JP6759840B2 - Molding method of molded product - Google Patents
Molding method of molded product Download PDFInfo
- Publication number
- JP6759840B2 JP6759840B2 JP2016158981A JP2016158981A JP6759840B2 JP 6759840 B2 JP6759840 B2 JP 6759840B2 JP 2016158981 A JP2016158981 A JP 2016158981A JP 2016158981 A JP2016158981 A JP 2016158981A JP 6759840 B2 JP6759840 B2 JP 6759840B2
- Authority
- JP
- Japan
- Prior art keywords
- molding
- prepreg
- temperature
- molded product
- mold
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000465 moulding Methods 0.000 title claims description 81
- 238000000034 method Methods 0.000 title claims description 41
- 229920005989 resin Polymers 0.000 claims description 36
- 239000011347 resin Substances 0.000 claims description 36
- 230000009477 glass transition Effects 0.000 claims description 16
- 239000012778 molding material Substances 0.000 claims description 13
- 238000004132 cross linking Methods 0.000 claims description 12
- 239000000463 material Substances 0.000 claims description 11
- 238000010438 heat treatment Methods 0.000 claims description 9
- 238000005520 cutting process Methods 0.000 description 6
- 238000010586 diagram Methods 0.000 description 6
- 230000003746 surface roughness Effects 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 229920000049 Carbon (fiber) Polymers 0.000 description 3
- 239000004917 carbon fiber Substances 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 3
- 238000010030 laminating Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- 238000007517 polishing process Methods 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- 238000009966 trimming Methods 0.000 description 1
Landscapes
- Reinforced Plastic Materials (AREA)
- Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
- Casting Or Compression Moulding Of Plastics Or The Like (AREA)
- Moulding By Coating Moulds (AREA)
Description
本発明は、成形品の成形方法に関する。 The present invention relates to a method for molding a molded product.
従来から、例えば炭素繊維のような基材に樹脂を含浸させてなるプリプレグ(成形材)を加温しつつ、例えば車両のバンパーのような成形品をプレス成形する技術が知られている(特許文献1を参照。)。 Conventionally, there has been known a technique for press-molding a molded product such as a vehicle bumper while heating a prepreg (molding material) obtained by impregnating a base material such as carbon fiber with a resin (patented). See Document 1).
特許文献1に記載の成形方法では、成形材が冷却されるときに収縮することから、成形品の表面粗さを十分に抑制できない。したがって、成形品が外部に暴露されユーザーに目視されるようなものの場合、外観品質を保つために研磨処理を施す必要があることから、成形品の生産性が低下する。一方、単純に、成形材の成形温度を低くして収縮量を低減すれば、成形品の表面粗さを抑制できるが、成形に必要な時間が増大することから、成形品の生産性が低下する。 In the molding method described in Patent Document 1, the surface roughness of the molded product cannot be sufficiently suppressed because the molded material shrinks when it is cooled. Therefore, when the molded product is exposed to the outside and is visible to the user, it is necessary to perform a polishing process in order to maintain the appearance quality, which reduces the productivity of the molded product. On the other hand, if the molding temperature of the molded material is simply lowered to reduce the amount of shrinkage, the surface roughness of the molded product can be suppressed, but the time required for molding increases, so that the productivity of the molded product decreases. To do.
本発明の目的は、生産性を低下させることなく外観品質を保つことができる成形品の成形方法を提供することにある。 An object of the present invention is to provide a molding method for a molded product capable of maintaining appearance quality without reducing productivity.
上記目的を達成するための本発明の成形品の成形方法は、基材に樹脂を含浸させてなる成形材を用いて成形品を連続的に成形する方法である。かかる成形品の成形方法は、前記成形材を3次元架橋が始まる第1温度よりも低い第2温度まで加温しつつ前記成形品の形状に対応した予備金型によって予備成形した後、前記成形材を前記第1温度以上でガラス転移温度以下まで加温しつつ前記成形品の形状に対応した金型によって本成形する工程を有する。かかる工程は、前記金型によって一の前記成形材を成形する時間帯と、前記予備金型によって他の前記成形材を予備成形する時間帯と、を少なくとも一部重複させる。 The method for molding a molded product of the present invention for achieving the above object is a method for continuously molding a molded product using a molding material obtained by impregnating a base material with a resin. In the molding method of such a molded product, the molded product is premolded by a preliminary mold corresponding to the shape of the molded product while being heated to a second temperature lower than the first temperature at which the three-dimensional cross-linking starts, and then the molding is performed. It has a step of main molding with a mold corresponding to the shape of the molded product while heating the material to the glass transition temperature or lower at the first temperature or higher. In this step, at least a part of the time zone in which one of the molding materials is molded by the mold and the time zone in which the other molding material is premolded by the spare mold are overlapped.
