第1の基板の第1の表面上に、第1の層を設ける工程と、第1の層上に第1の絶縁層を設ける工程と、第1の絶縁層上に電極を設ける工程と、電極上に第2の絶縁層を設ける工程と、第2の絶縁層の一部を除去して第1の開口を設ける工程と、第2の絶縁層上に表示素子および第2の層を設ける工程と、を有し、第2の工程は、第2の基板の第2の表面上に、第3の層を設ける工程と、第3の層上に第3の絶縁層を設ける工程と、第3の層および第3の絶縁層の一部を除去して第2の開口を設ける工程と、を有し、第3の工程は、第1の表面と第2の表面を向かい合わせ、第1の開口と第2の開口とが互いに重なる領域を有するように、接着層を介して第1の基板と第2の基板とを互いに重ねる工程を有し、第4の工程は、第1の基板を第1の層とともに第1の絶縁層から剥離する工程を有し、第5の工程は、第1の絶縁層と第3の基板とが互いに重なるように第3の基板を設ける工程を有し、第6の工程は、第2の基板を第3の層とともに第3の絶縁層から剥離する工程を有し、第7の工程は、第3の絶縁層と第4の基板とが互いに重なるように第4の基板を設ける工程を有し、第1の工程において、電極と第2の層は互いに少なくとも一部を接して設けられ、第2の工程において、第2の開口の上面形状は第1の角および第2の角を有する多角形であり、第2の開口は上面形状において第2の層の内側に位置し、第1の角および第2の角の大きさは30°以上150°以下であり、第3の工程において、接着層は、接着層と第2の開口とが互いに重なる第1の領域を有し、第2の層は、第2の層と第2の開口とが互いに重なる第2の領域を有し、第6の工程において、第1の領域の少なくとも一部の接着層と、第2の領域の少なくとも一部の第2の層と、を第2の基板とともに第1の基板から剥離し、第2の基板の剥離が、第1の領域の少なくとも一部の接着層及び第2の領域の少なくとも一部の第2の層の剥離が第1の角の端部において始まり、第2の角の端部において終わる方向と同じ方向に進行し、電極の少なくとも一部が露出することを特徴とする表示装置の作製方法である。
また、第2の工程において、第2の開口の上面形状は第1の角および第2の角を有する、平行四辺形または六角形であり、第6の工程において、第2の基板の剥離が、第2の開口の上面形状の長辺方向と概ね平行な方向に進行する、上記の表示装置の作製方法も、本発明の一態様である。
また、前記の表示装置の作製方法において、第2の層が、EL層および導電層の積層であることが好ましい。
また、第1の基板は、ガラス基板、石英基板、サファイア基板、セラミック基板、金属基板、半導体基板、またはプラスチック基板を有し、第2の基板は、ガラス基板、石英基板、サファイア基板、セラミック基板、金属基板、半導体基板、またはプラスチック基板を有する上記の表示装置の作製方法も、本発明の一態様である。
また、第3の基板および第4の基板が可撓性を有する、上記の表示装置の作製方法も、本発明の一態様である。
また、第1の層は、タングステン、モリブデン、チタン、タンタル、ニオブ、ニッケル、コバルト、ジルコニウム、ルテニウム、ロジウム、パラジウム、オスミウム、イリジウム、またはシリコンを有し、第3の層は、タングステン、モリブデン、チタン、タンタル、ニオブ、ニッケル、コバルト、ジルコニウム、ルテニウム、ロジウム、パラジウム、オスミウム、イリジウム、またはシリコンを有する、上記の表示装置の作製方法も本発明の一態様である。
また、表示素子が発光素子である、上記の表示装置の作製方法も本発明の一態様である。
また、表示装置を有する電子機器の作製方法であって、電子機器は、バッテリ、タッチセンサ、または、筐体を有し、表示装置は、上記の表示装置の作製方法によって作製されている電子機器の作製方法も、本発明の一態様である。
また、第3の基板と、第4の基板と、を有する表示装置であって、電極と、表示素子と、接着層を有し、電極及び表示素子は、第3の基板の第1の表面に設けられ、電極及び表示素子は、互いに電気的に接続され、接着層は、第1の表面上に設けられ、第4の基板は、接着層上に設けられ、第4の基板および接着層は、第3の開口を有し、第3の開口の上面形状は、第1の角および第2の角を有する、平行四辺形または六角形であり、第1の角および第2の角の大きさは30°以上150°以下である表示装置も、本発明の一態様である。
本発明の一態様によれば、電極にダメージを与えにくい表示装置の作製方法を提供することができる。または、本発明の一態様によれば、作製歩留りの高い表示装置の作製方法を提供することができる。または、本発明の一態様によれば、信頼性の良好な表示装置、およびその作製方法を提供することができる。
または、本発明の一態様は、視認性に優れた表示装置、もしくは電子機器などを提供することができる。または、本発明の一態様は、表示品位が良好な表示装置、もしくは電子機器などを提供することができる。または、本発明の一態様は、信頼性が高い表示装置、もしくは電子機器などを提供することができる。または、本発明の一態様は、破損しにくい表示装置、もしくは電子機器などを提供することができる。または、本発明の一態様は、消費電力が低い表示装置、もしくは電子機器などを提供することができる。
なお、これらの効果の記載は、他の効果の存在を妨げるものではない。なお、本発明の一態様は、これらの効果の全てを有する必要はない。なお、これら以外の効果は、明細書、図面、請求項などの記載から、自ずと明らかとなるものであり、明細書、図面、請求項などの記載から、これら以外の効果を抽出することが可能である。
表示装置の一形態を説明する斜視図および断面図。 表示装置の一形態を説明する斜視図および断面図。 表示装置の一形態を説明する断面図。 表示装置の一形態の作製工程を説明する図。 表示装置の一形態の作製工程を説明する図。 表示装置の一形態の作製工程を説明する図。 表示装置の一形態の画素構成の一例を説明する図。 表示装置の一形態の作製工程を説明する図。 表示装置の一形態の作製工程を説明する図。 表示装置の一形態の作製工程を説明する図。 表示装置の一形態の作製工程を説明する図。 表示装置の一形態の作製工程を説明する図。 表示装置の一形態を説明する斜視図および断面図。 表示装置の一形態を説明する断面図。 表示装置の一形態の作製工程を説明する図。 表示装置の一形態を説明する斜視図および断面図。 表示装置の一形態の作製工程に係るマスクのレイアウト図の一例。 表示装置の一形態を説明する斜視図および断面図。 表示装置の一形態を説明する断面図。 表示装置の一形態を説明する断面図。 表示装置の一例を説明するブロック図。 画素回路の一例を説明する回路図。 トランジスタの一形態を説明する断面図。 トランジスタの一形態を説明する断面図。 トランジスタの一形態を説明する断面図。 トランジスタの一形態を説明する平面図および断面図。 トランジスタの一形態を説明する平面図および断面図。 トランジスタの一形態を説明する平面図および断面図。 トランジスタの一形態を説明する平面図および断面図。 トランジスタの一形態を説明する平面図および断面図。 エネルギーバンド構造を説明する図。 発光素子の構成例を説明する図。 表示モジュールを説明する図。 電子機器および照明装置の一例を説明する図。 電子機器の一例を説明する図。 電子機器の一例を説明する図。 電子機器の一例を説明する図。 試料のXRDスペクトルの測定結果を説明する図。 試料のTEM像、および電子線回折パターンを説明する図。 試料のEDXマッピングを説明する図。
実施の形態について、図面を用いて詳細に説明する。但し、本発明は以下の説明に限定されず、本発明の趣旨およびその範囲から逸脱することなくその形態および詳細を様々に変更し得ることは当業者であれば容易に理解される。従って、本発明は以下に示す実施の形態の記載内容に限定して解釈されるものではない。なお、以下に説明する発明の構成において、同一部分又は同様な機能を有する部分には同一の符号を異なる図面間で共通して用い、その繰り返しの説明は省略する。
また、図面等において示す各構成の、位置、大きさ、範囲などは、発明の理解を容易とするため、実際の位置、大きさ、範囲などを表していない場合がある。このため、開示する発明は、必ずしも、図面等に開示された位置、大きさ、範囲などに限定されない。例えば、実際の製造工程において、エッチングなどの処理によりレジストマスクなどが意図せずに目減りすることがあるが、理解を容易とするために省略して示すことがある。
また、特に上面図(「平面図」ともいう。)において、図面をわかりやすくするために、一部の構成要素の記載を省略する場合がある。
また、本明細書等において「電極」や「配線」の用語は、これらの構成要素を機能的に限定するものではない。例えば、「電極」は「配線」の一部として用いられることがあり、その逆もまた同様である。さらに、「電極」や「配線」の用語は、複数の「電極」や「配線」が一体となって形成されている場合なども含む。
なお、本明細書等において「上」や「下」の用語は、構成要素の位置関係が直上または直下で、かつ、直接接していることを限定するものではない。例えば、「絶縁層A上の電極B」の表現であれば、絶縁層Aの上に電極Bが直接接して形成されている必要はなく、絶縁層Aと電極Bとの間に他の構成要素を含むものを除外しない。
また、ソースおよびドレインの機能は、異なる極性のトランジスタを採用する場合や、回路動作において電流の方向が変化する場合など、動作条件などによって互いに入れ替わるため、いずれがソースまたはドレインであるかを限定することが困難である。このため、本明細書においては、ソースおよびドレインの用語は、入れ替えて用いることができるものとする。
また、本明細書等において、「電気的に接続」には、「何らかの電気的作用を有するもの」を介して接続されている場合が含まれる。ここで、「何らかの電気的作用を有するもの」は、接続対象間での電気信号の授受を可能とするものであれば、特に制限を受けない。よって、「電気的に接続する」と表現される場合であっても、現実の回路においては、物理的な接続部分がなく、配線が延在しているだけの場合もある。
また、本明細書において、「平行」とは、二つの直線が−10°以上10°以下の角度で配置されている状態をいう。従って、−5°以上5°以下の場合も含まれる。また、「垂直」および「直交」とは、二つの直線が80°以上100°以下の角度で配置されている状態をいう。従って、85°以上95°以下の場合も含まれる。
また、本明細書において、リソグラフィ工程を行った後にエッチング工程を行う場合は、特段の説明がない限り、リソグラフィ工程で形成したレジストマスクは、エッチング工程終了後に除去するものとする。
また、電圧は、ある電位と、基準の電位(例えば接地電位(GND電位)またはソース電位)との電位差のことを示す場合が多い。よって、電圧を電位と言い換えることが可能である。
なお、半導体の不純物とは、例えば、半導体を構成する主成分以外をいう。例えば、濃度が0.1原子%未満の元素は不純物と言える。不純物が含まれることにより、例えば、半導体のDOS(Density of State)が高くなることや、キャリア移動度が低下することや、結晶性が低下することなどが起こる場合がある。半導体が酸化物半導体である場合、半導体の特性を変化させる不純物としては、例えば、第1族元素、第2族元素、第13族元素、第14族元素、第15族元素、および酸化物半導体の主成分以外の遷移金属などがあり、特に、例えば、水素(水にも含まれる)、リチウム、ナトリウム、シリコン、ホウ素、リン、炭素、窒素などがある。酸化物半導体の場合、例えば水素などの不純物の混入によって酸素欠損を形成する場合がある。また、半導体がシリコンである場合、半導体の特性を変化させる不純物としては、例えば、酸素、水素を除く第1族元素、第2族元素、第13族元素、第15族元素などがある。
なお、本明細書等における「第1」、「第2」等の序数詞は、構成要素の混同を避けるために付すものであり、工程順または積層順など、なんらかの順番や順位を示すものではない。また、本明細書等において序数詞が付されていない用語であっても、構成要素の混同を避けるため、特許請求の範囲において序数詞が付される場合がある。また、本明細書等において序数詞が付されている用語であっても、特許請求の範囲において異なる序数詞が付される場合がある。また、本明細書等において序数詞が付されている用語であっても、特許請求の範囲などにおいて序数詞を省略する場合がある。
なお、「チャネル長」とは、例えば、トランジスタの上面図において、半導体(またはトランジスタがオン状態のときに半導体の中で電流の流れる部分)とゲート電極とが重なる領域、またはチャネルが形成される領域における、ソース(ソース領域またはソース電極)とドレイン(ドレイン領域またはドレイン電極)との間の距離をいう。なお、一つのトランジスタにおいて、チャネル長が全ての領域で同じ値をとるとは限らない。すなわち、一つのトランジスタのチャネル長は、一つの値に定まらない場合がある。そのため、本明細書では、チャネル長は、チャネルの形成される領域における、いずれか一の値、最大値、最小値または平均値とする。
また、「チャネル幅」とは、例えば、半導体(またはトランジスタがオン状態のときに半導体の中で電流の流れる部分)とゲート電極とが重なる領域、またはチャネルが形成される領域における、ソースとドレインとが向かい合っている部分の長さをいう。なお、一つのトランジスタにおいて、チャネル幅がすべての領域で同じ値をとるとは限らない。すなわち、一つのトランジスタのチャネル幅は、一つの値に定まらない場合がある。そのため、本明細書では、チャネル幅は、チャネルの形成される領域における、いずれか一の値、最大値、最小値または平均値とする。
(実施の形態1)
本発明の一態様の表示装置100の構成例について、図1乃至図12を用いて説明する。図1(A)は外部電極124が接続された表示装置100の斜視図であり、図1(B)は、図1(A)にA1−A2の一点鎖線で示す部位の断面図である。なお、本明細書に開示する表示装置100は、表示素子として発光素子を用いた表示装置である。また、本発明の一態様の表示装置100として、トップエミッション構造(上面射出構造)の表示装置を例示する。なお、表示装置100をボトムエミッション構造(下面射出構造)、またはデュアルエミッション構造(両面射出構造)の表示装置とすることも可能である。
<表示装置の構成>
本実施の形態に示す表示装置100は、表示領域131を有する。また、表示領域131は、複数の画素130を有する。一つの画素130は、少なくとも一つの発光素子125を有する。
本実施の形態に示す表示装置100は、電極115、EL層117、電極118、隔壁114、および電極116を有する。また、電極116上に絶縁層141を有し、絶縁層141に設けられた開口128において、電極115と電極116は電気的に接続されている。また、隔壁114は電極115上に設けられ、電極115および隔壁114上にEL層117が設けられ、EL層117上に電極118が設けられている。
基板111上には、接着層112、絶縁層119、および絶縁層141を介して発光素子125が設けられている。発光素子125は、電極115、EL層117、および電極118を含む。
また、本実施の形態に示す表示装置100は、電極118上に接着層120を介して設けられた基板121を有する。また、基板121には、接着層122および絶縁層129を介して、遮光層264、着色層(「カラーフィルタ」ともいう。)266、およびオーバーコート層268が設けられている。
本実施の形態に示す表示装置100は、トップエミッション構造の表示装置であるため、EL層117から射出された光151は、基板121側から射出される。EL層117から射出された光151(例えば、白色光)は、着色層266を透過する時にその一部が吸収されて、特定の色の光に変換される。換言すると、着色層266は、特定の波長領域の光を透過する。着色層266は、光151を異なる色の光に変換するための光学フィルター層として機能できる。
また、本実施の形態では電極116を単層として示しているが、電極116は2層以上の積層としてもよい。
また、基板121、接着層122、絶縁層129、接着層120、および絶縁層141は、それぞれが開口部を有する。それぞれの開口部は互いに重なる領域を有し、かつ、電極116と重なる領域を有する。本明細書等では、これらの開口部を併せて開口132と呼ぶ。開口132において、外部電極124と電極116が、異方性導電接続層138を介して電気的に接続されている。
なお、図2に示すように、表示装置100の構成を、遮光層264、着色層266、およびオーバーコート層268を設けない構成とすることもできる。図2(A)は、遮光層264、着色層266、およびオーバーコート層268を設けない表示装置100の斜視図であり、図2(B)は、図2(A)にA3−A4の一点鎖線で示す部位の断面図である。
特に、EL層117を、画素ごとに射出する光151の色を変える、いわゆる塗り分け方式で形成する場合は、着色層266を設けてもよいし、設けなくてもよい。
遮光層264、着色層266、およびオーバーコート層268のうち、少なくとも1つまたは全てを設けないことで、表示装置100の製造コストの低減、または、歩留まりの向上などを実現することができる。また、着色層266を設けないことで光151を効率よく射出することができるので、輝度の向上や、消費電力の低減などを実現することができる。
一方、遮光層264、着色層266、およびオーバーコート層268を設けると、外光の映り込みを軽減し、コントラスト比の向上や、色再現性の向上などを実現することができる。
なお、表示装置100をボトムエミッション構造の表示装置とする場合は、基板111側に、遮光層264、着色層266、およびオーバーコート層268を設けてもよい(図3(A)参照)。また、表示装置100をデュアルエミッション構造の表示装置とする場合は、基板111側および基板121側のどちらか一方または両方に遮光層264、着色層266、およびオーバーコート層268を設けてもよい(図3(B)参照)。
また、発光素子125と電極116の間に、発光素子125に信号を供給する機能を有するスイッチング素子を設けてもよい。例えば、発光素子125と電極116の間に、トランジスタを設けてもよい。
トランジスタは半導体素子の一種であり、電流および/または電圧の増幅や、導通または非導通を制御するスイッチング動作などを実現することができる。発光素子125と電極116の間にトランジスタを設けることで、表示領域131の大面積化や、高精細化などの実現を容易とすることができる。なお、トランジスタなどのスイッチング素子に限らず、抵抗素子、インダクタ、キャパシタ、整流素子などを表示領域131内に設けることもできる。
〔基板111、121〕
基板111および基板121としては、有機樹脂材料や可撓性を有する程度の厚さのガラス材料などを用いることができる。表示装置100をボトムエミッション構造の表示装置、またはデュアルエミッション構造の表示装置とする場合には、基板111にEL層117からの発光に対して透光性を有する材料を用いる。また、表示装置100をトップエミッション構造の表示装置、またはデュアルエミッション構造の表示装置とする場合には、基板121にEL層117からの発光に対して透光性を有する材料を用いる。
基板111および基板121に用いることが可能な可撓性および可視光に対する透光性を有する材料として、ポリエチレンテレフタレート樹脂(PET)、ポリエチレンナフタレート樹脂(PEN)、ポリエーテルサルフォン樹脂(PES)、ポリアクリロニトリル樹脂、アクリル樹脂、ポリイミド樹脂、ポリメチルメタクリレート樹脂、ポリカーボネート樹脂、ポリアミド樹脂、ポリシクロオレフィン樹脂、ポリスチレン樹脂、ポリアミドイミド樹脂、ポリプロピレン樹脂、ポリエステル樹脂、ポリハロゲン化ビニル樹脂、アラミド樹脂、エポキシ樹脂などを用いることができる。また、これらの材料を混合または積層して用いてもよい。なお、基板111および基板121は、それぞれ同じ材料を用いてもよいし、互いに異なる材料を用いてもよい。
また、基板121および基板111の熱膨張係数は、好ましくは30ppm/K以下、さらに好ましくは10ppm/K以下とする。また、基板121および基板111の表面に、窒化シリコンや酸化窒化シリコン等の窒素と珪素を含む膜や窒化アルミニウム等の窒素とアルミニウムを含む膜のような透水性の低い保護膜を成膜しても良い。なお、基板121および基板111として、繊維体に有機樹脂が含浸された構造物(所謂、プリプレグとも言う)を用いてもよい。
〔絶縁層119〕
絶縁層119は、酸化アルミニウム、酸化マグネシウム、酸化シリコン、酸化窒化シリコン、酸化ガリウム、酸化ゲルマニウム、酸化イットリウム、酸化ジルコニウム、酸化ランタン、酸化ネオジム、酸化ハフニウム及び酸化タンタルなどの酸化物材料や、窒化シリコン、窒化酸化シリコン、窒化アルミニウム、窒化酸化アルミニウムなどの窒化物材料などを、単層または多層で形成することができる。例えば、絶縁層119を、酸化シリコンと窒化シリコンを積層した2層構造としてもよいし、上記材料を組み合わせた5層構造としてもよい。絶縁層119は、スパッタリング法やCVD法、熱酸化法、塗布法、印刷法等を用いて形成することが可能である。
絶縁層119により、基板111や接着層112などから発光素子125への不純物元素の拡散を防止、または低減することができる。
なお、本明細書中において、窒化酸化物とは、酸素よりも窒素の含有量が多い化合物をいう。また、酸化窒化物とは、窒素よりも酸素の含有量が多い化合物をいう。なお、各元素の含有量は、例えば、ラザフォード後方散乱法(RBS:Rutherford Backscattering Spectrometry)等を用いて測定することができる。
〔電極116〕
電極116は、導電性材料を用いて形成することができる。例えば、アルミニウム、クロム、銅、銀、金、白金、タンタル、ニッケル、チタン、モリブデン、タングステン、ハフニウム、バナジウム、ニオブ、マンガン、マグネシウム、ジルコニウム、ベリリウム等から選ばれた金属元素、上述した金属元素を成分とする合金、または上述した金属元素を組み合わせた合金などを用いることができる。また、リン等の不純物元素を含有させた多結晶シリコンに代表される半導体、ニッケルシリサイドなどのシリサイドを用いてもよい。導電性材料の形成方法は特に限定されず、蒸着法、CVD法、スパッタリング法、スピンコート法などの各種形成方法を用いることができる。
また、電極116は、インジウム錫酸化物、酸化タングステンを含むインジウム酸化物、酸化タングステンを含むインジウム亜鉛酸化物、酸化チタンを含むインジウム酸化物、酸化チタンを含むインジウム錫酸化物、インジウム亜鉛酸化物、酸化ケイ素を添加したインジウム錫酸化物などの酸素を有する導電性材料を適用することもできる。また、窒化チタン、窒化タンタル、窒化タングステンなどの窒素を含む導電性材料を適用することもできる。また、上記酸素を有する導電性材料と、上記金属元素を含む材料の積層構造とすることもできる。
電極116は、単層構造でも、二層以上の積層構造としてもよい。例えば、シリコンを含むアルミニウム層の単層構造、アルミニウム層上にチタン層を積層する二層構造、窒化チタン層上にチタン層を積層する二層構造、窒化チタン層上にタングステン層を積層する二層構造、窒化タンタル層上にタングステン層を積層する二層構造、チタン層と、そのチタン層上にアルミニウム層を積層し、さらにその上にチタン層を形成する三層構造などがある。また、電極116に、チタン、タンタル、タングステン、モリブデン、クロム、ネオジム、スカンジウムから選ばれた一または複数の元素を含むアルミニウム合金を用いてもよい。
〔絶縁層127〕
絶縁層127は、絶縁層119と同様の材料および方法を用いて形成することができる。また、絶縁層127は、酸素を有する材料を用いることが好ましい。
〔電極115〕
電極115は、後に形成されるEL層117が発する光を効率よく反射する導電性材料を用いて形成することが好ましい。なお、電極115は単層に限らず、複数層の積層構造としてもよい。例えば、電極115を陽極として用いる場合、EL層117と接する層を、インジウム錫酸化物などの透光性を有する層とし、その層に接して反射率の高い層(アルミニウム、アルミニウムを含む合金、または銀など)を設けてもよい。
なお、本実施の形態においては、トップエミッション構造の表示装置について例示しているが、表示装置をボトムエミッション構造、またはデュアルエミッション構造の表示装置とする場合においては、電極115に透光性を有する導電性材料を用いればよい。
〔隔壁114〕
隔壁114は、隣接する電極118間の電気的ショートを防止するために設ける。また、後述するEL層117の形成にメタルマスクを用いる場合、メタルマスクが発光素子125を形成する領域に接触しないようにする機能も有する。隔壁114は、エポキシ樹脂、アクリル樹脂、イミド樹脂などの有機樹脂材料や、酸化シリコンなどの無機材料で形成することができる。隔壁114は、その側壁がテーパーまたは連続した曲率を持って形成される傾斜面となるように形成することが好ましい。隔壁114の側壁をこのような形状とすることで、後に形成されるEL層117や電極118の被覆性を良好なものとすることができる。
〔EL層117〕
EL層117の構成については、実施の形態5で説明する。
〔電極118〕
本実施の形態では電極118を陰極として用いる。電極118は、後述するEL層117に電子を注入できる仕事関数の小さい材料を用いて形成することが好ましい。また、仕事関数の小さい金属単体ではなく、仕事関数の小さいアルカリ金属、またはアルカリ土類金属を数nm形成した層を緩衝層として形成し、その上にアルミニウムなどの金属材料、インジウム錫酸化物等の導電性を有する酸化物材料、または半導体材料を用いて形成してもよい。また、緩衝層として、アルカリ土類金属の酸化物、ハロゲン化物、または、マグネシウム−銀等を用いることもできる。
また、電極118を介して、EL層117が発する光を取り出す場合は、電極118は、可視光に対し透光性を有することが好ましい。
〔接着層120、112、122〕
接着層120、接着層112、および接着層122としては、光硬化型の接着剤、反応硬化型接着剤、熱硬化型接着剤、または嫌気型接着剤を用いることができる。例えば、エポキシ樹脂、アクリル樹脂、イミド樹脂等を用いることができる。トップエミッション構造の場合は接着層120に、ボトムエミッション構造の場合は接着層112に、光の波長以下の大きさの乾燥剤(ゼオライト等)や、屈折率の大きいフィラー(酸化チタンや、ジルコニウム等)を混合すると、EL層117が発する光の取り出し効率が低下しにくく、また、表示装置の信頼性が向上するため好適である。
〔異方性導電接続層138〕
異方性導電接続層138は、様々な異方性導電フィルム(ACF:Anisotropic Conductive Film)や、異方性導電ペースト(ACP:Anisotropic Conductive Paste)などを用いて形成することができる。
異方性導電接続層138は、熱硬化性、又は熱硬化性及び光硬化性の樹脂に導電性粒子を混ぜ合わせたペースト状又はシート状の材料を硬化させたものである。異方性導電接続層138は、光照射や熱圧着によって異方性の導電性を示す材料となる。異方性導電接続層138に用いられる導電性粒子としては、例えば球状の有機樹脂をAuやNi、Co等の薄膜状の金属で被覆した粒子を用いることができる。
<表示装置の作製方法>
次に、図4乃至図12を用いて、表示装置100の作製方法を例示する。図7を除き、図4乃至図12は、図1中の、A1−A2の一点鎖線で示す部位の断面に相当する。なお、以下では作製途中の表示装置100を加工部材150と呼ぶ場合がある。
〔剥離層113の形成〕
まず、基板101上に剥離層113を形成する(図4(A)参照。)。基板の一例としては、半導体基板(例えば単結晶基板又はシリコン基板)、SOI基板、ガラス基板、石英基板、サファイア基板、セラミック基板、本実施の形態の処理温度に耐えうる耐熱性を有するプラスチック基板、金属基板、ステンレス・スチル基板、ステンレス・スチル・ホイルを有する基板、タングステン基板、タングステン・ホイルを有する基板、などがある。ガラス基板の一例としては、バリウムホウケイ酸ガラス、アルミノホウケイ酸ガラス、又はソーダライムガラスなどがある。
剥離層113は、タングステン、モリブデン、チタン、タンタル、ニオブ、ニッケル、コバルト、ジルコニウム、ルテニウム、ロジウム、パラジウム、オスミウム、イリジウム、シリコンから選択された元素、または該元素を含む合金材料、または該元素を含む化合物材料を用いて形成することができる。また、これらの材料を単層又は積層して形成することができる。なお、剥離層113の結晶構造は、非晶質、微結晶、多結晶のいずれの場合でもよい。また、剥離層113を、酸化アルミニウム、酸化ガリウム、酸化亜鉛、二酸化チタン、酸化インジウム、酸化インジウムスズ、酸化インジウム亜鉛、またはインジウムとガリウムと亜鉛を含む酸化物(In−Ga−Zn−O、IGZO)等の金属酸化物を用いて形成することもできる。
剥離層113は、スパッタリング法やCVD法、塗布法、印刷法等により形成できる。なお、塗布法はスピンコーティング法、液滴吐出法、ディスペンス法を含む。
剥離層113を単層で形成する場合、タングステン、モリブデン、またはタングステンとモリブデンを含む材料を用いることが好ましい。または、剥離層113を単層で形成する場合、タングステンの酸化物若しくは酸化窒化物、モリブデンの酸化物若しくは酸化窒化物、またはタングステンとモリブデンを含む材料の酸化物若しくは酸化窒化物を用いることが好ましい。
また、剥離層113として、例えば、タングステンを含む層とタングステンの酸化物を含む層の積層構造を形成する場合、タングステンを含む層に接して絶縁性酸化物層を形成することで、タングステンを含む層と絶縁性酸化物層との界面に、タングステンの酸化物を含む層が形成されることを活用してもよい。また、タングステンを含む層の表面を、熱酸化処理、酸素プラズマ処理、オゾン水等の酸化力を有する溶液での処理等を行ってタングステンの酸化物を含む層を形成してもよい。また、基板101と剥離層113の間に絶縁層を設けてもよい。
本実施の形態では、基板101にアルミノホウケイ酸ガラスを用いる。また、基板101上に形成する剥離層113として、スパッタリング法によりタングステン膜を形成する。
〔絶縁層119の形成〕
次に、剥離層113上に絶縁層119を形成する(図4(A)参照。)。絶縁層119は、基板101などからの不純物元素の拡散を防止または低減することができる。また、基板101を基板111に置換した後も、基板111や接着層112などから発光素子125への不純物元素の拡散を防止または低減することができる。絶縁層119の厚さは、好ましくは30nm以上2μm以下、より好ましくは50nm以上1μm以下、さらに好ましくは50nm以上500nm以下とすればよい。本実施の形態では、絶縁層119として、基板101側から、厚さ600nmの酸化窒化シリコン、厚さ200nmの窒化シリコン、厚さ200nmの酸化窒化シリコン、厚さ140nmの窒化酸化シリコン、厚さ100nmの酸化窒化シリコンの積層膜をプラズマCVD法により形成する。
なお、絶縁層119の形成前に、剥離層113の表面を、酸素を有する雰囲気に曝すことが好ましい。
酸素を有する雰囲気に用いるガスとしては、酸素、一酸化二窒素、二酸化窒素、二酸化炭素、一酸化炭素などを用いることができる。また、酸素を有するガスと他のガスの混合ガスを用いてもよい。例えば、二酸化炭素とアルゴンの混合ガスなどの、酸素を有するガスと希ガスの混合ガスを用いることができる。剥離層113の表面を酸化することで、後の工程で行われる基板101の剥離を容易とすることができる。
〔電極116の形成〕
次に、絶縁層119上に電極116を形成するための導電層126を形成する。例えば、導電層126として絶縁層119上にスパッタリング法により二層のモリブデンの間にアルミニウムを挟んだ三層の金属膜を形成する(図4(A)参照。)。
続いて、導電層126上にレジストマスクを形成し、該レジストマスクを用いて、導電層126を所望の形状にエッチングして、電極116を形成することができる。レジストマスクの形成は、リソグラフィ法、印刷法、インクジェット法等を適宜用いて行うことができる。レジストマスクをインクジェット法で形成するとフォトマスクを使用しないため、製造コストを低減できる。
導電層126のエッチングは、ドライエッチング法でもウェットエッチング法でもよく、両方を用いてもよい。ウェットエッチング法により、導電層126のエッチングを行う場合は、エッチング液として、燐酸と酢酸と硝酸を混ぜた溶液や、シュウ酸を含む溶液や、リン酸を含む溶液などを用いることができる。エッチング処理終了後に、レジストマスクを除去する(図4(B)参照)。
また、電極116(これらと同じ層で形成される他の電極または配線を含む)は、その端部をテーパー形状とすることで、電極116の側面を被覆する層の被覆性を向上させることができる。具体的には、端部のテーパー角θを、80°以下、好ましくは60°以下、さらに好ましくは45°以下とする。なお、テーパー角とは、当該層の側面と底面がなす角度を示す。また、テーパー角が90°未満である端部形状を順テーパー形状といい、テーパー角が90°以上である端部形状を逆テーパー形状という。図4(B)は、電極116の端部が順テーパー形状となっている場合を示している。
また、電極116の端部の断面形状を複数段の階段形状とすることで、その上に被覆する層の被覆性を向上させることもできる。なお、電極116に限らず、各層の端部の断面形状を順テーパー形状または階段形状とすることで、該端部を覆って形成する層が、該端部で途切れてしまう現象(段切れ)を防ぎ、被覆性を良好なものとすることができる。
〔絶縁層127の形成〕
次に、電極116上に絶縁層127を形成する(図4(C)参照)。本実施の形態では、絶縁層127としてプラズマCVD法により酸化窒化シリコン膜を形成する。
次に、絶縁層127上にレジストマスクを形成し、該レジストマスクを用いて、電極116と重なる絶縁層127の一部を選択的に除去し、開口128及び開口137を有する絶縁層141を形成する(図4(D)参照)。絶縁層127のエッチングは、ドライエッチング法でもウェットエッチング法でもよく、両方を用いてもよい。
〔電極115の形成〕
次に、絶縁層141上に電極115を形成するための導電層145を形成する(図4(E)参照)。導電層145は、導電層126(電極116)と同様の材料および方法で形成することができる。
次に、導電層145上にレジストマスクを形成し、該レジストマスクを用いて、導電層145の一部を選択的に除去し、電極115を形成する(図5(A)参照)。導電層145のエッチングは、ドライエッチング法でもウェットエッチング法でもよく、両方を用いてもよい。本実施の形態では、導電層145(電極115)を、銀の上にインジウム錫酸化物を積層した材料で形成する。電極115と電極116は、開口128で電気的に接続する。
〔隔壁114の形成〕
次に、隔壁114を形成する(図5(B)参照)。本実施の形態では、隔壁114を感光性の有機樹脂材料を用いて塗布法で形成し、所望の形状に加工することにより形成する。本実施の形態では、隔壁114を、感光性を有するポリイミド樹脂を用いて形成する。
〔EL層117、電極118及び剥離層110の形成〕
本実施の形態では、EL層117と同一の材料で形成される剥離層110a及び電極118と同一の材料で形成される剥離層110bの2層の積層を有する剥離層110を形成する。このようにすることで、製造工程を増やすことなく剥離層110を形成できるため好ましい。
隔壁114を形成した後に、EL層117を電極115及び隔壁114上に形成し、同時に電極116上の開口137と重なる領域に剥離層110aを形成する(図5(C)参照)。
次に、電極118をEL層117上に形成し、同時に剥離層110bを剥離層110a上に形成する。本実施の形態では、電極118及び剥離層110bとしてマグネシウムと銀の合金を用いる。電極118及び剥離層110bは、蒸着法、スパッタリング法等で形成することができる(図5(D)参照)。
なお、電極116上の開口137に形成する剥離層110は、単層で形成してもよく、二層以上の積層で形成してもよい。剥離層110を単層で形成する場合、電極116と密着性の低い材料を用いることができる。また、剥離層110を積層で形成する場合は、積層を構成する複数の層の間で密着性が低くなるように、複数の材料を用いることができる。
本実施の形態では、基板101上に発光素子125を形成した基板を、素子基板171と呼ぶ。
続いて、対向基板181の作製方法について説明する。
〔剥離層143の形成〕
まず、基板102上に剥離層143を形成する(図6(A)参照。)。基板102は、基板101と同様の材料を用いることができる。なお、基板101と基板102は、それぞれ同じ材料を用いてもよいし、互いに異なる材料を用いてもよい。また、剥離層143は、剥離層113と同様に形成することができる。基板102と剥離層143の間に絶縁層を設けてもよい。本実施の形態では、基板102にアルミノホウケイ酸ガラスを用いる。また、基板102上に形成する剥離層143として、スパッタリング法によりタングステン膜を形成する。
なお、剥離層143の形成後に、剥離層143の表面を、酸素を有する雰囲気または酸素を有するプラズマ雰囲気に曝すこと、すなわちプラズマ処理を行うことが好ましい。剥離層143の表面を酸化することで、後の工程で行われる基板102の剥離を容易とすることができる。また、前述の剥離層113の形成後に基板101に対して該プラズマ処理を行う代わりに、剥離層143の形成後に基板102に対して該プラズマ処理を行ってもよい。
〔絶縁層149の形成〕
次に、剥離層143上に絶縁層149を形成する(図6(A)参照。)。絶縁層149は、絶縁層119と同様の材料および方法で形成することができる。本実施の形態では、絶縁層149として、基板102側から、厚さ200nmの酸化窒化シリコン、厚さ140nmの窒化酸化シリコン、厚さ100nmの酸化窒化シリコンの積層膜をプラズマCVD法により形成する。
〔剥離層123及び絶縁層129の形成〕
続いて、絶縁層149上にレジストマスクを形成し、該レジストマスクを用いて、絶縁層149および剥離層143の一部を選択的に除去して、開口139を有する剥離層123および絶縁層129を形成する。レジストマスクの形成は、リソグラフィ法、印刷法、インクジェット法等を適宜用いて行うことができる。レジストマスクをインクジェット法で形成するとフォトマスクを使用しないため、製造コストを低減できる。
絶縁層149および剥離層143のエッチングは、ドライエッチング法でもウェットエッチング法でもよく、両方を用いてもよい。エッチング処理終了後に、レジストマスクを除去する(図6(B)参照)。
なお、開口139は、上面形状が第1の角および第2の角を有する多角形とすることが好ましい。具体的には、第1の角および第2の角を有する、平行四辺形または六角形とすることが好ましい(図11(A)、(B)参照)。第1の角および第2の角は、その大きさが30°以上150°以下であることが好ましい。
〔遮光層264の形成〕
次に、絶縁層129上に、遮光層264を形成するための層274を形成する(図6(C)参照)。層274は、単層構造であっても2層以上の積層構造であってもよい。層274に用いることができる材料として、例えば、クロム、チタン、またはニッケルなどを含む金属材料、または、クロム、チタン、またはニッケルなどを含む酸化物材料などが挙げられる。
層274を金属材料や酸化物材料で形成する場合は、層274上にレジストマスクを形成し、該レジストマスクを用いて、層274を所望の形状にエッチングして、遮光層264を形成することができる(図6(D)参照)。また、カーボンブラックを分散した高分子材料を用いると、インクジェット法により絶縁層129上に遮光層264を直接描画することができる。
〔着色層266の形成〕
次に、絶縁層129上に、着色層266を形成する(図6(E)参照)。着色層266は、様々な材料を用いて、印刷法、インクジェット法、フォトリソグラフィ法を用いて、それぞれ所望の位置に形成する。この時、着色層266の一部が遮光層264と重なるように設けることが好ましい。画素毎に着色層266の色を変えることで、カラー表示を行うことができる。
ここで、カラー表示を実現するための画素構成の一例を、図7を用いて説明する。図7(A)、図7(B)、および図7(C)は、図1(A)の表示領域131中に示した領域170を拡大した平面図である。例えば、図7(A)に示すように、ストライプ配列を適用した3つの画素130を副画素として機能させて、まとめて1つの画素140として用いることができる。3つの画素130それぞれに対応する着色層266を、赤、緑、青、とすることで、フルカラー表示を実現することができる。なお、図7(A)では、赤色の光を発する画素130を画素130Rと示し、緑色の光を発する画素130を画素130Gと示し、青色の光を発する画素130を画素130Bと示している。また、着色層266の色は、赤、緑、青、以外であってもよく、例えば、着色層266に黄、シアン、マゼンダなどを用いてもよい。
また、図7(B)に示すように、4つの画素130を副画素として機能させて、まとめて1つの画素140として用いてもよい。例えば、4つの画素130それぞれに対応する着色層266を、赤、緑、青、黄としてもよい。なお、図7(B)では、赤色の光を発する画素130を画素130Rと示し、緑色の光を発する画素130を画素130Gと示し、青色の光を発する画素130を画素130Bと示し、黄色の光を発する画素130を画素130Yと示している。1つの画素140として用いる画素130の数を増やすことで、特に再現できる色域を広げることができる。よって、表示装置の表示品位を高めることができる。
また、図7(B)において、4つの画素130それぞれに対応する着色層266を、赤、緑、青、白としてもよい。白の光を発する画素130(画素130W)を設けることで、表示領域の発光輝度を高めることができる。なお、白の光を発する画素130の場合は、着色層266を設けなくてもよい。白の着色層266を設けないことで、着色層266透過時の輝度低下がなくなるため、表示装置の消費電力を低減することができる。一方で、白の着色層266を設けることにより、白色光の色温度を制御することができる。よって、表示装置の表示品位を高めることができる。また、表示装置の用途によっては、4つの画素130のうちの任意の2つの画素130を1つの画素140として用いてもよい。
なお、各画素130の占有面積や形状などは、それぞれ同じでもよいし、それぞれ異なっていてもよい。また、配列方法として、ストライプ配列以外の方法でもよい。例えば、デルタ配列、ベイヤー配列、ペンタイル配列などを適用することもできる。3つの画素130にペンタイル配列を適用した場合の例を、図7(C)に示す。
〔オーバーコート層268の形成〕
次に、遮光層264および着色層266上にオーバーコート層268を形成する(図6(F)参照)。
オーバーコート層268としては、例えばアクリル樹脂、エポキシ樹脂、ポリイミド等の有機絶縁層を用いることができる。オーバーコート層268を形成することによって、例えば、着色層266中に含まれる不純物等が発光素子125側に拡散することを抑制することができる。ただし、オーバーコート層268は、必ずしも設ける必要はなく、オーバーコート層268を形成しない構造としてもよい。
また、オーバーコート層268として透光性を有する導電膜を形成してもよい。これにより、発光素子125から発せられた光151を透過し、かつ、イオン化した不純物の透過を防ぐことができる。
透光性を有する導電膜は、例えば、酸化インジウム、インジウム錫酸化物、インジウム亜鉛酸化物、酸化亜鉛、ガリウムを添加した酸化亜鉛などを用いて形成することができる。また、グラフェン等の他、透光性を有する程度に薄く形成された金属膜を用いてもよい。
本実施の形態では、基板102上に着色層266などを形成した基板を、対向基板181と呼ぶ。以上の工程により対向基板181を形成することができる。ただし、対向基板181に着色層266などを設けない場合がある。
〔素子基板171と対向基板181を貼り合せる〕
次に、素子基板171と対向基板181を、接着層120を介して貼り合せる。この時、素子基板171上の発光素子125と、対向基板181上の着色層266が向かい合うように配置する(図8(A)参照)。
〔基板101の剥離〕
次に、素子基板171が有する基板101を、剥離層113とともに絶縁層119から剥離する(図8(B)参照)。剥離方法としては、機械的な力を加えること(人間の手や治具で引き剥がす処理や、ローラーを回転させながら分離する処理、超音波等)を用いて行えばよい。たとえば、素子基板171の側面から剥離層113と絶縁層119の界面に鋭利な刃物またはレーザー光照射等で切り込みをいれ、その切り込みに水を注入する。毛細管現象により水が剥離層113と絶縁層119の界面にしみこむことにより、剥離層113とともに基板101を絶縁層119から容易に剥離することができる。
〔基板111の貼り合わせ〕
次に、接着層112を介して基板111を絶縁層119に貼り合わせる(図9参照)。
〔基板102の剥離〕
次に、対向基板181が有する基板102を、剥離層123とともに絶縁層129から剥離する(以下、この工程を基板剥離とも記す)。
図10(A)に、基板剥離の進行途中における加工部材150の斜視図を示す。図10(B)は、図10(A)における一点鎖線P−Qに対応する断面図である。この時、開口139と概ね重なる領域の接着層120と、開口139と概ね重なる領域の剥離層110bも一緒に除去され、開口132aが形成される(図10(B)参照)。接着層120および剥離層110bを剥離層110aから剥離する工程を以下、端子部剥離とも記す。基板剥離が進行する間に端子部剥離が行われるため、基板剥離の進行方向と端子部剥離の進行方向は等しい。なお、上面形状において、開口139の輪郭が、剥離層110aと剥離層110bが接する領域の輪郭より内側にあると、剥離層110aから剥離層110bを剥がしやすくなるため好ましい。
図10(A)では、開口139の上面形状が第1の角192および第2の角193を有する六角形である場合を示している。また、基板102および剥離層123の剥離の進行方向は図10(A)に示す矢印194で表しており、開口139の上面形状の長辺と概ね平行である。
基板102上に剥離層123を有する領域における基板剥離は、剥離層123および絶縁層129の界面(以下、第1の界面とも記す)で起こる。一方で、開口139と重畳する領域における端子部剥離は、剥離層110aおよび剥離層110bの界面(以下、第2の界面とも記す)で起こる。第1の界面および第2の界面は同一平面上にないため、基板剥離の第1の界面から第2の界面への、または第2の界面から第1の界面への進行が滑らかに行われない場合がある。具体的には、基板剥離の進行が開口139の近傍でさえぎられ、そのさえぎられた地点から本来剥離したい界面とは異なる界面において剥離が生じてしまう場合がある。
開口139の上面形状の第1の角192が剥離の進行方向と逆向きに突出していることで、基板剥離における端子部剥離の始点190での引っかかりを低減することができる。また、開口139の上面形状の第2の角193が剥離の進行方向に突出していることで、端子部剥離の終点での引っかかりを低減することができる。よって、本発明の一態様によって、作製歩留りの高い表示装置を作製することができる。
第1の角192および第2の角193が小さすぎると、端子部剥離における始点または終点付近の第2の界面の幅が狭くなり、端子部剥離が不安定となる。また第1の角192および第2の角193が大きすぎると、上記の引っかかりを低減する効果が低減してしまう。よって、第1の角192および第2の角193は、その大きさが30°以上150°以下であることが好ましい。
図11(A)に、基板剥離を行う前の加工部材150の上面模式図を示す。加工部材150の最表面は基板111であり、図11では表示領域131および開口139の輪郭を示している。開口139が有する基板剥離の進行方向(図11(A)に示す矢印194)と逆向きに突出する第1の角192の端部、および該進行方向に突出する第2の角193の端部がそれぞれ、端子部剥離の始点190および終点191となる。換言すると、基板剥離は、端子部剥離が開口139の第1の角192の端部である始点190において始まり、開口139の第2の角193の端部である終点191において終わる方向と同じ方向に進行する。なお、開口139の上面形状が平行四辺形であってもよい(図11(B)参照)。また、開口139の上面形状が、始点190および終点191において突出し、始点190および終点191がそれぞれ内側に向かって滑らかに膨らんだ閉曲線であってもよい(図11(C)参照)。図11(D)は、図11(C)における終点191近傍の領域195を拡大した上面模式図である。
なお、基板102を絶縁層129から剥離した後に、電極116上に剥離層110aが残存する場合がある。剥離層110aが電極116上に残存していると、電極116と異方性導電接続層138との間で接触不良が生じる場合がある。そのため、基板102を剥離した後に、アセトンなどの有機溶媒等を用いて電極116上に残存して付着した剥離層110aを除去することが好ましい。本実施の形態では、アセトンを用いて電極116上の剥離層110aを除去する。なお、剥離層110aが電極116上に残存していても電極116と異方性導電接続層138との間の電気的接続に問題が生じない場合には、電極116上に残存した剥離層110aを除去しなくてもよい。
〔基板121の貼り合わせ〕
次に、接着層122を介して、開口132bを有する基板121を絶縁層129に貼り合わせる(図12(A)参照)。この時、開口132aと開口132bが重なるように貼り合せる。本実施の形態では、開口132aと開口132bを合わせて開口132と呼ぶ。開口132において、電極116の表面が露出する。
基板121を絶縁層129に貼り合わせた時に、図12(B)に示すように接着層122が開口132aにおける各層の側面を覆うように、開口132bの幅や接着層122として用いる接着剤の量などを調整することが好ましい。このようにすることで、開口132aの側面において露出している絶縁層129などに膜割れやひびが発生することを抑制できる。また、剥離層110bを除去した後に絶縁層141上の開口132a近傍に残存する剥離層110を接着層122で覆うことで、異方性導電接続層138への剥離層110を構成する材料の拡散などを抑制できる。例えば、開口132bの幅W1は、開口132の幅W2よりも小さいことが好ましい(図12(B)参照)。図12(B)に、基板121を絶縁層129に貼り合わせた後の表示装置100の断面図を示す。
なお、本発明の一態様の表示装置100は、1つの開口132内に電極116を複数設けることが好ましい。図13(A)は、1つの開口132内に複数の電極116を設けた表示装置100の斜視図であり、図13(B)は、図13(A)にB1−B2の一点鎖線で示した部位の断面図である。
平面図において開口132を基板121の輪郭より内側に設けることで、開口132の輪郭を基板121と基板111で支える構造とすることができる。よって、外部電極124と電極116が接続する領域の機械的強度が低下しづらく、同領域の意図しない変形を軽減することができる。本発明の一態様によれば、表示装置100の破損を防ぎ、表示装置100の信頼性を高めることができる。
また、基板111または基板121のうち、光151が射出される側の基板の外側に、反射防止層、光拡散層、マイクロレンズアレイ、プリズムシート、位相差板、偏光板などの特定の機能を有する材料で形成された層(以下、「機能層」ともいう。)を一種以上設けてもよい。反射防止層としては、例えば円偏光板などを用いることができる。機能層を設けることで、より表示品位の良好な表示装置を実現することができる。または、表示装置の消費電力を低減することができる。
図14(A)は、機能層161を有するトップエミッション構造の表示装置100の断面図である。また、図14(B)は、機能層161を有するボトムエミッション構造の表示装置100の断面図である。また、図14(C)は、機能層161を有するデュアルエミッション構造の表示装置100の断面図である。
また、基板111または基板121として、特定の機能を有する材料を用いてもよい。例えば、基板111または基板121として、円偏光板を用いてもよい。また、例えば、基板111または基板121を、位相差板を用いて形成し、当該基板と重ねて偏光板を設けてもよい。また、例えば、基板111または基板121を、プリズムシートを用いて形成し、当該基板と重ねて円偏光板を設けてもよい。基板111または基板121として、特定の機能を有する材料を用いることで、表示品位の向上と、製造コストの低減を実現することができる。
〔外部電極124の形成〕
次に、開口132に異方性導電接続層138を形成し、異方性導電接続層138上に、表示装置100に電力や信号を入力するための外部電極124を形成する(図1参照)。異方性導電接続層138を介して外部電極124と電極116を電気的に接続する。このようにして、表示装置100に電力や信号を入力することが可能となる。なお、外部電極124として、FPCを用いることができる。また、外部電極124として金属線を用いることもできる。該金属線と電極116の接続は、異方性導電接続層138を用いてもよいが、異方性導電接続層138を用いずに、ワイヤーボンディング法により行ってもよい。また、該金属線と電極116の接続をハンダ付けで行ってもよい。
開口132の上面形状は、図11に示した開口139と概ね一致する。開口132の上面形状は第1の角192および第2の角193を有する六角形であることが好ましい。また、第1の角192および第2の角193の大きさは30°以上150°以下であることが好ましい。また、開口132の上面形状は第1の角192および第2の角193を有する平行四辺形であってもよい。
なお、上述の表示装置100の作製方法では、剥離層123が有する開口139の上面図における端部が剥離層123の端部より内側にある例を示したが、これに限られない。図15(A)に示すように、開口139の輪郭の一部が、剥離層123の輪郭と一致していてもよい。図15(A)は基板剥離を行う前の加工部材155の上面模式図であり、図の矢印194は基板剥離の進行方向を示している。また図15(B)は、基板剥離後の基板111を有する側の加工部材155の上面模式図である。図15(B)の状態から、二点鎖線196、197に沿って加工部材155を分断することで、剥離層110aを露出させた領域の3辺を基板111の輪郭と一致させることができる(図15(C)参照)。図15(A)、(B)に示した基板剥離および図15(C)に示した分断を経て作製できる表示装置160の斜視図を図16(A)に示す。図16(B)は図16(A)にS−Tの一点鎖線で示す部位の断面図である。なお、該基板剥離および該分断を除く図16の表示装置160の作製方法については、上述の表示装置100の作製方法の記述を参照できる。
<表示装置のレイアウトの構成例>
ところで、本発明の一態様の表示装置のマスク用図面(レイアウト図)を図17に示す。図17には、該表示装置が有する表示領域531および電極116が示されている。また図17には、上記の作製方法における剥離層123および絶縁層129の形成に用いるマスクパターン501を示している。マスクパターン501は上面図において電極116を内側に含むように開口を4つ有し、各開口の上面形状は2つの鋭角を有する六角形である。マスクパターン501が該開口を有することで、図6(B)に示すように剥離層123および絶縁層129に開口139を形成することができる。
本実施の形態は、他の実施の形態に記載した構成と適宜組み合わせて実施することが可能である。
(実施の形態2)
本実施の形態では、上記実施の形態に示した表示装置100と異なる構成を有する表示装置200について、図18を用いて説明する。図18(A)は表示装置200の斜視図であり、図18(B)は、図18(A)中にA5−A6の一点鎖線で示す部位の断面図である。
<表示装置の構成>
本実施の形態に示す表示装置200は、表示領域231と、周辺回路251を有する。また、表示装置200は、電極115、EL層117、電極118を含む発光素子125と、電極116を有する。発光素子125は、表示領域231中に複数形成されている。また、各発光素子125には、発光素子125の発光量を制御するトランジスタ232が接続されている。
電極116は、開口132に形成された異方性導電接続層138を介して外部電極124と電気的に接続されている。また、図示しないが電極116は周辺回路251に電気的に接続されている。
周辺回路251は、複数のトランジスタ252により構成されている。周辺回路251は、外部電極124から供給された信号を、表示領域231中のどの発光素子125に供給するかを決定する機能を有する。
図18に示す表示装置200は、接着層120を介して基板111と基板121が貼り合わされた構造を有する。基板111上には、接着層112を介して絶縁層205が形成されている。絶縁層205は、酸化シリコン、窒化シリコン、酸化窒化シリコン、窒化酸化シリコン、酸化アルミニウム、酸化窒化アルミニウム、または窒化酸化アルミニウム等を、単層または多層で形成するのが好ましい。絶縁層205は、スパッタリング法やCVD法、熱酸化法、塗布法、印刷法等を用いて形成することが可能である。
なお、絶縁層205は下地層として機能し、基板111や接着層112などからトランジスタや発光素子への不純物元素の拡散を防止、または低減することができる。
また、絶縁層205上に、トランジスタ232、トランジスタ252、電極116、配線219が形成されている。なお、本実施の形態では、トランジスタ232および/またはトランジスタ252として、ボトムゲート型のトランジスタの1つであるチャネルエッチング型のトランジスタを例示しているが、チャネル保護型のトランジスタや、トップゲート型のトランジスタなどを用いることも可能である。また、逆スタガ型のトランジスタや、順スタガ型のトランジスタを用いることも可能である。また、チャネルが形成される半導体層を2つのゲート電極で挟む構造の、デュアルゲート型のトランジスタを用いることも可能である。また、シングルゲート構造のトランジスタに限定されず、複数のチャネル形成領域を有するマルチゲート型トランジスタ、例えばダブルゲート型トランジスタとしてもよい。
また、トランジスタ232およびトランジスタ252として、プレーナ型、FIN型(フィン型)、TRI−GATE型(トライゲート型)などの、様々な構成のトランジスタを用いることが出来る。
トランジスタ232とトランジスタ252は、それぞれが同様の構造を有していてもよいし、異なる構造を有していてもよい。トランジスタのサイズ(例えば、チャネル長、およびチャネル幅)等は、各トランジスタで適宜調整することができる。
トランジスタ232およびトランジスタ252は、ゲート電極として機能できる電極206、ゲート絶縁層として機能できる絶縁層207、半導体層208、ソース電極またはドレイン電極の一方として機能できる電極214、ソース電極またはドレイン電極の他方として機能できる電極215を有する。
配線219、電極214、および電極215は、電極116を形成するための導電層の一部を用いて、電極116と同時に形成することができる。また、絶縁層207は、絶縁層205と同様の材料および方法により形成することができる。
半導体層208は、単結晶半導体、多結晶半導体、微結晶半導体、ナノクリスタル半導体、セミアモルファス半導体、非晶質半導体、等を用いて形成することができる。例えば、非晶質シリコンや、微結晶ゲルマニウム等を用いることができる。また、炭化シリコン、ガリウム砒素、酸化物半導体、窒化物半導体などの化合物半導体や、有機半導体等を用いることができる。また、半導体層208として酸化物半導体を用いる場合は、CAAC−OS(C Axis Aligned Crystalline Oxide Semiconductor)、多結晶酸化物半導体、微結晶酸化物半導体、nc−OS(nano Crystalline Oxide Semiconductor)、非晶質酸化物半導体などを用いることができる。
なお、酸化物半導体は、エネルギーギャップが3.0eV以上と大きく、可視光に対する透過率が大きい。また、酸化物半導体を適切な条件で加工して得られたトランジスタにおいては、オフ電流(トランジスタがオフ状態の時にソースとドレイン間に流れる電流)を極めて小さくすることができる。例えばソースとドレイン間の電圧が3.5V、温度25℃においては、チャネル幅1μmあたり100zA(1×10−19A)以下、もしくは10zA(1×10−20A)以下、さらには1zA(1×10−21A)以下とすることができる。このため、消費電力の少ない表示装置を提供することができる。
また、半導体層208に酸化物半導体を用いる場合は、半導体層208に接する絶縁層に酸素を有する絶縁層を用いることが好ましい。特に、半導体層208に接する絶縁層として、加熱処理により酸素を放出する絶縁層を用いることが好ましい。
また、トランジスタ232およびトランジスタ252上に絶縁層210が形成され、絶縁層210上に絶縁層211が形成されている。絶縁層210及び絶縁層211は、保護絶縁層として機能し、絶縁層211よりも上の層からトランジスタ232およびトランジスタ252への不純物元素が拡散することを防止または低減することができる。絶縁層210及び絶縁層211は、絶縁層205と同様の材料及び方法で形成することができる。
絶縁層211上に層間絶縁層212が形成される。層間絶縁層212は、トランジスタ232やトランジスタ252に起因する凹凸を吸収することができる。層間絶縁層212の表面に平坦化処理を行ってもよい。平坦化処理としては特に限定されないが、研磨処理(例えば、化学的機械研磨法(Chemical Mechanical Polishing:CMP))、やドライエッチング処理により行うことができる。
また、平坦化機能を有する絶縁材料を用いて層間絶縁層212を形成することで、研磨処理を省略することもできる。平坦化機能を有する絶縁材料として、例えば、ポリイミド樹脂、アクリル樹脂等の有機材料を用いることができる。また上記有機材料の他に、低誘電率材料(low−k材料)等を用いることができる。なお、これらの材料で形成される絶縁膜を複数積層させることで、層間絶縁層212を形成してもよい。
また、層間絶縁層212上に、発光素子125と、隣接する発光素子125を離間するための隔壁114が形成されている。電極115が電極116と重なるように開口132に形成される。
また、基板121には、遮光層264、着色層266、及びオーバーコート層268が形成されている。表示装置200は、発光素子125からの光を、着色層266を介して基板121側から射出する、所謂トップエミッション構造の表示装置である。
また、発光素子125は、層間絶縁層212、絶縁層211、および絶縁層210に設けられた開口を介してトランジスタ232と電気的に接続されている。
また、発光素子125を、EL層117から発する光を共振させる微小光共振器(「マイクロキャビティ」ともいう)構造とすることで、異なる発光素子125で同じEL層117を用いても、異なる波長の光を狭線化して取り出すことができる。
一例として、図19に、発光素子125をマイクロキャビティ構造とした表示装置200の断面図を示す。なお、図19(A)は、図18(A)中にA5−A6の一点鎖線で示す部位近傍の断面図に相当する。また、図19(B)は、図19(A)に示した部位280の拡大図である。
発光素子125をマイクロキャビティ構造とする場合、電極118を入射光量のうち一定光量の光を透過して一定光量の光を反射する(半透過)導電性材料を用いて形成し、電極115を、反射率の高い(可視光の反射率が50%以上100%以下、好ましくは70%以上100%以下)導電性材料と、透過率の高い(可視光の透過率が50%以上100%以下、好ましくは70%以上100%以下)導電性材料の積層で形成する。ここでは、電極115を、光を反射する導電性材料で形成された電極115aと、光を透過する導電性材料で形成された電極115bの積層としている。電極115bは、EL層117と電極115aの間に設ける(図19(B)参照)。電極118は半反射電極として、電極115aは反射電極として機能できる。
例えば、電極118として、厚さ1nm乃至30nm、好ましくは1nm乃至15nmの銀(Ag)を含む導電性材料、またはアルミニウム(Al)を含む導電性材料などを用いればよい。本実施の形態では、電極118として厚さ10nmの銀とマグネシウムを含む導電性材料を用いる。
また、電極115aとして厚さ50nm乃至500nm、好ましくは50nm乃至200nmの銀(Ag)を含む導電性材料、またはアルミニウム(Al)を含む導電性材料などを用いればよい。本実施の形態では、電極115aとして厚さ100nmの銀を含む導電性材料を用いる。
また、電極115bとして厚さ1nm乃至200nm、好ましくは5nm乃至100nmのインジウム(In)を含む導電性酸化物、または亜鉛(Zn)を含む導電性酸化物などを用いればよい。本実施の形態では、電極115bとしてインジウム錫酸化物を用いる。また、電極115aの下に、さらに導電性酸化物を設けてもよい。
電極115bの厚さtを変えることで、電極118とEL層117の界面から電極115aと電極115bの界面までの距離dを任意の値に設定することができる。画素ごとに電極115bの厚さtを変えることで、同じEL層117を用いても、画素ごとに異なる発光スペクトルを有する発光素子125を設けることができる。よって、各発光色の色純度を高め、色再現性の良好な表示装置を実現することができる。また、画素ごと(発光色ごと)にEL層117を形成する必要がないため、表示装置の作製工程を少なくし、生産性を高めることができる。また、表示装置の高精細化を容易とすることができる。
なお、光学的距離dの調整方法は上記の調整方法に限定されない。例えば、EL層117の膜厚を変えることで光学的距離dを調整してもよい。
図19(A)は、赤色の光151Rを発光することができる画素130R、緑色の光151Gを発光することができる画素130G、青色の光151Bを発光することができる画素130B、および黄色の光151Yを発光することができる画素130Yを1つの画素140として用いる例を示している。なお、本発明の一態様はこれに限定されず、画素140として、赤、緑、青、黄、シアン、マゼンダ、または白などの光を発光することができる副画素を適宜組み合わせて用いればよい。例えば、画素130R、画素130G、および画素130Bの3つの副画素で画素140を構成してもよい。
また、発光素子125と重畳する位置に着色層266を設けて、光151が着色層266を透過して外部に射出する構成としてもよい。図20に、図19に示した表示装置200に着色層266を組み合わせた構成の一例を示す。図20に示す表示装置200は、赤色の光151Rを発光することができる画素130Rと重ねて赤色の波長域の光を透過する着色層266Rが設けられ、緑色の光151Gを発光することができる画素130Gと重ねて緑色の波長域の光を透過する着色層266Gが設けられ、青色の光151Bを発光することができる画素130Bと重ねて青色の波長域の光を透過する着色層266Bが設けられ、黄色の光151Yを発光することができる画素130Yと重ねて黄色の波長域の光を透過する着色層266Yが設けられている。
画素130R、画素130G、画素130Bに加えて画素130Yを用いることで、表示装置の色再現性を高めることができる。また、画素140を画素130R、画素130G、および画素130Bのみで構成する場合、画素140の発光色を白としたい時は、画素130R、画素130G、および画素130Bの全てを発光させる必要がある。一方、画素130R、画素130G、および画素130Bに加えて、画素130Yを設けることで、画素130Bと画素130Yのみを発光させて、白色光を得ることが可能となる。よって、画素130Rと画素130Gを発光させなくても白色光を得ることができるため、表示装置の消費電力を低減することができる。
また、画素130Yに代えて、白色の光151Wを発光することができる画素130Wを用いてもよい。画素130Yに代えて、画素130Wを用いることで、画素130Wのみの発光により白色光を得ることができるため、表示装置の消費電力をより低減することができる。
なお、画素130Wを用いる場合は、画素130Wに着色層を設けなくてもよい。着色層を設けないことで、表示領域の輝度が向上し、視認性の良好な表示装置を実現することができる。また、表示装置の消費電力をより低減することができる。
また、画素130Wに可視光領域のほぼ全体を透過する着色層266Wを設けてもよい。これにより、白色の光151Wの色温度を変化させることができる。よって、表示品位の良好な表示装置を実現することができる。
また、マイクロキャビティ構造の発光素子125と着色層266を組み合わせて用いることにより、光151の色純度をさらに高めることができる。よって、表示装置200の色再現性を高めることができる。また、外部から入射した光は、着色層266で大部分が吸収されるため、外部から入射した光の表示領域231への映り込みを軽減し、表示装置の視認性を高めることができる。よって、表示品位の良好な表示装置を実現することができる。
また、本実施の形態では、表示装置の一例として、アクティブマトリクス型の表示装置について例示したが、パッシブマトリクス型の表示装置に適用することも可能である。また、ボトムエミッション構造の表示装置、デュアルエミッション構造の表示装置にも適用可能である。
本実施の形態は、他の実施の形態に記載した構成と適宜組み合わせて実施することが可能である。
(実施の形態3)
本実施の形態では、表示装置200のより具体的な構成例について、図21および図22を用いて説明する。
<画素回路構成例>
図21(A)は、表示装置3100の構成を説明するためのブロック図である。表示装置3100は、表示領域3131、回路3132、および回路3133を有する。回路3132は、例えば走査線駆動回路として機能する。また、回路3133は、例えば信号線駆動回路として機能する。
また、表示装置3100は、各々が略平行に配設され、且つ、回路3132によって電位が制御されるm本の走査線3135と、各々が略平行に配設され、且つ、回路3133によって電位が制御されるn本の信号線3136と、を有する。さらに、表示領域3131はm行n列のマトリクス状に配設された複数の画素3130を有する。なお、m、nは、ともに2以上の自然数である。
表示領域3131において、各走査線3135は、画素3130のうち、いずれかの行に配設されたn個の画素3130と電気的に接続される。また、各信号線3136は、画素3130のうち、いずれかの列に配設されたm個の画素3130に電気的に接続される。
また、図21(B)に示すように、表示領域3131を挟んで回路3132と向き合う位置に、回路3152を設けてもよい。また、図21(C)に示すように、表示領域3131を挟んで回路3133と向き合う位置に、回路3153を設けてもよい。図21(B)および図21(C)では、回路3152を回路3132と同様に走査線3135に接続する例を示している。ただし、これに限らず、例えば、走査線3135に接続する回路3132と回路3152を、数行毎に変えてもよい。図21(C)では、回路3153を回路3133と同様に信号線3136に接続する例を示して。ただし、これに限らず、例えば、信号線3136に接続する回路3133と回路3153を、数行毎に変えてもよい。また、回路3132、回路3133、回路3152および回路3153は、画素3130を駆動する以外の機能を有していてもよい。
また、回路3132、回路3133、回路3152および回路3153を、駆動回路部という場合がある。画素3130は、画素回路3137および表示素子を有する。画素回路3137は表示素子を駆動する回路である。駆動回路部が有するトランジスタは、画素回路3137を構成するトランジスタと同時に形成することができる。また、駆動回路部の一部または全部を他の基板上に形成して、表示装置3100と電気的に接続してもよい。例えば、駆動回路部の一部または全部を単結晶基板を用いて形成し、表示装置3100と電気的に接続してもよい。
図22(A1)、図22(A2)、図22(B1)、および図22(B2)は、表示装置3100の画素3130に用いることができる回路構成を示している。
<発光表示装置用画素回路の一例>
図22(A1)および図22(A2)に、発光表示装置に用いることができる画素回路の一例を示す。図22(A1)および図22(A2)に示す画素回路3137は、トランジスタ3431と、容量素子3233と、トランジスタ3232と、トランジスタ3434と、を有する。図22(A2)はトランジスタ3431、トランジスタ3232、トランジスタ3434に、バックゲート電極を有するトランジスタを用いた場合の回路図である。また、画素回路3137は、表示素子として機能できる発光素子3125と電気的に接続されている。
トランジスタ3431のソース電極およびドレイン電極の一方は、データ信号が与えられるn列目の信号線3136(以下、信号線DL_nという)に電気的に接続される。さらに、トランジスタ3431のゲート電極は、ゲート信号が与えられるm行目の走査線3135(以下、走査線GL_mという)に電気的に接続される。
トランジスタ3431は、データ信号のノード3435への書き込みを制御する機能を有する。
容量素子3233の一対の電極の一方は、ノード3435に電気的に接続され、他方は、ノード3437に電気的に接続される。また、トランジスタ3431のソース電極およびドレイン電極の他方は、ノード3435に電気的に接続される。
容量素子3233は、ノード3435に書き込まれたデータを保持する保持容量としての機能を有する。
トランジスタ3232のソース電極およびドレイン電極の一方は、電位供給線VL_aに電気的に接続され、他方はノード3437に電気的に接続される。さらに、トランジスタ3232のゲート電極は、ノード3435に電気的に接続される。
トランジスタ3434のソース電極およびドレイン電極の一方は、電位供給線VL_cに電気的に接続され、他方はノード3437に電気的に接続される。さらに、トランジスタ3434のゲート電極は、走査線GL_mに電気的に接続される。
発光素子3125のアノードおよびカソードの一方は、電位供給線VL_bに電気的に接続され、他方は、ノード3437に電気的に接続される。
発光素子3125としては、例えば有機エレクトロルミネセンス素子(有機EL素子ともいう)などを用いることができる。ただし、これに限定されず、例えば無機材料からなる無機EL素子を用いても良い。
例えば、電位供給線VL_aはVDDを供給する機能を有する。また、電位供給線VL_bはVSSを供給する機能を有する。また、電位供給線VL_cはVSSを供給する機能を有する。
ここで、図22(A1)および図22(A2)の画素回路3137を有する表示装置の動作例について説明しておく。まず、回路3132により各行の画素回路3137を順次選択し、トランジスタ3431をオン状態にしてデータ信号(電位)をノード3435に書き込む。次に、トランジスタ3434をオン状態にしてノード3437の電位をVSSとする。
その後、トランジスタ3431をオフ状態としてノード3435に書き込まれたデータ信号を保持する。次に、トランジスタ3434をオフ状態とする。トランジスタ3232のソースとドレインの間に流れる電流量は、ノード3435に書き込まれたデータ信号に応じて決まる。よって、発光素子3125は、流れる電流量に応じた輝度で発光する。これを行毎に順次行うことにより、画像を表示できる。
また、複数の画素3130を、それぞれ副画素として用いて、それぞれの副画素から異なる波長域の光を発光させることで、カラー画像を表示することができる。例えば、赤の波長域の光を発する画素3130、緑の波長域の光を発する画素3130、および青の波長域の光を発する画素3130を1つの画素として用いる。
なお、組み合わせる光の波長域は、赤、緑、および青に限定されず、シアン、黄およびマゼンダであってもよい。1つの画素に少なくとも3種類の異なる波長域の光を発する副画素を設けることで、フルカラー画像を表示することができる。
また、赤、緑、および青に加えて、黄の波長域の光を発する副画素を加えてもよい。また、シアン、黄、およびマゼンダに加えて、青の波長域の光を発する副画素を加えてもよい。1つの画素に4種類以上の異なる波長域で発光する副画素を設けることで、表示する画像の色の再現性をさらに高めることができる。
また、1つの画素に用いる、赤、緑、青の画素数比(または発光面積比)は、必ずしも1:1:1である必要は無い。例えば、画素数比(発光面積比)を赤:緑:青=1:1:2としてもよい。また、画素数比(受光面積比)を赤:緑:青=1:2:3としてもよい。
また、白色の光を発光する副画素に、赤、緑、青などのカラーフィルタを組み合わせて、フルカラー表示を実現することもできる。また、赤、緑、または青の波長域の光を発する副画素それぞれに、赤、緑、または青の波長域の光を透過するカラーフィルタを組み合わせてもよい。
<液晶表示装置用画素回路の一例>
図22(B1)および図22(B2)に、液晶表示装置に用いることができる画素回路の一例を示す。図22(B1)および図22(B2)に示す画素回路3137は、トランジスタ3431と、容量素子3233と、を有する。図22(B2)はトランジスタ3431に、バックゲート電極を有するトランジスタを用いた場合の回路図である。また、画素回路3137は、表示素子として機能できる液晶素子3432と電気的に接続されている。
液晶素子3432の一対の電極の一方の電位は、画素回路3137の仕様に応じて適宜設定される。液晶素子3432に含まれる液晶は、ノード3436に書き込まれるデータにより配向状態が設定される。なお、複数の画素回路3137のそれぞれが有する液晶素子3432の一対の電極の一方に、共通の電位(コモン電位)を与えてもよい。
液晶素子3432のモードとしては、例えば、TNモード、STNモード、VAモード、ASM(Axially Symmetric Aligned Micro−cell)モード、OCB(Optically Compensated Birefringence)モード、FLC(Ferroelectric Liquid Crystal)モード、AFLC(AntiFerroelectric Liquid Crystal)モード、MVAモード、PVA(Patterned Vertical Alignment)モード、IPSモード、FFSモード、またはTBA(Transverse Bend Alignment)モードなどを用いてもよい。また、他の例として、ECB(Electrically Controlled Birefringence)モード、PDLC(Polymer Dispersed Liquid Crystal)モード、PNLC(Polymer Network Liquid Crystal)モード、ゲストホストモードなどがある。ただし、これに限定されず、様々なモードを用いることができる。
m行n列目の画素回路3137において、トランジスタ3431のソース電極およびドレイン電極の一方は、信号線DL_nに電気的に接続され、他方はノード3436に電気的に接続される。トランジスタ3431のゲート電極は、走査線GL_mに電気的に接続される。トランジスタ3431は、ノード3436へのデータ信号の書き込みを制御する機能を有する。
容量素子3233の一対の電極の一方は、特定の電位が供給される配線(以下、「容量線CL」ともいう。)に電気的に接続され、他方は、ノード3436に電気的に接続される。また、液晶素子3432の一対の電極の他方はノード3436に電気的に接続される。なお、容量線CLの電位の値は、画素回路3137の仕様に応じて適宜設定される。容量素子3233は、ノード3436に書き込まれたデータを保持する保持容量としての機能を有する。
ここで、図21(C)の画素回路3137を有する表示装置の動作例について説明しておく。まず、回路3132により各行の画素回路3137を順次選択し、トランジスタ3431をオン状態にしてノード3436にデータ信号を書き込む。
次に、トランジスタ3431をオフ状態としてノード3436に書き込まれたデータ信号を保持する。ノード3436に書き込まれたデータ信号に応じて、液晶素子3432の透過光量が決まる。これを行毎に順次行うことにより、表示領域3131に画像を表示できる。
<表示素子>
本発明の一態様の表示装置は、様々な形態を用いること、または様々な表示素子を有することが出来る。表示素子は、例えば、LED(白色LED、赤色LED、緑色LED、青色LEDなど)などを含むEL(エレクトロルミネッセンス)素子(有機物および無機物を含むEL素子、有機EL素子、無機EL素子)、トランジスタ(電流に応じて発光するトランジスタ)、プラズマディスプレイパネル(PDP)、電子放出素子、液晶素子、電気泳動素子、グレーティングライトバルブ(GLV)やデジタルマイクロミラーデバイス(DMD)、DMS(デジタル・マイクロ・シャッター)素子、MIRASOL(登録商標)ディスプレイ、IMOD(インターフェロメトリック・モジュレーション)素子、圧電セラミックディスプレイなどのMEMS(マイクロ・エレクトロ・メカニカル・システム)を用いた表示素子、エレクトロウェッティング素子などが挙げられる。これらの他にも、電気的または磁気的作用により、コントラスト、輝度、反射率、透過率などが変化する表示媒体を有していても良い。また、表示素子として量子ドットを用いてもよい。EL素子を用いた表示装置の一例としては、ELディスプレイなどがある。電子放出素子を用いた表示装置の一例としては、フィールドエミッションディスプレイ(FED)又はSED方式平面型ディスプレイ(SED:Surface−conduction Electron−emitter Display)などがある。量子ドットを用いた表示装置の一例としては、量子ドットディスプレイなどがある。液晶素子を用いた表示装置の一例としては、液晶ディスプレイ(透過型液晶ディスプレイ、半透過型液晶ディスプレイ、反射型液晶ディスプレイ、直視型液晶ディスプレイ、投射型液晶ディスプレイ)などがある。電気泳動素子を用いた表示装置の一例としては、電子ペーパーなどがある。なお、半透過型液晶ディスプレイや反射型液晶ディスプレイを実現する場合には、画素電極の一部、または、全部が、反射電極としての機能を有するようにすればよい。例えば、画素電極の一部、または、全部が、アルミニウム、銀、などを有するようにすればよい。さらに、その場合、反射電極の下に、SRAMなどの記憶回路を設けることも可能である。これにより、さらに、消費電力を低減することができる。
本実施の形態は、他の実施の形態に記載した構成と適宜組み合わせて実施することが可能である。
(実施の形態4)
本実施の形態では、上記実施の形態に示したトランジスタ232に置き換えて用いることができるトランジスタの一例について、図23乃至図31を用いて説明する。なお、本明細書等に開示するトランジスタは、トランジスタ3431やトランジスタ3434などにも用いることができる。
本発明の一態様の表示装置100は、ボトムゲート型のトランジスタや、トップゲート型トランジスタなどの様々な形態のトランジスタを用いて作製することができる。よって、既存の製造ラインに合わせて、使用する半導体層の材料やトランジスタ構造を容易に置き換えることができる。
〔ボトムゲート型トランジスタ〕
図23(A1)は、ボトムゲート型のトランジスタの一種であるチャネル保護型のトランジスタ410の断面図である。図23(A1)において、トランジスタ410は基板271上に形成されている。また、トランジスタ410は、基板271上に絶縁層272を介して電極246を有する。また、電極246上に絶縁層226を介して半導体層242を有する。電極246はゲート電極として機能できる。絶縁層226はゲート絶縁層として機能できる。
また、半導体層242のチャネル形成領域上に絶縁層241を有する。また、半導体層242の一部と接して、絶縁層226上に電極244aおよび電極244bを有する。電極244aは、ソース電極またはドレイン電極の一方として機能できる。電極244bは、ソース電極またはドレイン電極の他方として機能できる。電極244aの一部、および電極244bの一部は、絶縁層241上に形成される。
絶縁層241は、チャネル保護層として機能できる。チャネル形成領域上に絶縁層241を設けることで、電極244aおよび電極244bの形成時に生じる半導体層242の露出を防ぐことができる。よって、電極244aおよび電極244bの形成時に、半導体層242のチャネル形成領域がエッチングされることを防ぐことができる。本発明の一態様によれば、電気特性の良好なトランジスタを実現することができる。
また、トランジスタ410は、電極244a、電極244bおよび絶縁層241上に絶縁層228を有し、絶縁層228の上に絶縁層229を有する。
例えば、絶縁層272は、絶縁層222や絶縁層205と同様の材料および方法を用いて形成することができる。なお、絶縁層272は複数の絶縁層の積層であってもよい。また、例えば、半導体層242は、半導体層208と同様の材料および方法を用いて形成することができる。なお、半導体層242は複数の半導体層の積層であってもよい。また、例えば、電極246は、電極206と同様の材料および方法を用いて形成することができる。なお、電極246は複数の導電層の積層であってもよい。また、例えば、絶縁層226は、絶縁層207と同様の材料および方法を用いて形成することができる。なお、絶縁層226は複数の絶縁層の積層であってもよい。また、例えば、電極244aおよび電極244bは、電極214または電極215と同様の材料および方法を用いて形成することができる。なお、電極244aおよび電極244bは複数の導電層の積層であってもよい。また、例えば、絶縁層241は、絶縁層226と同様の材料および方法を用いて形成することができる。なお、絶縁層241は複数の絶縁層の積層であってもよい。また、例えば、絶縁層228は、絶縁層210と同様の材料および方法を用いて形成することができる。なお、絶縁層228は複数の絶縁層の積層であってもよい。また、例えば、絶縁層229は、絶縁層211と同様の材料および方法を用いて形成することができる。なお、絶縁層229は複数の絶縁層の積層であってもよい。
本実施の形態で開示するトランジスタを構成する電極、半導体層、絶縁層などは、他の実施の形態に開示した材料および方法を用いて形成することができる。
半導体層242に酸化物半導体を用いる場合、電極224aおよび電極224bの、少なくとも半導体層242と接する部分に、半導体層242の一部から酸素を奪い、酸素欠損を生じさせることが可能な材料を用いることが好ましい。半導体層242中の酸素欠損が生じた領域はキャリア濃度が増加し、当該領域はn型化し、n型領域(n層)となる。したがって、当該領域はソース領域またはドレイン領域として機能することができる。半導体層242に酸化物半導体を用いる場合、半導体層242から酸素を奪い、酸素欠損を生じさせることが可能な材料の一例として、タングステン、チタン等を挙げることができる。
半導体層242にソース領域およびドレイン領域が形成されることにより、電極224aおよび電極224bと半導体層242の接触抵抗を低減することができる。よって、電界効果移動度や、しきい値電圧などの、トランジスタの電気特性を良好なものとすることができる。
半導体層242にシリコンなどの半導体を用いる場合は、半導体層242と電極224aの間、および半導体層242と電極224bの間に、n型半導体またはp型半導体として機能する層を設けることが好ましい。n型半導体またはp型半導体として機能する層は、トランジスタのソース領域またはドレイン領域として機能することができる。
絶縁層229は、外部からのトランジスタへの不純物の拡散を防ぐ、または低減する機能を有する材料を用いて形成することが好ましい。なお、必要に応じて絶縁層229を省略することもできる。
なお、半導体層242に酸化物半導体を用いる場合、絶縁層229の形成前または形成後、もしくは絶縁層229の形成前後に加熱処理を行ってもよい。加熱処理を行うことで、絶縁層229や他の絶縁層中に含まれる酸素を半導体層242中に拡散させ、半導体層242中の酸素欠損を補填することができる。または、絶縁層229を加熱しながら成膜することで、半導体層242中の酸素欠損を補填することができる。
なお、一般に、CVD法は、プラズマを利用するプラズマCVD(PECVD:Plasma Enhanced CVD)法、熱を利用する熱CVD(TCVD:Thermal CVD)法などに分類できる。さらに用いる原料ガスによって金属CVD(MCVD:Metal CVD)法、有機金属CVD(MOCVD:Metal Organic CVD)法などに分類できる。
また、一般に、蒸着法は、抵抗加熱蒸着法、電子線蒸着法、MBE(Molecular Beam Epitaxy)法、PLD(Pulsed Laser Deposition)法、IAD(Ion beam Assisted Deposition)法、ALD(Atomic Layer Deposition)法などに分類できる。
プラズマCVD法は、比較的低温で高品質の膜が得られる。また、MOCVD法や蒸着法などの、成膜時にプラズマを用いない成膜方法を用いると、被形成面にダメージが生じにくく、また、欠陥の少ない膜が得られる。
また、一般に、スパッタリング法は、DCスパッタリング法、マグネトロンスパッタリング法、RFスパッタリング法、イオンビームスパッタリング法、ECR(Electron Cyclotron Resonance)スパッタリング法、対向ターゲットスパッタリング法などに分類できる。
対向ターゲットスパッタリング法では、プラズマがターゲット間に閉じこめられるため、基板へのプラズマダメージを低減することができる。また、ターゲットの傾きによっては、スパッタリング粒子の基板への入射角度を浅くすることができるため、段差被覆性を高めることができる。
図23(A2)に示すトランジスタ411は、絶縁層229上にバックゲート電極として機能できる電極223を有する点が、トランジスタ410と異なる。電極223は、電極246と同様の材料および方法で形成することができる。
一般に、バックゲート電極は導電層で形成され、ゲート電極とバックゲート電極で半導体層のチャネル形成領域を挟むように配置される。よって、バックゲート電極は、ゲート電極と同様に機能させることができる。バックゲート電極の電位は、ゲート電極と同電位としてもよいし、接地電位(GND電位)や、任意の電位としてもよい。また、バックゲート電極の電位をゲート電極と独立して変化させることで、トランジスタのしきい値電圧を変化させることができる。
電極246および電極223は、どちらもゲート電極として機能することができる。よって、絶縁層226、絶縁層228、および絶縁層229は、それぞれがゲート絶縁層として機能することができる。なお、電極223は、絶縁層228と絶縁層229の間に設けてもよい。
なお、電極246または電極223の一方を、「ゲート電極」という場合、他方を「バックゲート電極」という。例えば、トランジスタ411において、電極223を「ゲート電極」と言う場合、電極246を「バックゲート電極」と言う。また、電極223を「ゲート電極」として用いる場合は、トランジスタ411をトップゲート型のトランジスタの一種と考えることができる。また、電極246および電極223のどちらか一方を、「第1のゲート電極」といい、他方を「第2のゲート電極」という場合がある。
半導体層242を挟んで電極246および電極223を設けることで、更には、電極246および電極223を同電位とすることで、半導体層242においてキャリアの流れる領域が膜厚方向においてより大きくなるため、キャリアの移動量が増加する。この結果、トランジスタ411のオン電流が大きくなると共に、電界効果移動度が高くなる。
したがって、トランジスタ411は、占有面積に対して大きいオン電流を有するトランジスタである。すなわち、求められるオン電流に対して、トランジスタ411の占有面積を小さくすることができる。本発明の一態様によれば、トランジスタの占有面積を小さくすることができる。よって、本発明の一態様によれば、集積度の高い半導体装置を実現することができる。
また、ゲート電極とバックゲート電極は導電層で形成されるため、トランジスタの外部で生じる電界が、チャネルが形成される半導体層に作用しないようにする機能(特に静電気などに対する電界遮蔽機能)を有する。なお、バックゲート電極を半導体層よりも大きく形成し、バックゲート電極で半導体層を覆うことで、電界遮蔽機能を高めることができる。
また、電極246および電極223は、それぞれが外部からの電界を遮蔽する機能を有するため、絶縁層272側もしくは電極223上方に生じる荷電粒子等の電荷が半導体層242のチャネル形成領域に影響しない。この結果、ストレス試験(例えば、ゲートに負の電荷を印加する−GBT(Gate Bias−Temperature)ストレス試験)による劣化が抑制される。また、ドレイン電圧の大きさにより、オン電流が流れ始めるゲート電圧(立ち上がり電圧)が変化する現象を軽減することができる。なお、この効果は、電極246および電極223が、同電位、または異なる電位の場合において生じる。
なお、BTストレス試験は加速試験の一種であり、長期間の使用によって起こるトランジスタの特性変化(経年変化)を短時間で評価することができる。特に、BTストレス試験前後におけるトランジスタのしきい値電圧の変動量は、信頼性を調べるための重要な指標となる。しきい値電圧の変動量が少ないほど、信頼性が高いトランジスタであるといえる。
また、電極246および電極223を有し、且つ電極246および電極223を同電位とすることで、しきい値電圧の変動量が低減される。このため、複数のトランジスタにおける電気特性のばらつきも同時に低減される。
また、バックゲート電極を有するトランジスタは、ゲートに正の電荷を印加する+GBTストレス試験前後におけるしきい値電圧の変動も、バックゲート電極を有さないトランジスタより小さい。
また、バックゲート電極を、遮光性を有する導電膜で形成することで、バックゲート電極側から半導体層に光が入射することを防ぐことができる。よって、半導体層の光劣化を防ぎ、トランジスタのしきい値電圧がシフトするなどの電気特性の劣化を防ぐことができる。
本発明の一態様によれば、信頼性の良好なトランジスタを実現することができる。また、信頼性の良好な半導体装置を実現することができる。
図23(B1)に、ボトムゲート型のトランジスタの1つであるチャネル保護型のトランジスタ420の断面図を示す。トランジスタ420は、トランジスタ410とほぼ同様の構造を有しているが、絶縁層229が半導体層242を覆っている点が異なる。また、半導体層242と重なる絶縁層229の一部を選択的に除去して形成した開口部において、半導体層242と電極244aが電気的に接続している。また、半導体層242と重なる絶縁層229の一部を選択的に除去して形成した他の開口部において、半導体層242と電極244bが電気的に接続している。絶縁層229の、チャネル形成領域と重なる領域は、チャネル保護層として機能できる。
図23(B2)に示すトランジスタ421は、絶縁層229上にバックゲート電極として機能できる電極223を有する点が、トランジスタ420と異なる。
絶縁層229を設けることで、電極244aおよび電極244bの形成時に生じる半導体層242の露出を防ぐことができる。よって、電極244aおよび電極244bの形成時に半導体層242の薄膜化を防ぐことができる。
また、トランジスタ420およびトランジスタ421は、トランジスタ410およびトランジスタ411よりも、電極244aと電極246の間の距離と、電極244bと電極246の間の距離が長くなる。よって、電極244aと電極246の間に生じる寄生容量を小さくすることができる。また、電極244bと電極246の間に生じる寄生容量を小さくすることができる。本発明の一態様によれば、電気特性の良好なトランジスタを実現できる。
図23(C1)に示すトランジスタ425は、ボトムゲート型のトランジスタの1つであるチャネルエッチング型のトランジスタである。トランジスタ425は、絶縁層229を用いずに電極244aおよび電極244bを形成する。このため、電極244aおよび電極244bの形成時に露出する半導体層242の一部がエッチングされる場合がある。一方、絶縁層229を設けないため、トランジスタの生産性を高めることができる。
図23(C2)に示すトランジスタ425は、絶縁層229上にバックゲート電極として機能できる電極223を有する点が、トランジスタ420と異なる。
〔トップゲート型トランジスタ〕
図24(A1)に、トップゲート型のトランジスタの一種であるトランジスタ430の断面図を示す。トランジスタ430は、絶縁層272の上に半導体層242を有し、半導体層242および絶縁層272上に、半導体層242の一部に接する電極244a、および半導体層242の一部に接する電極244bを有し、半導体層242、電極244a、および電極244b上に絶縁層226を有し、絶縁層226上に電極246を有する。
トランジスタ430は、電極246および電極244a、並びに、電極246および電極244bが重ならないため、電極246および電極244aの間に生じる寄生容量、並びに、電極246および電極244bの間に生じる寄生容量を小さくすることができる。また、電極246を形成した後に、電極246をマスクとして用いて不純物255を半導体層242に導入することで、半導体層242中に自己整合(セルフアライメント)的に不純物領域を形成することができる(図24(A3)参照)。本発明の一態様によれば、電気特性の良好なトランジスタを実現することができる。
なお、不純物255の導入は、イオン注入装置、イオンドーピング装置またはプラズマ処理装置を用いて行うことができる。
不純物255としては、例えば、第13族元素または第15族元素のうち、少なくとも一種類の元素を用いることができる。また、半導体層242に酸化物半導体を用いる場合は、不純物255として、希ガス、水素、および窒素のうち、少なくとも一種類の元素を用いることも可能である。
図24(A2)に示すトランジスタ431は、電極223および絶縁層227を有する点がトランジスタ430と異なる。トランジスタ431は、絶縁層272の上に形成された電極223を有し、電極223上に形成された絶縁層227を有する。電極223は、バックゲート電極として機能することができる。よって、絶縁層227は、ゲート絶縁層として機能することができる。絶縁層227は、絶縁層226と同様の材料および方法により形成することができる。
トランジスタ411と同様に、トランジスタ431は、占有面積に対して大きいオン電流を有するトランジスタである。すなわち、求められるオン電流に対して、トランジスタ431の占有面積を小さくすることができる。本発明の一態様によれば、トランジスタの占有面積を小さくすることができる。よって、本発明の一態様によれば、集積度の高い半導体装置を実現することができる。
図24(B1)に例示するトランジスタ440は、トップゲート型のトランジスタの1つである。トランジスタ440は、電極244aおよび電極244bを形成した後に半導体層242を形成する点が、トランジスタ430と異なる。また、図24(B2)に例示するトランジスタ441は、電極223および絶縁層227を有する点が、トランジスタ440と異なる。トランジスタ440およびトランジスタ441において、半導体層242の一部は電極244a上に形成され、半導体層242の他の一部は電極244b上に形成される。
トランジスタ411と同様に、トランジスタ441は、占有面積に対して大きいオン電流を有するトランジスタである。すなわち、求められるオン電流に対して、トランジスタ441の占有面積を小さくすることができる。本発明の一態様によれば、トランジスタの占有面積を小さくすることができる。よって、本発明の一態様によれば、集積度の高い半導体装置を実現することができる。
図25(A1)に例示するトランジスタ442は、トップゲート型のトランジスタの1つである。トランジスタ442は、絶縁層229を形成した後に電極244aおよび電極244bを形成する点がトランジスタ430やトランジスタ440と異なる。電極244aおよび電極244bは、絶縁層228および絶縁層229に形成した開口部において半導体層242と電気的に接続する。
また、電極246と重ならない絶縁層226の一部を除去し、電極246と残りの絶縁層226をマスクとして用いて不純物255を半導体層242に導入することで、半導体層242中に自己整合(セルフアライメント)的に不純物領域を形成することができる(図25(A3)参照)。トランジスタ442は、絶縁層226が電極246の端部を越えて延伸する領域を有する。不純物255を半導体層242に導入する際に、半導体層242の絶縁層226を介して不純物255が導入された領域の不純物濃度は、絶縁層226を介さずに不純物255が導入された領域よりも小さくなる。よって、電極246に隣接する半導体層242の領域にLDD(Lightly Doped Drain)領域が形成される。
図25(A2)に示すトランジスタ443は、電極223を有する点がトランジスタ442と異なる。トランジスタ443は、基板271の上に形成された電極223を有し、絶縁層272を介して半導体層242と重なる。電極223は、バックゲート電極として機能することができる。
また、図25(B1)に示すトランジスタ444および図25(B2)に示すトランジスタ445のように、電極246と重ならない領域の絶縁層226を全て除去してもよい。また、図25(C1)に示すトランジスタ446および図25(C2)に示すトランジスタ447のように、絶縁層226を残してもよい。
トランジスタ442乃至トランジスタ447も、電極246を形成した後に、電極246をマスクとして用いて不純物255を半導体層242に導入することで、半導体層242中に自己整合的に不純物領域を形成することができる。本発明の一態様によれば、電気特性の良好なトランジスタを実現することができる。また、本発明の一態様によれば、集積度の高い半導体装置を実現することができる。
〔s−channel型トランジスタ〕
図26に、半導体層242として酸化物半導体を用いたトランジスタ構造の一例を示す。図26に例示するトランジスタ450は、半導体層242aの上に半導体層242bが形成され、半導体層242bの上面並びに半導体層242a及び半導体層242bの側面が半導体層242cに覆われた構造を有する。図26(A)はトランジスタ450の上面図である。図26(B)は、図26(A)中のX1−X2の一点鎖線で示した部位の断面図(チャネル長方向の断面図)である。図26(C)は、図26(A)中のY1−Y2の一点鎖線で示した部位の断面図(チャネル幅方向の断面図)である。
また、トランジスタ450は、ゲート電極として機能する電極243を有する。電極243は、電極246と同様の材料および方法で形成することができる。本実施の形態では、電極243を2層の導電層の積層としている。
半導体層242a、半導体層242b、および半導体層242cは、InもしくはGaの一方、または両方を含む材料で形成する。代表的には、In−Ga酸化物(InとGaを含む酸化物)、In−Zn酸化物(InとZnを含む酸化物)、In−M−Zn酸化物(Inと、元素Mと、Znを含む酸化物。元素Mは、Al、Ti、Ga、Y、Zr、La、Ce、NdまたはHfから選ばれた1種類以上の元素で、Inよりも酸素との結合力が強い金属元素である。)がある。
半導体層242aおよび半導体層242cは、半導体層242bを構成する金属元素のうち、1種類以上の同じ金属元素を含む材料により形成されることが好ましい。このような材料を用いると、半導体層242aおよび半導体層242bとの界面、ならびに半導体層242cおよび半導体層242bとの界面に界面準位を生じにくくすることができる。よって、界面におけるキャリアの散乱や捕獲が生じにくく、トランジスタの電界効果移動度を向上させることが可能となる。また、トランジスタのしきい値電圧のばらつきを低減することが可能となる。よって、良好な電気特性を有する半導体装置を実現することが可能となる。
半導体層242aおよび半導体層242cの厚さは、3nm以上100nm以下、好ましくは3nm以上50nm以下とする。また、半導体層242bの厚さは、3nm以上200nm以下、好ましくは3nm以上100nm以下、さらに好ましくは3nm以上50nm以下とする。
また、半導体層242bがIn−M−Zn酸化物であり、半導体層242aおよび半導体層242cもIn−M−Zn酸化物であるとき、半導体層242aおよび半導体層242cをIn:M:Zn=x:y:z[原子数比]、半導体層242bをIn:M:Zn=x:y:z[原子数比]とすると、y/xがy/xよりも大きくなるように半導体層242a、半導体層242c、および半導体層242bを選択することができる。好ましくは、y/xがy/xよりも1.5倍以上大きくなるように半導体層242a、半導体層242c、および半導体層242bを選択する。さらに好ましくは、y/xがy/xよりも2倍以上大きくなるように半導体層242a、半導体層242c、および半導体層242bを選択する。より好ましくは、y/xがy/xよりも3倍以上大きくなるように半導体層242a、半導体層242cおよび半導体層242bを選択する。yがx以上であるとトランジスタに安定した電気特性を付与できるため好ましい。ただし、yがxの3倍以上になると、トランジスタの電界効果移動度が低下してしまうため、yはxの3倍未満であると好ましい。半導体層242aおよび半導体層242cを上記構成とすることにより、半導体層242aおよび半導体層242cを、半導体層242bよりも酸素欠損が生じにくい層とすることができる。
なお、半導体層242aおよび半導体層242cがIn−M−Zn酸化物であるとき、Inと元素Mの含有率は、InおよびMの和を100atmoic%としたとき、好ましくはInが50atomic%未満、元素Mが50atomic%以上、さらに好ましくはInが25atomic%未満、元素Mが75atomic%以上とする。また、半導体層242bがIn−M−Zn酸化物であるとき、Inと元素Mの含有率は、InおよびMの和を100atmoic%としたとき、好ましくはInが25atomic%以上、元素Mが75atomic%未満、さらに好ましくはInが34atomic%以上、元素Mが66atomic%未満とする。
例えば、InまたはGaを含む半導体層242a、およびInまたはGaを含む半導体層242cとしてIn:Ga:Zn=1:3:2、1:3:4、1:3:6、1:6:4、または1:9:6などの原子数比のターゲットを用いて形成したIn−Ga−Zn酸化物や、In:Ga=1:9などの原子数比のターゲットを用いて形成したIn−Ga酸化物や、酸化ガリウムなどを用いることができる。また、半導体層242bとしてIn:Ga:Zn=3:1:2、1:1:1、5:5:6、または4:2:4.1などの原子数比のターゲットを用いて形成したIn−Ga−Zn酸化物を用いることができる。なお、半導体層242a、半導体層242b、および半導体層242cの原子数比はそれぞれ、誤差として上記の原子数比のプラスマイナス20%の変動を含む。
半導体層242bを用いたトランジスタに安定した電気特性を付与するためには、半導体層242b中の不純物および酸素欠損を低減して高純度真性化し、半導体層242bを真性または実質的に真性と見なせる酸化物半導体層とすることが好ましい。また、少なくとも半導体層242b中のチャネル形成領域が真性または実質的に真性と見なせる半導体層とすることが好ましい。
なお、実質的に真性と見なせる酸化物半導体層とは、酸化物半導体層中のキャリア密度が、8×1011/cm未満、好ましくは1×1011/cm未満、さらに好ましくは1×1010/cm未満であり、1×10−9/cm以上である酸化物半導体層をいう。
図27に、半導体層242として酸化物半導体を用いたトランジスタ構造の一例を示す。図27に例示するトランジスタ422は、半導体層242aの上に半導体層242bが形成されている。トランジスタ422は、バックゲート電極を有するボトムゲート型のトランジスタの一種である。図27(A)はトランジスタ422の上面図である。図27(B)は、図27(A)中のX1−X2の一点鎖線で示した部位の断面図(チャネル長方向の断面図)である。図27(C)は、図27(A)中のY1−Y2の一点鎖線で示した部位の断面図(チャネル幅方向の断面図)である。
絶縁層229上に設けられた電極223は、絶縁層226、絶縁層228、および絶縁層229に設けられた開口247aおよび開口247bにおいて、電極246と電気的に接続されている。よって、電極223と電極246には、同じ電位が供給される。また、開口247aおよび開口247bは、どちらか一方を設けなくてもよい。また、開口247aおよび開口247bの両方を設けなくてもよい。開口247aおよび開口247bの両方を設けない場合は、電極223と電極246に異なる電位を供給することができる。
[酸化物半導体のエネルギーバンド構造]
ここで、半導体層242a、半導体層242b、および半導体層242cの積層により構成される半導体層242の機能およびその効果について、図31(A)および図31(B)に示すエネルギーバンド構造図を用いて説明する。図31(A)は、図26(B)にD1−D2の一点鎖線で示す部位のエネルギーバンド構造図である。図31(A)は、トランジスタ450のチャネル形成領域のエネルギーバンド構造を示している。
図31(A)中、Ec382、Ec383a、Ec383b、Ec383c、Ec386は、それぞれ、絶縁層272、半導体層242a、半導体層242b、半導体層242c、絶縁層226の伝導帯下端のエネルギーを示している。
ここで、真空準位と伝導帯下端のエネルギーとの差(「電子親和力」ともいう。)は、真空準位と価電子帯上端のエネルギーとの差(イオン化ポテンシャルともいう。)からエネルギーギャップを引いた値となる。なお、エネルギーギャップは、分光エリプソメータ(例えば、HORIBA JOBIN YVON社 UT−300)を用いて測定できる。また、真空準位と価電子帯上端のエネルギー差は、紫外線光電子分光分析(UPS:Ultraviolet Photoelectron Spectroscopy)装置(例えば、PHI社 VersaProbe)を用いて測定できる。
なお、原子数比がIn:Ga:Zn=1:3:2のターゲットを用いて形成したIn−Ga−Zn酸化物のエネルギーギャップは約3.5eV、電子親和力は約4.5eVである。また、原子数比がIn:Ga:Zn=1:3:4のターゲットを用いて形成したIn−Ga−Zn酸化物のエネルギーギャップは約3.4eV、電子親和力は約4.5eVである。また、原子数比がIn:Ga:Zn=1:3:6のターゲットを用いて形成したIn−Ga−Zn酸化物のエネルギーギャップは約3.3eV、電子親和力は約4.5eVである。また、原子数比がIn:Ga:Zn=1:6:2のターゲットを用いて形成したIn−Ga−Zn酸化物のエネルギーギャップは約3.9eV、電子親和力は約4.3eVである。また、原子数比がIn:Ga:Zn=1:6:8のターゲットを用いて形成したIn−Ga−Zn酸化物のエネルギーギャップは約3.5eV、電子親和力は約4.4eVである。また、原子数比がIn:Ga:Zn=1:6:10のターゲットを用いて形成したIn−Ga−Zn酸化物のエネルギーギャップは約3.5eV、電子親和力は約4.5eVである。また、原子数比がIn:Ga:Zn=1:1:1のターゲットを用いて形成したIn−Ga−Zn酸化物のエネルギーギャップは約3.2eV、電子親和力は約4.7eVである。また、原子数比がIn:Ga:Zn=3:1:2のターゲットを用いて形成したIn−Ga−Zn酸化物のエネルギーギャップは約2.8eV、電子親和力は約5.0eVである。
絶縁層272と絶縁層226は絶縁物であるため、Ec382とEc386は、Ec383a、Ec383b、およびEc383cよりも真空準位に近い(電子親和力が小さい)。
また、Ec383aは、Ec383bよりも真空準位に近い。具体的には、Ec383aは、Ec383bよりも0.05eV以上、0.07eV以上、0.1eV以上または0.15eV以上、かつ2eV以下、1eV以下、0.5eV以下または0.4eV以下真空準位に近いことが好ましい。
また、Ec383cは、Ec383bよりも真空準位に近い。具体的には、Ec383cは、Ec383bよりも0.05eV以上、0.07eV以上、0.1eV以上または0.15eV以上、かつ2eV以下、1eV以下、0.5eV以下または0.4eV以下真空準位に近いことが好ましい。
また、半導体層242aと半導体層242bとの界面近傍、および、半導体層242bと半導体層242cとの界面近傍では、混合領域が形成されるため、伝導帯下端のエネルギーは連続的に変化する。即ち、これらの界面において、準位は存在しないか、ほとんどない。
従って、当該エネルギーバンド構造を有する積層構造において、電子は半導体層242bを主として移動することになる。そのため、半導体層242aと絶縁層272の界面、または、半導体層242cと絶縁層226との界面に準位が存在したとしても、当該準位は電子の移動にほとんど影響しない。また、半導体層242aと半導体層242bとの界面、および半導体層242cと半導体層242bとの界面に準位が存在しないか、ほとんどないため、当該領域において電子の移動を阻害することもない。従って、上記酸化物半導体の積層構造を有するトランジスタは、高い電界効果移動度を実現することができる。
なお、図31(A)に示すように、半導体層242aと絶縁層272の界面、および半導体層242cと絶縁層226の界面近傍には、不純物や欠陥に起因したトラップ準位390が形成され得るものの、半導体層242a、および半導体層242cがあることにより、半導体層242bと当該トラップ準位とを遠ざけることができる。
特に、本実施の形態に例示するトランジスタは、半導体層242bの上面と側面が半導体層242cと接し、半導体層242bの下面が半導体層242aと接して形成されている。このように、半導体層242bを半導体層242aと半導体層242cで覆う構成とすることで、上記トラップ準位の影響をさらに低減することができる。
ただし、Ec383aまたはEc383cと、Ec383bとのエネルギー差が小さい場合、半導体層242bの電子が該エネルギー差を越えてトラップ準位に達することがある。トラップ準位に電子が捕獲されることで、絶縁層の界面にマイナスの固定電荷が生じ、トランジスタのしきい値電圧はプラス方向にシフトしてしまう。
従って、Ec383a、およびEc383cと、Ec383bとのエネルギー差を、それぞれ0.1eV以上、好ましくは0.15eV以上とすると、トランジスタのしきい値電圧の変動が低減され、トランジスタの電気特性を良好なものとすることができるため、好ましい。
また、半導体層242a、および半導体層242cのバンドギャップは、半導体層242bのバンドギャップよりも広いほうが好ましい。
図31(B)は、図27(B)にD3−D4の一点鎖線で示す部位のエネルギーバンド構造図である。図31(B)は、トランジスタ422のチャネル形成領域のエネルギーバンド構造を示している。
図31(B)中、Ec387は、絶縁層228の伝導帯下端のエネルギーを示している。半導体層242を半導体層242aと半導体層242bの2層とすることで、トランジスタの生産性を高めることができる。なお、半導体層242cを設けない分、トラップ準位390の影響を受けやすくなるが、半導体層242を単層構造とした場合よりも高い電界効果移動度を実現することができる。
本発明の一態様によれば、電気特性のばらつきが少ないトランジスタを実現することができる。よって、電気特性のばらつきが少ない半導体装置を実現することができる。本発明の一態様によれば、信頼性の良好なトランジスタを実現することができる。よって、信頼性の良好な半導体装置を実現することができる。
また、酸化物半導体は、エネルギーギャップが3.0eV以上と大きく、可視光に対する透過率が大きい。また、酸化物半導体を適切な条件で加工して得られたトランジスタにおいては、オフ電流を使用時の温度条件下(例えば、25℃)において、100zA(1×10−19A)以下、もしくは10zA(1×10−20A)以下、さらには1zA(1×10−21A)以下とすることができる。このため、消費電力の少ない半導体装置を提供することができる。
本発明の一態様によれば、消費電力が少ないトランジスタを実現することができる。よって、消費電力が少ない表示素子や表示装置などの半導体装置を実現することができる。または、信頼性の良好な表示素子や表示装置などの半導体装置を実現することができる。
図26に示すトランジスタ450の説明にもどる。絶縁層272に設けた凸部上に半導体層242bを設けることによって、半導体層242bの側面も電極243で覆うことができる。すなわち、トランジスタ450は、電極243の電界によって、半導体層242bを電気的に取り囲むことができる構造を有している。このように、導電膜の電界によって、チャネルが形成される半導体層を電気的に取り囲むトランジスタの構造を、surrounded channel(s−channel)構造とよぶ。また、s−channel構造を有するトランジスタを、「s−channel型トランジスタ」もしくは「s−channelトランジスタ」ともいう。
s−channel構造では、半導体層242bの全体(バルク)にチャネルを形成することもできる。s−channel構造では、トランジスタのドレイン電流を大きくすることができ、さらに大きいオン電流を得ることができる。また、電極243の電界によって、半導体層242bに形成されるチャネル形成領域の全領域を空乏化することができる。したがって、s−channel構造では、トランジスタのオフ電流をさらに小さくすることができる。
なお、絶縁層272の凸部を高くし、また、チャネル幅を小さくすることで、s−channel構造によるオン電流の増大効果、オフ電流の低減効果などをより高めることができる。また、半導体層242bの形成時に、露出する半導体層242aを除去してもよい。この場合、半導体層242aと半導体層242bの側面が揃う場合がある。
また、図28に示すトランジスタ451のように、半導体層242の下方に、絶縁層を介して電極223を設けてもよい。図28(A)はトランジスタ451の上面図である。図28(B)は、図28(A)中のX1−X2の一点鎖線で示した部位の断面図である。図28(C)は、図28(A)中のY1−Y2の一点鎖線で示した部位の断面図である。
また、図29に示すトランジスタ452のように、電極243の上方に絶縁層275を設け、絶縁層275上に層225を設けてもよい。図29(A)はトランジスタ452の上面図である。図29(B)は、図29(A)中のX1−X2の一点鎖線で示した部位の断面図である。図29(C)は、図29(A)中のY1−Y2の一点鎖線で示した部位の断面図である。
なお、図29では、層225を絶縁層275上に設けているが、絶縁層228上、または絶縁層229上に設けてもよい。層225を、遮光性を有する材料で形成することで、光照射によるトランジスタの特性変動や、信頼性の低下などを防ぐことができる。なお、層225を少なくとも半導体層242bよりも大きく形成し、層225で半導体層242bを覆うことで、上記の効果を高めることができる。層225は、有機物材料、無機物材料、又は金属材料を用いて作製することができる。また、層225を導電性材料で作製した場合、層225に電圧を供給してもよいし、電気的に浮遊した(フローティング)状態としてもよい。
図30に、s−channel構造を有するトランジスタの一例を示す。図30に例示するトランジスタ448は、前述したトランジスタ447とほぼ同様の構成を有する。トランジスタ448は、絶縁層272に設けた凸部上に半導体層242が形成されている。トランジスタ448はバックゲート電極を有するトップゲート型のトランジスタの一種である。図30(A)はトランジスタ448の上面図である。図30(B)は、図30(A)中のX1−X2の一点鎖線で示した部位の断面図である。図30(C)は、図30(A)中のY1−Y2の一点鎖線で示した部位の断面図である。
絶縁層229上に設けられた電極244aは、絶縁層226、絶縁層228、および絶縁層229に設けられた開口247cにおいて、半導体層242と電気的に接続されている。また、絶縁層229上に設けられた電極244bは、絶縁層226、絶縁層228、および絶縁層229に設けられた開口247dにおいて、半導体層242と電気的に接続されている。
絶縁層226上に設けられた電極243は、絶縁層226、および絶縁層272に設けられた開口247aおよび開口247bにおいて、電極223と電気的に接続されている。よって、電極246と電極223には、同じ電位が供給される。また、開口247aおよび開口247bは、どちらか一方を設けなくてもよい。また、開口247aおよび開口247bの両方を設けなくてもよい。開口247aおよび開口247bの両方を設けない場合は、電極223と電極246に異なる電位を供給することができる。
なお、s−channel構造を有するトランジスタに用いる半導体層は、酸化物半導体に限定されるものではない。
本実施の形態は、他の実施の形態に記載した構成と適宜組み合わせて実施することが可能である。
(実施の形態5)
<CAC−OSの構成>
以下では、本発明の一態様で開示されるトランジスタに用いることができるCAC(Cloud Aligned Complementary)−OSの構成について説明する。
本明細書等において、金属酸化物(metal oxide)とは、広い表現での金属の酸化物である。金属酸化物は、酸化物絶縁体、酸化物導電体(透明酸化物導電体を含む)、酸化物半導体(Oxide Semiconductorまたは単にOSともいう)などに分類される。例えば、トランジスタの活性層に金属酸化物を用いた場合、当該金属酸化物を酸化物半導体と呼称する場合がある。つまり、OS FETと記載する場合においては、金属酸化物または酸化物半導体を有するトランジスタと換言することができる。
本明細書において、金属酸化物が、導電体の機能を有する領域と、誘電体の機能を有する領域とが混合し、金属酸化物全体では半導体として機能する場合、CAC(Cloud Aligned Complementary)−OS(Oxide Semiconductor)、またはCAC−metal oxideと定義する。
つまり、CAC−OSとは、例えば、酸化物半導体を構成する元素が、0.5nm以上10nm以下、好ましくは、0.5nm以上3nm以下、またはその近傍のサイズで偏在した材料の一構成である。なお、以下では、酸化物半導体において、一つあるいはそれ以上の元素が偏在し、該元素を有する領域が、0.5nm以上10nm以下、好ましくは、0.5nm以上3nm以下、またはその近傍のサイズで混合した状態をモザイク状、またはパッチ状ともいう。
特定の元素が偏在した領域は、該元素が有する性質により、物理特性が決定する。例えば、金属酸化物を構成する元素の中でも比較的、絶縁体となる傾向がある元素が偏在した領域は、誘電体領域となる。一方、金属酸化物を構成する元素の中でも比較的、導体となる傾向がある元素が偏在した領域は、導電体領域となる。また、導電体領域、および誘電体領域がモザイク状に混合することで、材料としては、半導体として機能する。
つまり、本発明の一態様における金属酸化物は、物理特性が異なる材料が混合した、マトリックス複合材(matrix composite)、または金属マトリックス複合材(metal matrix composite)の一種である。
なお、酸化物半導体は、少なくともインジウムを含むことが好ましい。特にインジウムおよび亜鉛を含むことが好ましい。また、それらに加えて、元素M(Mは、ガリウム、アルミニウム、シリコン、ホウ素、イットリウム、銅、バナジウム、ベリリウム、チタン、鉄、ニッケル、ゲルマニウム、ジルコニウム、モリブデン、ランタン、セリウム、ネオジム、ハフニウム、タンタル、タングステン、またはマグネシウムなどから選ばれた一種、または複数種)が含まれていてもよい。
例えば、In−Ga−Zn酸化物におけるCAC−OS(CAC−OSの中でもIn−Ga−Zn酸化物を、特にCAC−IGZOと呼称してもよい。)とは、インジウム酸化物(以下、InOX1(X1は0よりも大きい実数)とする。)、またはインジウム亜鉛酸化物(以下、InX2ZnY2Z2(X2、Y2、およびZ2は0よりも大きい実数)とする。)と、ガリウム酸化物(以下、GaOX3(X3は0よりも大きい実数)とする。)、またはガリウム亜鉛酸化物(以下、GaX4ZnY4Z4(X4、Y4、およびZ4は0よりも大きい実数)とする。)などと、に材料が分離することでモザイク状となり、モザイク状のInOX1、またはInX2ZnY2Z2が、膜中に均一に分布した構成(以下、クラウド状ともいう。)である。
つまり、CAC−OSは、GaOX3が主成分である領域と、InX2ZnY2Z2、またはInOX1が主成分である領域とが、混合している構成を有する複合酸化物半導体である。なお、本明細書において、例えば、第1の領域の元素Mに対するInの原子数比が、第2の領域の元素Mに対するInの原子数比よりも大きいことを、第1の領域は、第2の領域と比較して、Inの濃度が高いとする。
なお、IGZOは通称であり、In、Ga、Zn、およびOによる1つの化合物をいう場合がある。代表例として、InGaO(ZnO)m1(m1は自然数)、またはIn(1+x0)Ga(1−x0)(ZnO)m0(−1≦x0≦1、m0は任意数)で表される結晶性の化合物が挙げられる。
上記結晶性の化合物は、単結晶構造、多結晶構造、またはCAAC構造を有する。なお、CAAC構造とは、複数のIGZOのナノ結晶がc軸配向を有し、かつa−b面においては配向せずに連結した結晶構造である。
一方、CAC−OSは、酸化物半導体の材料構成に関する。CAC−OSとは、In、Ga、Zn、およびOを含む材料構成において、一部にGaを主成分とするナノ粒子状に観察される領域と、一部にInを主成分とするナノ粒子状に観察される領域とが、それぞれモザイク状にランダムに分散している構成をいう。従って、CAC−OSにおいて、結晶構造は副次的な要素である。
なお、CAC−OSは、組成の異なる二種類以上の膜の積層構造は含まないものとする。例えば、Inを主成分とする膜と、Gaを主成分とする膜との2層からなる構造は、含まない。
なお、GaOX3が主成分である領域と、InX2ZnY2Z2、またはInOX1が主成分である領域とは、明確な境界が観察できない場合がある。
なお、ガリウムの代わりに、アルミニウム、シリコン、ホウ素、イットリウム、銅、バナジウム、ベリリウム、チタン、鉄、ニッケル、ゲルマニウム、ジルコニウム、モリブデン、ランタン、セリウム、ネオジム、ハフニウム、タンタル、タングステン、またはマグネシウムなどから選ばれた一種、または複数種が含まれている場合、CAC−OSは、一部に該元素を主成分とするナノ粒子状領域が観察され、一部にInを主成分とするナノ粒子状領域が観察され、それぞれモザイク状にランダムに分散している構成をいう。
<CAC−OSの解析>
続いて、各種測定方法を用い、基板上に成膜した酸化物半導体について測定を行った結果について説明する。
≪試料の構成と作製方法≫
以下では、本発明の一態様に係る9個の試料について説明する。各試料は、それぞれ、酸化物半導体を成膜する際の基板温度、および酸素ガス流量比を異なる条件で作製する。なお、試料は、基板と、基板上の酸化物半導体と、を有する構造である。
各試料の作製方法について、説明する。
まず、基板として、ガラス基板を用いる。続いて、スパッタリング装置を用いて、ガラス基板上に酸化物半導体として、厚さ100nmのIn−Ga−Zn酸化物を形成する。成膜条件は、チャンバー内の圧力を0.6Paとし、ターゲットには、酸化物ターゲット(In:Ga:Zn=4:2:4.1[原子数比])を用いる。また、スパッタリング装置内に設置された酸化物ターゲットに2500WのAC電力を供給する。
なお、酸化物を成膜する際の条件として、基板温度を、意図的に加熱しない温度(以下、室温またはR.T.ともいう。)、130℃、または170℃とした。また、Arと酸素の混合ガスに対する酸素ガスの流量比(以下、酸素ガス流量比ともいう。)を、10%、30%、または100%とすることで、9個の試料を作製する。
≪X線回折による解析≫
本項目では、9個の試料に対し、X線回折(XRD:X−ray diffraction)測定を行った結果について説明する。なお、XRD装置として、Bruker社製D8 ADVANCEを用いた。また、条件は、Out−of−plane法によるθ/2θスキャンにて、走査範囲を15deg.乃至50deg.、ステップ幅を0.02deg.、走査速度を3.0deg./分とした。
図38にOut−of−plane法を用いてXRDスペクトルを測定した結果を示す。なお、図38において、上段には成膜時の基板温度条件が170℃の試料における測定結果、中段には成膜時の基板温度条件が130℃の試料における測定結果、下段には成膜時の基板温度条件がR.T.の試料における測定結果を示す。また、左側の列には酸素ガス流量比の条件が10%の試料における測定結果、中央の列には酸素ガス流量比の条件が30%の試料における測定結果、右側の列には酸素ガス流量比の条件が100%の試料における測定結果、を示す。
図38に示すXRDスペクトルは、成膜時の基板温度を高くする、または、成膜時の酸素ガス流量比の割合を大きくすることで、2θ=31°付近のピーク強度が高くなる。なお、2θ=31°付近のピークは、被形成面または上面に略垂直方向に対してc軸に配向した結晶性IGZO化合物(CAAC(c−axis aligned crystalline)−IGZOともいう。)であることに由来することが分かっている。
また、図38に示すXRDスペクトルは、成膜時の基板温度が低い、または、酸素ガス流量比が小さいほど、明確なピークが現れなかった。従って、成膜時の基板温度が低い、または、酸素ガス流量比が小さい試料は、測定領域のa−b面方向、およびc軸方向の配向は見られないことが分かる。
≪電子顕微鏡による解析≫
本項目では、成膜時の基板温度R.T.、および酸素ガス流量比10%で作製した試料を、HAADF(High−Angle Annular Dark Field)−STEM(Scanning Transmission Electron Microscope)によって観察、および解析した結果について説明する(以下、HAADF−STEMによって取得した像は、TEM像ともいう。)。
HAADF−STEMによって取得した平面像(以下、平面TEM像ともいう。)、および断面像(以下、断面TEM像ともいう。)の画像解析を行った結果について説明する。なお、TEM像は、球面収差補正機能を用いて観察した。なお、HAADF−STEM像の撮影には、日本電子株式会社製原子分解能分析電子顕微鏡JEM−ARM200Fを用いて、加速電圧200kV、ビーム径約0.1nmφの電子線を照射して行った。
図39(A)は、成膜時の基板温度R.T.、および酸素ガス流量比10%で作製した試料の平面TEM像である。図39(B)は、成膜時の基板温度R.T.、および酸素ガス流量比10%で作製した試料の断面TEM像である。
≪電子線回折パターンの解析≫
本項目では、成膜時の基板温度R.T.、および酸素ガス流量比10%で作製した試料に、プローブ径が1nmの電子線(ナノビーム電子線ともいう。)を照射することで、電子線回折パターンを取得した結果について説明する。
図39(A)に示す、成膜時の基板温度R.T.、および酸素ガス流量比10%で作製した試料の平面TEM像において、黒点a1、黒点a2、黒点a3、黒点a4、および黒点a5で示す電子線回折パターンを観察する。なお、電子線回折パターンの観察は、電子線を照射しながら0秒の位置から35秒の位置まで一定の速度で移動させながら行う。黒点a1の結果を図39(C)、黒点a2の結果を図39(D)、黒点a3の結果を図39(E)、黒点a4の結果を図39(F)、および黒点a5の結果を図39(G)に示す。
図39(C)、図39(D)、図39(E)、図39(F)、および図39(G)より、円を描くように(リング状に)輝度の高い領域が観測できる。また、リング状の領域に複数のスポットが観測できる。
また、図39(B)に示す、成膜時の基板温度R.T.、および酸素ガス流量比10%で作製した試料の断面TEM像において、黒点b1、黒点b2、黒点b3、黒点b4、および黒点b5で示す電子線回折パターンを観察する。黒点b1の結果を図39(H)、黒点b2の結果を図39(I)、黒点b3の結果を図39(J)、黒点b4の結果を図39(K)、および黒点b5の結果を図39(L)に示す。
図39(H)、図39(I)、図39(J)、図39(K)、および図39(L)より、リング状に輝度の高い領域が観測できる。また、リング状の領域に複数のスポットが観測できる。
ここで、例えば、InGaZnOの結晶を有するCAAC−OSに対し、試料面に平行にプローブ径が300nmの電子線を入射させると、InGaZnOの結晶の(009)面に起因するスポットが含まれる回折パターンが見られる。つまり、CAAC−OSは、c軸配向性を有し、c軸が被形成面または上面に略垂直な方向を向いていることがわかる。一方、同じ試料に対し、試料面に垂直にプローブ径が300nmの電子線を入射させると、リング状の回折パターンが確認される。つまり、CAAC−OSは、a軸およびb軸は配向性を有さないことがわかる。
また、微結晶を有する酸化物半導体(nano crystalline oxide semiconductor。以下、nc−OSという。)に対し、大きいプローブ径(例えば50nm以上)の電子線を用いる電子線回折を行うと、ハローパターンのような回折パターンが観測される。また、nc−OSに対し、小さいプローブ径の電子線(例えば50nm未満)を用いるナノビーム電子線回折を行うと、輝点(スポット)が観測される。また、nc−OSに対しナノビーム電子線回折を行うと、円を描くように(リング状に)輝度の高い領域が観測される場合がある。さらに、リング状の領域に複数の輝点が観測される場合がある。
成膜時の基板温度R.T.、および酸素ガス流量比10%で作製した試料の電子線回折パターンは、リング状に輝度の高い領域と、該リング領域に複数の輝点を有する。従って、成膜時の基板温度R.T.、および酸素ガス流量比10%で作製した試料は、電子線回折パターンが、nc−OSになり、平面方向、および断面方向において、配向性は有さない。
以上より、成膜時の基板温度が低い、または、酸素ガス流量比が小さい酸化物半導体は、アモルファス構造の酸化物半導体膜とも、単結晶構造の酸化物半導体膜とも明確に異なる性質を有すると推定できる。
≪元素分析≫
本項目では、エネルギー分散型X線分光法(EDX:Energy Dispersive X−ray spectroscopy)を用い、EDXマッピングを取得し、評価することによって、成膜時の基板温度R.T.、および酸素ガス流量比10%で作製した試料の元素分析を行った結果について説明する。なお、EDX測定には、元素分析装置として日本電子株式会社製エネルギー分散型X線分析装置JED−2300Tを用いる。なお、試料から放出されたX線の検出にはSiドリフト検出器を用いる。
EDX測定では、試料の分析対象領域の各点に電子線照射を行い、これにより発生する試料の特性X線のエネルギーと発生回数を測定し、各点に対応するEDXスペクトルを得る。本実施の形態では、各点のEDXスペクトルのピークを、In原子のL殻への電子遷移、Ga原子のK殻への電子遷移、Zn原子のK殻への電子遷移及びO原子のK殻への電子遷移に帰属させ、各点におけるそれぞれの原子の比率を算出する。これを試料の分析対象領域について行うことにより、各原子の比率の分布が示されたEDXマッピングを得ることができる。
図40には、成膜時の基板温度R.T.、および酸素ガス流量比10%で作製した試料の断面におけるEDXマッピングを示す。図40(A)は、Ga原子のEDXマッピング(全原子に対するGa原子の比率は1.18乃至18.64[atomic%]の範囲とする。)である。図40(B)は、In原子のEDXマッピング(全原子に対するIn原子の比率は9.28乃至33.74[atomic%]の範囲とする。)である。図40(C)は、Zn原子のEDXマッピング(全原子に対するZn原子の比率は6.69乃至24.99[atomic%]の範囲とする。)である。また、図40(A)、図40(B)、および図40(C)は、成膜時の基板温度R.T.、および酸素ガス流量比10%で作製した試料の断面において、同範囲の領域を示している。なお、EDXマッピングは、範囲における、測定元素が多いほど明るくなり、測定元素が少ないほど暗くなるように、明暗で元素の割合を示している。また、図40に示すEDXマッピングの倍率は720万倍である。
図40(A)、図40(B)、および図40(C)に示すEDXマッピングでは、画像に相対的な明暗の分布が見られ、成膜時の基板温度R.T.、および酸素ガス流量比10%で作製した試料において、各原子が分布を持って存在している様子が確認できる。ここで、図40(A)、図40(B)、および図40(C)に示す実線で囲む範囲と破線で囲む範囲に注目する。
図40(A)では、実線で囲む範囲は、相対的に暗い領域を多く含み、破線で囲む範囲は、相対的に明るい領域を多く含む。また、図40(B)では実線で囲む範囲は、相対的に明るい領域を多く含み、破線で囲む範囲は、相対的に暗い領域を多く含む。
つまり、実線で囲む範囲はIn原子が相対的に多い領域であり、破線で囲む範囲はIn原子が相対的に少ない領域である。ここで、図40(C)では、実線で囲む範囲において、右側は相対的に明るい領域であり、左側は相対的に暗い領域である。従って、実線で囲む範囲は、InX2ZnY2Z2、またはInOX1などが主成分である領域である。
また、実線で囲む範囲はGa原子が相対的に少ない領域であり、破線で囲む範囲はGa原子が相対的に多い領域である。図40(C)では、破線で囲む範囲において、左上の領域は、相対的に明るい領域であり、右下側の領域は、相対的に暗い領域である。従って、破線で囲む範囲は、GaOX3、またはGaX4ZnY4Z4などが主成分である領域である。
また、図40(A)、図40(B)、および図40(C)より、In原子の分布は、Ga原子よりも、比較的、均一に分布しており、InOX1が主成分である領域は、InX2ZnY2Z2が主成分となる領域を介して、互いに繋がって形成されているように見える。このように、InX2ZnY2Z2、またはInOX1が主成分である領域は、クラウド状に広がって形成されている。
このように、GaOX3などが主成分である領域と、InX2ZnY2Z2、またはInOX1が主成分である領域とが、偏在し、混合している構造を有するIn−Ga−Zn酸化物を、CAC−OSと呼称することができる。
また、CAC−OSにおける結晶構造は、nc構造を有する。CAC−OSが有するnc構造は、電子線回折像において、単結晶、多結晶、またはCAAC構造を含むIGZOに起因する輝点(スポット)以外にも、数か所以上の輝点(スポット)を有する。または、数か所以上の輝点(スポット)に加え、リング状に輝度の高い領域が現れるとして結晶構造が定義される。
また、図40(A)、図40(B)、および図40(C)より、GaOX3などが主成分である領域、及びInX2ZnY2Z2、またはInOX1が主成分である領域のサイズは、0.5nm以上10nm以下、または1nm以上3nm以下で観察される。なお、好ましくは、EDXマッピングにおいて、各元素が主成分である領域の径は、1nm以上2nm以下とする。
以上より、CAC−OSは、金属元素が均一に分布したIGZO化合物とは異なる構造であり、IGZO化合物と異なる性質を有する。つまり、CAC−OSは、GaOX3などが主成分である領域と、InX2ZnY2Z2、またはInOX1が主成分である領域と、に互いに相分離し、各元素を主成分とする領域がモザイク状である構造を有する。
ここで、InX2ZnY2Z2、またはInOX1が主成分である領域は、GaOX3などが主成分である領域と比較して、導電性が高い領域である。つまり、InX2ZnY2Z2、またはInOX1が主成分である領域を、キャリアが流れることにより、酸化物半導体としての導電性が発現する。従って、InX2ZnY2Z2、またはInOX1が主成分である領域が、酸化物半導体中にクラウド状に分布することで、高い電界効果移動度(μ)が実現できる。
一方、GaOX3などが主成分である領域は、InX2ZnY2Z2、またはInOX1が主成分である領域と比較して、絶縁性が高い領域である。つまり、GaOX3などが主成分である領域が、酸化物半導体中に分布することで、リーク電流を抑制し、良好なスイッチング動作を実現できる。
従って、CAC−OSを半導体素子に用いた場合、GaOX3などに起因する絶縁性と、InX2ZnY2Z2、またはInOX1に起因する導電性とが、相補的に作用することにより、高いオン電流(Ion)、および高い電界効果移動度(μ)を実現することができる。
また、CAC−OSを用いた半導体素子は、信頼性が高い。従って、CAC−OSは、ディスプレイをはじめとするさまざまな半導体装置に最適である。
本実施の形態は、少なくともその一部を本明細書中に記載する他の実施の形態と適宜組み合わせて実施することができる。
(実施の形態6)
本実施の形態では、発光素子125に用いることができる発光素子の構成例について説明する。なお、本実施の形態に示すEL層320が、他の実施の形態に示したEL層117に相当する。
<発光素子の構成>
図32(A)に示す発光素子330は、一対の電極(電極318、電極322)間にEL層320が挟まれた構造を有する。なお、以下の本実施の形態の説明においては、例として、電極318を陽極として用い、電極322を陰極として用いるものとする。
また、EL層320は、少なくとも発光層を含んで形成されていればよく、発光層以外の機能層を含む積層構造であっても良い。発光層以外の機能層としては、正孔注入性の高い物質、正孔輸送性の高い物質、電子輸送性の高い物質、電子注入性の高い物質、バイポーラ性(電子及び正孔の輸送性の高い物質)の物質等を含む層を用いることができる。具体的には、正孔注入層、正孔輸送層、電子輸送層、電子注入層等の機能層を適宜組み合わせて用いることができる。
図32(A)に示す発光素子330は、電極318と電極322との間に与えられた電位差により電流が流れ、EL層320において正孔と電子とが再結合し、発光するものである。つまりEL層320に発光領域が形成されるような構成となっている。
本発明において、発光素子330からの発光は、電極318、または電極322側から外部に取り出される。従って、電極318、または電極322のいずれか一方は透光性を有する物質で成る。
なお、EL層320は図32(B)に示す発光素子331のように、電極318と電極322との間に複数積層されていても良い。n層(nは2以上の自然数)の積層構造を有する場合には、m番目(mは、1以上かつnより小さい自然数)のEL層320と、(m+1)番目のEL層320との間には、それぞれ電荷発生層320aを設けることが好ましい。電極318と電極322を除く構成が上記実施の形態のEL層117に相当する。
電荷発生層320aは、有機化合物と金属酸化物の複合材料を用いて形成することができる。金属酸化物としては、例えば、酸化バナジウムや酸化モリブデンや酸化タングステン等が挙げられる。有機化合物としては、芳香族アミン化合物、カルバゾール誘導体、芳香族炭化水素、または、それらを基本骨格とするオリゴマー、デンドリマー、ポリマーなど、種々の化合物を用いることができる。なお、有機化合物としては、正孔輸送性有機化合物として正孔移動度が10−6cm/Vs以上であるものを適用することが好ましい。但し、電子よりも正孔の輸送性の高い物質であれば、これら以外のものを用いてもよい。なお、電荷発生層320aに用いるこれらの材料は、キャリア注入性、キャリア輸送性に優れているため、発光素子330の低電流駆動、および低電圧駆動を実現することができる。上記複合材料にアルカリ金属、アルカリ土類金属、アルカリ金属化合物、アルカリ土類金属化合物などを加えた材料を電荷発生層320aに用いてもよい。
なお、電荷発生層320aは、有機化合物と金属酸化物の複合材料と他の材料とを組み合わせて形成してもよい。例えば、有機化合物と金属酸化物の複合材料を含む層と、電子供与性物質の中から選ばれた一の化合物と電子輸送性の高い化合物とを含む層とを組み合わせて形成してもよい。また、有機化合物と金属酸化物の複合材料を含む層と、透明導電膜とを組み合わせて形成してもよい。
このような構成を有する発光素子331は、隣接するEL層320同士でのエネルギーの移動が起こり難く、高い発光効率と長い寿命とを併せ持つ発光素子とすることが容易である。また、一方の発光層で燐光発光、他方で蛍光発光を得ることも容易である。
なお、電荷発生層320aとは、電極318と電極322に電圧を印加したときに、電荷発生層320aに接して形成される一方のEL層320に対して正孔を注入する機能を有し、他方のEL層320に電子を注入する機能を有する。
図32(B)に示す発光素子331は、EL層320に用いる発光物質の種類を変えることにより様々な発光色を得ることができる。また、発光物質として発光色の異なる複数の発光物質を用いることにより、ブロードなスペクトルの発光や白色発光を得ることもできる。
図32(B)に示す発光素子331を用いて、白色発光を得る場合、複数のEL層の組み合わせとしては、赤、青及び緑色の光を含んで白色に発光する構成であればよく、例えば、青色の蛍光材料を発光物質として含むEL層と、緑色と赤色の燐光材料を発光物質として含むEL層を有する構成が挙げられる。また、赤色の発光を示すEL層と、緑色の発光を示すEL層と、青色の発光を示すEL層とを有する構成とすることもできる。または、補色の関係にある光を発するEL層を有する構成であっても白色発光が得られる。EL層が2層積層された積層型素子において、これらのEL層からの発光色を補色の関係にする場合、補色の関係としては、青色と黄色、あるいは青緑色と赤色の組合せなどが挙げられる。
なお、上述した積層型素子の構成において、積層される発光層の間に電荷発生層を配置することにより、電流密度を低く保ったまま高輝度発光が得られ、また、長寿命素子を実現することができる。
本実施の形態は、他の実施の形態に記載した構成と適宜組み合わせて実施することが可能である。
(実施の形態7)
本実施の形態では、本発明の一態様に係る表示装置を用いた表示モジュールについて、図33を用いて説明を行う。
図33に示す表示モジュール8000は、上部カバー8001と下部カバー8002との間に、FPC8003に接続されたタッチセンサ8004、FPC8005に接続されたセル8006、バックライトユニット8007、フレーム8009、プリント基板8010、バッテリ8011を有する。なお、上部カバー8001、下部カバー8002、バックライトユニット8007、フレーム8009、プリント基板8010、バッテリ8011、タッチセンサ8004などの少なくとも1つを有さない場合もある。
本発明の一態様に係る表示装置は、例えば、セル8006に用いることができる。
上部カバー8001および下部カバー8002は、タッチセンサ8004およびセル8006のサイズに合わせて、形状や寸法を適宜変更することができる。
タッチセンサ8004は、抵抗膜方式または静電容量方式のタッチセンサをセル8006に重畳して用いることができる。また、セル8006の対向基板(封止基板)に、タッチセンサ機能を持たせるようにすることも可能である。または、セル8006の各画素内に光センサを設け、光学式のタッチセンサとすることも可能である。または、セル8006の各画素内にタッチセンサ用電極を設け、容量方式のタッチセンサとすることも可能である。
バックライトユニット8007は、光源8008を有する。光源8008をバックライトユニット8007の端部に設け、光拡散板を用いる構成としてもよい。また、セル8006として、発光素子などを有する表示装置を用いる場合は、バックライトユニット8007を設けなくてもよい。
フレーム8009は、セル8006の保護機能の他、プリント基板8010の動作により発生する電磁波を遮断するための電磁シールドとしての機能を有してもよい。またフレーム8009は、放熱板としての機能を有していてもよい。
プリント基板8010は、電源回路、ビデオ信号およびクロック信号を出力するための信号処理回路を有する。電源回路に電力を供給する電源としては、外部電源であってもよいし、別途設けたバッテリ8011による電源であってもよい。外部電源を用いる場合には、バッテリ8011を有さなくてもよい。
また、表示モジュール8000には、偏光板、位相差板、プリズムシートなどの部材を追加して設けてもよい。
本実施の形態は、他の実施の形態に記載した構成と適宜組み合わせて実施することが可能である。
(実施の形態8)
本実施の形態では、本発明の一態様の表示装置が適用された電子機器や照明装置の例について、図面を参照して説明する。
本発明の一態様に係る表示装置を用いた電子機器として、テレビ、モニタ等の表示装置、照明装置、デスクトップ型或いはノート型のパーソナルコンピュータ、ワードプロセッサ、DVD(Digital Versatile Disc)などの記録媒体に記憶された静止画又は動画を再生する画像再生装置、ポータブルCDプレーヤ、ラジオ、テープレコーダ、ヘッドホンステレオ、ステレオ、置き時計、壁掛け時計、コードレス電話子機、トランシーバ、携帯電話、自動車電話、携帯型ゲーム機、タブレット型端末、パチンコ機などの大型ゲーム機、電卓、携帯情報端末、電子手帳、電子書籍端末、電子翻訳機、音声入力機器、ビデオカメラ、デジタルスチルカメラ、電気シェーバ、電子レンジ等の高周波加熱装置、電気炊飯器、電気洗濯機、電気掃除機、温水器、扇風機、毛髪乾燥機、エアコンディショナー、加湿器、除湿器などの空調設備、食器洗い器、食器乾燥器、衣類乾燥器、布団乾燥器、電気冷蔵庫、電気冷凍庫、電気冷凍冷蔵庫、DNA保存用冷凍庫、懐中電灯、チェーンソー等の工具、煙感知器、透析装置等の医療機器などが挙げられる。さらに、誘導灯、信号機、ベルトコンベア、エレベータ、エスカレータ、産業用ロボット、電力貯蔵システム、電力の平準化やスマートグリッドのための蓄電装置等の産業機器が挙げられる。また、蓄電体からの電力を用いた電動機により推進する移動体なども、電子機器の範疇に含まれるものとする。上記移動体として、例えば、電気自動車(EV)、内燃機関と電動機を併せ持ったハイブリッド車(HEV)、プラグインハイブリッド車(PHEV)、これらのタイヤ車輪を無限軌道に変えた装軌車両、電動アシスト自転車を含む原動機付自転車、自動二輪車、電動車椅子、ゴルフ用カート、小型又は大型船舶、潜水艦、ヘリコプター、航空機、ロケット、人工衛星、宇宙探査機や惑星探査機、宇宙船などが挙げられる。
特に、フレキシブルな形状を備える表示装置を適用した電子機器として、例えば、テレビジョン装置(テレビ、又はテレビジョン受信機ともいう)、コンピュータ用などのモニタ、デジタルカメラ、デジタルビデオカメラ、デジタルフォトフレーム、携帯電話機(携帯電話、携帯電話装置ともいう)、携帯型ゲーム機、携帯情報端末、音響再生装置、パチンコ機などの大型ゲーム機などが挙げられる。
また、照明装置や表示装置を、家屋やビルの内壁または外壁や、自動車の内装または外装の曲面に沿って組み込むことも可能である。
図34(A)は、携帯電話機の一例を示している。携帯電話機7400は、筐体7401に組み込まれた表示部7402の他、操作ボタン7403、外部接続ポート7404、スピーカ7405、マイク7406などを備えている。なお、携帯電話機7400は、表示装置を表示部7402に用いることにより作製される。
図34(A)に示す携帯電話機7400は、表示部7402を指などで触れることで、情報を入力することができる。また、電話を掛ける、或いは文字を入力するなどのあらゆる操作は、表示部7402を指などで触れることにより行うことができる。
また操作ボタン7403の操作により、電源のON、OFFや、表示部7402に表示される画像の種類を切り替えることができる。例えば、メール作成画面から、メインメニュー画面に切り替えることができる。
ここで、表示部7402には、本発明の一態様の表示装置が組み込まれている。したがって、湾曲した表示部を備え、且つ信頼性の高い携帯電話機とすることができる。
図34(B)は、リストバンド型の表示装置の一例を示している。携帯表示装置7100は、筐体7101、表示部7102、操作ボタン7103、及び送受信装置7104を備える。
携帯表示装置7100は、送受信装置7104によって映像信号を受信可能で、受信した映像を表示部7102に表示することができる。また、音声信号を他の受信機器に送信することもできる。
また、操作ボタン7103によって、電源のON、OFF動作や表示する映像の切り替え、または音声のボリュームの調整などを行うことができる。
ここで、表示部7102には、本発明の一態様の表示装置が組み込まれている。したがって、湾曲した表示部を備え、且つ信頼性の高い携帯表示装置とすることができる。
図34(C)乃至図34(E)は、照明装置の一例を示している。照明装置7200、照明装置7210、照明装置7220はそれぞれ、操作スイッチ7203を備える台部7201と、台部7201に支持される発光部を有する。
図34(C)に示す照明装置7200は、波状の発光面を有する発光部7202を備える。したがってデザイン性の高い照明装置となっている。
図34(D)に示す照明装置7210の備える発光部7212は、凸状に湾曲した2つの発光部が対称的に配置された構成となっている。したがって照明装置7210を中心に全方位を照らすことができる。
図34(E)に示す照明装置7220は、凹状に湾曲した発光部7222を備える。したがって、発光部7222からの発光を、照明装置7220の前面に集光するため、特定の範囲を明るく照らす場合に適している。
また、照明装置7200、照明装置7210及び照明装置7220が備える各々の発光部はフレキシブル性を有しているため、当該発光部を可塑性の部材や可動なフレームなどの部材で固定し、用途に合わせて発光部の発光面を自在に湾曲可能な構成としてもよい。
ここで、照明装置7200、照明装置7210及び照明装置7220が備える各々の発光部には、本発明の一態様の表示装置が組み込まれている。したがって、表示部を任意の形状に湾曲または屈曲可能であり、且つ信頼性の高い照明装置とすることができる。
図35(A)に、携帯型の表示装置の一例を示す。表示装置7300は、筐体7301、表示部7302、操作ボタン7303、引き出し部材7304、制御部7305を備える。
表示装置7300は、筒状の筐体7301内にロール状に巻かれたフレキシブルな表示部7302を備える。
また、表示装置7300は制御部7305によって映像信号を受信可能で、受信した映像を表示部7302に表示することができる。また、制御部7305には蓄電装置を備える。また、制御部7305にコネクタを備え、映像信号や電力を直接供給する構成としてもよい。
また、操作ボタン7303によって、電源のON、OFF動作や表示する映像の切り替え等を行うことができる。
図35(B)に、表示部7302を引き出し部材7304により引き出した状態を示す。この状態で表示部7302に映像を表示することができる。また、筐体7301の表面に配置された操作ボタン7303によって、片手で容易に操作することができる。
なお、表示部7302を引き出した際に表示部7302が湾曲しないよう、表示部7302の端部に補強のためのフレームを設けていてもよい。
なお、この構成以外に、筐体にスピーカを設け、映像信号と共に受信した音声信号によって音声を出力する構成としてもよい。
表示部7302には、本発明の一態様の表示装置が組み込まれている。したがって、表示部7302はフレキシブルで且つ信頼性の高い表示装置であるため、表示装置7300は軽量で且つ信頼性の高い表示装置とすることができる。
図36(A)乃至図36(C)に、折りたたみ可能な携帯情報端末3310を示す。図36(A)に展開した状態の携帯情報端末3310を示す。図36(B)に展開した状態又は折りたたんだ状態の一方から他方に変化する途中の状態の携帯情報端末3310を示す。図36(C)に折りたたんだ状態の携帯情報端末3310を示す。携帯情報端末3310は、折りたたんだ状態では可搬性に優れ、展開した状態では、継ぎ目のない広い表示領域により表示の一覧性に優れる。
表示パネル3316はヒンジ3313によって連結された3つの筐体3315に支持されている。ヒンジ3313を介して2つの筐体3315間を屈曲させることにより、携帯情報端末3310を展開した状態から折りたたんだ状態に可逆的に変形させることができる。本発明の一態様の発光装置を表示パネル3316に用いることができる。例えば、曲率半径1mm以上150mm以下で曲げることができる発光装置を適用できる。
図36(D)(E)に、折りたたみ可能な携帯情報端末3320を示す。図36(D)に表示部3322が外側になるように折りたたんだ状態の携帯情報端末3320を示す。図36(E)に、表示部3322が内側になるように折りたたんだ状態の携帯情報端末3320を示す。携帯情報端末3320を使用しない際に、非表示部3325を外側に折りたたむことで、表示部3322の汚れや傷つきを抑制できる。本発明の一態様の発光装置を表示部3322に用いることができる。
図36(F)は携帯情報端末3330の外形を説明する斜視図である。図36(G)は、携帯情報端末3330の上面図である。図36(H)は携帯情報端末3340の外形を説明する斜視図である。
携帯情報端末3330、3340は、例えば電話機、手帳又は情報閲覧装置等から選ばれた一つ又は複数の機能を有する。具体的には、スマートフォンとしてそれぞれ用いることができる。
携帯情報端末3330、3340は、文字や画像情報をその複数の面に表示することができる。例えば、3つの操作ボタン3339を一の面に表示することができる(図36(F)(H))。また、破線の矩形で示す情報3337を他の面に表示することができる(図36(G)(H))。なお、情報3337の例としては、SNS(ソーシャル・ネットワーキング・サービス)の通知、電子メールやや電話などの着信を知らせる表示、電子メールなどの題名、電子メールなどの送信者名、日時、時刻、バッテリの残量、アンテナ受信の強度などがある。または、情報3337が表示されている位置に、情報3337の代わりに、操作ボタン3339、アイコンなどを表示してもよい。なお、図36(F)(G)では、上側に情報3337が表示される例を示したが、本発明の一態様は、これに限定されない。例えば、図36(H)に示す携帯情報端末3340のように、横側に表示されていてもよい。
例えば、携帯情報端末3330の使用者は、洋服の胸ポケットに携帯情報端末3330を収納した状態で、その表示(ここでは情報3337)を確認することができる。
具体的には、着信した電話の発信者の電話番号又は氏名等を、携帯情報端末3330の上方から観察できる位置に表示する。使用者は、携帯情報端末3330をポケットから取り出すことなく、表示を確認し、電話を受けるか否かを判断できる。
携帯情報端末3330の筐体3335、携帯情報端末3340の筐体3336がそれぞれ有する表示部3333には、本発明の一態様の発光装置を用いることができる。本発明の一態様により、湾曲した表示部を備え、且つ信頼性の高いタッチパネルを提供できる。
また、図36(I)に示す携帯情報端末3345のように、3面以上に情報を表示してもよい。ここでは、情報3355、情報3356、情報3357がそれぞれ異なる面に表示されている例を示す。
携帯情報端末3345の筐体3354が有する表示部3358には、本発明の一態様の発光装置を用いることができる。本発明の一態様により、湾曲した表示部を備え、且つ信頼性の高いタッチパネルを提供できる。
図37(A)に示すパーソナルコンピュータ2800は、筐体2801、筐体2802、表示部2803、キーボード2804、及びポインティングデバイス2805等を有する。筐体2801の内側にバッテリ2806を備え、筐体2802の内側にバッテリ2807を備える。また表示部2803には、タッチパネルが適用されている。パーソナルコンピュータ2800は、図37(B)に示すように筐体2801と筐体2802を取り外し、筐体2802のみでタブレット端末として使用することができる。
また筐体2802の表示部2803にはフレキシブルディスプレイが適用されている。さらにバッテリ2807には、曲げ伸ばしが可能なバッテリが適用されている。これにより、図37(C)に示すように、筐体2802を折り曲げてパーソナルコンピュータ2800を使用することができる。このとき、図37(C)に示すように、表示部2803の一部をキーボードとして使用することもできる。
また、図37(D)に示すように表示部2803が内側になるように筐体2802を折り畳むことや、図37(E)に示すように表示部2803が外側になるように筐体2802を折り畳むこともできる。
本実施の形態は、他の実施の形態に記載した構成と適宜組み合わせて実施することが可能である。
なお、ある一つの実施の形態の中で述べる内容(一部の内容でもよい)は、その実施の形態で述べる別の内容(一部の内容でもよい)、及び/又は、一つ若しくは複数の別の実施の形態で述べる内容(一部の内容でもよい)に対して、適用、組み合わせ、又は置き換えなどを行うことが出来る。
なお、実施の形態の中で述べる内容とは、各々の実施の形態において、様々な図を用いて述べる内容、又は明細書に記載される文章を用いて述べる内容のことである。
なお、ある一つの実施の形態において述べる図(一部でもよい)は、その図の別の部分、その実施の形態において述べる別の図(一部でもよい)、及び/又は、一つ若しくは複数の別の実施の形態において述べる図(一部でもよい)に対して、組み合わせることにより、さらに多くの図を構成させることが出来る。
なお、本明細書等においては、ある一つの実施の形態において述べる図または文章において、少なくとも一つの具体例が記載される場合、その具体例の上位概念を導き出すことは、当業者であれば容易に理解される。したがって、ある一つの実施の形態において述べる図または文章において、少なくとも一つの具体例が記載される場合、その具体例の上位概念も、発明の一態様として開示されているものであり、発明の一態様を構成することが可能である。そして、その発明の一態様は、明確であると言える。
なお、本明細書等においては、少なくとも図に記載した内容(図の中の一部でもよい)は、発明の一態様として開示されているものであり、発明の一態様を構成することが可能である。したがって、ある内容について、図に記載されていれば、文章を用いて述べていなくても、その内容は、発明の一態様として開示されているものであり、発明の一態様を構成することが可能である。同様に、図の一部を取り出した図についても、発明の一態様として開示されているものであり、発明の一態様を構成することが可能である。そして、その発明の一態様は明確であると言える。
100 表示装置
101 基板
102 基板
110 剥離層
110a 剥離層
110b 剥離層
111 基板
112 接着層
113 剥離層
114 隔壁
115 電極
115a 電極
115b 電極
116 電極
117 EL層
118 電極
119 絶縁層
120 接着層
121 基板
122 接着層
123 剥離層
124 外部電極
125 発光素子
126 導電層
127 絶縁層
128 開口
129 絶縁層
130 画素
130B 画素
130G 画素
130R 画素
130W 画素
130Y 画素
131 表示領域
132 開口
132a 開口
132b 開口
137 開口
138 異方性導電接続層
139 開口
140 画素
141 絶縁層
143 剥離層
145 導電層
149 絶縁層
150 加工部材
151 光
151B 光
151G 光
151R 光
151W 光
151Y 光
155 加工部材
160 表示装置
161 機能層
170 領域
171 素子基板
181 対向基板
190 始点
191 終点
192 第1の角
193 第2の角
194 矢印
195 領域
196 二点鎖線
197 二点鎖線
200 表示装置
205 絶縁層
206 電極
207 絶縁層
208 半導体層
210 絶縁層
211 絶縁層
212 層間絶縁層
214 電極
215 電極
219 配線
222 絶縁層
223 電極
224a 電極
224b 電極
225 層
226 絶縁層
227 絶縁層
228 絶縁層
229 絶縁層
231 表示領域
232 トランジスタ
241 絶縁層
242 半導体層
242a 半導体層
242b 半導体層
242c 半導体層
243 電極
244a 電極
244b 電極
246 電極
247a 開口
247b 開口
247c 開口
247d 開口
251 周辺回路
252 トランジスタ
264 遮光層
266 着色層
266B 着色層
266G 着色層
266R 着色層
266W 着色層
266Y 着色層
268 オーバーコート層
271 基板
272 絶縁層
274 層
275 絶縁層
280 部位
318 電極
320 EL層
320a 電荷発生層
322 電極
330 発光素子
331 発光素子
382 Ec
383a Ec
383b Ec
383c Ec
386 Ec
387 Ec
390 トラップ準位
410 トランジスタ
411 トランジスタ
420 トランジスタ
421 トランジスタ
422 トランジスタ
425 トランジスタ
430 トランジスタ
431 トランジスタ
440 トランジスタ
441 トランジスタ
442 トランジスタ
443 トランジスタ
444 トランジスタ
445 トランジスタ
446 トランジスタ
447 トランジスタ
448 トランジスタ
450 トランジスタ
451 トランジスタ
452 トランジスタ
501 マスクパターン
531 表示領域
2800 パーソナルコンピュータ
2801 筐体
2802 筐体
2803 表示部
2804 キーボード
2805 ポインティングデバイス
2806 バッテリ
2807 バッテリ
3100 表示装置
3125 発光素子
3130 画素
3131 表示領域
3132 回路
3133 回路
3135 走査線
3136 信号線
3137 画素回路
3152 回路
3153 回路
3232 トランジスタ
3233 容量素子
3310 携帯情報端末
3313 ヒンジ
3315 筐体
3316 表示パネル
3320 携帯情報端末
3322 表示部
3325 非表示部
3330 携帯情報端末
3333 表示部
3335 筐体
3336 筐体
3337 情報
3339 操作ボタン
3340 携帯情報端末
3345 携帯情報端末
3354 筐体
3355 情報
3356 情報
3357 情報
3358 表示部
3431 トランジスタ
3432 液晶素子
3434 トランジスタ
3435 ノード
3436 ノード
3437 ノード
7100 携帯表示装置
7101 筐体
7102 表示部
7103 操作ボタン
7104 送受信装置
7200 照明装置
7201 台部
7202 発光部
7203 操作スイッチ
7210 照明装置
7212 発光部
7220 照明装置
7222 発光部
7300 表示装置
7301 筐体
7302 表示部
7303 操作ボタン
7304 部材
7305 制御部
7400 携帯電話機
7401 筐体
7402 表示部
7403 操作ボタン
7404 外部接続ポート
7405 スピーカ
7406 マイク
8000 表示モジュール
8001 上部カバー
8002 下部カバー
8003 FPC
8004 タッチセンサ
8005 FPC
8006 セル
8007 バックライトユニット
8008 光源
8009 フレーム
8010 プリント基板
8011 バッテリ

Claims (6)

  1. 表示領域を有する表示装置の作製方法であって、
    第1乃至第7の工程を有し、
    前記第1の工程は、
    第1の基板の第1の表面上に、第1の層を設ける工程と、
    前記第1の層上に第1の絶縁層を設ける工程と、
    前記第1の絶縁層上に電極を設ける工程と、
    前記電極上に第2の絶縁層を設ける工程と、
    前記第2の絶縁層の一部を除去して第1の開口を設ける工程と、
    前記第2の絶縁層上に表示素子および第2の層を設ける工程と、を有し、
    前記第2の工程は、
    第2の基板の第2の表面上に、第3の層を設ける工程と、
    前記第3の層上に第3の絶縁層を設ける工程と、
    前記第3の層および前記第3の絶縁層の一部を除去して第2の開口を設ける工程と、を有し、
    前記第3の工程は、
    前記第1の表面と前記第2の表面を向かい合わせ、前記第1の開口と前記第2の開口とが互いに重なる領域を有するように、接着層を介して前記第1の基板と前記第2の基板とを互いに重ねる工程を有し、
    前記第4の工程は、
    前記第1の基板を前記第1の層とともに前記第1の絶縁層から剥離する工程を有し、
    前記第5の工程は、
    前記第1の絶縁層と第3の基板とが互いに重なるように前記第3の基板を設ける工程を有し、
    前記第6の工程は、
    前記第2の基板を前記第3の層とともに前記第3の絶縁層から剥離する工程を有し、
    前記第7の工程は、
    前記第3の絶縁層と第4の基板とが互いに重なるように前記第4の基板を設ける工程を有し、
    前記第1の工程において、
    前記電極と前記第2の層は互いに少なくとも一部を接して設けられ、
    前記第2の工程において、
    前記第2の開口の上面形状は第1の角および第2の角を有する多角形であり、前記第2の開口は上面形状において前記第2の層の内側に位置し、
    前記第1の角および前記第2の角の大きさは30°以上150°以下であり、
    前記第3の工程において、
    前記接着層は、前記接着層と前記第2の開口とが互いに重なる第1の領域を有し、
    前記第2の層は、前記第2の層と前記第2の開口とが互いに重なる第2の領域を有し、
    前記第6の工程において、
    前記第1の領域の少なくとも一部の前記接着層と、前記第2の領域の少なくとも一部の前記第2の層と、を前記第2の基板とともに前記第の基板から剥離し、
    前記第2の基板の剥離が、前記第1の領域の少なくとも一部の前記接着層及び前記第2の領域の少なくとも一部の前記第2の層の剥離が前記第1の角の端部において始まり、前記第2の角の端部において終わる方向と同じ方向に進行し、
    前記電極の少なくとも一部が露出する、
    表示装置の作製方法。
  2. 請求項1において、
    前記第2の工程において、
    前記第2の開口の上面形状は前記第1の角および前記第2の角を有する、平行四辺形または六角形であり、
    前記第6の工程において、前記第2の基板の剥離が、前記第2の開口の上面形状の長辺方向と概ね平行な方向に進行する、
    表示装置の作製方法。
  3. 請求項1または請求項2において、
    前記第2の層は、
    EL層及び導電層の積層である、
    表示装置の作製方法。
  4. 請求項1乃至請求項3のいずれか一において、
    前記第1の基板は、
    ガラス基板、石英基板、サファイア基板、セラミック基板、金属基板、半導体基板、またはプラスチック基板であり、
    前記第2の基板は、
    ガラス基板、石英基板、サファイア基板、セラミック基板、金属基板、半導体基板、またはプラスチック基板である、
    表示装置の作製方法。
  5. 請求項1乃至請求項4のいずれか一項において、
    前記第3の基板および前記第4の基板は可撓性を有する、
    表示装置の作製方法。
  6. 請求項1乃至請求項5のいずれか一項において、
    前記第1の層は、
    タングステン、モリブデン、チタン、タンタル、ニオブ、ニッケル、コバルト、ジルコニウム、ルテニウム、ロジウム、パラジウム、オスミウム、イリジウム、またはシリコンを有し、
    前記第3の層は、
    タングステン、モリブデン、チタン、タンタル、ニオブ、ニッケル、コバルト、ジルコニウム、ルテニウム、ロジウム、パラジウム、オスミウム、イリジウム、またはシリコンを有する、
    表示装置の作製方法。
JP2016120176A 2015-07-29 2016-06-16 表示装置の作製方法 Expired - Fee Related JP6764704B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/213,767 US9941475B2 (en) 2015-07-29 2016-07-19 Method for manufacturing display device and method for manufacturing electronic device
KR1020160095740A KR102723104B1 (ko) 2015-07-29 2016-07-27 표시 장치의 제작 방법, 및 전자 기기의 제작 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015149188 2015-07-29
JP2015149188 2015-07-29

Publications (3)

Publication Number Publication Date
JP2017033924A JP2017033924A (ja) 2017-02-09
JP2017033924A5 JP2017033924A5 (ja) 2019-07-11
JP6764704B2 true JP6764704B2 (ja) 2020-10-07

Family

ID=57988694

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016120176A Expired - Fee Related JP6764704B2 (ja) 2015-07-29 2016-06-16 表示装置の作製方法

Country Status (1)

Country Link
JP (1) JP6764704B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111164666B (zh) * 2017-09-29 2022-06-07 夏普株式会社 显示设备

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012178262A (ja) * 2011-02-25 2012-09-13 Canon Inc 発光装置の製造方法
JP6490901B2 (ja) * 2013-03-14 2019-03-27 株式会社半導体エネルギー研究所 発光装置の作製方法
KR20150021000A (ko) * 2013-08-19 2015-02-27 가부시키가이샤 한도오따이 에네루기 켄큐쇼 표시 장치

Also Published As

Publication number Publication date
JP2017033924A (ja) 2017-02-09
KR20170015205A (ko) 2017-02-08

Similar Documents

Publication Publication Date Title
JP6768874B2 (ja) 表示装置
JP7157186B2 (ja) 電子機器
KR102443065B1 (ko) 표시 장치 및 전자 기기
JP6761276B2 (ja) 表示装置の作製方法、および電子機器の作製方法
JP2022025102A (ja) 表示装置
KR102432641B1 (ko) 표시 장치 및 발광 장치, 및 전자 기기
KR102480052B1 (ko) 트랜지스터
US9941475B2 (en) Method for manufacturing display device and method for manufacturing electronic device
JP2022084716A (ja) 表示装置の作製方法
JP6764704B2 (ja) 表示装置の作製方法
KR102723104B1 (ko) 표시 장치의 제작 방법, 및 전자 기기의 제작 방법

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190605

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190605

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200520

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200602

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200715

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200901

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200914

R150 Certificate of patent or registration of utility model

Ref document number: 6764704

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees