JP6759327B2 - Calcium oxide powder, adsorbent, and method for producing calcium oxide powder - Google Patents

Calcium oxide powder, adsorbent, and method for producing calcium oxide powder Download PDF

Info

Publication number
JP6759327B2
JP6759327B2 JP2018503280A JP2018503280A JP6759327B2 JP 6759327 B2 JP6759327 B2 JP 6759327B2 JP 2018503280 A JP2018503280 A JP 2018503280A JP 2018503280 A JP2018503280 A JP 2018503280A JP 6759327 B2 JP6759327 B2 JP 6759327B2
Authority
JP
Japan
Prior art keywords
calcium oxide
oxide powder
particle size
water vapor
range
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018503280A
Other languages
Japanese (ja)
Other versions
JPWO2017150426A1 (en
Inventor
浩二 小久保
浩二 小久保
加藤 裕三
裕三 加藤
渡辺 高行
高行 渡辺
孝之 大渕
孝之 大渕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Material Industries Ltd
Original Assignee
Ube Material Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=59743967&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP6759327(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Ube Material Industries Ltd filed Critical Ube Material Industries Ltd
Publication of JPWO2017150426A1 publication Critical patent/JPWO2017150426A1/en
Application granted granted Critical
Publication of JP6759327B2 publication Critical patent/JP6759327B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F11/00Compounds of calcium, strontium, or barium
    • C01F11/02Oxides or hydroxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/04Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of alkali metals, alkaline earth metals or magnesium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/04Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of alkali metals, alkaline earth metals or magnesium
    • B01J20/041Oxides or hydroxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28004Sorbent size or size distribution, e.g. particle size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28057Surface area, e.g. B.E.T specific surface area
    • B01J20/28059Surface area, e.g. B.E.T specific surface area being less than 100 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3078Thermal treatment, e.g. calcining or pyrolizing
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F11/00Compounds of calcium, strontium, or barium
    • C01F11/02Oxides or hydroxides
    • C01F11/04Oxides or hydroxides by thermal decomposition
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Drying Of Gases (AREA)

Description

本発明は、酸化カルシウム粉末及び吸着剤並びに酸化カルシウム粉末の製造方法に関し、特に、水分や酸性ガスの吸着に適した酸化カルシウム粉末及び吸着剤並びに酸化カルシウム粉末の製造方法に関する。 The present invention relates to a method for producing calcium oxide powder and an adsorbent and a calcium oxide powder, and more particularly to a method for producing a calcium oxide powder and an adsorbent suitable for adsorbing water and acid gas, and a calcium oxide powder.

従来、生石灰(酸化カルシウム)は、吸湿剤、脱水剤、塩基性炉材、セメント材料などに利用されている。特に、最近では、水や酸との高い反応性を利用して、有機ELディスプレイやセンサーなどの電子機器や真空断熱材における水分の吸着剤(すなわち、吸湿剤)や酸性ガスの吸着剤として利用することが検討されている。近年では、電子機器・断熱材の小型化や薄膜化に伴い、微粉化した吸着剤が求められている。 Conventionally, quicklime (calcium oxide) has been used as a hygroscopic agent, a dehydrating agent, a basic furnace material, a cement material and the like. In particular, recently, it has been used as an adsorbent for water (that is, a hygroscopic agent) and an acid gas adsorbent in electronic devices such as organic EL displays and sensors and vacuum heat insulating materials by utilizing its high reactivity with water and acid. Is being considered. In recent years, as electronic devices and heat insulating materials have become smaller and thinner, finely divided adsorbents have been required.

例えば、特許文献1には、BET比表面積が60m/g以上で、直径2〜100nmの範囲にある細孔の全細孔容積が0.35ml/g以上であって、粒子径が0.25mm以下の粒子を80質量%以上含有する酸化カルシウム粉末が開示されている。また、本文献には、水酸化カルシウム粉末を300Pa以下の圧力下、315〜500℃の温度にて焼成することにより、反応性の高い酸化カルシウム粉末を製造する方法も開示されている。For example, Patent Document 1 states that the BET specific surface area is 60 m 2 / g or more, the total pore volume of pores in the range of 2 to 100 nm in diameter is 0.35 ml / g or more, and the particle size is 0. Calcium oxide powder containing 80% by mass or more of particles of 25 mm or less is disclosed. Further, this document also discloses a method for producing highly reactive calcium oxide powder by calcining calcium hydroxide powder at a temperature of 315 to 500 ° C. under a pressure of 300 Pa or less.

また、特許文献2には、温度23℃、相対湿度45%RHの調整された大気中に1時間静置したときの質量増加量が、1cmあたりに換算して0.15g以上である粒状生石灰が記載されている。また、本文献の粒状生石灰は、粒子径が0.075mm以上の粒子を50質量%以上含み、粒子径が1.0mm以上の粒子を10質量%以上含まないことも記載されている。さらに、本文献には、ゆるみ見掛けかさ密度が0.5〜1.0g/cmの範囲にあり、かつBET比表面積が10m/g以上の粒状消石灰を、300Pa以下の圧力下、325〜500℃の温度にて1時間以上焼成する粒状生石灰の製造方法も記載されている。Further, Patent Document 2, the temperature 23 ° C., has a weight increase of the adjusted when allowed to stand for 1 hour in the atmosphere of RH 45% relative humidity is, 0.15 g or more in terms of per 1 cm 3 particulate Quicklime is listed. It is also described that the granular quicklime of the present document contains 50% by mass or more of particles having a particle size of 0.075 mm or more and does not contain 10% by mass or more of particles having a particle size of 1.0 mm or more. Further, in this document, granular slaked lime having a loose apparent bulk density in the range of 0.5 to 1.0 g / cm 3 and a BET specific surface area of 10 m 2 / g or more is 325 to 325 under a pressure of 300 Pa or less. A method for producing granular quicklime, which is calcined at a temperature of 500 ° C. for 1 hour or more, is also described.

さらに、特許文献3には、非プロトン性極性溶媒層を有する酸化カルシウム粒子を主成分とし、疎水性かつ高い吸着速度を兼ね備えた水分吸着剤が記載されている。また、本文献に記載された水分吸着剤のBET比表面積は1〜100m/gが好ましいこと、平均粒子径は0.05〜10μmが好ましいことが記載されている。さらに、本文献には、酸化カルシウムを非プロトン性有機溶媒存在下で微粉化する水分吸着剤の製造方法も記載されている。Further, Patent Document 3 describes a water adsorbent containing calcium oxide particles having an aprotic polar solvent layer as a main component, which is hydrophobic and has a high adsorption rate. Further, it is described that the BET specific surface area of the water adsorbent described in this document is preferably 1 to 100 m 2 / g, and the average particle size is preferably 0.05 to 10 μm. Further, this document also describes a method for producing a water adsorbent that micronizes calcium oxide in the presence of an aprotic organic solvent.

特許第5165213号公報(請求項1,6、段落0029参照)Japanese Patent No. 5165213 (see claims 1, 6 and paragraph 0029) 特許第4387870号公報(請求項1、段落0024参照)Japanese Patent No. 4387870 (see claim 1, paragraph 0024) 国際公開第2014/109330号(請求項1、段落0011参照)WO 2014/109330 (see claim 1, paragraph 0011)

特許文献1,2では、平均粒子径が比較的大きいため、粒子の微小化の点においてまだ改善の余地があった。また、これらの文献のように真空焼成で製造した酸化カルシウムは、結晶性が低いため、水や酸性ガスとの化学反応性が低くなりがちである。
特に、電子機器用や真空断熱材では低密度の水分や酸性ガスを吸着する必要があるため、化学反応性の寄与が大きく、単に比表面積を大きくしただけでは、吸着性能を最適化することが困難である。また、酸化カルシウム粉末の製造に真空焼成炉が必要であるため高コストになりがちであり、コスト面で改善の余地があった。
In Patent Documents 1 and 2, since the average particle size is relatively large, there is still room for improvement in terms of particle miniaturization. Further, calcium oxide produced by vacuum firing as in these documents has low crystallinity, and therefore tends to have low chemical reactivity with water or acid gas.
In particular, for electronic devices and vacuum heat insulating materials, it is necessary to adsorb low-density water and acid gas, so the contribution of chemical reactivity is large, and simply increasing the specific surface area can optimize the adsorption performance. Have difficulty. In addition, since a vacuum firing furnace is required for the production of calcium oxide powder, the cost tends to be high, and there is room for improvement in terms of cost.

特許文献3の酸化カルシウムは、吸着性能にすぐれているが、粒子表面に被膜された非プロトン性有機溶媒が気化することにより、電子機器の性能や真空断熱材中の真空度に影響を与える可能性がある。 Calcium oxide of Patent Document 3 has excellent adsorption performance, but it can affect the performance of electronic devices and the degree of vacuum in the vacuum heat insulating material by vaporizing the aprotic organic solvent coated on the particle surface. There is sex.

本発明の目的は、粒子が微小であり、水分及び酸性ガスの吸着性に優れた酸化カルシウム粉末及び吸着剤並びに酸化カルシウム粉末の製造方法を提供することにある。 An object of the present invention is to provide a calcium oxide powder and an adsorbent having fine particles and excellent adsorption of water and acid gas, and a method for producing the calcium oxide powder.

本発明者らは、以上の目的を達成するために、鋭意検討した結果、所定の製造方法で酸化カルシウム粉末を製造することで、粒子が微小であり、水分及び酸性ガスの吸着性に優れた酸化カルシウム粉末を製造できることを見出し、本発明を完成させるに至った。 As a result of diligent studies to achieve the above object, the present inventors have produced calcium oxide powder by a predetermined production method, so that the particles are fine and the adsorption property of water and acid gas is excellent. They have found that calcium oxide powder can be produced, and have completed the present invention.

すなわち、本発明は、平均粒子径が10μm以下であり、BET比表面積10〜30m/gの範囲内であり、塩基度が25〜100μmol/mの範囲内であり、水蒸気圧100Paの条件下における水蒸気吸着量が200ml/g以上であることを特徴とする酸化カルシウム粉末である。That is, in the present invention, the condition is that the average particle size is 10 μm or less, the BET specific surface area is in the range of 10 to 30 m 2 / g, the basicity is in the range of 25 to 100 μmol / m 2 , and the water vapor pressure is 100 Pa. It is a calcium oxide powder characterized in that the amount of water vapor adsorbed below is 200 ml / g or more.

ここで、粒度分布(D90)が1〜8μmの範囲内であることが好ましい。 Here, the particle size distribution (D90) is preferably in the range of 1 to 8 μm.

また、本発明は、上記のいずれかに記載の酸化カルシウム粉末を含有することを特徴とする吸着剤である。 Further, the present invention is an adsorbent characterized by containing the calcium oxide powder according to any one of the above.

また、本発明は、500〜700℃の範囲内の条件下で水酸化カルシウムを大気中で焼成して酸化カルシウムを生成する焼成工程と、前記酸化カルシウムを粉末状に粉砕する粉砕工程と、を備えることを特徴とする酸化カルシウム粉末の製造方法である。 Further, the present invention comprises a firing step of calcining calcium hydroxide in the air to generate calcium oxide under conditions in the range of 500 to 700 ° C., and a pulverization step of pulverizing the calcium oxide into powder. It is a method for producing calcium oxide powder, which is characterized by being provided.

ここで、前記粉末状の前記酸化カルシウムを分級する分級工程をさらに備えることが好ましい。 Here, it is preferable to further include a classification step for classifying the powdered calcium oxide.

本発明によれば、粒子が微小であり、水分及び酸性ガスの吸着性に優れた酸化カルシウム粉末及び吸着剤並びに酸化カルシウム粉末の製造方法を提供することが可能となる。 According to the present invention, it is possible to provide a calcium oxide powder and an adsorbent having fine particles and excellent adsorption of water and acid gas, and a method for producing the calcium oxide powder.

1.酸化カルシウム粉末(吸着剤)
本発明の酸化カルシウム粉末は、平均粒子径が10μm以下であり、BET比表面積10〜30m/gの範囲内であり、塩基度が25〜100μmol/mの範囲内であり、水蒸気圧100Paの条件下における水蒸気吸着量が200ml/g以上である。
1. 1. Calcium oxide powder (adsorbent)
The calcium oxide powder of the present invention has an average particle size of 10 μm or less, a BET specific surface area of 10 to 30 m 2 / g, a basicity of 25 to 100 μmol / m 2 , and a water vapor pressure of 100 Pa. The amount of water vapor adsorbed under the above conditions is 200 ml / g or more.

酸化カルシウム粉末の平均粒子径は、10μm以下であり、好ましくは5μm以下であり、より好ましくは3μm以下である。酸化カルシウム粉末の平均粒子径が10μmを上回ると、粒径が大きくなりすぎるため、小型の電子機器や断熱材等には不向きとなりやすいほか、塗布や充填物として使用した際に外観が悪くなりやすい。酸化カルシウム粉末の平均粒子径の下限は、特に制限はないが、通常は10nm以上である。平均粒子径が10nmを下回る酸化カルシウム粉末は製造が困難であるほか、粒径が小さすぎて取り扱いが困難となりやすい。 The average particle size of the calcium oxide powder is 10 μm or less, preferably 5 μm or less, and more preferably 3 μm or less. If the average particle size of the calcium oxide powder exceeds 10 μm, the particle size becomes too large, which makes it unsuitable for small electronic devices and heat insulating materials, and also tends to deteriorate the appearance when used as a coating or filling material. .. The lower limit of the average particle size of the calcium oxide powder is not particularly limited, but is usually 10 nm or more. Calcium oxide powder having an average particle size of less than 10 nm is difficult to produce, and the particle size is too small to handle easily.

酸化カルシウム粉末のBET比表面積は、10〜30m/gの範囲内であり、好ましくは12〜25m/gの範囲内であり、より好ましくは15〜20m/gの範囲内である。酸化カルシウム粉末のBET比表面積が10m/gを下回ると、水分や酸性ガスの吸着速度が遅くなる傾向がある。一方、酸化カルシウム粉末のBET比表面積が30m/gを上回ると水分や酸性ガスの吸着速度が速すぎて取り扱いが困難になりやすい。したがって、酸化カルシウム粉末のBET比表面積が10〜30m/gの範囲内であると、水分や酸性ガスの吸着速度が適切であり、かつ取り扱い性が良好となる。BET specific surface area of the calcium oxide powder is in the range of 10 to 30 m 2 / g, preferably in the range of 12~25m 2 / g, more preferably in the range of 15-20 meters 2 / g. When the BET specific surface area of the calcium oxide powder is less than 10 m 2 / g, the adsorption rate of water and acid gas tends to be slow. On the other hand, if the BET specific surface area of the calcium oxide powder exceeds 30 m 2 / g, the adsorption rate of water and acid gas is too fast, and handling tends to be difficult. Therefore, when the BET specific surface area of the calcium oxide powder is in the range of 10 to 30 m 2 / g, the adsorption rate of water and acid gas is appropriate, and the handleability is good.

酸化カルシウム粉末の塩基度は、25〜100μmol/mの範囲内であり、好ましくは28〜50μmol/mの範囲内であり、より好ましくは30〜40μmol/mの範囲内である。酸化カルシウム粉末の塩基度が25μmol/mを下回ると、酸性ガスの吸着速度が遅くなる傾向がある。一方、酸化カルシウム粉末の塩基度が100μmol/mを上回ると、酸性ガスの吸着速度が速すぎて取り扱いが困難になりやすい。したがって、酸化カルシウム粉末の塩基度が25〜100μmol/mの範囲内であると、酸性ガスの吸着速度が適切であり、かつ取り扱い性が良好となる。ここで言う塩基度は、酸化カルシウムの比表面積1m/gあたりの二酸化炭素吸着量で定義され、後述する実施例に記載された方法あるいはこれに準じた方法で測定した値を意味する。The basicity of the calcium oxide powder is in the range of 25 to 100 μmol / m 2 , preferably in the range of 28 to 50 μmol / m 2 , and more preferably in the range of 30 to 40 μmol / m 2 . When the basicity of the calcium oxide powder is less than 25 μmol / m 2 , the adsorption rate of acid gas tends to be slow. On the other hand, if the basicity of the calcium oxide powder exceeds 100 μmol / m 2 , the adsorption rate of the acid gas is too fast and it tends to be difficult to handle. Therefore, when the basicity of the calcium oxide powder is in the range of 25 to 100 μmol / m 2 , the adsorption rate of the acid gas is appropriate and the handleability is good. The basicity referred to here is defined by the amount of carbon dioxide adsorbed per 1 m 2 / g of the specific surface area of calcium oxide, and means a value measured by the method described in Examples described later or a method similar thereto.

酸化カルシウム粉末の水蒸気圧100Paの条件下における水蒸気吸着量は、200ml/g以上であり、好ましくは230ml/g以上であり、より好ましくは250ml/g以上である。上記の水蒸気吸着量が200ml/gを下回ると、吸水量が小さくて吸湿性能が低い。上記の水蒸気吸着量の上限は、特に制限はないが、通常は5000ml/g以下であり、1000ml/g以下であり、500ml/g以下である。 The amount of water vapor adsorbed on the calcium oxide powder under the condition of a water vapor pressure of 100 Pa is 200 ml / g or more, preferably 230 ml / g or more, and more preferably 250 ml / g or more. When the above-mentioned water vapor adsorption amount is less than 200 ml / g, the water absorption amount is small and the moisture absorption performance is low. The upper limit of the above-mentioned water vapor adsorption amount is not particularly limited, but is usually 5000 ml / g or less, 1000 ml / g or less, and 500 ml / g or less.

酸化カルシウム粉末の粒度分布における90%粒径(粒度の小さいものから累積90%における粒径:「D90」)は、特に制限はないが、通常は1〜8μmの範囲内であり、好ましくは2〜7μmの範囲内であり、より好ましくは3〜6μmの範囲内である。酸化カルシウム粉末のD90が8μmを上回ると、粒径が大きくなりすぎるため、小型の電子機器や断熱材等には不向きとなりやすいほか、塗布や充填物として使用した際に外観が悪くなりやすい。酸化カルシウム粉末のD90が1μmを下回ると、製造が困難であるほか、粒径が小さすぎて取り扱いが困難となりやすい。 The 90% particle size (particle size from the smallest particle size to the cumulative 90% particle size: "D90") in the particle size distribution of the calcium oxide powder is not particularly limited, but is usually in the range of 1 to 8 μm, preferably 2. It is in the range of ~ 7 μm, more preferably in the range of 3 to 6 μm. If the D90 of the calcium oxide powder exceeds 8 μm, the particle size becomes too large, which makes it unsuitable for small electronic devices, heat insulating materials, etc., and also tends to deteriorate the appearance when used as a coating material or a filling material. If the D90 of the calcium oxide powder is less than 1 μm, it is difficult to manufacture and the particle size is too small to handle easily.

本発明の酸化カルシウム粉末は、表面が被覆されることなく酸化カルシウムが直接外気と接し、高いBET比表面積と塩基度を併せ持っているため、特に低密度(低圧)の水分や酸性ガスを効果的に吸収することができる。また、本発明の酸化カルシウム粉末は、平均粒子径が小さく微粉化されているため、電子機器や断熱材の小型化・薄膜化に対応できる。 The calcium oxide powder of the present invention is particularly effective for low density (low pressure) water and acid gas because calcium oxide is in direct contact with the outside air without coating the surface and has a high BET specific surface area and basicity. Can be absorbed by. Further, since the calcium oxide powder of the present invention has a small average particle size and is pulverized, it can be used for miniaturization and thinning of electronic devices and heat insulating materials.

本発明の酸化カルシウム粉末は、特に真空断熱材の吸湿剤、酸性ガスの吸着剤としての用途に特に適している。真空断熱材とは、袋状に加工したラミネートフィルム内に芯材を収納したのちにラミネートフィルム内を減圧して密封した断熱材である。ラミネートフィルム内に空気や水分が侵入すると断熱性が低下するが、本発明の酸化カルシウム粉末をラミネートフィルム内に配合することで、空気や水分の侵入を防止しつつ酸化カルシウム粉末に起因するガスの発生が無いため、断熱性を高い状態で維持することができる。 The calcium oxide powder of the present invention is particularly suitable for use as a hygroscopic agent for a vacuum heat insulating material and an adsorbent for acid gas. The vacuum heat insulating material is a heat insulating material in which the core material is stored in a bag-shaped laminated film and then the inside of the laminated film is depressurized and sealed. When air or moisture enters the laminate film, the heat insulating property deteriorates. However, by blending the calcium oxide powder of the present invention into the laminate film, the gas caused by the calcium oxide powder can be prevented while preventing the intrusion of air and moisture. Since it does not occur, the heat insulating property can be maintained in a high state.

特に、本発明の酸化カルシウム粉末は、有機EL等の電子機器の吸湿剤、酸性ガスの吸着剤に適している。例えば、本発明の酸化カルシウム粉末は、合成樹脂に分散させて、シート状、ペレット状、板状、フィルム状に成形して利用することができる。これらの成形物は、有機ELディスプレイなどの電子機器用の乾燥剤として有利に使用することができる。合成樹脂には、ポリオレフィン樹脂、ポリアクリル樹脂、ポリアクリルニトリル樹脂、ポリアミド樹脂、ポリエステル樹脂、エポキシ樹脂、ポリカーボネート樹脂及びフッ素樹脂を用いることができる。また、本発明の酸化カルシウム粉末は、通常の吸湿剤に用いられている透湿性の袋や容器に収容して使用することもできる。このようにすることで、樹脂中を透過するわずかな水分や酸性ガスを酸化カルシウム粉末で効果的に吸着できる。なお、酸化カルシウム粉末は、単独で使用してもよいし、他の吸湿性材料(例えば、シリカゲルやモレキュラーシーブ)と併用してもよい。 In particular, the calcium oxide powder of the present invention is suitable as a hygroscopic agent for electronic devices such as organic EL and an adsorbent for acid gas. For example, the calcium oxide powder of the present invention can be dispersed in a synthetic resin and molded into a sheet, pellet, plate, or film for use. These molded products can be advantageously used as a desiccant for electronic devices such as organic EL displays. As the synthetic resin, polyolefin resin, polyacrylic resin, polyacrylic nitrile resin, polyamide resin, polyester resin, epoxy resin, polycarbonate resin and fluororesin can be used. Further, the calcium oxide powder of the present invention can also be used by being housed in a moisture-permeable bag or container used for a normal hygroscopic agent. By doing so, the calcium oxide powder can effectively adsorb a small amount of water or acid gas that permeates the resin. The calcium oxide powder may be used alone or in combination with other hygroscopic materials (for example, silica gel or molecular sieve).

本発明の酸化カルシウムは、粉末状のまま用いてもよく、あるいは任意の形状に成形して使用してもよい。また、本発明の酸化カルシウムを適当な溶媒や高分子材料に充填した塗料、高分子材料に充填したテープやフィルムなどとして使用することができる。このため、有機EL、液晶等の水分を忌避する電子デバイス用乾燥剤、冷蔵庫・二重ガラスなどの断熱層用乾燥剤、バリアフィルムの水分吸着層、密閉容器のパッキン用(化学品、医薬品、食品の劣化防止)、真空配管の内面塗布用、Oリング用(高真空維持)などにも好適に使用することができる。 The calcium oxide of the present invention may be used as it is in powder form, or may be molded into an arbitrary shape and used. Further, it can be used as a paint in which the calcium oxide of the present invention is filled in an appropriate solvent or a polymer material, a tape or a film filled in the polymer material, or the like. For this reason, desiccants for electronic devices such as organic EL and liquid crystal that repel moisture, desiccants for heat insulating layers such as refrigerators and double glass, moisture adsorbing layers for barrier films, and packings for closed containers (chemicals, pharmaceuticals, etc.) It can also be suitably used for food deterioration prevention), for coating the inner surface of a vacuum pipe, for an O-ring (maintaining a high vacuum), and the like.

2.酸化カルシウムの製造方法
本発明の酸化カルシウムの製造方法は、500〜700℃の範囲内の条件下で水酸化カルシウムを大気中で焼成して酸化カルシウムを生成する焼成工程と、焼成工程で得られた酸化カルシウムを粉末状に粉砕する粉砕工程と、さらに必要に応じて粉末工程で得られた粉末状の酸化カルシウムを分級する分級工程を備える。
2. 2. Method for Producing Calcium Oxide The method for producing calcium oxide of the present invention is obtained by a firing step of calcining calcium hydroxide in the air under conditions within the range of 500 to 700 ° C. to produce calcium oxide, and a calcining step. It is provided with a crushing step of crushing the quick calcium oxide into a powder, and a classification step of classifying the powdered calcium oxide obtained in the powder step, if necessary.

(1)焼成工程
焼成工程は、原料となる水酸化カルシウムを焼成し、酸化カルシウムを生成する工程である。水酸化カルシウム(消石灰)の種類や製造方法は、特に制限なく、例えば酸化カルシウムに水を加えて水和したものなどを使用することができる。
(1) Firing step The calcining step is a step of calcining calcium hydroxide as a raw material to generate calcium oxide. The type and production method of calcium hydroxide (slaked lime) are not particularly limited, and for example, calcium oxide hydrated by adding water can be used.

焼成工程は、500〜700℃の範囲内の高温で、かつ大気中で行う。焼成温度が500℃を下回ると、焼成が不十分で得られる酸化カルシウム粉末の結晶性が低くなり、水分や酸性ガスの吸着性が低くなりやすい。一方、焼成温度が700℃を上回ると、BET比表面積が小さくなり、水分や酸性ガスの吸着性が低くなりやすい。焼成時間は、特に制限はないが、通常は30分〜30時間の範囲内である。 The firing step is performed at a high temperature in the range of 500 to 700 ° C. and in the atmosphere. When the firing temperature is lower than 500 ° C., the crystallinity of the calcium oxide powder obtained by insufficient firing is lowered, and the adsorptivity of water and acid gas is likely to be lowered. On the other hand, when the firing temperature exceeds 700 ° C., the BET specific surface area tends to be small, and the adsorptivity of water and acid gas tends to be low. The firing time is not particularly limited, but is usually in the range of 30 minutes to 30 hours.

焼成工程は、大気中、すなわち、空気中かつ大気圧(約0.1MPa)で焼成を行う。このように、焼成工程を大気中で行うことにより、生成する酸化カルシウムの結晶性が高く、その結果、塩基度が高くて酸性ガスの吸着性が優れたものとなる。また、大気中で焼成工程を行うことで、真空焼成を行う場合と比較して、低コストで焼成を行うこともできる。 In the firing step, firing is performed in the atmosphere, that is, in the air and at atmospheric pressure (about 0.1 MPa). By performing the firing step in the atmosphere in this way, the crystallinity of the calcium oxide produced is high, and as a result, the basicity is high and the adsorption of acid gas is excellent. Further, by performing the firing step in the atmosphere, firing can be performed at a lower cost than in the case of performing vacuum firing.

(2)粉砕工程
粉砕工程は、焼成工程で得られた酸化カルシウムを粉末状に粉砕する工程である。焼成後に粉砕を行うことにより、粒子径が小さく、かつBET比表面積が高い酸化カルシウム粉末を製造することができる。
(2) Crushing Step The crushing step is a step of crushing the calcium oxide obtained in the firing step into powder. By pulverizing after firing, calcium oxide powder having a small particle size and a high BET specific surface area can be produced.

粉砕の方法は、特に限定されないが、メディアミル、回転ボールミル、振動ボールミル、遊星ボールミル、ロッキングミル、ペイントシェーカー、気流式粉砕機などの粉砕装置を使用することができる。粉砕装置の中で好ましいものは、気流式粉砕機であり、特に、微細かつシャープな粒度分布の粉体が得られることから、ジェットミルが好ましい。酸化カルシウム粉末の粒度分布がシャープであると、酸化カルシウム粉末の吸湿速度が安定化するため好ましい。なお、ジェットミルでの粉砕条件としては、例えば窒素やアルゴンなどの不活性ガス雰囲気下で、原料供給速度5kg/hにおいては、粉砕圧力を、0.3〜1.5MPa、より好ましくは0.3〜1.0MPaにすることが好ましい。 The crushing method is not particularly limited, but a crushing device such as a media mill, a rotating ball mill, a vibrating ball mill, a planetary ball mill, a locking mill, a paint shaker, or an air flow type crusher can be used. Among the crushers, an airflow type crusher is preferable, and a jet mill is particularly preferable because a powder having a fine and sharp particle size distribution can be obtained. A sharp particle size distribution of the calcium oxide powder is preferable because the moisture absorption rate of the calcium oxide powder is stabilized. As the crushing conditions in the jet mill, for example, in an atmosphere of an inert gas such as nitrogen or argon, at a raw material supply rate of 5 kg / h, the crushing pressure is 0.3 to 1.5 MPa, more preferably 0. It is preferably 3 to 1.0 MPa.

(3)分級工程
粉砕工程後の酸化カルシウムは、必要に応じて分級することが好ましい。分級工程は、適度な目開きの篩などを用いて行うことができる。分級工程では、酸化カルシウムの平均粒子径が10μm以下となるように行い、さらに、粒度分布(D90)が1〜8μmの範囲内となるように粒度分布を調整することが好ましい。
(3) Classification step Calcium oxide after the pulverization step is preferably classified as needed. The classification step can be performed using a sieve having an appropriate opening. In the classification step, it is preferable that the average particle size of calcium oxide is 10 μm or less, and the particle size distribution (D90) is adjusted to be within the range of 1 to 8 μm.

以下、本発明を実施例に基づいて具体的に説明するが、これらは本発明の目的を限定するものではなく、また、本発明は、これら実施例に限定されるものではない。 Hereinafter, the present invention will be specifically described based on examples, but these do not limit the object of the present invention, and the present invention is not limited to these examples.

[BET比表面積の測定方法]
BET比表面積の測定は、Monosorb(Quantachrome Instruments製)を用いてBET一点法により測定した。
[Measurement method of BET specific surface area]
The BET specific surface area was measured by the BET one-point method using Monosorb (manufactured by Quantachrome Instruments).

[塩基度の測定方法]
二酸化炭素の吸着量は昇温式脱離吸着過程測定(CO−TPD)法を測定して1gあたりの二酸化炭素吸着量を算出し、下記の式により、塩基度を換算した。二酸化炭素の昇温式脱離吸着過程測定(CO−TPD)は、BELCAT−B(日本ベル株式会社製)を用いて測定した。
塩基度(μmol/m)= 1gあたりの二酸化炭素吸着量(μmol/g)/比表面積(m/g) ・・・式
[Measurement method of basicity]
Adsorption amount of carbon dioxide calculated carbon dioxide adsorption amount per 1g by measuring NoboriAtsushishiki desorption adsorption process measurement (CO 2 -TPD) method, by the following formula, by converting the basicity. Heating type desorption adsorption process measurement of carbon dioxide (CO 2 -TPD) was measured using a BELCAT-B (manufactured by Nippon Bell Co., Ltd.).
Basicity (μmol / m 2 ) = Carbon dioxide adsorption amount per 1 g (μmol / g) / Specific surface area (m 2 / g) ...

[水蒸気吸着量の測定方法]
水蒸気吸着量は、高精度全自動ガス吸着装置 BELSORP18(日本ベル株式会社製)を用いて水蒸気吸着等温線を測定し、水蒸気圧100Paでの酸化カルシウム1gあたりの水分吸着量(ml/g)を測定した。水分吸着量は、標準状態(0℃、1気圧)における気体の体積に換算した値である。
[Measurement method of water vapor adsorption amount]
The amount of water vapor adsorbed is measured by measuring the isotherm of water vapor adsorption using the high-precision fully automatic gas adsorption device BELSORP18 (manufactured by Nippon Bell Co., Ltd.), and the amount of water adsorbed per 1 g of calcium oxide (ml / g) at a water vapor pressure of 100 Pa. It was measured. The amount of water adsorbed is a value converted into the volume of gas in a standard state (0 ° C., 1 atm).

[平均粒子径及び粒度分布(D90)の測定方法]
試料の分散溶媒としてエタノールを使用し、超音波ホモジナイザー(MODEL US−150T、(株)日本精機製作所製)で3分間分散処理を行った。分散させた試料をレーザー回析法粒度分布分析装置(MICROTRAC HRA9320−X100、日機装(株)製)を用いて平均粒子径と粒度分布(D90)とをそれぞれ測定した。
[Measuring method of average particle size and particle size distribution (D90)]
Ethanol was used as a dispersion solvent for the sample, and dispersion treatment was performed for 3 minutes with an ultrasonic homogenizer (MODEL US-150T, manufactured by Nippon Seiki Seisakusho Co., Ltd.). The dispersed sample was measured for average particle size and particle size distribution (D90) using a laser diffraction method particle size distribution analyzer (MICROTRAC HRA9320-X100, manufactured by Nikkiso Co., Ltd.).

[実施例1]
水酸化カルシウム微粉末(CH−2N 宇部マテリアルズ株式会社製)を大気中で600℃、10時間焼成し、窒素雰囲気下ジェットミル(STJ−200 株式会社セイシン企業製)を用いて供給量5kg/h、圧力0.7MPaの条件で粉砕して酸化カルシウム粉末を得た。得られた酸化カルシウム粉末のBET比表面積は17.0m/gであり、塩基度は45.9μmol/mであった。水蒸気吸着量は、水蒸気圧100Paで265ml/gであった。また、平均粒子径は1.8μm、D90は3.1μmであった。その結果を表1に示す。
[Example 1]
Fine calcium hydroxide powder (CH-2N manufactured by Ube Material Industries Ltd.) is calcined in the air at 600 ° C. for 10 hours, and a jet mill (STJ-200 manufactured by Seishin Enterprise Co., Ltd.) is used to supply 5 kg / Calcium oxide powder was obtained by pulverization under the conditions of h and a pressure of 0.7 MPa. The obtained calcium oxide powder had a BET specific surface area of 17.0 m 2 / g and a basicity of 45.9 μmol / m 2 . The amount of water vapor adsorbed was 265 ml / g at a water vapor pressure of 100 Pa. The average particle size was 1.8 μm, and the D90 was 3.1 μm. The results are shown in Table 1.

[実施例2]
水酸化カルシウム微粉末(CH−2N 宇部マテリアルズ株式会社製)を大気中で600℃、10時間焼成し、窒素雰囲気下ジェットミル(STJ−200 株式会社セイシン企業製)を用いて供給量2kg/h、圧力0.7MPaの条件で粉砕して酸化カルシウム粉末を得た。得られた酸化カルシウム粉末のBET比表面積は16.8m/gであり、塩基度は36.5μmol/mであった。水蒸気吸着量は、水蒸気圧100Paで232ml/gであった。また、平均粒子径は1.8μm、D90は3.2μmであった。その結果を表1に示す。
[Example 2]
Fine calcium hydroxide powder (CH-2N manufactured by Ube Material Industries Ltd.) is calcined in the air at 600 ° C. for 10 hours, and supplied in a nitrogen atmosphere using a jet mill (STJ-200 manufactured by Seishin Enterprise Co., Ltd.) 2 kg / kg / Calcium oxide powder was obtained by pulverization under the conditions of h and a pressure of 0.7 MPa. The obtained calcium oxide powder had a BET specific surface area of 16.8 m 2 / g and a basicity of 36.5 μmol / m 2 . The amount of water vapor adsorbed was 232 ml / g at a water vapor pressure of 100 Pa. The average particle size was 1.8 μm and D90 was 3.2 μm. The results are shown in Table 1.

[比較例1]
水酸化カルシウム微粉末(CH−2N 宇部マテリアルズ株式会社製)を真空焼成炉に入れ、真空ポンプを用いて炉内圧力を60Paとした後、500℃で4時間焼成して、酸化カルシウム粉末を得た。得られた酸化カルシウム粉末のBET比表面積は62.4m/gであり、塩基度は24.4μmol/mであった。水蒸気吸着量は、水蒸気圧100Paで155ml/gであった。また、平均粒子径は4.4μm、D90は8.9μmであった。その結果を表1に示す。
[Comparative Example 1]
Fine calcium hydroxide powder (CH-2N manufactured by Ube Materials Co., Ltd.) is placed in a vacuum firing furnace, the pressure inside the furnace is adjusted to 60 Pa using a vacuum pump, and then the powder is fired at 500 ° C. for 4 hours to obtain calcium oxide powder. Obtained. The obtained calcium oxide powder had a BET specific surface area of 62.4 m 2 / g and a basicity of 24.4 μmol / m 2 . The amount of water vapor adsorbed was 155 ml / g at a water vapor pressure of 100 Pa. The average particle size was 4.4 μm and D90 was 8.9 μm. The results are shown in Table 1.

[比較例2]
水酸化カルシウム微粉末(CH−2N 宇部マテリアルズ株式会社製)を600℃で10時間焼成して酸化カルシウム粉末を得た(ジェットミル粉砕なし)。得られた酸化カルシウム粉末のBET比表面積は13.6m/gであり、塩基度は47.8μmol/mであった。水蒸気吸着量は、水蒸気圧100Paで131ml/gであった。また、平均粒子径は5.0μm、D90は9.0μmであった。その結果を表1に示す。
[Comparative Example 2]
Calcium hydroxide fine powder (CH-2N manufactured by Ube Material Industries Ltd.) was calcined at 600 ° C. for 10 hours to obtain calcium oxide powder (without jet mill pulverization). The obtained calcium oxide powder had a BET specific surface area of 13.6 m 2 / g and a basicity of 47.8 μmol / m 2 . The amount of water vapor adsorbed was 131 ml / g at a water vapor pressure of 100 Pa. The average particle size was 5.0 μm and D90 was 9.0 μm. The results are shown in Table 1.

[比較例3]
吸湿剤として市販されている粒状生石灰(ライスガード 宇部マテリアルズ株式会社製)を評価した。BET比表面積は1.5m/gであり、塩基度は120μmol/mであった。水蒸気吸着量は、水蒸気圧100Paで0.12ml/gであった。また、平均粒子径及びD90は1000μmを超えていた。その結果を表1に示す。
[Comparative Example 3]
Granular quicklime (manufactured by Rice Guard Ube Material Industries Ltd.), which is commercially available as a hygroscopic agent, was evaluated. The BET specific surface area was 1.5 m 2 / g and the basicity was 120 μmol / m 2 . The amount of water vapor adsorbed was 0.12 ml / g at a water vapor pressure of 100 Pa. The average particle size and D90 exceeded 1000 μm. The results are shown in Table 1.

[比較例4:WO2014/109330号(特許文献3)の実施例3と同じ製造方法]
水酸化カルシウム微粉末(CH−2N 宇部マテリアルズ株式会社製)を600℃で10時間焼成し、N−メチルピロリドンと窒素雰囲気下にて均一混合した後、窒素雰囲気下ジェットミル(STJ−200 株式会社セイシン企業製)を用いて供給量5kg/h、圧力0.7MPaの条件で粉砕して、粒子表面を有機溶媒で覆った酸化カルシウム粉末を得た。得られた酸化カルシウム粉末のBET比表面積は18.0m/gであり、塩基度は38.3μmol/mであった。水蒸気吸着量は、水蒸気圧100Paで78ml/gであった。また、平均粒子径は1.1μm、D90は3.1μmであった。その結果を表1に示す。
[Comparative Example 4: The same manufacturing method as in Example 3 of WO2014 / 109330 (Patent Document 3)]
Fine calcium hydroxide powder (CH-2N manufactured by Ube Materials Co., Ltd.) is calcined at 600 ° C. for 10 hours, uniformly mixed with N-methylpyrrolidone in a nitrogen atmosphere, and then jet mill in a nitrogen atmosphere (STJ-200 shares). The powder was pulverized with a supply amount of 5 kg / h and a pressure of 0.7 MPa using Seishin Enterprise Co., Ltd.) to obtain a calcium oxide powder in which the particle surface was covered with an organic solvent. The obtained calcium oxide powder had a BET specific surface area of 18.0 m 2 / g and a basicity of 38.3 μmol / m 2 . The amount of water vapor adsorbed was 78 ml / g at a water vapor pressure of 100 Pa. The average particle size was 1.1 μm and D90 was 3.1 μm. The results are shown in Table 1.

Figure 0006759327
Figure 0006759327

以上の結果から、実施例1〜2の酸化カルシウムは、塩基度が25〜100μmol/mの範囲内であることから酸性ガスの吸着性に優れ、かつ水蒸気圧100Paの条件下における水蒸気吸着量が200ml/g以上であることから水分の吸着性にも優れていることがわかった。一方、比較例1のように真空焼成したものは、実施例1〜2と比べて、BET比表面積と粒径分布が大きく、塩基度と水蒸気吸着量において劣ることがわかった。また、比較例2のように粉砕工程のないものは、水蒸気吸着量に劣ることがわかった。さらに、比較例3の市販の乾燥剤は実施例1〜3と比べて粒径が大きいことがわかった。さらにまた、比較例4のようにN−メチルピロリドンで表面処理したものは実施例1〜3と比べて水蒸気吸着量において劣ることがわかった。From the above results, the calcium oxide of Examples 1 and 2 has an excellent acid gas adsorption property because the basicity is in the range of 25 to 100 μmol / m 2 , and the amount of water vapor adsorbed under the condition of a water vapor pressure of 100 Pa. It was found that the water vapor adsorption property was also excellent because the water vapor content was 200 ml / g or more. On the other hand, it was found that the vacuum-fired product as in Comparative Example 1 had a larger BET specific surface area and particle size distribution and was inferior in basicity and water vapor adsorption amount as compared with Examples 1 and 2. Further, it was found that the one without the pulverization step as in Comparative Example 2 was inferior in the amount of water vapor adsorbed. Furthermore, it was found that the commercially available desiccant of Comparative Example 3 had a larger particle size than Examples 1 to 3. Furthermore, it was found that those surface-treated with N-methylpyrrolidone as in Comparative Example 4 were inferior in the amount of water vapor adsorption as compared with Examples 1 to 3.

Claims (5)

平均粒子径が10μm以下であり、BET比表面積10〜30m/gの範囲内であり、塩基度が25〜100μmol/mの範囲内であり、水蒸気圧100Paの条件下における水蒸気吸着量が200ml/g以上であることを特徴とする酸化カルシウム粉末。The average particle size is 10 μm or less, the BET specific surface area is in the range of 10 to 30 m 2 / g, the basicity is in the range of 25 to 100 μmol / m 2 , and the amount of water vapor adsorbed under the condition of water vapor pressure of 100 Pa. Calcium oxide powder characterized by being 200 ml / g or more. 粒度分布(D90)が1〜8μmの範囲内であることを特徴とする請求項1に記載の酸化カルシウム粉末。 The calcium oxide powder according to claim 1, wherein the particle size distribution (D90) is in the range of 1 to 8 μm. 請求項1又は2に記載の酸化カルシウム粉末を含有することを特徴とする吸着剤。 An adsorbent containing the calcium oxide powder according to claim 1 or 2. 請求項1に記載の酸化カルシウム粉末の製造方法であって、
500〜700℃の範囲内の条件下で水酸化カルシウムを大気中で焼成して酸化カルシウムを生成する焼成工程と、
前記酸化カルシウムを粉末状に粉砕する粉砕工程と、を備えることを特徴とする酸化カルシウム粉末の製造方法。
The method for producing calcium oxide powder according to claim 1.
A firing step of calcining calcium hydroxide in the atmosphere to produce calcium oxide under conditions in the range of 500 to 700 ° C.
A method for producing calcium oxide powder, which comprises a pulverization step of pulverizing the calcium oxide into a powder.
前記粉末状の前記酸化カルシウムを分級する分級工程をさらに備えることを特徴とする請求項4に記載の酸化カルシウム粉末の製造方法。 The method for producing calcium oxide powder according to claim 4, further comprising a classification step for classifying the powdered calcium oxide.
JP2018503280A 2016-02-29 2017-02-27 Calcium oxide powder, adsorbent, and method for producing calcium oxide powder Active JP6759327B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2016036695 2016-02-29
JP2016036695 2016-02-29
PCT/JP2017/007396 WO2017150426A1 (en) 2016-02-29 2017-02-27 Calcium oxide powder and adsorbent, and method for producing calcium oxide powder

Publications (2)

Publication Number Publication Date
JPWO2017150426A1 JPWO2017150426A1 (en) 2018-12-20
JP6759327B2 true JP6759327B2 (en) 2020-09-23

Family

ID=59743967

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018503280A Active JP6759327B2 (en) 2016-02-29 2017-02-27 Calcium oxide powder, adsorbent, and method for producing calcium oxide powder

Country Status (4)

Country Link
JP (1) JP6759327B2 (en)
KR (1) KR102596127B1 (en)
CN (1) CN108698848B (en)
WO (1) WO2017150426A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113087002B (en) * 2021-04-02 2023-05-12 沈阳东大东科干燥煅烧工程技术有限公司 Method and system for preparing calcium oxide balls from carbide slag

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5165213U (en) 1974-11-20 1976-05-22
CN1035097A (en) * 1988-02-08 1989-08-30 重庆建筑工程学院 Use production of calcium oxide of high activity from calcium carbide residue
JPH07487B2 (en) * 1988-06-06 1995-01-11 吉澤石灰工業株式会社 Highly activated quicklime production equipment
JPH09268013A (en) * 1996-03-29 1997-10-14 Yoshizawa Sekkai Kogyo Kk Production of fine powder slaked lime by utilizing fluidized bed
JP4264930B2 (en) * 2002-11-11 2009-05-20 岡山県共同石灰株式会社 Method for producing calcium oxide granules
JP5165213B2 (en) * 2006-06-20 2013-03-21 宇部マテリアルズ株式会社 Calcium oxide powder and method for producing the same
JP2009215110A (en) * 2008-03-11 2009-09-24 Ube Ind Ltd Unslaked lime powder for expansive material, expansive material for concrete, water-hardening type binding material, concrete, and method of constructing concrete structure
JP2013141656A (en) * 2012-01-12 2013-07-22 Yabashi Mine Parc Kk Moisture absorbent and method for producing the same
WO2014109330A1 (en) 2013-01-10 2014-07-17 宇部マテリアルズ株式会社 Water absorbent and method for producing same

Also Published As

Publication number Publication date
KR102596127B1 (en) 2023-10-30
CN108698848B (en) 2021-09-24
KR20180117645A (en) 2018-10-29
CN108698848A (en) 2018-10-23
JPWO2017150426A1 (en) 2018-12-20
WO2017150426A1 (en) 2017-09-08

Similar Documents

Publication Publication Date Title
TWI525045B (en) Waterborne adsorbent for organic EL element and method of manufacturing the same
Adhikari et al. Improving CO2 adsorption capacities and CO2/N2 separation efficiencies of MOF-74 (Ni, Co) by doping palladium-containing activated carbon
Talapaneni et al. Chemical blowing approach for ultramicroporous carbon nitride frameworks and their applications in gas and energy storage
Elsayed et al. Development of MIL-101 (Cr)/GrO composites for adsorption heat pump applications
Hunter‐Sellars et al. Sol–gel synthesis of high‐density zeolitic imidazolate framework monoliths via ligand assisted methods: exceptional porosity, hydrophobicity, and applications in vapor adsorption
US20190106331A1 (en) Getter material comprising intrinsic composite nanoparticles and method of production thereof
Klinthong et al. Polyallylamine and NaOH as a novel binder to pelletize amine-functionalized mesoporous silicas for CO2 capture
JP6759327B2 (en) Calcium oxide powder, adsorbent, and method for producing calcium oxide powder
TWI618576B (en) Moisture adsorbent and manufacturing method thereof
Li et al. High efficiency of toluene Ad-/Desorption on Thermal-conductive HKUST-1@ BN nanosheets composite
Guo et al. Controlling the pores of AlCl3-fumarate MOF by TiO2 nanoparticles for the improvement of its atmospheric water harvesting performance
JP6705710B2 (en) Method for producing calcium oxide powder and calcium oxide powder
JP5037066B2 (en) High specific surface area magnesium oxide powder and method for producing the same
JP4387870B2 (en) Granular quicklime
JP6807661B2 (en) Gas adsorbent, its manufacturing method, gas adsorbent using this and its manufacturing method
EP3012020A1 (en) Gas-adsorbing material and vacuum insulation material including the same
Rengga et al. Thermodynamics of formaldehyde removal by adsorption onto nanosilver loaded bamboo-based activated carbon
JP3024208B2 (en) Adsorbent for preventing gasoline evaporation and method for producing the same
JP6784440B2 (en) Gas adsorbent and vacuum heat insulating material using this
JPH1119507A (en) Adsorbent and its production
Raman et al. Preparation and characterization of impregnated commercial rice husks activated carbon with piperazine for carbon dioxide (CO2) Capture
Fazlifarda et al. P84/ZIF-8 mixed matrix membranes for pervaporation dehydration of isopropanol
CN109310987A (en) The method of storage material and storage chlorine
Ryabina et al. Adsorption capacity of water-oxidized lanthanum-doped aluminum alloy powder
Hemalatha et al. CO2 Adsorption over Zinc Oxide Impregnated NaZSM-5 Synthesized Using Rice Husk Ash

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190708

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200602

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200731

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200825

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200902

R150 Certificate of patent or registration of utility model

Ref document number: 6759327

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R157 Certificate of patent or utility model (correction)

Free format text: JAPANESE INTERMEDIATE CODE: R157

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250