かかる成形品の成形方法によれば、加温による成形を特定の温度領域で予備成形と本成形に分け、各々の成形時間帯を一部重複させることで生産性を低下させることなく外観品質を保つことができる。 According to the molding method of such a molded product, molding by heating is divided into pre-molding and main molding in a specific temperature range, and the appearance quality is improved without lowering the productivity by partially overlapping each molding time zone. Can be kept.
以下、添付した図面を参照しながら、本発明の実施形態を説明する。図面において、同一の部材には同一の符号を付し、重複する説明を省略する。図面において、各部材の大きさや比率は、実施形態の理解を容易にするために誇張し、実際の大きさや比率とは異なる場合がある。 Hereinafter, embodiments of the present invention will be described with reference to the attached drawings. In the drawings, the same members are designated by the same reference numerals, and duplicate description will be omitted. In the drawings, the size and ratio of each member are exaggerated to facilitate understanding of the embodiment and may differ from the actual size and ratio.
(成形品20の成形原理)
図1は、プリプレグ10の成形を示す図である。図2は、プリプレグ10の予備成形と本成形のタイムチャートを示す図である。図3は、プリプレグ10の表面粗さと成形温度の関係を示す図である。図4は、プリプレグ10の硬化時間と成形温度の関係を示す図である。図5は、プリプレグ10の硬化度と硬化時間の関係を成形温度毎に示す図である。
(Molding principle of molded product 20)
FIG. 1 is a diagram showing molding of the prepreg 10. FIG. 2 is a diagram showing a time chart of pre-molding and main molding of the prepreg 10. FIG. 3 is a diagram showing the relationship between the surface roughness of the prepreg 10 and the molding temperature. FIG. 4 is a diagram showing the relationship between the curing time of the prepreg 10 and the molding temperature. FIG. 5 is a diagram showing the relationship between the degree of curing of the prepreg 10 and the curing time for each molding temperature.
まず、図1中の領域A、B、CおよびDを参照して、通常のプリプレグの成形方法を説明する。 First, a normal prepreg molding method will be described with reference to regions A, B, C and D in FIG.
図1中の領域Aに示すように、プリプレグに含まれる樹脂は、加温されると液化しつつ体積が増加する。さらに、図1中の領域Bに示すように、硬化温度Tc[℃]に達した樹脂は、硬化しつつ体積が減少する。すなわち、樹脂は、領域Bにおいて、一定体積まで硬化収縮する。さらに、図1中の領域Cおよび領域Dに示すように、樹脂は、硬化温度Tc[℃]から室温Tr[℃]まで冷却されるときに体積が減少する。すなわち、樹脂は、領域CおよびDにおいて、冷却収縮する。ここで、樹脂は、ガラス転移温度Tg[℃]を超えた領域Cと、ガラス転移温度Tg[℃]以下の領域Dで、冷却収縮の温度勾配が大きく異なる。すなわち、樹脂は、ガラス転移温度Tg[℃]を超えた領域Cまで加温すると、ガラス転移温度Tg[℃]まで冷却する際に大きく収縮してしまう。したがって、樹脂は、ガラス転移温度Tg[℃]を超えない範囲で加温することが好ましい。 As shown in region A in FIG. 1, the volume of the resin contained in the prepreg increases while liquefying when heated. Further, as shown in the region B in FIG. 1, the volume of the resin that has reached the curing temperature Tc [° C.] decreases while being cured. That is, the resin cures and shrinks to a certain volume in the region B. Further, as shown in regions C and D in FIG. 1, the volume of the resin decreases when it is cooled from the curing temperature Tc [° C.] to room temperature Tr [° C.]. That is, the resin cools and shrinks in regions C and D. Here, the resin has a significantly different temperature gradient of cooling shrinkage between the region C exceeding the glass transition temperature Tg [° C.] and the region D below the glass transition temperature Tg [° C.]. That is, when the resin is heated to the region C exceeding the glass transition temperature Tg [° C.], the resin shrinks significantly when cooled to the glass transition temperature Tg [° C.]. Therefore, it is preferable to heat the resin in a range not exceeding the glass transition temperature Tg [° C.].
つぎに、図1中の領域P、Q、RおよびSに加えて図2を参照して、実施形態のプリプレグ10の成形方法を説明する。 Next, a method of molding the prepreg 10 of the embodiment will be described with reference to FIG. 2 in addition to the regions P, Q, R and S in FIG.
図1中の領域Pは、プリプレグ10の予備成形に相当する。領域Pに示すように、プリプレグ10を、3次元架橋が始まる第1温度T1[℃]よりも若干低い第2温度T2[℃]まで加温しつつ、図2に示すように予備金型102によって予備成形する。 The region P in FIG. 1 corresponds to the preforming of the prepreg 10. As shown in the region P, the prepreg 10 is heated to the second temperature T2 [° C.], which is slightly lower than the first temperature T1 [° C.] at which the three-dimensional cross-linking starts, and as shown in FIG. 2, the reserve mold 102 Pre-molded by.
図1中の領域Q、RおよびSは、プリプレグ10の本成形に相当する。領域Qに示すように、予備成形を終えたプリプレグ10を、予備金型102から金型103に移し替えた後、ガラス転移温度Tg[℃]まで加温しつつ、図2に示すように金型103によって本成形する。その後、プリプレグ10に含まれる樹脂は、領域Rに示すようにガラス転移温度Tg[℃]において一定体積まで硬化収縮してから、領域Sに示すように室温Tr[℃]まで冷却収縮する。 Regions Q, R and S in FIG. 1 correspond to the main molding of the prepreg 10. As shown in region Q, after the pre-molded prepreg 10 is transferred from the preliminary mold 102 to the mold 103, the gold is heated to the glass transition temperature Tg [° C.] as shown in FIG. Main molding is performed by the mold 103. Then, the resin contained in the prepreg 10 is cured and shrunk to a certain volume at the glass transition temperature Tg [° C.] as shown in the region R, and then cooled and shrunk to room temperature Tr [° C.] as shown in the region S.
図1中の領域P、Q、RおよびSの熱サイクルによって成形する実施形態のプリプレグ10は、加温する上限の温度をガラス転移温度[Tg°]に抑えていることから、図1中の領域A、B、CおよびDの熱サイクルによって成形する通常のプリプレグよりも、樹脂の最大収縮(硬化収縮と冷却収縮の和)を十分に抑制することができる。すなわち、実施形態では、プリプレグ10を予備成形および本成形の際に、そのプリプレグ10をガラス転移温度Tg[℃]よりも高温にしないことから、加温したプリプレグ10を冷却するときの収縮量を十分に低減できる。 Since the prepreg 10 of the embodiment formed by the thermal cycle of the regions P, Q, R and S in FIG. 1 suppresses the upper limit temperature for heating to the glass transition temperature [Tg °], the temperature in FIG. 1 is shown in FIG. The maximum shrinkage of the resin (sum of curing shrinkage and cooling shrinkage) can be sufficiently suppressed as compared with a normal prepreg formed by the thermal cycle of regions A, B, C and D. That is, in the embodiment, when the prepreg 10 is preformed and main molded, the temperature of the prepreg 10 is not made higher than the glass transition temperature Tg [° C.], so that the amount of shrinkage when the heated prepreg 10 is cooled is set. It can be reduced sufficiently.
ここで、図2に示すように、金型103によって一のプリプレグ10を成形する時間帯と、予備金型102によって(次の)他のプリプレグ10を予備成形する時間帯を一致させる。すなわち、予備成形を終えているN−1番目(例えば9番目)のプリプレグ10を本成形しているときに、N番目(例えば10番目)のプリプレグ10を予備成形する。つぎに、直前に予備成形を終えたN番目(例えば10番目)のプリプレグ10を本成形しているときに、N+1番目(例えば11番目)のプリプレグ10を予備成形する。このようにして、図2に示すように、2つのプリプレグ10を常に並行して成形する。このような成形方法によれば、一つの生産ラインにおいて、単位時間当たりの成形品20の生産数を倍増することができる。 Here, as shown in FIG. 2, the time zone in which one prepreg 10 is molded by the mold 103 and the time zone in which the (next) other prepreg 10 is preformed by the spare mold 102 are matched. That is, when the N-1st (for example, 9th) prepreg 10 that has been preformed is being main-molded, the Nth (for example, 10th) prepreg 10 is preformed. Next, when the Nth (for example, 10th) prepreg 10 which has been preformed immediately before is main-molded, the N + 1th (for example, 11th) prepreg 10 is preformed. In this way, as shown in FIG. 2, the two prepregs 10 are always molded in parallel. According to such a molding method, the number of molded products 20 produced per unit time can be doubled in one production line.
つぎに、図3を参照して、プリプレグ10の表面粗さと成形温度の関係を説明する。 Next, the relationship between the surface roughness of the prepreg 10 and the molding temperature will be described with reference to FIG.
プリプレグ10の成形温度を下げる程、プリプレグ10に含まれる樹脂(高分子)を冷却させるときの収縮量を低減することができる。その結果、図3に示すように、樹脂の冷却が完了したときのプリプレグ10の表面粗さが小さくなる。したがって、成形品20の外観品質を保つことができる。 As the molding temperature of the prepreg 10 is lowered, the amount of shrinkage when the resin (polymer) contained in the prepreg 10 is cooled can be reduced. As a result, as shown in FIG. 3, the surface roughness of the prepreg 10 when the cooling of the resin is completed becomes small. Therefore, the appearance quality of the molded product 20 can be maintained.
つぎに、図4および図5を参照して、プリプレグ10の硬化度と硬化時間の関係を成形温度の観点から説明する。 Next, with reference to FIGS. 4 and 5, the relationship between the degree of curing and the curing time of the prepreg 10 will be described from the viewpoint of the molding temperature.
図4に示すように、プリプレグ10に含まれる樹脂は、プリプレグ10の成形温度を上げる程、3次元架橋(重合)の速度が上がる。すなわち、プリプレグ10の成形温度を上げる程、樹脂の硬化反応が促進される。その結果、樹脂の硬化時間が短縮される。したがって、成形品20の生産性が上がる。 As shown in FIG. 4, the resin contained in the prepreg 10 increases the speed of three-dimensional cross-linking (polymerization) as the molding temperature of the prepreg 10 increases. That is, as the molding temperature of the prepreg 10 is raised, the curing reaction of the resin is promoted. As a result, the curing time of the resin is shortened. Therefore, the productivity of the molded product 20 is increased.
具体的には、図5に示すように、プリプレグ10に含まれる樹脂は、その成形温度(D℃>C℃>B℃>A℃)を上げる程、硬化が完了するまでの時間が短縮される(成形品20の生産性が上がる)。すなわち、プリプレグ10の成形温度を上げると、プリプレグ10の成形時間を短縮することができる。樹脂は、外気に暴露した状態において室温Tr[℃]以上で硬化が進行する。 Specifically, as shown in FIG. 5, as the molding temperature (D ° C> C ° C> B ° C> A ° C) of the resin contained in the prepreg 10 is raised, the time required for curing to be completed is shortened. (The productivity of the molded product 20 is increased). That is, if the molding temperature of the prepreg 10 is raised, the molding time of the prepreg 10 can be shortened. Curing of the resin proceeds at room temperature Tr [° C.] or higher when exposed to the outside air.
ここで、プリプレグ10に含まれる樹脂は、3次元架橋が始まる第1温度T1[℃]以上に加温されると、その後に加温が中止されても、自ら発熱して硬化が完了する。一方、樹脂は、3次元架橋が始まる第1温度T1[℃]に達する前に加温が中止されると、温度が低下すると共に軟化して元の硬度に戻る。樹脂は、3次元架橋が始まる直前の時点において、例えば10%程度硬化が進む。3次元架橋が始まる直前の時点における樹脂の硬化の程度は、樹脂の材質等に依存する。 Here, when the resin contained in the prepreg 10 is heated to a temperature T1 [° C.] or higher at which the three-dimensional cross-linking starts, even if the heating is subsequently stopped, heat is generated by itself and curing is completed. On the other hand, if the heating of the resin is stopped before reaching the first temperature T1 [° C.] at which the three-dimensional cross-linking starts, the temperature decreases and the resin softens and returns to the original hardness. The resin is cured by, for example, about 10% at the time immediately before the start of the three-dimensional cross-linking. The degree of curing of the resin immediately before the start of the three-dimensional cross-linking depends on the material of the resin and the like.
(成形品20の成形方法)
図6は、成形品20の成形方法を示すフローチャートである。図7A〜図7Eは、成形品20の成形方法を示す模式図である。
(Molding method of molded product 20)
FIG. 6 is a flowchart showing a molding method of the molded product 20. 7A to 7E are schematic views showing a molding method of the molded product 20.
まず、図7Aに示すように、巻回された長尺状のプリプレグ10を伸長させつつ、一定の間隔毎に、切断刃101によって切断して個片化する。ここで、プリプレグ10(成形材に相当)は、炭素繊維、ガラス繊維、および有機繊維等の織物シート(基材に相当)に対して、熱硬化性を備えたエポキシ樹脂やフェノール樹脂等の樹脂を含浸させたものである(図6のカット工程S11)。 First, as shown in FIG. 7A, the wound long prepreg 10 is stretched and cut by the cutting blade 101 at regular intervals to be individualized. Here, the prepreg 10 (corresponding to the molding material) is a resin such as an epoxy resin or a phenol resin having thermosetting property with respect to a woven sheet (corresponding to a base material) such as carbon fiber, glass fiber, and organic fiber. Is impregnated (cutting step S11 in FIG. 6).
つぎに、図7Bに示すように、個片化されたプリプレグ10を必要な厚みに調整するために複数枚積層する(図6の積層工程S12)。 Next, as shown in FIG. 7B, a plurality of individualized prepregs 10 are laminated in order to adjust the thickness to a required thickness (lamination step S12 in FIG. 6).
つぎに、図7Cに示すように、複数枚積層されたプリプレグ10を予備金型102によって予備成形する。予備金型102は、成形品20の形状に対応している。予備金型102は、少なくとも固定型102Nにヒータ102Uを内蔵している。予備金型102の移動型102Mを上昇させて、固定型102Nに積層したプリプレグ10を載置した後、移動型102Mを降下させてプリプレグ10を挟み込み型締めする。ヒータ102Uによって温調した予備金型102によって、プリプレグ10を3次元架橋が始まる第1温度T1[℃]よりも低い第2温度T2[℃]まで加温する。第2温度T2[℃]は、一例として、第1温度T1[℃]よりも若干低い温度とする。プリプレグ10を第2温度T2[℃]まで加温してから、そのプリプレグ10を予備金型102から取り出す(図6のプリフォーム工程S13)。 Next, as shown in FIG. 7C, a plurality of laminated prepregs 10 are premolded by the spare mold 102. The spare mold 102 corresponds to the shape of the molded product 20. The spare mold 102 has a heater 102U built in at least the fixed mold 102N. The movable mold 102M of the spare mold 102 is raised to place the prepreg 10 laminated on the fixed mold 102N, and then the mobile mold 102M is lowered to sandwich and mold the prepreg 10. The reserve mold 102, which is temperature-controlled by the heater 102U, heats the prepreg 10 to a second temperature T2 [° C.], which is lower than the first temperature T1 [° C.] at which three-dimensional cross-linking begins. The second temperature T2 [° C.] is, for example, a temperature slightly lower than the first temperature T1 [° C.]. After the prepreg 10 is heated to the second temperature T2 [° C.], the prepreg 10 is taken out from the reserve mold 102 (preform step S13 in FIG. 6).
すなわち、実施形態では、プリプレグ10の硬化反応を促進するために、プリプレグ10に含まれる樹脂を3次元架橋が始まる第1温度T1[℃]直前の第2温度まで加温する。樹脂は、図5に示す3次元架橋領域まで反応が促進されると、形状の追随性が低下することから、図5に示す初期架橋領域の範囲内において加温する。 That is, in the embodiment, in order to accelerate the curing reaction of the prepreg 10, the resin contained in the prepreg 10 is heated to the second temperature immediately before the first temperature T1 [° C.] at which the three-dimensional cross-linking starts. When the reaction is promoted to the three-dimensional crosslinked region shown in FIG. 5, the resin has a reduced shape followability. Therefore, the resin is heated within the range of the initial crosslinked region shown in FIG.
つぎに、図7Dに示すように、第2温度まで加温され予備成形された状態のプリプレグ10を、金型103によってさらに加温しつつ本成形する。金型103は、成形品20の形状に対応している。金型103は、少なくとも固定型103Nにヒータ103Uを内蔵している。金型103の移動型103Mを上昇させて、固定型103Nに予備成形されたプリプレグ10を載置した後、移動型103Mを降下させて、予備成形された状態のプリプレグ10を挟み込み型締めする。ヒータ103Uによって温調した金型103によって、プリプレグ10を第1温度T1[℃]以上であってガラス転移温度Tg[℃]以下の温度に加温する。一例として、樹脂をガラス転移温度Tg[℃]まで加温する。プリプレグ10の硬化反応が完了してから冷却して、そのプリプレグ10を金型103から取り出し、プレス成形を完了する(図6の成形工程S14)。 Next, as shown in FIG. 7D, the prepreg 10 in a preformed state that has been heated to the second temperature is main-molded while being further heated by the mold 103. The mold 103 corresponds to the shape of the molded product 20. The mold 103 has a heater 103U built into at least the fixed mold 103N. The movable mold 103M of the mold 103 is raised to place the preformed prepreg 10 on the fixed mold 103N, and then the movable mold 103M is lowered to sandwich and mold the preformed prepreg 10. The prepreg 10 is heated to a temperature equal to or higher than the first temperature T1 [° C.] and lower than the glass transition temperature Tg [° C.] by the mold 103 whose temperature is controlled by the heater 103U. As an example, the resin is heated to the glass transition temperature Tg [° C.]. After the curing reaction of the prepreg 10 is completed, the prepreg 10 is cooled, the prepreg 10 is taken out from the mold 103, and press molding is completed (molding step S14 in FIG. 6).
ここで、図7Cに示す予備成形(プリフォーム工程S13)と、図7Dに示す本成形(成形工程S14)を、図2に示すように同時に行う。すなわち、予備成形を終えた一のプリプレグ10を本成形しているときに、次に生産する他のプリプレグ10を予備成形する。このようにして、プリプレグ10から成形品20を連続的に成形する。このような成形方法によれば、一つの生産ラインにおいて、単位時間当たりの成形品20の生産数を倍増することができる。 Here, the preforming (preform step S13) shown in FIG. 7C and the main molding (molding step S14) shown in FIG. 7D are simultaneously performed as shown in FIG. That is, while one prepreg 10 that has been preformed is being main-molded, the other prepreg 10 to be produced next is preformed. In this way, the molded product 20 is continuously molded from the prepreg 10. According to such a molding method, the number of molded products 20 produced per unit time can be doubled in one production line.
つぎに、図7Eに示すように、本成形されたプリプレグ10を板状の載置台105に載置し、プリプレグ10の外縁を切断刃104によって切断して廃棄し、成形品20を完成させる(図6のトリム工程S15)。 Next, as shown in FIG. 7E, the molded prepreg 10 is placed on a plate-shaped mounting table 105, and the outer edge of the prepreg 10 is cut by the cutting blade 104 and discarded to complete the molded product 20 ( The trim step S15 in FIG. 6).
以上説明した実施形態の作用効果を説明する。 The action and effect of the embodiments described above will be described.
成形品20の成形方法は、基材(炭素繊維に相当)に樹脂を含浸させてなるプリプレグ10(成形材に相当)を用いて成形品20を連続的に成形する方法である。かかる成形品20の成形方法は、プリプレグ10を3次元架橋が始まる第1温度T1[℃]よりも低い第2温度T2[℃]まで加温しつつ成形品20の形状に対応した予備金型102によって予備成形した後、プリプレグ10を第1温度T1[℃]以上で加温しつつ成形品20の形状に対応した金型103によって本成形する工程を有する。かかる工程は、金型103によって一のプリプレグ10を成形する時間帯と、予備金型102によって他のプリプレグ10を予備成形する時間帯と、を少なくとも一部重複させる。 The molding method of the molded product 20 is a method of continuously molding the molded product 20 using a prepreg 10 (corresponding to a molding material) obtained by impregnating a base material (corresponding to carbon fiber) with a resin. In the molding method of the molded product 20, the reserve mold corresponding to the shape of the molded product 20 is heated while heating the prepreg 10 to a second temperature T2 [° C.] lower than the first temperature T1 [° C.] at which the three-dimensional cross-linking starts. After pre-molding with 102, the prepreg 10 is heated at a first temperature of T1 [° C.] or higher, and is main-molded with a mold 103 corresponding to the shape of the molded product 20. In this step, at least a part of the time zone in which one prepreg 10 is molded by the mold 103 and the time zone in which the other prepreg 10 is premolded by the reserve mold 102 are overlapped.
かかる成形品20の成形方法によれば、予備成形および本成形の際にプリプレグ10をガラス転移温度Tg[℃]よりも高温にしないことから、加温したプリプレグ10を冷却するときの収縮量を低減できる。また、かかる成形品20の成形方法によれば、(予備成形を終えた)一のプリプレグ10を本成形しているときに、(次の)他のプリプレグ10を予備成形することから、複数のプリプレグ10を同時に成形することができる。したがって、かかる成形品20の成形方法によれば、生産性を低下させることなく外観品質を保つことができる。 According to the molding method of the molded product 20, the prepreg 10 is not heated to a temperature higher than the glass transition temperature Tg [° C.] during pre-molding and main molding, so that the amount of shrinkage when the heated prepreg 10 is cooled can be reduced. Can be reduced. Further, according to the molding method of the molded product 20, a plurality of (next) other prepregs 10 are preformed during main molding of one (preformed) prepreg 10. The prepreg 10 can be molded at the same time. Therefore, according to the molding method of the molded product 20, the appearance quality can be maintained without lowering the productivity.
工程は、本成形においてプリプレグ10をガラス転移温度Tg[℃]まで加温することが好ましい。 In the main step, it is preferable to heat the prepreg 10 to the glass transition temperature Tg [° C.] in the main molding.
かかる成形品20の成形方法によれば、本成形に必要な時間を最も短縮して、生産性を向上させることができる。 According to the molding method of the molded product 20, the time required for the main molding can be shortened most and the productivity can be improved.
工程は、金型103によって一のプリプレグ10を成形する時間帯と、予備金型102によって他のプリプレグ10を予備成形する時間帯と、を一致させることが好ましい。 In the step, it is preferable that the time zone in which one prepreg 10 is molded by the mold 103 and the time zone in which the other prepreg 10 is premolded by the spare mold 102 are matched.
かかる成形品20の成形方法によれば、予備成形を終えたプリプレグ10を本成形するときに待ち時間や空き時間が発生しないことから、生産性を向上させることができる。 According to the molding method of the molded product 20, the productivity can be improved because no waiting time or free time is generated when the prepreg 10 which has been preformed is main-molded.
工程は、温調した予備金型102および金型103によってプリプレグ10を加温することが好ましい。 In the step, it is preferable to heat the prepreg 10 by the temperature-controlled reserve mold 102 and the mold 103.
かかる成形品20の成形方法によれば、プリプレグ10を簡便かつ効率的に加温することができる。 According to the molding method of the molded product 20, the prepreg 10 can be heated easily and efficiently.
そのほか、本発明は、特許請求の範囲に記載された構成に基づき様々な改変が可能であり、それらについても本発明の範疇である。 In addition, the present invention can be modified in various ways based on the configurations described in the claims, and these are also within the scope of the present invention.
例えば、図7Dに示す本成形(成形工程S14)に必要な時間が、図7Cに示す予備成形(プリフォーム工程S13)に必要な時間の半分であれば、プリプレグ10を本成形する金型103を1台使用し、かつ、プリプレグ10を予備成形する予備金型102を2台使用して、成形品20の生産を行うことができる。このように成形品20を生産すれば、前工程(プリフォーム工程S13)から後工程(成形工程S14)に至る際に、互いの工程に空き時間が生じないことから、成形品20の生産性を維持することができる。 For example, if the time required for the main molding (molding step S14) shown in FIG. 7D is half the time required for the preforming (preform step S13) shown in FIG. 7C, the mold 103 for main molding the prepreg 10 The molded product 20 can be produced by using one unit and using two spare molds 102 for preforming the prepreg 10. When the molded product 20 is produced in this way, the productivity of the molded product 20 is increased because there is no free time in each process from the pre-process (preform step S13) to the post-process (molding step S14). Can be maintained.
10 プリプレグ(成形材)、
20 成形品、
101,104 切断刃、
102 予備金型、
103 金型、
102M,103M 移動型、
102N,103N 固定型、
102U,103U ヒータ、
105 載置台、
S11 カット工程、
S12 積層工程、
S13 プリフォーム工程(工程)、
S14 成形工程(工程)、
S15 トリム工程、
T1 第1温度(樹脂の3次元架橋が始まる温度)、
T2 第2温度(第1温度よりも低い温度)、
Tc (樹脂の)硬化温度、
Tg (樹脂の)ガラス転移温度、
Tr 室温。
10 prepreg (molding material),
20 Molded product,
101,104 cutting blade,
102 Spare mold,
103 mold,
102M, 103M mobile type,
102N, 103N fixed type,
102U, 103U heater,
105 mounting stand,
S11 cutting process,
S12 Laminating process,
S13 Preform process (process),
S14 Molding process (process),
S15 trim process,
T1 first temperature (temperature at which three-dimensional cross-linking of resin begins),
T2 2nd temperature (lower than 1st temperature),
Tc (resin) curing temperature,
Tg (resin) glass transition temperature,
Tr room temperature.
Claims (3)
前記成形材を3次元架橋が始まる第1温度よりも低い第2温度まで加温しつつ前記成形品の形状に対応した予備金型によって予備成形した後、前記成形材を前記第1温度以上でガラス転移温度以下まで加温しつつ前記成形品の形状に対応した金型によって本成形する工程を有し、
前記工程は、前記金型によって一の前記成形材を成形する時間帯と、前記予備金型によって他の前記成形材を予備成形する時間帯と、を少なくとも一部重複させる、成形品の成形方法。 A method of continuously molding a molded product using a molding material obtained by impregnating a base material with resin.
After pre-molding the molded material with a preliminary mold corresponding to the shape of the molded product while heating it to a second temperature lower than the first temperature at which three-dimensional cross-linking starts, the molded material is heated at the first temperature or higher. It has a step of main molding with a mold corresponding to the shape of the molded product while heating to the glass transition temperature or lower .
The step is a method for molding a molded product, in which at least a part of a time zone for molding one molding material with the mold and a time zone for premolding another molding material with the spare mold overlap. ..
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016158981A JP6759840B2 (en) | 2016-08-12 | 2016-08-12 | Molding method of molded product |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016158981A JP6759840B2 (en) | 2016-08-12 | 2016-08-12 | Molding method of molded product |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2018024215A JP2018024215A (en) | 2018-02-15 |
JP6759840B2 true JP6759840B2 (en) | 2020-09-23 |
Family
ID=61193850
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016158981A Active JP6759840B2 (en) | 2016-08-12 | 2016-08-12 | Molding method of molded product |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6759840B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7419291B2 (en) * | 2021-04-28 | 2024-01-22 | 株式会社イノアックコーポレーション | Method for manufacturing fiber-reinforced molded body, resin sheet, and method for manufacturing resin sheet |
US20230235140A1 (en) * | 2020-07-06 | 2023-07-27 | Inoac Corporation | Fiber-reinforced resin molded body and production method thereof, fiber-reinforced resin molding prepreg, fiber-reinforced molded body and production method of fiber-reinforced molded body and resin sheet, fiber-reinforced sandwich composite, and production method of fiberreinforced molded body |
CN113696510B (en) * | 2021-09-26 | 2023-01-24 | 北京海利天梦科技有限公司 | Machining process for heat shield |
-
2016
- 2016-08-12 JP JP2016158981A patent/JP6759840B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2018024215A (en) | 2018-02-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5668874B2 (en) | Preform manufacturing method and fiber reinforced resin molded product manufacturing method | |
JP6759840B2 (en) | Molding method of molded product | |
CN104053528B (en) | Method and device for producing three-dimensional prefab by fabric lamination in the production process that fiber strengthens moulded parts | |
US20200398461A1 (en) | Method of producing fiber-reinforced resin | |
JP6791368B2 (en) | Composite material molding method | |
JP5909062B2 (en) | Forming method | |
KR101447136B1 (en) | Method for Forming Fiber Reinforced Plastic Composite | |
JP2007090809A (en) | Method and apparatus for manufacturing frp preform | |
CN103252957A (en) | Carbon fiber housing with three-dimensional surface textures and producing method thereof | |
JP5809484B2 (en) | Forming method | |
JP5712038B2 (en) | Forming method | |
KR102067091B1 (en) | Manufacturing method of back cover for mobile communication device | |
JP6303053B1 (en) | Method for producing metal-fiber reinforced resin composite molded body | |
JP2016179598A (en) | Method for molding molded body formed of fiber-reinforced thermoplastic resin | |
JP5545974B2 (en) | Forming method | |
CN114379110B (en) | Split-mold paving self-adaptive soft mold forming method for super-thickness variable-curvature composite material part | |
JP5603149B2 (en) | Fiber-reinforced resin molded product and forming method | |
KR20240003220A (en) | Manufacturing method of composite material with low porosity | |
GB2624669A (en) | Carbon fibre curing | |
JP2014100821A (en) | Contouring molding method and fiber-reinforced resin molding | |
JP2014173031A (en) | Stampable molded article, and method for producing the same | |
CN114261102A (en) | Method for integrally compression molding fiber reinforced composite material-leather sheet and sheet | |
TW201037123A (en) | Composite material product and manufacturing method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20190328 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20200121 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20200319 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20200804 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20200817 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 6759840 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |