JPH1119507A - Adsorbent and its production - Google Patents

Adsorbent and its production

Info

Publication number
JPH1119507A
JPH1119507A JP10078874A JP7887498A JPH1119507A JP H1119507 A JPH1119507 A JP H1119507A JP 10078874 A JP10078874 A JP 10078874A JP 7887498 A JP7887498 A JP 7887498A JP H1119507 A JPH1119507 A JP H1119507A
Authority
JP
Japan
Prior art keywords
adsorbent
voc
temperature
surface area
adsorption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10078874A
Other languages
Japanese (ja)
Other versions
JP3944302B2 (en
Inventor
Takashi Suzuki
崇 鈴木
Yoshihisa Sakurai
敬久 櫻井
Takashi Yoshizawa
隆 吉澤
Tomohiro Yoshinari
知博 吉成
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
COSMO SOGO KENKYUSHO KK
Cosmo Oil Co Ltd
Original Assignee
COSMO SOGO KENKYUSHO KK
Cosmo Oil Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by COSMO SOGO KENKYUSHO KK, Cosmo Oil Co Ltd filed Critical COSMO SOGO KENKYUSHO KK
Priority to JP07887498A priority Critical patent/JP3944302B2/en
Priority to PCT/JP1998/002013 priority patent/WO1998050149A1/en
Priority to KR1019997010276A priority patent/KR20010012324A/en
Priority to CNB98806944XA priority patent/CN1230246C/en
Priority to TW087107050A priority patent/TW415854B/en
Publication of JPH1119507A publication Critical patent/JPH1119507A/en
Application granted granted Critical
Publication of JP3944302B2 publication Critical patent/JP3944302B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Abstract

PROBLEM TO BE SOLVED: To provide an adsorbent capable of efficiently recovering a volatile organic compound(VOC) of low concentration and to provide a method for producing the adsorbent. SOLUTION: The adsorbent for volatile organic compound(VOC) gas consists of a porous granular body in which silica is a main constituent and specific surface area is 400-700 m<2> /g, average pore diameter is 0.4-3.0 nm and steam adsorption amount is 3-10 ml/g. In the method for producing the above- mentioned adsorbent, the molded pellets of silica, in which specific surface area is >=600 m<2> /g and pore volume is the range within 0.05-0.5 cm<2> /g and average pore diameter is the range within 0.4-3.0 nm, or silica gel is heated at the prescribed temperature of the range within 550-700 deg.C at temperature rise velocity within 1-20 deg.C/minute and held at this prescribed temperature at the prescribed time. In the adsorbent, VOC selectivity for steam is high.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、揮発性有機化合物
(Volatile Organic Compounds、以下VOCと言う)ガ
スの吸着剤及びその製造方法に関し、更に詳細には、圧
力変動吸着分離法(Pressure Swing Adsorption 、以下
PSA法と言う)により低濃度のVOCガスを回収する
際の吸着剤として最適な吸着剤、及びその製造方法に関
するものである。特に、本発明のVOCガス用吸着剤
は、ガソリンスタンドや油槽所等における大気中の低濃
度VOCガスをPSA法により回収する際の吸着剤とし
て好適である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a volatile organic compound (VOC) gas adsorbent and a method for producing the same, and more particularly, to a pressure swing adsorption separation method. The present invention relates to an adsorbent which is optimal as an adsorbent when recovering a low-concentration VOC gas by the PSA method, and a method for producing the same. In particular, the adsorbent for VOC gas of the present invention is suitable as an adsorbent for recovering low-concentration VOC gas in the air at a gas station or an oil depot using the PSA method.

【0002】[0002]

【従来の技術】ガソリン、塗装用有機溶剤、洗浄用塩素
系有機溶剤等の液状有機化合物には、蒸気圧の高い種々
の有機化合物成分が、多量に含まれている。蒸気圧の高
い有機化合物は、揮発し易いので、通常、揮発性有機化
合物(Volatile Organic Compounds、VOC)と呼ばれ
ている。今日では、液状有機化合物は、内燃機関用燃料
としてガソリン等の使用に加えて、塗装、印刷、洗浄等
の様々な分野で、大量に用いられていて、液状有機物化
合物の使用に伴い、相当量のVOCガス(以下、簡単に
VOCと言う)が、日常的に大気中に揮発、拡散してい
る。VOCは、揮発して大気中に放散した状態には、か
なり低い濃度になっているものの、NOx 、SOx 等と
反応して光化学スモッグを引き起こす主因になるため
に、VOCの大気中への放散を抑制することが必要であ
る。
2. Description of the Related Art Liquid organic compounds such as gasoline, organic solvents for coating, and chlorinated organic solvents for cleaning contain a large amount of various organic compound components having a high vapor pressure. Organic compounds having a high vapor pressure are easily referred to as volatile organic compounds (VOCs) because they are easily volatilized. Today, liquid organic compounds are used in large quantities in various fields such as painting, printing, and cleaning, in addition to the use of gasoline and the like as fuel for internal combustion engines. VOC gas (hereinafter simply referred to as VOC) is volatilized and diffused into the atmosphere on a daily basis. VOC is the state in which volatilized to and dissipated into the atmosphere, but has become much lower concentrations, NO x, to become a main factor causing photochemical smog reacts with SO x and the like, the VOC into the atmosphere It is necessary to suppress radiation.

【0003】しかし、使用中に揮発したような低濃度の
VOCを効率的に回収して大気に放散させないようにす
ることは、技術的に極めて難しく、現在のところ、VO
Cの決定的な捕捉技術は未だ確立されていない。例え
ば、VOC捕捉技術の一つとして、吸着剤を用いるPS
A法が研究されているが、ガソリンスタンド或いは油槽
所等から大気に放散する際の低濃度VOCを効率的に吸
着、捕捉できるような吸着剤が見当たらないために、吸
着剤の開発がPSA法適用の課題になっている。
[0003] However, it is technically extremely difficult to efficiently recover low-concentration VOCs that have volatilized during use so as not to emit them to the atmosphere.
The definitive capture technique for C has not yet been established. For example, as one of the VOC capture technologies, PS using an adsorbent
The A method has been studied, but there is no adsorbent that can efficiently adsorb and capture low-concentration VOCs when it is released into the atmosphere from gas stations or oil depots. It is an application issue.

【0004】代表的な吸着剤である活性炭は、1000
2 /g以上の大きな比表面積を有し、吸着能だけを見
れば、VOC用吸着剤として最適な吸着剤である。しか
し、活性炭が可燃性であるために、可燃性ガスを取り扱
うガソリンスタンド或いは油槽所等のVOC放散場所
で、PSA法によるVOC吸着装置の吸着剤として使う
には、安全管理の面で、その利用が難しい。
Activated carbon, a typical adsorbent, is 1000
It has a large specific surface area of at least m 2 / g and is the most suitable adsorbent as a VOC adsorbent in view of only the adsorption capacity. However, because activated carbon is flammable, it must be used in the area of safety management in order to use it as an adsorbent for VOC adsorption equipment by the PSA method in gas stations or oil depots where flammable gas is handled. Is difficult.

【0005】そこで、ゼオライト等の無機酸化物系吸着
剤が、非可燃性吸着剤として注目され、PSA法とほぼ
同じ吸着原理である圧力−温度変動吸着分離法(Pressu
re and Temperature Swing Adsorption 、以下PTSA
法)や温度変動吸着分離法(Temperature Swing Adsorp
tion 、以下TSA法)で試用された例がある。これら
の方法は、ゼオライト等の極めて一般的な無機酸化物系
吸着剤を使用し、VOCと共に吸着した水分を吸着剤か
ら脱離させるために温度をスイングさせる工程を組込ん
でいる。しかし、これらの吸着分離法は、その吸着対象
が比較的高濃度のVOCであって、ガソリンスタンドや
油槽所等から放出されるような比較的低濃度のVOC捕
捉用に実用化した例は、現在までのところ見当たらな
い。低濃度のVOCの回収にこれらの方法を適用するの
が難しい理由は、第1にVOCが低濃度であるために吸
着し難いこと、第2には飽和水蒸気がVOCの吸着に影
響することである。
[0005] Therefore, inorganic oxide adsorbents such as zeolite are attracting attention as non-flammable adsorbents, and the pressure-temperature fluctuation adsorption separation method (Pressu) which has almost the same adsorption principle as the PSA method.
re and Temperature Swing Adsorption, hereinafter PTSA
Method) and temperature swing adsorption separation method (Temperature Swing Adsorp).
(hereinafter referred to as TSA method). These methods use a very common inorganic oxide-based adsorbent such as zeolite and incorporate a step of swinging the temperature in order to desorb moisture adsorbed together with VOC from the adsorbent. However, in these adsorption separation methods, the target of adsorption is a relatively high-concentration VOC, and an example of practical application for capturing a relatively low-concentration VOC released from a gas station or an oil depot is as follows. Not found so far. The reasons that these methods are difficult to apply to recovery of low-concentration VOCs are firstly that VOCs are hardly adsorbed due to their low concentration, and secondly, that saturated steam affects the adsorption of VOCs. is there.

【0006】高表面積の無機酸化物系吸着剤を用いれ
ば、低濃度のVOCを効率よく吸脱着させることができ
るように思えるが、無機酸化物系吸着剤の表面には、極
性の高い水酸基(OH)等が多数存在しているため、双
極子モーメント(dipole moment )の高い水分子のみが
選択的に吸着され、VOCの吸脱着量が極端に少なくな
る。例えば、ゼオライトは、比表面積は大きいものの、
シリカとアルミナとの比率(SiO2/Al2O3)が低いために
酸性質を発現して、水との親和性が高くなり、水を選択
的に吸着してしまう。水との親和性の問題は、特に、V
OCが低濃度の時に顕著になる。
It seems that the use of a high surface area inorganic oxide-based adsorbent makes it possible to efficiently adsorb and desorb low-concentration VOCs. However, the surface of the inorganic oxide-based adsorbent has a highly polar hydroxyl group ( Since a large number of OH) are present, only water molecules having a high dipole moment are selectively adsorbed, and the amount of adsorbed / desorbed VOC is extremely reduced. For example, zeolite has a large specific surface area,
Since the ratio of silica to alumina (SiO 2 / Al 2 O 3 ) is low, it exhibits acid properties, has high affinity for water, and selectively adsorbs water. The issue of affinity with water is, in particular, V
It becomes remarkable when the OC concentration is low.

【0007】更に言えば、シリカ(酸化珪素、Si
2 )自体は、強い撥水性を示すが、通常、高表面積を
示すシリカの表面には、親水性のシラノール(Si−O
H)基が多数残存している。VOC−PSA法のVOC
吸着工程では、水蒸気とVOCとの競争吸着(competit
ive adsorption)が進行しているので、多数の親水基が
存在していると、多量の水分を吸着するために、VOC
吸着量が減少する。加えて、多量の水を吸水するため
に、水が内部に侵入して、吸着剤に割れが発生するとい
う問題を有している。
More specifically, silica (silicon oxide, Si
O 2 ) itself shows strong water repellency, but the surface of silica showing a high surface area usually has hydrophilic silanol (Si—O
Many H) groups remain. VOC of VOC-PSA method
In the adsorption process, competitive adsorption between water vapor and VOC
ive adsorption) is progressing, and if a large number of hydrophilic groups are present, a large amount of water will be adsorbed.
The amount of adsorption decreases. In addition, since a large amount of water is absorbed, there is a problem that water invades the inside and cracks occur in the adsorbent.

【0008】シラノール基を残存させないようにするに
は、例えばメトキシトリメチルシラン(CH3O-Si-(C
H3)3) 等の有機珪素系化合物をシリカに接触させ、表面
のシラノール基とカップリングさせる方法がある。一
方、ゼオライトの結晶破壊を引き起こさないように、酸
抽出等の処理によって脱アルミ処理し、大きな比表面積
等の優れた多孔質物性を損ねずに、ゼオライトを疎水化
したハイシリカゼオライト(HS-Zeolite)が、低濃度の
VOC用吸着剤として注目されている。
In order to prevent silanol groups from remaining, for example, methoxytrimethylsilane (CH 3 O-Si- (C
There is a method in which an organosilicon compound such as H 3 ) 3 ) is brought into contact with silica to couple with a silanol group on the surface. On the other hand, a high-silica zeolite (HS-Zeolite) that has been hydrophobized from zeolite without destruction of the zeolite crystal by dealuminization by acid extraction or the like so as to prevent the zeolite from crystal destruction without impairing excellent porous properties such as a large specific surface area ) Has attracted attention as a low-concentration VOC adsorbent.

【0009】[0009]

【発明が解決しようとする課題】ところで、環境保全装
置は、VOC回収に限らず、一般に、導入する企業に新
たなコスト負担を強いるため、コストの低い経済的なプ
ロセスが強く求められる。例えば、PSAプロセスで
は、吸着剤の価格がプロセス全体のコストで占めるウェ
イトが高く、安価な吸着剤を開発することが極めて重要
である。しかし、メトキシトリメチルシランなどの有機
珪素系有機化合物は揮発性であるために、カップリング
反応設備が複雑になり、しかも珪素系有機化合物は高価
であるために、カップリング方法を工業的プロセスに使
用して疎水化処理するのは、経済的に引き合わないとい
う問題があった。また、ハイシリカゼオライトも脱アル
ミ処理のコストが高く、同じく工業的プロセスに使用す
るには経済的に引き合わないという問題があった。以上
のように、低濃度のVOCを効率よく捕捉でき、しかも
工業化プロセスに適した経済的な吸着剤は、従来の吸着
剤には見当たらない。
By the way, environmental preservation equipment is not limited to VOC recovery, and generally imposes a new cost burden on a company to be introduced. Therefore, an economical process with low cost is strongly required. For example, in the PSA process, the cost of the adsorbent has a large weight in the cost of the entire process, and it is extremely important to develop an inexpensive adsorbent. However, organic silicon-based organic compounds such as methoxytrimethylsilane are volatile, which makes the coupling reaction equipment complicated, and silicon-based organic compounds are expensive, so that the coupling method is used for industrial processes. There is a problem that the hydrophobic treatment is not economically favorable. Also, high silica zeolite has a problem that the cost of dealumination is high, and it is not economically suitable for use in industrial processes. As described above, an economical adsorbent that can efficiently capture low-concentration VOCs and is suitable for an industrial process is not found in conventional adsorbents.

【0010】よって、本発明の目的は、低濃度のVOC
を効率良く回収できる吸着剤及びその製造方法を提供す
ることである。
Accordingly, an object of the present invention is to provide a low-concentration VOC
To provide an adsorbent capable of efficiently recovering water and a method for producing the same.

【0011】[0011]

【課題を解決するための手段】そこで、本発明者らは、
低濃度のVOCを効率良く吸着し、しかも水に対する割
れ耐性を高くするには、親水基を除去して水分の吸着能
の低下、即ち疎水化能の向上を図ると共にVOC用吸着
能を高めることが必要であると考えた。そして、実験を
重ねた結果、シリカを主成分とし、比表面積、細孔容
積、平均細孔径等の特定の多孔質物性を備える多孔質成
形体からなる吸着剤が優れた疎水化能とVOC用吸着能
を有することを見い出し、本発明を完成する到った。ま
た、特定条件下の加熱処理により、そのような吸着剤を
製造することをできることを見い出し、本発明方法を完
成するに到った。
Means for Solving the Problems Accordingly, the present inventors have:
In order to efficiently adsorb low-concentration VOCs and increase the cracking resistance to water, it is necessary to remove the hydrophilic groups to reduce the water adsorbing ability, that is, improve the hydrophobizing ability and increase the VOC adsorbing ability. Thought it was necessary. As a result of repeated experiments, it was found that an adsorbent composed of a porous molded body containing silica as a main component and having specific porous physical properties such as a specific surface area, a pore volume, and an average pore diameter has excellent hydrophobicity and VOC use. The inventors have found that the present invention has an adsorption ability, and have completed the present invention. Further, they have found that such an adsorbent can be produced by heat treatment under specific conditions, and have completed the method of the present invention.

【0012】上記目的を達成するために、本発明に係る
吸着剤は、シリカを主成分とし、比表面積が400〜7
00m2 /g、平均細孔径が0.4〜3.0nm、及び
水蒸気吸着量が3〜10ml−水蒸気/g−吸着剤の多
孔質成形体からなる、炭素数が1から12の揮発性有機
化合物ガスを選択的に吸着することを特徴としている。
ここで、「炭素数が1から12の揮発性有機化合物ガス
を選択的に吸着する」とは、水蒸気を除く気体及びガス
成分中、炭素数が1から12の揮発性有機化合物ガスを
選択的に吸着することを意味する。
In order to achieve the above object, the adsorbent according to the present invention contains silica as a main component and has a specific surface area of 400-7.
Volatile organic compound having 1 to 12 carbon atoms, comprising a porous molded body of 00 m 2 / g, average pore diameter of 0.4 to 3.0 nm, and water vapor adsorption of 3 to 10 ml-water vapor / g-adsorbent. It is characterized by selectively adsorbing compound gas.
Here, “selectively adsorbing volatile organic compound gas having 1 to 12 carbon atoms” means that the volatile organic compound gas having 1 to 12 carbon atoms is selectively used in gas and gas components excluding water vapor. Means to be adsorbed.

【0013】また、本発明に係る吸着剤の製造方法は、
炭素数が1から12の揮発性有機化合物ガスを選択的に
吸着する吸着剤の製造方法であって、比表面積が600
2 /g以上で、細孔容積が0.05〜0.5cm3
gの範囲及び平均細孔径が0.4〜3.0nmの範囲の
シリカ又はシリカゲルの成形ペレットを1〜20℃/分
の範囲の昇温速度で550℃〜700℃の範囲の所定温
度に昇温し、所定温度で所定時間保持することを特徴と
している。本発明方法により製造した吸着剤は、比表面
積の減少率が5〜40%及び水蒸気吸着量が3〜10m
l/gである。
[0013] The method for producing an adsorbent according to the present invention comprises:
A method for producing an adsorbent for selectively adsorbing a volatile organic compound gas having 1 to 12 carbon atoms, wherein the specific surface area is 600
m 2 / g or more and pore volume of 0.05 to 0.5 cm 3 /
g and a silica or silica gel pellet having an average pore diameter of 0.4 to 3.0 nm are heated to a predetermined temperature of 550 to 700 ° C. at a heating rate of 1 to 20 ° C./min. It is characterized in that it is heated and kept at a predetermined temperature for a predetermined time. The adsorbent produced by the method of the present invention has a specific surface area reduction rate of 5 to 40% and a water vapor adsorption amount of 3 to 10 m.
1 / g.

【0014】本発明の揮発性有機化合物は、揮発性有機
化合物ガス吸着用の吸着剤(以下、簡単に吸着剤と言
う)は、ガソリン、ナフサ、灯油、軽油等の中軽質留分
から発生するVOCの吸着に使用でき、疎水化能及びV
OC吸着能が高いので、特にPSA法によるガソリンス
タンド、油槽所等から放出される比較的低濃度のVOC
を吸着する際の吸着剤として好適である。本発明でVO
Cとは、炭素数が1から12の揮発性有機化合物ガスを
言い、VOC吸着能とはVOCを吸着する能力を言う。
なお、揮発性有機化合物とは、炭化水素、ハロゲン化炭
化水素、含酸素有機化合物を意味する。含酸素有機化合
物とは、化学式中に、−O−及び/又は=Oを含む有機
化合物であって、例えばアルコール、エーテル、エステ
ル、カルボン酸、ケトン、アルデヒド等をその例として
挙げることができる。また、本発明の吸着剤の多孔質物
性を示す比表面積、細孔容積及び平均細孔径は、BET
法で測定した値である。
The volatile organic compound of the present invention is an adsorbent for adsorbing volatile organic compound gas (hereinafter, simply referred to as an adsorbent). VOC generated from a medium or light fraction of gasoline, naphtha, kerosene, gas oil, etc. Hydrophobicity and V
Because of its high OC adsorption capacity, relatively low concentration VOC released from gas stations, oil tanks, etc. by the PSA method
It is suitable as an adsorbent when adsorbing. VO in the present invention
C means a volatile organic compound gas having 1 to 12 carbon atoms, and VOC adsorption ability means ability to adsorb VOC.
In addition, a volatile organic compound means hydrocarbon, halogenated hydrocarbon, and oxygen-containing organic compound. The oxygen-containing organic compound is an organic compound containing —O— and / or OO in a chemical formula, and examples thereof include alcohols, ethers, esters, carboxylic acids, ketones, and aldehydes. The specific surface area, the pore volume and the average pore diameter indicating the porous physical properties of the adsorbent of the present invention are BET.
It is a value measured by the method.

【0015】吸着剤の原料 本発明の吸着剤の原料は、窒素分子をプローブとしてB
ET法で測定した比表面積が600m2 /g以上、好ま
しくは650m2 /g以上、細孔容積が0.05〜0.
5cm3 /g、好ましくは0.1〜0.3cm3 /gの
範囲、平均細孔径が0.4〜3.0nmの範囲のシリカ
又はシリカゲルである。ここで、シリカとは水分を含有
しないものを意味し、シリカゲルとは水分を含有するも
のを意味する。また、本発明の目的を達成する限り、吸
着剤原料及び吸着剤にはシリカ又はシリカゲル以外の無
機成分を含んでいても良い。なお、工業化レベルでの規
模で入手可能なシリカゲル素材の比表面積の実質的上限
は、現在のところ800m2 /g程度であるが、比表面
積は大きい程、吸着能は増加する。
Raw Material of Adsorbent The raw material of the adsorbent of the present invention is obtained by using a nitrogen molecule as a probe.
The specific surface area measured by the ET method is 600 m 2 / g or more, preferably 650 m 2 / g or more, and the pore volume is 0.05 to 0.1 g / m 2 .
5 cm 3 / g, preferably in the range from 0.1~0.3cm 3 / g, an average pore diameter of silica or silica gel in the range of 0.4~3.0Nm. Here, silica means a substance containing no water, and silica gel means a substance containing water. Further, as long as the object of the present invention is achieved, the adsorbent raw material and the adsorbent may contain an inorganic component other than silica or silica gel. The practical upper limit of the specific surface area of the silica gel material which can be obtained on an industrial scale is currently about 800 m 2 / g, but as the specific surface area increases, the adsorption capacity increases.

【0016】原料の平均細孔径 吸着剤の比表面積が大きいことは、吸着剤の単位重量当
たり又は単位嵩体積当たりのVOC分子吸着面積が広い
ことを意味し、それだけ吸着容量が増えるので、高濃度
VOCが吸着対象のときには、比表面積の大きい吸着剤
を用いればよいが、一方、本発明のように空気中へ揮発
・拡散した低濃度VOCを対象する場合には、大きな比
表面積に加えて、VOCが吸着され易い最適細孔径を吸
着剤に付与することが重要になる。これは、VOC分子
が比較的小さい細孔内で毛管凝縮して吸着されると考え
られるからである。従って、吸着剤は、広表面積を有す
ると共に、VOC分子との接触確率が高く、凝縮過程が
効率的に進行するために、小さな平均細孔径の細孔を有
する多孔質であることが重要になる。この観点から、原
料シリカゲル又はシリカの平均細孔径は、0.4〜3.
0nmの範囲が好ましく、更には0.6〜1.5nmの
範囲が好ましい。尚、BET法では、細孔容積及び細孔
分布の測定上の下限は、窒素分子が入ることができる間
隙又は細孔であるから、希ガスなどの単分子元素や窒素
よりも小さい水素分子をプローブとしたり、BET吸着
理論以外の解析法、例えばT−plot法で測定した数
値と比較するときは、換算するなどして規格化(normal
ize )する必要がある。
The specific surface area of an average pore diameter of the adsorbent material is large, it means that a wide VOC molecular adsorption area per unit weight or per unit bulk volume of the adsorbent, so much adsorption capacity increases, higher concentrations When the VOC is to be adsorbed, an adsorbent having a large specific surface area may be used. On the other hand, when a low-concentration VOC that has been volatilized and diffused into air as in the present invention is used, in addition to the large specific surface area, It is important to provide the adsorbent with an optimum pore size in which VOCs are easily adsorbed. This is because VOC molecules are considered to be capillary condensed and adsorbed in relatively small pores. Therefore, it is important that the adsorbent has a large surface area, a high contact probability with VOC molecules, and a porous material having small average pore diameters in order for the condensation process to proceed efficiently. . From this viewpoint, the raw material silica gel or silica has an average pore diameter of 0.4 to 3.0.
A range of 0 nm is preferable, and a range of 0.6 to 1.5 nm is more preferable. In the BET method, since the lower limit of the measurement of the pore volume and the pore distribution is a gap or a pore in which nitrogen molecules can enter, a hydrogen molecule smaller than a single molecular element such as a rare gas or nitrogen is used. When used as a probe or compared with a numerical value measured by an analysis method other than the BET adsorption theory, for example, the T-plot method, normalization such as conversion is performed.
ize).

【0017】原料の細孔容積 最適な平均細孔径を有するためには、比表面積、細孔容
積および平均細孔径の間の相関関係から、原料シリカ又
はシリカゲルの好ましい細孔容積は、0.05〜0.5
cm3 /gの範囲、更に好ましくは0.1〜0.3cm
3 /gの範囲である。これ以上では、細孔径が大きくな
り過ぎ、VOC分子の吸着を円滑に進行させることが難
しくなる。逆に、0.05cm3 /g未満では、細孔径
が小さくなり過ぎ、VOC分子が孔内に進入することが
難くなる。
Pore volume of raw material In order to have an optimum average pore diameter, a preferable pore volume of the raw material silica or silica gel is 0.05 from the correlation between the specific surface area, the pore volume and the average pore diameter. ~ 0.5
cm 3 / g, more preferably 0.1-0.3 cm
3 / g. Above this, the pore diameter becomes too large and it becomes difficult to smoothly advance the adsorption of VOC molecules. Conversely, if it is less than 0.05 cm 3 / g, the pore diameter becomes too small, and it becomes difficult for VOC molecules to enter the pores.

【0018】原料ペレット形状 本発明の吸着剤原料の素材形状は、球状、円柱状、錠剤
状など各種形状のものを好ましく用いることができる。
シリカ粉末又はシリカゲル粉末を使用することも出来る
が、この場合は各種形状に成形して用いるのが良い。成
形法としては圧縮成形、押し出し成形など一般的な成形
法を好ましく用いることができる。なお成形を容易にす
るためにバインダーの添加を適宜行っても良い。成形体
の大きさは、吸着剤の充填層の大きさ、許容差圧などの
因子によって決められるが、径及び長さは2mm〜10
mmが好ましく、更には3mm〜8mmが好ましい。こ
れ未満では差圧が大きく成り過ぎ、これを超過すると、
成形体間の空隙が大きく成り過ぎる。
Raw Material Pellet Shape The raw material of the adsorbent raw material of the present invention may preferably be of various shapes such as a sphere, a column and a tablet.
Silica powder or silica gel powder can also be used, but in this case, it is preferable to mold them into various shapes and use them. As a molding method, a general molding method such as compression molding and extrusion molding can be preferably used. Note that a binder may be appropriately added to facilitate molding. The size of the molded body is determined by factors such as the size of the packed bed of the adsorbent and the allowable differential pressure.
mm, and more preferably 3 mm to 8 mm. If it is less than this, the differential pressure becomes too large, and if it exceeds this,
The voids between the compacts are too large.

【0019】昇温速度 上記物性を示すシリカゲル原料、又はシリカ原料に所定
の疎水化処理を施すことにより、本発明の吸着剤を得る
ことができる。疎水化処理では、特定した範囲の昇温速
度で、特定した範囲の所定加熱処理温度に昇温し、所定
加熱処理温度で所定時間保持する。所定温度加熱温度
は、所定時間中一定である必要はなく、特定した温度範
囲内で変動しても良い。昇温速度は1〜20℃/分であ
れば良く、更に好ましくは5〜15℃/分である。昇温
速度がこれより高いと、原料粒子の表面と内部の温度差
が大きくなりすぎるために、原料粒子が割れる可能性が
高く、また、歪みを生ずるために水吸着時に割れ易くな
る。更には、20℃/分より速い昇温速度は、昇温から
温度保持に移行する時に、所定の温度範囲を超過する
(オーバーシューティング)恐れがあるために、好まし
くない。逆に、昇温速度が遅くても、理論上の問題は無
いが、生産性が低いという経済的な理由から、1℃/分
が実質的な下限である。
Heating Rate The adsorbent of the present invention can be obtained by subjecting a silica gel raw material or a silica raw material having the above physical properties to a predetermined hydrophobic treatment. In the hydrophobization treatment, the temperature is raised to a predetermined range of the predetermined heating temperature at a specified range of the heating rate, and is maintained at the predetermined temperature for a predetermined time. The predetermined heating temperature does not need to be constant during the predetermined time, and may fluctuate within the specified temperature range. The rate of temperature rise may be 1 to 20 ° C / min, and more preferably 5 to 15 ° C / min. If the rate of temperature rise is higher than this, the temperature difference between the surface and the inside of the raw material particles becomes too large, so that the raw material particles are likely to crack. Furthermore, a heating rate higher than 20 ° C./min is not preferable because there is a possibility that the temperature may exceed a predetermined temperature range (overshooting) when shifting from heating to holding the temperature. Conversely, there is no theoretical problem if the heating rate is low, but 1 ° C./min is a practical lower limit because of economic reasons such as low productivity.

【0020】加熱処理温度及び保持時間 特定した加熱処理温度に昇温した後、2〜5時間の間、
この温度範囲に維持して原料粒子を焼成する。この間、
温度管理には充分注意を払う必要がある。加熱処理(焼
成)温度の範囲は、550℃〜700℃が好ましく、更
に好ましくは600℃〜700℃、最も好ましくは62
0℃〜700℃である。焼成時間は、温度条件に較べて
条件的ではないが、2時間〜5時間が好ましく、より好
ましくは3時間〜5時間である。
Heating temperature and holding time After the temperature is raised to the specified heating temperature, for 2 to 5 hours,
The raw material particles are fired while maintaining this temperature range. During this time,
Careful attention must be paid to temperature control. The range of the heat treatment (firing) temperature is preferably from 550 ° C to 700 ° C, more preferably from 600 ° C to 700 ° C, and most preferably from 62 ° C to 700 ° C.
0 ° C to 700 ° C. The calcination time is not conditional as compared with the temperature condition, but is preferably 2 hours to 5 hours, more preferably 3 hours to 5 hours.

【0021】次の式(1)及び/又は(2)によって、
シリカ又はシリカゲル表面に存在している多数のシラノ
ール基(Si−OH)を分解・脱離反応又は縮合反応さ
せることによって、疎水化が進行すると考えられ、これ
らの反応を充分進行させるために、上記温度範囲内の所
定温度に所定時間保つことが必要である。 (SiOH) n → SiO2 分解・脱離 (1) (SiOH) n → (Si-O-Si) n/2 縮合 (2) 特定した温度範囲の上限を越えると、シリカ又はシリカ
ゲルの焼結(sintering )が著しく進行して、比表面積
の減少が40%を超過し、所望の多孔質物性を得ること
ができない。逆に、温度範囲の下限未満であると、疎水
化処理が不充分になるため、PSA法の圧力スイングサ
イクル中に吸着剤が割れる可能性が高くなる。温度範囲
に較べて、保持すべき時間範囲のシビアリティーは高く
ないが、2時間未満では、式(1)、(2)の化学反応
が充分進行しない恐れがあり、逆に、5時間以上では生
産性が劣る。
According to the following equations (1) and / or (2),
Hydrophobization is considered to proceed by decomposing / eliminating or condensing a large number of silanol groups (Si-OH) present on the surface of silica or silica gel. It is necessary to maintain a predetermined temperature within a temperature range for a predetermined time. (SiOH) n → Decomposition and desorption of SiO 2 (1) (SiOH) n → (Si-O-Si) n / 2 condensation (2) When the upper limit of the specified temperature range is exceeded, sintering of silica or silica gel ( Sintering) proceeds remarkably, and the decrease in specific surface area exceeds 40%, so that desired porous properties cannot be obtained. Conversely, if the temperature is lower than the lower limit of the temperature range, the hydrophobizing treatment becomes insufficient, so that the possibility of the adsorbent cracking during the pressure swing cycle of the PSA method increases. Compared with the temperature range, the severity of the time range to be maintained is not high, but if it is less than 2 hours, the chemical reactions of the formulas (1) and (2) may not proceed sufficiently. Poor productivity.

【0022】熱膨張などによる割れを防ぐために所定昇
温速度で昇温し、550℃以上700℃以下の温度で式
(1)、(2)のように表面OH基を除くことにより、
疎水化能は向上する。疎水化能の向上だけを目的とする
のであれば、昇温、焼成処理で十分であるが、大気中の
低い濃度のVOCを回収するためには、高表面積を維持
しかつ優れた疎水化能を必要とするので、先に述べたよ
うに、吸着剤原料(シリカ、又はシリカゲル)の物性が
重要になる。
In order to prevent cracking due to thermal expansion or the like, the temperature is raised at a predetermined heating rate, and the surface OH groups are removed at a temperature of 550 ° C. or more and 700 ° C. or less as shown in formulas (1) and (2).
The hydrophobizing ability is improved. If only the purpose of improving the hydrophobicity is to increase the temperature and sintering, it is sufficient. However, in order to recover a low concentration of VOC in the air, a high surface area is maintained and the excellent hydrophobicity is improved. Therefore, as described above, the physical properties of the adsorbent raw material (silica or silica gel) become important.

【0023】比表面積減少率 PSA法では等温吸着線(adsoption-isotherm)のよう
に、定常状態になるまで吸着を行うのではなく、所定時
間の吸着工程毎に圧力をスイングさせるため、低分圧の
VOC分子を素早く吸着させることが必要であって、吸
着速度が重要なファクターの一つである。よって、VO
C分子の吸着を効果的に行うためには、特定の比表面
積、平均細孔径及び疎水化能を有することが重要であ
る。この結果として、吸着速度が速くなる。速い吸着速
度を実現するには、比表面積減少率は小さい方が好まし
く、40%以上になると、シンタリングにより細孔径が
変化し、VOC吸着能が低下すると共に、容積変化によ
る割れ、歪みが生じる等の不都合が生じる。疎水化のた
めの加熱処理を上に示した条件で行うことにより、式
(3)に示す比表面積の減少率は40%以下に留まり、
しかも、平均細孔径もシリカゲル原料に近いものとな
る。これにより、優れた疎水化能とVOC吸着能を兼備
し、かつ吸着速度の速い吸着剤が実現する。 比表面積減少率(%)= (原料シリカの比表面積/加熱処理後の比表面積)×100 (3)
[0023] As the specific surface area decreasing rate adsorption isotherm in PSA method (adsoption-isotherm), instead of performing adsorption until a steady state, in order to swing the pressure for each step of the adsorption predetermined time, low partial pressure It is necessary to adsorb VOC molecules quickly, and the adsorption speed is one of the important factors. Therefore, VO
In order to effectively adsorb C molecules, it is important to have a specific specific surface area, an average pore diameter and a hydrophobizing ability. As a result, the adsorption speed increases. In order to realize a high adsorption speed, the specific surface area reduction rate is preferably small. When the specific surface area reduction rate is 40% or more, the pore diameter changes due to sintering, the VOC adsorption capacity decreases, and cracks and strains occur due to volume change. And the like. By performing the heat treatment for hydrophobization under the conditions shown above, the reduction rate of the specific surface area represented by the formula (3) remains at 40% or less,
In addition, the average pore size is close to that of the silica gel raw material. As a result, an adsorbent having both excellent hydrophobizing ability and VOC adsorbing ability and having a high adsorption speed is realized. Specific surface area reduction rate (%) = (specific surface area of raw material silica / specific surface area after heat treatment) × 100 (3)

【0024】水蒸気吸着量 20℃、水蒸気圧2mmHgでの平衡吸着の際に、吸着
剤がg当たり10ml以上の水蒸気を吸着すると、吸着
剤に割れが生じることが多くなる。尚、本発明方法の疎
水化処理により、吸着剤の水蒸気吸着量は、10ml/
g以下になるが、3ml−水蒸気/g−吸着剤以下にす
るのは難しい。
In the case of equilibrium adsorption at a water vapor adsorption amount of 20 ° C. and a water vapor pressure of 2 mmHg, if the adsorbent adsorbs 10 ml or more of water vapor per g, cracks often occur in the adsorbent. In addition, by the hydrophobizing treatment of the method of the present invention, the water vapor adsorption amount of the adsorbent is 10 ml /
g or less, but it is difficult to make it less than 3 ml-water vapor / g-adsorbent.

【0025】吸着剤の使用態様 実際にPSAシステムで吸着剤を使用する場合には、吸
着塔の容積及び塔数、入り口ガス中のVOC濃度、VO
C捕捉率、操作温度等の運転条件に応じて、適宜、吸着
剤の充填量、充填高さなどを決める。本吸着剤は、ハイ
シリカゼオライト、アルミナ等の公知の吸着剤と組み合
わせたり、混合してたりして使用しても問題はない。た
だし、他の吸着剤の市場価格は本吸着剤よりも高価であ
るから、公知吸着剤の混合量や組合わせ量が多いと、本
発明の吸着剤の経済的な利点を失うことになる。本発明
の吸着剤の使用に先立ち、活性化処理を必要としない。
湿度が極めて高い状態で永く保存されていた場合などに
は、常温〜350℃の範囲の温度下で減圧乾燥処理を、
適宜、実施すれば良い。減圧乾燥時間は、PSA装置に
よって一概に決まらないが、1〜24時間が現実的な時
間である。
Usage of Adsorbent When the adsorbent is actually used in the PSA system, the volume and number of adsorption towers, the VOC concentration in the inlet gas, the VO
The amount of the adsorbent, the height of the adsorbent, and the like are appropriately determined according to operating conditions such as the C capture rate and the operating temperature. This adsorbent may be used in combination with or mixed with a known adsorbent such as high silica zeolite or alumina. However, since the market price of other adsorbents is higher than that of the present adsorbent, if the mixing amount or combination amount of known adsorbents is large, the economic advantage of the adsorbent of the present invention is lost. No activation treatment is required prior to using the adsorbent of the present invention.
For example, when stored for a long time in an extremely high humidity state, a vacuum drying process at a temperature in a range of room temperature to 350 ° C.
What is necessary is just to implement suitably. The drying time under reduced pressure is not absolutely determined by the PSA apparatus, but is a realistic time of 1 to 24 hours.

【0026】吸着剤のVOC選択率 本発明で言う吸着剤のVOC選択率とは、吸着剤に吸着
された水蒸気及び揮発性有機化合物の吸着量のうち、揮
発性有機化合物の吸着量の割合を示す比率であって、次
式で定義される値である。 VOC選択率={(A)/(A+B)}×100 ここで、Aは、温度20℃での揮発性有機化合物の飽和
蒸気圧の1/10の圧力下、温度20℃における吸着剤
への揮発性有機化合物の平衡吸着量(ml/g(stp))
である。Bは、圧力2mmHg、温度20℃における吸着
剤への水蒸気の平衡吸着量(ml/g(stp))である。
本発明で、吸着剤の揮発性有機化合物(VOC)の平衡
吸着量を規定するに当たり、VOCの飽和蒸気圧下でな
く、VOCの飽和蒸気圧の1/10の圧力下としている
のは、飽和蒸気圧の1/10の圧力になるまでに大部分
のVOCが吸着剤に吸着されてしまうからである。即
ち、実際的には、飽和蒸気圧下での吸着量≒飽和蒸気圧
の1/10の圧力下での吸着量であるからである。ま
た、実際の圧力変動法によるPSAの運転では、通常、
吸着工程は、VOCの飽和蒸気圧まで加圧することな
く、圧力がVOCの飽和蒸気圧の1/10の圧力に達す
るまで吸着工程を実施し、次いで脱着工程に移行する。
VOC selectivity of adsorbent The VOC selectivity of the adsorbent referred to in the present invention is the ratio of the amount of volatile organic compound adsorbed to the amount of water vapor and volatile organic compound adsorbed by the adsorbent. The ratio is a value defined by the following equation. VOC selectivity = {(A) / (A + B)} × 100 Here, A is a value of 1/10 of the saturated vapor pressure of the volatile organic compound at a temperature of 20 ° C., Equilibrium adsorption of volatile organic compounds (ml / g (stp))
It is. B is the equilibrium adsorption amount (ml / g (stp)) of water vapor on the adsorbent at a pressure of 2 mmHg and a temperature of 20 ° C.
In the present invention, when defining the equilibrium adsorption amount of the volatile organic compound (VOC) in the adsorbent, not the saturated vapor pressure of VOC but the pressure of 1/10 of the saturated vapor pressure of VOC is used as the saturated vapor pressure. This is because most of the VOC is adsorbed on the adsorbent before the pressure becomes 1/10 of the pressure. That is, in practice, the amount of adsorption at the saturated vapor pressure / the amount of adsorption at 1/10 of the saturated vapor pressure. Also, in the actual operation of PSA by the pressure fluctuation method,
In the adsorption step, the adsorption step is performed without increasing the pressure to the saturated vapor pressure of the VOC, until the pressure reaches 1/10 of the saturated vapor pressure of the VOC, and then the process proceeds to the desorption step.

【0027】以上のことから、VOC選択率は、PSA
の運転時のVOC吸着効率を示す因子であると定義でき
る。物理的には、吸着剤のVOC選択率の値が大きいほ
ど、水蒸気存在下で、揮発性有機化合物の吸着が起こり
易く、優れたVOC−PSA向け吸着剤であると評価で
きる。従って、吸着剤のVOC選択率は、80%以上、
好適には85%以上である。VOC選択率が80%以上
の吸着剤は、VOC選択率が低い吸着剤と比較して、吸
着剤の使用量が少なくて済み、PSA法の経済性の面及
び運転効率の点で格段に有利である。
From the above, the VOC selectivity is PSA
Can be defined as a factor indicating the VOC adsorption efficiency at the time of operation. Physically, the larger the value of the VOC selectivity of the adsorbent, the more easily the volatile organic compound is adsorbed in the presence of water vapor, and it can be evaluated as an excellent adsorbent for VOC-PSA. Therefore, the VOC selectivity of the adsorbent is 80% or more,
It is preferably at least 85%. An adsorbent having a VOC selectivity of 80% or more requires a smaller amount of adsorbent as compared with an adsorbent having a low VOC selectivity, and is significantly advantageous in terms of PSA method economics and operating efficiency. It is.

【0028】先に述べたVOC選択率の他に、吸着剤の
VOC吸着量も重要なファクターとなる。例えば、吸着
剤のVOC選択率が高くても、VOC吸着量が少ない
と、所定量のVOCを分離・回収するのに必要な吸着剤
量が多くなり過ぎる等の問題が生ずる。したがって、V
OC選択率が高く、かつ所定レベル以上のVOC吸着量
を示すことが必要となる。VOC吸着量は、温度20℃
での揮発性有機化合物の飽和蒸気圧の1/10の圧力
下、温度20℃における吸着剤への揮発性有機化合物の
平衡吸着量(ml/g(stp))により評価する。測定方
法は、VOC選択率の測定方法で示した方法と同様に行
う。温度20℃での揮発性有機化合物の飽和蒸気圧の1
/10の圧力下、温度20℃における吸着剤への揮発性
有機化合物の平衡吸着量は、30ml/g(stp)以上が
好ましく、35ml/g(stp)以上の吸着剤が更に好ま
しい。VOC吸着量の値がこれより小さいと、装置が同
じ効果を得るために必要となる吸着剤の使用量が多くな
るため、吸着塔が大型化したり、装置に付属する機器の
規格も大きくなるため、装置全体のサイズが大きくなっ
たり、電力消費量等も増加するなど運転経費が嵩む可能
性が高い。逆に、上限は特に限定されないが、150m
l/g(stp)程度が現状の上限と考えられる。
In addition to the VOC selectivity described above, the amount of VOC adsorbed by the adsorbent is also an important factor. For example, even if the VOC selectivity of the adsorbent is high, if the amount of adsorbed VOC is small, there arises a problem that the amount of adsorbent necessary for separating and recovering a predetermined amount of VOC becomes too large. Therefore, V
It is necessary to show a high OC selectivity and a VOC adsorption amount equal to or higher than a predetermined level. VOC adsorption amount is 20 ℃
And the equilibrium adsorption amount (ml / g (stp)) of the volatile organic compound to the adsorbent at a temperature of 20 ° C. under a pressure of 1/10 of the saturated vapor pressure of the volatile organic compound in the above. The measuring method is the same as the method shown in the measuring method of VOC selectivity. 1 of saturated vapor pressure of volatile organic compounds at a temperature of 20 ° C
The equilibrium adsorption amount of the volatile organic compound to the adsorbent at a temperature of 20 ° C. under a pressure of / 10 is preferably 30 ml / g (stp) or more, and more preferably 35 ml / g (stp) or more. If the value of the VOC adsorption amount is smaller than this, the amount of the adsorbent required for the apparatus to obtain the same effect increases, so that the adsorption tower becomes large and the standard of the equipment attached to the apparatus becomes large. In addition, there is a high possibility that operating costs will increase, for example, the size of the entire apparatus will increase, and the power consumption will increase. Conversely, the upper limit is not particularly limited, but is 150 m
It is considered that about 1 / g (stp) is the current upper limit.

【0029】[0029]

【発明の実施の形態】以下に、実施例を挙げて、本発明
の実施の形態を具体的かつ詳細に説明する。以下の実施
例及び比較例の試料吸着剤の多孔質物性、疎水化能及び
VOC吸着能は、以下の測定法及び評価法により評価し
た。比表面積、細孔容積及び平均細孔径等の多孔質物性の測
定法 吸着剤原料の多孔質物性(以下、原料物性)および疎水
化処理により得た吸着剤の多孔質物性(以下、吸着剤物
性)は、高純度N2 (高千穂化学、Research Grade)を
プローブ分子(prove molecule) に用いて、自動表面
積・細孔径測定装置(Belsorp28 、ベルジャパン社製)
により測定した。多孔質物性の測定では、比表面積及び
細孔径の測定に先立ち、先ず、前処理として試料吸着剤
及び吸着剤原料の減圧加熱処理を行い、次いで所望の物
性を測定した。試料の減圧加熱処理では、約200mg
の試料を硝子製試料管に入れて、10 -1〜10-2mmHgの
減圧状態を維持しながら、昇温速度6℃/分で室温から
350℃まで昇温し、同温度で3時間保持した。その
後、高純度ヘリウムガスによって常圧+5mmHgに保
持しつつ降温速度5℃/分で室温まで冷却し、測定用の
試料を得た。得た試料重量を正確に秤量し、多孔質物性
の測定に供した。多孔質物性の測定では、液化窒素自動
供給装置(auto feeder )を有する自動デュワー瓶を使
用し、液化窒素温度(−196℃)に保持し、死容積
(dead volume )を高純度ヘリウムにて3回以上測定
し、次いで減圧排気した後、プローブ分子(窒素)を導
入してBET法に従って比表面積を測定した。次いで脱
着測定を実施し、これにより平均細孔径を求めた。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described by way of examples.
The embodiment will be described specifically and in detail. Perform the following
Porous physical properties, hydrophobizing ability and
VOC adsorption capacity was evaluated by the following measurement methods and evaluation methods.
Was.Measurement of porous physical properties such as specific surface area, pore volume and average pore diameter
Ordinary law Porous physical properties of adsorbent raw materials (hereinafter referred to as raw material physical properties) and hydrophobicity
Physical properties of the adsorbent obtained by the
) Is high purity NTwo(Takachiho Chemical, Research Grade)
Automated surface for probe molecule
Product / pore diameter measuring device (Belsorp28, manufactured by Bell Japan)
Was measured by In the measurement of porous physical properties, specific surface area and
Prior to the measurement of the pore size, first, as a pretreatment, the sample adsorbent
And heat treatment under reduced pressure of the adsorbent raw material, and then
The properties were measured. Approximately 200 mg
Of the sample into a glass sample tube, -1-10-2mmHg
While maintaining the reduced pressure, from the room temperature at a heating rate of 6 ° C./min.
The temperature was raised to 350 ° C. and maintained at the same temperature for 3 hours. That
After that, it is maintained at normal pressure +5 mmHg by high-purity helium gas.
While cooling, cool down to room temperature at a cooling rate of 5 ° C / min.
A sample was obtained. The weight of the obtained sample is accurately weighed, and the
Was used for the measurement. Liquefied nitrogen automatic
Use an automatic dewar with an auto feeder
Liquefied nitrogen temperature (-196 ° C)
(Dead volume) 3 times or more with high purity helium
Then, after evacuation, the probe molecules (nitrogen) are introduced.
And measured the specific surface area according to the BET method. Then
An adhesion measurement was carried out, and the average pore diameter was determined.

【0030】吸着剤の疎水化能の評価方法 吸着剤の疎水化能を評価するために、温度20℃、圧力
2mmHg下で水蒸気の平衡吸着量を測定した。疎水化
能の測定前に、前処理として以下の減圧加熱処理を試料
吸着剤に施した。即ち、約100mgの試料を硝子製試
料管に入れて、10-1〜10-2mmHgの圧力に減圧しなが
ら昇温速度6℃/分で室温から350℃まで昇温し、同
温度で1時間保持した。次いで、降温速度5℃/分で室
温まで冷却して、試料吸着剤を得た。得た試料吸着剤の
重量を正確に計り、測定の試料に供した。水蒸気源とし
て用いる水は、硝子製液溜にイオン交換水を50ml入
れ、これを減圧ラインでバブリング(bubbling)した
後、ドライアイス−メタノール冷媒で、液溜底部を注意
深く冷却して凍結させつつ、10-2mmHg程度で真空排気
を行いながら溶存気体を放出させた。続いて、加温して
解氷した。溶存気体の放出が無くなるまで、この処理を
繰り返して、精製水を得た。
Method for Evaluating Hydrophobicity of Adsorbent In order to evaluate the hydrophobicity of the adsorbent, the equilibrium adsorption of water vapor was measured at a temperature of 20 ° C. and a pressure of 2 mmHg. Before the measurement of the hydrophobizing ability, the sample adsorbent was subjected to the following reduced pressure heating treatment as a pretreatment. That is, about 100 mg of a sample is put into a glass sample tube, and the temperature is raised from room temperature to 350 ° C. at a rate of 6 ° C./min while reducing the pressure to 10 −1 to 10 −2 mmHg. Hold for hours. Next, the sample was cooled to room temperature at a temperature lowering rate of 5 ° C./min to obtain a sample adsorbent. The obtained sample adsorbent was accurately weighed and provided for a sample for measurement. The water used as the water vapor source is prepared by putting 50 ml of ion-exchanged water into a glass liquid reservoir, bubbling it with a reduced pressure line, and carefully cooling and freezing the liquid reservoir bottom with dry ice-methanol refrigerant. Dissolved gas was released while evacuating at about 10 -2 mmHg. Subsequently, it was heated and thawed. This process was repeated until no dissolved gas was released to obtain purified water.

【0031】平衡吸着量の測定では、高精度蒸気吸着量
測定装置(Belsorp18 、ベルジャパン社製)を用いた。
空気恒温槽内で精製水の液溜を50℃±1℃に保持しな
がら、液溜から発生する飽和水蒸気を50℃±1℃に維
持した硝子製リザーバー(reservoir 、容積150m
l)に導入し、更に、試料吸着剤を収容した部分のみを
20℃±0.5℃に保った硝子製吸着管にリザーバーか
ら自動流量調節バルブを介して徐々に水蒸気を導入し、
2mmHgの平衡圧になるまで導入し続けた。2mmH
gの平衡圧に到達した時点、即ち10分間の圧力変動が
0.1mmHg以内になった時点で、キャパシタンスマ
ノメータで測定した圧力と、系内容積から水導入量を求
め、それを平衡吸着量とし、更に、前処理後の試料重量
を基に吸着剤重量当たりの平衡吸着量を計算した。ま
た、疎水化能の一つとして吸着剤の水に対する割れ耐性
を評価するために、試料吸着剤を20℃の水に浸漬し、
2週間経過後に割れ(crack )の有無を調べた。
In the measurement of the equilibrium adsorption amount, a high-precision vapor adsorption amount measuring apparatus (Belsorp18, manufactured by Bell Japan) was used.
A glass reservoir (reservoir, volume: 150 m) in which a saturated water vapor generated from the liquid pool is maintained at 50 ° C. ± 1 ° C. while a liquid pool of purified water is maintained at 50 ° C. ± 1 ° C. in an air thermostat.
l), and further, water vapor was gradually introduced from a reservoir through an automatic flow control valve into a glass adsorption tube in which only the portion containing the sample adsorbent was kept at 20 ° C ± 0.5 ° C.
The introduction was continued until an equilibrium pressure of 2 mmHg was reached. 2mmH
g when the equilibrium pressure is reached, that is, when the pressure fluctuation for 10 minutes is within 0.1 mmHg, the amount of water introduced is determined from the pressure measured by the capacitance manometer and the internal volume of the system. Further, the equilibrium adsorption amount per weight of the adsorbent was calculated based on the sample weight after the pretreatment. In addition, in order to evaluate the cracking resistance of the adsorbent to water as one of the hydrophobicity, the sample adsorbent is immersed in water at 20 ° C.
After two weeks, cracks were checked.

【0032】吸着剤のVOC吸着能の評価方法 試料吸着剤のVOC吸着能を評価するために、以下のよ
うにしてVOCの可逆吸着量を測定した。測定前に、前
処理として次の減圧加熱処理を試料吸着剤に施した。減
圧加熱処理では、先ず、約100mgの試料を試料管に
入れ、10-1〜10-2mmHgの圧力に減圧しながら昇温速
度6℃/分で室温から350℃まで昇温し、同温度で1
時間保持した。次いで、降温速度5℃/分で室温まで冷
却して、試料吸着剤を得た。VOC吸着能の測定では、
得た試料吸着剤から所要の試料重量を正確に秤量し、測
定に供した。また、測定に供するイソペンタンを次のよ
うにして精製した。先ず、イソペンタン(東京化成工
業、試薬特級)を液溜に入れ、減圧ラインでバブリング
した後、デュワー瓶に入れた液化窒素液面を注意深く液
溜底部に接触させて冷却して固化させつつ、溶存気体を
放出させながら10-2mmHg台で真空排気を行った。次い
で加温し、溶融した。溶存気体の放出が無くなるまでこ
の操作を繰り返して、イソペンタンを精製した。水蒸気
源として用いる水は、疎水化能の評価時と同様に精製し
た。
Evaluation Method of VOC Adsorption Capacity of Adsorbent In order to evaluate the VOC adsorption capacity of the sample adsorbent, the reversible adsorption amount of VOC was measured as follows. Prior to the measurement, the sample adsorbent was subjected to the following reduced pressure heat treatment as a pretreatment. In the heat treatment under reduced pressure, first, about 100 mg of a sample is put into a sample tube, and the temperature is increased from room temperature to 350 ° C. at a rate of 6 ° C./min while reducing the pressure to 10 −1 to 10 −2 mmHg. At 1
Hold for hours. Next, the sample was cooled to room temperature at a temperature lowering rate of 5 ° C./min to obtain a sample adsorbent. In the measurement of VOC adsorption capacity,
The required sample weight was accurately weighed from the obtained sample adsorbent and provided for measurement. Further, isopentane to be used for the measurement was purified as follows. First, isopentane (Tokyo Kasei Kogyo Co., Ltd., reagent grade) is placed in a liquid reservoir, and bubbling is performed in a decompression line. Then, the surface of the liquefied nitrogen in the dewar is carefully brought into contact with the bottom of the liquid reservoir, cooled, solidified, and dissolved. Vacuum evacuation was performed on the order of 10 -2 mmHg while releasing gas. Then, it was heated and melted. This operation was repeated until no dissolved gas was released, to purify isopentane. Water used as a water vapor source was purified in the same manner as in the evaluation of the hydrophobicity.

【0033】測定に際し、精製した水、イソペンタンを
それぞれの液溜に入れ、恒温槽で50℃±1℃の定温に
保持した。先ず、液溜から発生した飽和水蒸気を50℃
±1℃の温度に維持した硝子製リザーバー(reservoir
、容積150ml)に30mmHgの圧力まで導入
し、更に、試料吸着剤を収容した部分のみを20℃±
0.5℃の温度に保った硝子製吸着管にリザーバーから
自動流量調節バルブを介して徐々に水蒸気を導入し、1
0mmHgの平衡圧になるまで導入し続けた。次いで、
キャパシタンスマノメータで測定した圧力と、系内容積
から、10mmHgの平衡圧に到達した時点の水吸着量
を求めた。次いで、液溜から発生したイソペンタン蒸気
を50℃±1℃の温度に維持した硝子製リザーバー(容
積150ml)に540mmHgの圧力まで導入し、更
に、試料吸着剤を収容した部分のみを20℃±0.5℃
の温度に保った硝子製吸着管にリザーバーから自動流量
調節バルブを介して徐々にイソペンタン蒸気を導入し、
540mmHgの平衡圧になるまで導入し続けた。平衡
吸着量は、10分間の圧力変動が0.1mmHg以内に
なった時点の吸着量とした。イソペンタンの吸着量は、
キャパシタンスマノメーターで測定した圧力変化と系内
体積から求め、更に、前処理後の試料重量を基に吸着剤
重量あたりの吸着量を計算した。水蒸気吸着量およびV
OC吸着量の測定は、高精度蒸気量測定装置(Belsorp1
8,ベルジャパン社製)を用いて行い、流量調節バルブ
等の開閉及び調節は、パソコン(PC9821、日本電気製)
でオンライン(on-line)制御した。
At the time of measurement, purified water and isopentane were put into respective liquid reservoirs, and kept at a constant temperature of 50 ° C. ± 1 ° C. in a thermostat. First, the saturated steam generated from the liquid pool was cooled to 50 ° C.
Glass reservoir maintained at a temperature of ± 1 ° C (reservoir
, A volume of 150 ml) up to a pressure of 30 mmHg, and only the portion containing the sample adsorbent is stored at 20 ° C. ±
Water vapor was gradually introduced from a reservoir through an automatic flow control valve into a glass adsorption tube maintained at a temperature of 0.5 ° C.
The introduction was continued until the equilibrium pressure reached 0 mmHg. Then
From the pressure measured by the capacitance manometer and the internal volume of the system, the amount of water adsorbed when the equilibrium pressure of 10 mmHg was reached was determined. Then, isopentane vapor generated from the liquid reservoir was introduced into a glass reservoir (volume 150 ml) maintained at a temperature of 50 ° C. ± 1 ° C. up to a pressure of 540 mmHg, and only the portion containing the sample adsorbent was stored at 20 ° C. ± 0 ° C. .5 ° C
Isopentane vapor was gradually introduced from the reservoir through an automatic flow control valve into the glass adsorption tube maintained at the temperature of
The introduction was continued until the equilibrium pressure reached 540 mmHg. The equilibrium adsorption amount was the adsorption amount when the pressure fluctuation for 10 minutes was within 0.1 mmHg. The adsorption amount of isopentane is
It was determined from the pressure change and the volume in the system measured by the capacitance manometer, and further, the amount of adsorption per weight of the adsorbent was calculated based on the sample weight after pretreatment. Water vapor adsorption and V
The OC adsorption amount is measured using a high-accuracy vapor amount measurement device (Belsorp1
8, Bell Japan Co., Ltd.), and the opening and closing and adjustment of the flow control valve, etc. are performed by a personal computer (PC9821, manufactured by NEC)
Was controlled on-line.

【0034】本発明に係る吸着剤は、ガソリンスタンド
や油槽所等周りの大気中のVOC低濃度のVOC、即ち
ある程度空気と混合したVOCを選択的にかつ効率的に
吸着できる吸着剤である。このような低濃度VOCの吸
着回収において、問題となるのは、空気中に含まれる水
分の影響であって、水分を吸着することにより、VOC
吸着能が低下することである。換言すれば、低濃度VO
C用の優れた吸着剤とは、水分の影響を受けにくい吸着
剤である。水分とVOCが共存する場合、吸着剤は、通
常、水の方を優先的に吸着するために、吸着剤のVOC
吸着能が低下する。本評価方法では、吸着剤に先ず水分
を吸着させ、次いでVOCを吸着させ、その吸着能を評
価している。これは、水分が多いこと、即ちVOCが低
濃度である状態に近似した状態でVOC吸着能を評価し
ていることになる。還元すれば、本評価方法のように、
予め水分を吸着させておくことにより、吸着剤は、低濃
度のVOC雰囲気、又はそれ以上の過酷な条件下にある
ことになるので、水分吸着の後でも多量のVOCを吸着
できるということは、低濃度のVOCの吸着能が優れて
いることと高い確度で相関する。
The adsorbent according to the present invention is an adsorbent capable of selectively and efficiently adsorbing VOC having a low concentration of VOC in the atmosphere around a gas station or an oil depot, that is, VOC mixed with air to some extent. A problem in the adsorption and recovery of such low-concentration VOCs is the effect of the moisture contained in the air.
That is, the adsorption ability is reduced. In other words, low concentration VO
An excellent adsorbent for C is an adsorbent that is not easily affected by moisture. When moisture and VOC coexist, the adsorbent usually absorbs VOC of the adsorbent in order to preferentially adsorb water.
Adsorption capacity decreases. In this evaluation method, first, moisture is adsorbed on the adsorbent, then VOC is adsorbed, and the adsorbing ability is evaluated. This means that the VOC adsorption capacity is evaluated in a state where the water content is large, that is, in a state similar to a state where the VOC is at a low concentration. If reduced, like this evaluation method,
By adsorbing moisture in advance, the adsorbent is in a low-concentration VOC atmosphere or under more severe conditions, so that a large amount of VOC can be adsorbed even after moisture adsorption. It is highly correlated with the excellent ability to adsorb low concentration VOCs.

【0035】吸着剤のVOC選択率の測定方法 圧力2mmHg、温度20℃で吸着剤への水蒸気の平衡吸
着量(ml/g(stp))の測定は、吸着剤の疏水可能の
評価方法で説明した水蒸気の平衡吸着量を測定する方法
に従って行う。温度20℃での揮発性有機化合物の飽和
蒸気圧の1/10の圧力下、温度20℃における吸着剤
への揮発性有機化合物の平衡吸着量(ml/g(stp))
の測定は、次に説明するようにして行う。測定に使う有
機化合物を前もって精製する。例えば、イソペンタンを
例にすると、先ず、試薬特級のイソペンタンを液溜めに
入れ、減圧ラインでバブリングした後、デュワー瓶に入
れた液化窒素面を注意深く液溜め底部に接触させて、イ
ソペンタンを冷却し、固化させつつ、10-2mmHgの
オーダの真空で真空排気しつつ溶存気体を放出させる。
次いで、固化したイソペンタンを加温して溶融した。溶
存気体の放出が無くなるまで、この操作を繰り返して、
イソペンタンを脱気、精製した。なお、液化窒素温度で
固化し難い揮発性有機化合物の場合には、予め液体窒素
温度付近まで冷却したモレキュラーシーブス(分子篩)
等に揮発性有機化合物を吸着させ、加温し、モレキュラ
ーシーブスから最初に脱離して来るガスをガス溜めに集
積する。
Measurement method of VOC selectivity of adsorbent The measurement of equilibrium adsorption amount of water vapor (ml / g (stp)) on adsorbent at a pressure of 2 mmHg and a temperature of 20 ° C. is described in the method of evaluating adsorbent's hydrophobicity. This is performed according to a method for measuring the equilibrium adsorption amount of the water vapor. Equilibrium adsorption of the volatile organic compound on the adsorbent at a temperature of 20 ° C. under a pressure of 1/10 of the saturated vapor pressure of the volatile organic compound at a temperature of 20 ° C. (ml / g (stp))
Is measured as described below. The organic compound used for the measurement is purified in advance. For example, taking isopentane as an example, first place reagent-grade isopentane in a reservoir, bubbling in a vacuum line, and then carefully contact the liquefied nitrogen surface in a Dewar bottle with the bottom of the reservoir to cool the isopentane, While solidifying, the dissolved gas is released while evacuating with a vacuum of the order of 10 -2 mmHg.
Next, the solidified isopentane was heated and melted. Repeat this operation until no dissolved gas is released,
Isopentane was degassed and purified. In the case of volatile organic compounds that are hard to solidify at the temperature of liquefied nitrogen, molecular sieves (molecular sieves) that have been cooled to around the temperature of liquid nitrogen in advance
The volatile organic compound is adsorbed on the material and heated, and the gas first desorbed from the molecular sieve is accumulated in the gas reservoir.

【0036】このように脱気、精製したイソペンタン蒸
気を50℃±1℃に維持した硝子製リザーバ(容積15
0ml)に約540mmHg程度まで導入し、更に、試
料吸着剤を収容したリザーバ部分を20℃±0.5℃に
保った硝子製吸着管にリザーバからイソペンタン蒸気を
導入し、温度20℃でのイソペンタンの飽和蒸気圧の1
/10の圧力下、温度20℃における10分間の圧力変
動が、1気圧における蒸気圧の1/10の圧力で、10
分間の圧力変動が、0.02mmHg以下になった時点
の吸着量(平衡吸着量)を、20℃でのイソペンタンの
飽和蒸気圧の1/10の圧力下で、20℃でのイソペン
タンの平衡吸着量(ml/g(stp))とした。以上の説
明では、揮発性有機化合物の例としてイソペンタンを挙
げて説明したが、揮発性有機化合物はイソペンタンに限
るものではない。
A glass reservoir (volume: 15) in which the degassed and purified isopentane vapor was maintained at 50 ° C. ± 1 ° C.
0 ml) to about 540 mmHg, and further, isopentane vapor was introduced from the reservoir into a glass adsorption tube in which the reservoir containing the sample adsorbent was kept at 20 ° C ± 0.5 ° C. Of saturated vapor pressure of
Under a pressure of / 10, the pressure fluctuation for 10 minutes at a temperature of 20 ° C. is 1/10 of the vapor pressure at 1 atm.
The amount of adsorption (equilibrium adsorption amount) at the time when the pressure fluctuation per minute becomes 0.02 mmHg or less is determined by the equilibrium adsorption of isopentane at 20 ° C. under the pressure of 1/10 of the saturated vapor pressure of isopentane at 20 ° C. Volume (ml / g (stp)). In the above description, isopentane is described as an example of the volatile organic compound, but the volatile organic compound is not limited to isopentane.

【0037】以下に、具体的な実験結果を示す。実施例1 比表面積が600m2/g 、細孔容積が0.40ml/g
及び平均細孔径が2.5nmの原料物性を有するシリカ
ゲル粉末を3.2mm(直径)×3mm(高さ)の円柱
状のペレットに打錠成形した。次いで、ペレットをマッ
フル炉で昇温速度1℃/分で室温から550℃にまで加
熱し、続いて550℃の温度で5時間保持した。その
後、室温まで冷却して、実施例1の試料吸着剤を得た。
Hereinafter, specific experimental results will be shown. Example 1 Specific surface area is 600 m 2 / g, pore volume is 0.40 ml / g
And a silica gel powder having a raw material property having an average pore diameter of 2.5 nm was tablet-formed into a 3.2 mm (diameter) × 3 mm (height) cylindrical pellet. The pellets were then heated in a muffle furnace from room temperature to 550 ° C. at a rate of 1 ° C./min and subsequently held at 550 ° C. for 5 hours. Then, it cooled to room temperature and obtained the sample adsorbent of Example 1.

【0038】実施例1の試料吸着剤の物性を測定したと
ころ、比表面積が570m2/g 、細孔容積が0.38m
l/g、及び平均細孔径が2.5nmであった。従っ
て、原料のシリカゲル粉末に対する試料吸着剤の比表面
積の減少率は5%になった。また、上述した疎水化能の
評価方法に従って測定した20℃、2mmHgでの水蒸
気飽和吸着量は、9.8ml/g(stp)であった。
stpとは、標準状態(Standard Temperature and Pre
ssure )のことであり、0℃、常圧に換算した吸着量を
示している。また、水に浸漬し、2週間経過した後で
も、試料吸着剤には割れが発生していなかった。上述し
たVOC吸着能の評価方法に従って20℃で水10mmHg
平衡吸着後に測定したイソペンタン吸着量は、3.1m
l/g(stp)であった。実施例1の原料の物性、疏
水化処理条件、吸着剤の物性、疏水化能及びVOC吸着
量は、それぞれ、表1の実施例1の欄に記載されてい
る。以下、実施例2から5についても同様である。
When the physical properties of the sample adsorbent of Example 1 were measured, the specific surface area was 570 m 2 / g and the pore volume was 0.38 m
1 / g, and the average pore diameter was 2.5 nm. Therefore, the reduction rate of the specific surface area of the sample adsorbent with respect to the raw material silica gel powder was 5%. Further, the water vapor saturated adsorption amount at 20 ° C. and 2 mmHg measured according to the above-described method for evaluating hydrophobicity was 9.8 ml / g (stp).
stp stands for Standard Temperature and Pre
ssure), and indicates the adsorption amount converted to 0 ° C. and normal pressure. Also, even after immersion in water and lapse of two weeks, no crack was generated in the sample adsorbent. According to the above-described method for evaluating the VOC adsorption ability, water is 10 mmHg at 20 ° C.
The amount of adsorbed isopentane measured after equilibrium adsorption was 3.1 m
1 / g (stp). The physical properties of the raw material, the conditions of the hydrophobic treatment, the physical properties of the adsorbent, the hydrophobicity and the amount of VOC adsorbed in Example 1 are described in the column of Example 1 in Table 1, respectively. Hereinafter, the same applies to Examples 2 to 5.

【表1】 [Table 1]

【0039】実施例2 比表面積が660m2/g 、細孔容積が0.10ml/g
及び平均細孔径が0.6nmの原料物性を有するシリカ
ゲル粉末を実施例1と同様な形状のペレットに打錠成形
し、マッフル炉で昇温速度5℃/分で室温から600℃
にまで加熱し、続いて600℃で4時間保持した。その
後、室温まで冷却して、実施例2の試料吸着剤を得た。
実施例2の試料吸着剤の比表面積は581m2/g 、細孔
容積は0.09ml/g、及び平均細孔径は0.6nm
であった。従って、原料のシリカゲルに対する試料吸着
剤の比表面積の減少率は12%になった。また、実施例
1と同様にして求めた水蒸気飽和吸着量及びイソペンタ
ン吸着量は、それぞれ、7.5ml/g(stp)及び
4.5ml/g(stp)であった。また、水に浸漬し
た後2週間経過時点で、試料吸着剤には割れは発生して
いなかった。
Example 2 Specific surface area is 660 m 2 / g, pore volume is 0.10 ml / g
And a silica gel powder having a raw material property having an average pore diameter of 0.6 nm is tablet-formed into pellets having the same shape as in Example 1, and the temperature is raised from room temperature to 600 ° C. at a rate of 5 ° C./min in a muffle furnace.
, And then kept at 600 ° C. for 4 hours. Then, it cooled to room temperature and obtained the sample adsorbent of Example 2.
The specific surface area of the sample adsorbent of Example 2 was 581 m 2 / g, the pore volume was 0.09 ml / g, and the average pore diameter was 0.6 nm.
Met. Therefore, the reduction rate of the specific surface area of the sample adsorbent with respect to the raw material silica gel was 12%. The water vapor saturated adsorption amount and isopentane adsorption amount obtained in the same manner as in Example 1 were 7.5 ml / g (stp) and 4.5 ml / g (stp), respectively. In addition, no crack was generated in the sample adsorbent two weeks after immersion in water.

【0040】実施例3 比表面積が690m2/g 、細孔容積が0.30ml/g
及び平均細孔径が2.0nmの原料物性を有する粒径2
〜3mmの球状シリカゲルをマッフル炉により昇温速度
10℃/分で室温から650℃にまで加熱し、続いて6
50℃の温度で3時間保持した。その後、室温まで冷却
して、実施例3の試料吸着剤を得た。実施例3の試料吸
着剤の比表面積は448m2/g 、細孔容積は0.20m
l/g、及び平均細孔径は1.8nmであった。従っ
て、原料の球状シリカゲルに対する試料吸着剤の比表面
積の減少率は35%になった。また、実施例1と同様に
して求めた水蒸気飽和吸着量及びイソペンタン吸着量
は、それぞれ、5.3ml/g(stp)及び4.1m
l/g(stp)であった。また、水に浸漬した後2週
間経過時点で、試料吸着剤には割れは発生していなかっ
た。
Example 3 Specific surface area is 690 m 2 / g, pore volume is 0.30 ml / g
And a particle diameter 2 having a raw material property of an average pore diameter of 2.0 nm.
33 mm spherical silica gel was heated from room temperature to 650 ° C. in a muffle furnace at a rate of 10 ° C./min.
It was kept at a temperature of 50 ° C. for 3 hours. Then, it cooled to room temperature and obtained the sample adsorbent of Example 3. The specific surface area of the sample adsorbent of Example 3 was 448 m 2 / g, and the pore volume was 0.20 m.
1 / g and the average pore diameter were 1.8 nm. Therefore, the reduction rate of the specific surface area of the sample adsorbent with respect to the raw material spherical silica gel was 35%. The water vapor saturated adsorption amount and isopentane adsorption amount obtained in the same manner as in Example 1 were 5.3 ml / g (stp) and 4.1 m, respectively.
1 / g (stp). In addition, no crack was generated in the sample adsorbent two weeks after immersion in water.

【0041】実施例4 比表面積が700m2/g 、細孔容積が0.30ml/g
及び平均細孔径が1.5nmの原料物性を有する粒径2
〜3mmの球状シリカゲルをマッフル炉により昇温速度
20℃/分で室温から700℃にまで加熱し、続いて7
00℃で3時間保持した。その後、室温まで冷却して、
実施例4の試料吸着剤を得た。実施例4の試料吸着剤の
比表面積は420m2/g 、細孔容積は0.18ml/
g、及び平均細孔径は1.7nmであった。従って、原
料のシリカゲルに対する試料吸着剤の比表面積の減少率
は40%になった。また、実施例1と同様にして求めた
水蒸気飽和吸着量及びイソペンタン吸着量は、それぞ
れ、3.2ml/g(stp)及び3.7ml/g(s
tp)であった。また、水に浸漬した後2週間経過時点
で、試料吸着剤には割れは発生していなかった。
Example 4 The specific surface area is 700 m 2 / g and the pore volume is 0.30 ml / g
And a particle diameter 2 having a raw material property of 1.5 nm in average pore diameter
33 mm of spherical silica gel was heated from room temperature to 700 ° C. in a muffle furnace at a heating rate of 20 ° C./min.
It was kept at 00 ° C. for 3 hours. Then cool to room temperature,
The sample adsorbent of Example 4 was obtained. The specific surface area of the sample adsorbent of Example 4 was 420 m 2 / g, and the pore volume was 0.18 ml / g.
g and average pore diameter were 1.7 nm. Therefore, the reduction rate of the specific surface area of the sample adsorbent with respect to the raw material silica gel was 40%. The water vapor saturated adsorption amount and isopentane adsorption amount obtained in the same manner as in Example 1 were 3.2 ml / g (stp) and 3.7 ml / g (s), respectively.
tp). In addition, no crack was generated in the sample adsorbent two weeks after immersion in water.

【0042】実施例5 比表面積が780m2/g 、細孔容積が0.30ml/g
及び平均細孔径が1.5nmの原料物性を有する粒径2
〜3mmの球状シリカゲルをマッフル炉により昇温速度
15℃/分で室温から620℃にまで加熱し、続いて6
20℃の温度で2時間保持した。その後、室温まで冷却
して、実施例5の試料吸着剤を得た。実施例5の試料吸
着剤の比表面積は655m2/g 、細孔容積は0.25m
l/g、及び平均細孔径は1.5nmであった。従っ
て、原料のシリカゲルに対する試料吸着剤の比表面積の
減少率は16%になった。また、実施例1と同様にして
求めた水蒸気飽和吸着量及びイソペンタン吸着量は、そ
れぞれ、10.0ml/g(stp)及び5.9ml/
g(stp)であった。また、水に浸漬した後2週間経
過時点で、試料吸着剤には割れは発生していなかった。
Example 5 Specific surface area is 780 m 2 / g, pore volume is 0.30 ml / g
And a particle diameter 2 having a raw material property of 1.5 nm in average pore diameter
33 mm spherical silica gel was heated from room temperature to 620 ° C. in a muffle furnace at a rate of 15 ° C./min.
It was kept at a temperature of 20 ° C. for 2 hours. Then, it cooled to room temperature and obtained the sample adsorbent of Example 5. The specific surface area of the sample adsorbent of Example 5 was 655 m 2 / g, and the pore volume was 0.25 m
1 / g, and the average pore diameter was 1.5 nm. Accordingly, the reduction rate of the specific surface area of the sample adsorbent with respect to the raw material silica gel was 16%. The water vapor saturated adsorption amount and isopentane adsorption amount obtained in the same manner as in Example 1 were 10.0 ml / g (stp) and 5.9 ml / g, respectively.
g (stp). In addition, no crack was generated in the sample adsorbent two weeks after immersion in water.

【0043】比較例1 比表面積が450m2/g 、細孔容積が0.69ml/
g、平均細孔径が6.1nmの原料物性を有するシリカ
粉末を実施例1と同様な形状のペレットに打錠成形し、
マッフル炉により昇温速度10℃/分で室温から650
℃にまで加熱し、続いて650℃の温度で3時間保持し
た。その後、室温まで冷却して、比較例1の試料吸着剤
とした。比較例1の試料吸着剤の比表面積は383m2/
g 、細孔容積は0.59ml/g、及び平均細孔径は
6.2nmであった。従って、原料のシリカゲルに対す
る試料吸着剤の比表面積の減少率は15%になった。ま
た、実施例1と同様にして求めた水蒸気飽和吸着量及び
イソペンタン吸着量は、それぞれ、7.5ml/g(s
tp)及び1.5ml/g(stp)であった。また、
水に浸漬して2週間経過時点で、試料吸着剤には割れは
発生していなかった。比較例1の原料の物性、疏水化処
理条件、吸着剤の物性、疏水化能及びVOC吸着量は、
それぞれ、表2の比較例1の欄に記載されている。以
下、比較例2から6についても同様である。
Comparative Example 1 The specific surface area was 450 m 2 / g, and the pore volume was 0.69 ml / g.
g, a silica powder having an average pore diameter of 6.1 nm and having raw material properties is tablet-formed into pellets having the same shape as in Example 1,
From a room temperature to 650 at a heating rate of 10 ° C / min in a muffle furnace
C. and subsequently held at a temperature of 650.degree. C. for 3 hours. Thereafter, the mixture was cooled to room temperature to obtain a sample adsorbent of Comparative Example 1. The specific surface area of the sample adsorbent of Comparative Example 1 was 383 m 2 /
g, the pore volume was 0.59 ml / g, and the average pore diameter was 6.2 nm. Therefore, the reduction rate of the specific surface area of the sample adsorbent with respect to the raw material silica gel was 15%. The water vapor saturated adsorption amount and isopentane adsorption amount obtained in the same manner as in Example 1 were 7.5 ml / g (s
tp) and 1.5 ml / g (stp). Also,
Two weeks after immersion in water, no cracks occurred in the sample adsorbent. The physical properties of the raw material of Comparative Example 1, the conditions of the hydrophobic treatment, the physical properties of the adsorbent, the hydrophobicity and the VOC adsorption amount were as follows:
Each is described in the column of Comparative Example 1 in Table 2. Hereinafter, the same applies to Comparative Examples 2 to 6.

【表2】 [Table 2]

【0044】比較例2 比表面積が650m2/g 、細孔容積が0.40ml/g
及び平均細孔径が2.5nmの原料物性を有する粒径2
〜3mmの球状シリカゲルをマッフル炉により昇温速度
30℃/分で室温から800℃にまで加熱し、続いて8
00℃の温度で6時間保持した。その後、室温まで冷却
して、比較例2の試料吸着剤を得た。比較例2の試料吸
着剤の比表面積は280m2/g 、細孔容積は0.79m
l/g、及び平均細孔径は11.3nmであった。従っ
て、原料のシリカゲルに対する試料吸着剤の比表面積の
減少率は65%になった。また、実施例1と同様にして
求めた水蒸気飽和吸着量及びイソペンタン吸着量は、そ
れぞれ、4.8ml/g(stp)及び0.1ml/g
(stp)であった。また、水に浸漬した後、2週間経
過した時点で、試料吸着剤に著しいひび割れが発生して
いた。
Comparative Example 2 The specific surface area was 650 m 2 / g and the pore volume was 0.40 ml / g
And a particle size 2 having a raw material property having an average pore diameter of 2.5 nm.
33 mm spherical silica gel was heated from room temperature to 800 ° C. in a muffle furnace at a rate of 30 ° C./min.
It was kept at a temperature of 00 ° C. for 6 hours. Then, it cooled to room temperature and obtained the sample adsorbent of Comparative Example 2. The specific surface area of the sample adsorbent of Comparative Example 2 was 280 m 2 / g, and the pore volume was 0.79 m.
1 / g, and the average pore diameter was 11.3 nm. Therefore, the reduction rate of the specific surface area of the sample adsorbent with respect to the raw material silica gel was 65%. The water vapor saturated adsorption amount and isopentane adsorption amount obtained in the same manner as in Example 1 were 4.8 ml / g (stp) and 0.1 ml / g, respectively.
(Stp). Also, two weeks after immersion in water, the sample adsorbent had significant cracks.

【0045】比較例3 比表面積が780m2/g 、細孔容積が0.30ml/
g、平均細孔径が1.5nmの原料物性を有する粒径2
〜3mmの球状シリカゲルをマッフル炉により室温から
昇温速度0.5℃/分で室温から520℃にまで加熱
し、続いて520℃の温度で1時間保持した。その後、
室温まで冷却して、比較例3の試料吸着剤を得た。比較
例3の試料吸着剤の比表面積は760m2/g 、細孔容積
は0.29ml/g、及び平均細孔径は3.0nmであ
った。従って、原料のシリカゲルに対する試料吸着剤の
比表面積の減少率は3%になった。また、実施例1と同
様にして求めた水蒸気飽和吸着量及びイソペンタン吸着
量は、それぞれ、26.6ml/g(stp)及び0.
3ml/g(stp)であった。また、水に浸漬した
後、2週間経過した時点で、試料吸着剤は粉化してい
た。
Comparative Example 3 The specific surface area was 780 m 2 / g and the pore volume was 0.30 ml / g.
g, particle diameter 2 having raw material properties with an average pore diameter of 1.5 nm
球状 3 mm spherical silica gel was heated from room temperature to 520 ° C. at a rate of 0.5 ° C./min from room temperature in a muffle furnace, and then kept at a temperature of 520 ° C. for 1 hour. afterwards,
After cooling to room temperature, a sample adsorbent of Comparative Example 3 was obtained. The specific surface area of the sample adsorbent of Comparative Example 3 was 760 m 2 / g, the pore volume was 0.29 ml / g, and the average pore diameter was 3.0 nm. Accordingly, the reduction rate of the specific surface area of the sample adsorbent with respect to the raw material silica gel was 3%. The water vapor saturated adsorption amount and isopentane adsorption amount obtained in the same manner as in Example 1 were 26.6 ml / g (stp) and 0.1, respectively.
It was 3 ml / g (stp). In addition, the sample adsorbent was powdered two weeks after immersion in water.

【0046】比較例4 比表面積が690m2 /g、細孔容積が0.30ml/
g、平均細孔径が2.0nmの原料物性を有する球状シ
リカゲル(2〜3mm径)をマッフル炉で室温から昇温
速度10℃/minで加熱し800℃にで加熱後、同温
度で3時間保持した。その後、室温まで冷却して比較例
4の試料吸着剤とした。比較例4の試料吸着剤の比表面
積は248m2 /g、細孔容積は0.32ml/g、及
び平均細孔径が5.2nmであった。したがって、原料
のシリカゲルに対する試料吸着剤の比表面積の減少率は
64%になった。また、疎水化能を示す、20℃、2m
mHgでの水蒸気飽和吸着量は4.8ml/g(st
p)、水に浸漬後の2週間経過後の割れは見られなかっ
た。20℃で水10mmHgの平衡吸着後のイソペンタ
ン吸着量は0.2ml/g(stp)であった。
Comparative Example 4 The specific surface area was 690 m 2 / g and the pore volume was 0.30 ml / g.
g, spherical silica gel (2 to 3 mm diameter) having a raw material property having an average pore diameter of 2.0 nm is heated in a muffle furnace from room temperature at a heating rate of 10 ° C./min, heated to 800 ° C., and then at the same temperature for 3 hours. Held. Then, it cooled to room temperature and was set as the sample adsorbent of Comparative Example 4. The specific surface area of the sample adsorbent of Comparative Example 4 was 248 m 2 / g, the pore volume was 0.32 ml / g, and the average pore diameter was 5.2 nm. Therefore, the reduction rate of the specific surface area of the sample adsorbent with respect to the raw material silica gel was 64%. In addition, it shows hydrophobicity, 20 ° C, 2m
The water vapor saturated adsorption amount at mHg is 4.8 ml / g (st
p), no cracks were observed 2 weeks after immersion in water. The isopentane adsorption amount after equilibrium adsorption of 10 mmHg of water at 20 ° C. was 0.2 ml / g (stp).

【0047】比較例5 比表面積が780m2 /g、細孔容積が0.30ml/
g、平均細孔径が1.5nmの原料物性を有する球状シ
リカゲルを、マッフル炉で室温から昇温速度5℃/mi
nで加熱し、520℃にまで加熱後、同温度で3時間保
持した。その後、室温まで冷却して比較例5の試料吸着
剤とした。比較例5の試料吸着剤の比表面積は755m
2 /g、細孔容積は0.29ml/g、及び平均細孔径
が1.5nmであった。したがって、原料のシリカゲル
に対する試料吸着剤の比表面積の減少率は3%になっ
た。また、疎水化能を示す、20℃、2mmHgでの水
蒸気飽和吸着量は25.8ml/g(stp)、水に浸
漬後の2週間経過後には粉化した。20℃で水10mm
Hg平衡吸着後のイソペンタン吸着量が0.2ml/g
(stp)であった。
Comparative Example 5 The specific surface area was 780 m 2 / g and the pore volume was 0.30 ml / g.
g, spherical silica gel having an average pore diameter of 1.5 nm and having physical properties as raw materials was heated in a muffle furnace from room temperature to a heating rate of 5 ° C./mi.
n, heated to 520 ° C., and maintained at the same temperature for 3 hours. Then, it cooled to room temperature and was set as the sample adsorbent of Comparative Example 5. The specific surface area of the sample adsorbent of Comparative Example 5 is 755 m
2 / g, the pore volume was 0.29 ml / g, and the average pore diameter was 1.5 nm. Therefore, the reduction rate of the specific surface area of the sample adsorbent with respect to the raw material silica gel was 3%. In addition, the water vapor saturated adsorption amount at 20 ° C. and 2 mmHg, which shows hydrophobicity, was 25.8 ml / g (stp), and powdered two weeks after immersion in water. 10mm water at 20 ℃
Isopentane adsorption amount after Hg equilibrium adsorption is 0.2 ml / g
(Stp).

【0048】比較例6 比表面積が650m2 /g、細孔容積が0.40ml/
g、平均細孔径が2.5nmの原料物性を有する球状シ
リカゲルを、マッフル炉で室温から昇温速度30℃/m
inで加熱し、700℃にまで加熱後、同温度で3時間
保持した。その後、室温まで冷却して比較例6の試料吸
着剤とした。比較例6の試料吸着剤の比表面積は390
2 /g、細孔容積は0.60ml/g、及び平均細孔
径が6.2nmであった。したがって、原料のシリカゲ
ルに対する試料吸着剤の比表面積の減少率は40%にな
った。また、疎水化能を示す、20℃、2mmHgでの
水蒸気飽和吸着量は3.7ml/g(stp)、水に浸
漬後の2週間経過後にはひび割れが発生していた。20
℃で水10mmHg平衡吸着後のイソペンタン吸着量が
1.5ml/g(stp)であった。
Comparative Example 6 The specific surface area was 650 m 2 / g and the pore volume was 0.40 ml / g.
g, a spherical silica gel having an average pore diameter of 2.5 nm and having physical properties of a raw material was heated in a muffle furnace from room temperature to a heating rate of 30 ° C./m.
After heating to 700 ° C., the temperature was maintained at the same temperature for 3 hours. Then, it cooled to room temperature and was set as the sample adsorbent of Comparative Example 6. The specific surface area of the sample adsorbent of Comparative Example 6 was 390
m 2 / g, the pore volume was 0.60 ml / g, and the average pore diameter was 6.2 nm. Therefore, the reduction rate of the specific surface area of the sample adsorbent with respect to the raw material silica gel was 40%. In addition, the water vapor saturated adsorption amount at 20 ° C. and 2 mmHg showing the hydrophobizing ability was 3.7 ml / g (stp), and cracks had occurred two weeks after immersion in water. 20
The isopentane adsorption amount after equilibrium adsorption of water at 10 mmHg at 1.5 ° C. was 1.5 ml / g (stp).

【0049】実施例と比較例との比較から判る通り、全
ての実施例のVOC吸着量は、比較例のVOC吸着量の
2倍以上であった。また、比較例の試料吸着剤は、粉化
したり、又は割れが発生したりしていた。また、試料吸
着剤の比表面積が400m2 /g以下では、比較例1及
び2のように、VOC吸着能が極めて悪く、逆に、比表
面積が700m2 /g以上では、比較例3のように、吸
着剤に割れが発生し易い。また、原料シリカゲルの比表
面積が600m2 /g以下では、比較例1のように、試
料吸着剤のVOC吸着能が極めて悪い。
As can be seen from the comparison between the examples and the comparative examples, the VOC adsorption amounts of all the examples were at least twice the VOC adsorption amounts of the comparative examples. Further, the sample adsorbent of the comparative example was powdered or cracked. When the specific surface area of the sample adsorbent is 400 m 2 / g or less, the VOC adsorption ability is extremely poor as in Comparative Examples 1 and 2. Conversely, when the specific surface area is 700 m 2 / g or more, as in Comparative Example 3. In addition, cracks easily occur in the adsorbent. Further, when the specific surface area of the raw material silica gel is 600 m 2 / g or less, the VOC adsorption ability of the sample adsorbent is extremely poor as in Comparative Example 1.

【0050】比較例1は、本発明で特定した条件で疎水
化処理したので、良好な疎水化能を示すものの、比表面
積、細孔容積及び平均細孔径がそれぞれ本発明の特定範
囲から外れているために、VOC吸着能が悪い。比較例
2は、原料シリカゲルの原料物性は本発明の特定範囲に
あるものの、疎水化処理条件、即ち昇温速度及び加熱処
理温度がそれぞれ本発明で特定した範囲の上限を超えて
いるために、シリカゲルにシンタリング或いは歪み等が
発生し、結果として、水蒸気吸着量は比較的低いもの
の、VOC吸着能が極めて悪く、また試料吸着剤に割れ
が発生した。比較例3は、原料シリカゲルの原料物性は
本発明の特定範囲にあるものの、疎水化処理条件、特に
加熱処理温度が本発明で特定した範囲の下限未満であっ
て、疎水化処理が不足するために、疎水化能が悪く、し
かもVOC吸着能が極めて悪い。
In Comparative Example 1, the hydrophobizing treatment was carried out under the conditions specified in the present invention, but the specific surface area, the pore volume, and the average pore diameter were out of the specific ranges of the present invention, respectively, although they exhibited good hydrophobicity. Therefore, the VOC adsorption ability is poor. In Comparative Example 2, although the raw material properties of the raw material silica gel were within the specific range of the present invention, the hydrophobizing treatment conditions, that is, the heating rate and the heat treatment temperature exceeded the upper limits of the ranges specified in the present invention, respectively. Sintering or distortion occurred in the silica gel, and as a result, although the water vapor adsorption amount was relatively low, the VOC adsorption ability was extremely poor, and cracks occurred in the sample adsorbent. In Comparative Example 3, although the raw material properties of the raw material silica gel were within the specific range of the present invention, the hydrophobizing treatment conditions, particularly, the heat treatment temperature was lower than the lower limit of the range specified by the present invention, and the hydrophobizing treatment was insufficient. Furthermore, the hydrophobizing ability is poor and the VOC adsorption ability is extremely poor.

【0051】比較例4は、原料物性は実施例3と同じで
あるものの、疎水化処理温度が800℃であって、本発
明で特定した温度範囲の上限より高い。従って、吸着素
材の疎水化は成されるものの、比表面積減少率が著しく
大きくなって、得られた試料吸着剤の比表面積が本発明
で特定した範囲の下限に届いていないため、十分なVO
C吸着量が得られず、吸着剤として不適格であった。比
較例5は、原料物性は実施例5と同じであるものの、疎
水化処理温度が520℃であって、本発明で特定した温
度範囲の下限より低い。その結果として、原料物性を保
つために、比表面積減少率が小さくなっている。しかし
ながら、温度範囲が低いため疎水化が不十分となり、水
蒸気吸着量が著しく大きく、水に浸漬した試料吸着剤の
粉化が著しい。この結果、VOC吸着量も極めて低くな
った。比較例6は、原料物性は本発明で特定した範囲に
あるものの、疎水化処理の際の昇温速度が30℃/分で
あって、本発明で特定した昇温速度範囲の上限より大き
い。このため、吸着剤に歪みが発生しやすい状況にあ
る。加熱処理温度が特定値以内にあるので、水吸着量で
見る限りでは、疎水化は成されているが、歪みが多いた
めに、水に浸漬した際に割れが生じた。また、VOC吸
着量も不満足な値であり、吸着剤としては不適格であっ
た。
In Comparative Example 4, although the raw material properties were the same as in Example 3, the hydrophobizing temperature was 800 ° C., which was higher than the upper limit of the temperature range specified in the present invention. Therefore, although the adsorption material is hydrophobized, the specific surface area reduction rate is significantly increased, and the specific surface area of the obtained sample adsorbent does not reach the lower limit of the range specified in the present invention, so that sufficient VO
The amount of C adsorbed was not obtained, and it was not suitable as an adsorbent. Comparative Example 5 has the same raw material properties as Example 5, but has a hydrophobizing treatment temperature of 520 ° C., which is lower than the lower limit of the temperature range specified in the present invention. As a result, the specific surface area reduction rate is small in order to maintain the raw material properties. However, since the temperature range is low, the hydrophobicity becomes insufficient, the amount of water vapor adsorbed is remarkably large, and the sample adsorbent immersed in water is remarkably powdered. As a result, the VOC adsorption amount was also extremely low. In Comparative Example 6, although the raw material properties were within the range specified in the present invention, the heating rate during the hydrophobizing treatment was 30 ° C./min, which was higher than the upper limit of the heating rate range specified in the present invention. For this reason, the adsorbent is in a state where distortion is likely to occur. Since the heat treatment temperature was within the specified value, the surface was hydrophobized in terms of the amount of water adsorbed, but cracks occurred when immersed in water because of large distortion. Further, the VOC adsorption amount was also an unsatisfactory value, and was unsuitable as an adsorbent.

【0052】表1の実施例1から5の結果と、比較例1
から6の結果とを比較することにより、疎水化能は、5
50〜700℃の範囲の温度に昇温速度1〜20℃/分
で到達させ、同温度範囲で2〜5時間保持することによ
り、効果的に発現する。また、原料物性が本発明の規定
範囲内にあるシリカゲルを用いることにより、水に対す
る割れ耐性及び撥水性等の良好な疎水化能と、高いVO
C吸着能とを示す、吸着剤を得ることが出来る。
The results of Examples 1 to 5 in Table 1 and Comparative Example 1
By comparing with the results of the above, the hydrophobizing ability was 5
The temperature is effectively increased by reaching a temperature in the range of 50 to 700 ° C. at a rate of temperature increase of 1 to 20 ° C./min and maintaining the temperature in the same temperature range for 2 to 5 hours. Further, by using silica gel whose raw material properties are within the specified range of the present invention, good hydrophobicity such as crack resistance against water and water repellency, and high VO
An adsorbent exhibiting C adsorption ability can be obtained.

【0053】VOC選択率による評価 VOC吸着能を示す因子の一つとして、試料吸着剤のV
OC選択率を測定した。実施例1から実施例5及び比較
例1から比較例6の試料吸着剤について、表3及び表4
に示すようにVOCを特定して、前述した方法に従っ
て、VOC選択率を測定し、表3及び表4に示す結果を
得た。実施例3の試料吸着剤については、3種類のVO
Cについて、VOC選択率を測定した。表3と表4との
比較から判る通り、実施例1から実施例5の試料吸着剤
は、そのVOC選択率が、85%以上であって、74%
以下の比較例1から比較例6のVOC選択率に比べて、
格段に大きなVOC選択率を示している。実施例3の試
料吸着剤による試験から、実施例3の試料吸着剤は、V
OCの種類が異なっても、ほぼ同程度のVOC選択率を
示すことが判る。
Evaluation by VOC Selectivity As one of the factors indicating the VOC adsorption capacity, V of the sample adsorbent
The OC selectivity was measured. Tables 3 and 4 show the sample adsorbents of Examples 1 to 5 and Comparative Examples 1 to 6.
And VOC selectivity was measured according to the method described above, and the results shown in Tables 3 and 4 were obtained. For the sample adsorbent of Example 3, three types of VO
For C, the VOC selectivity was measured. As can be seen from the comparison between Tables 3 and 4, the sample adsorbents of Examples 1 to 5 have VOC selectivities of 85% or more and 74%.
Compared to the VOC selectivities of Comparative Examples 1 to 6 below,
It shows a significantly higher VOC selectivity. From the test using the sample adsorbent of Example 3, the sample adsorbent of Example 3 shows that V
It can be seen that even if the types of OC are different, almost the same VOC selectivity is exhibited.

【表3】 [Table 3]

【表4】 [Table 4]

【0054】以上の実施例は、本発明を説明するための
例示であり、本発明を限定するものではなく、原料シリ
カゲルの多孔質物性、疎水化処理条件、揮発性有機化合
物ガス用吸着剤の多孔質物性等は、本発明の要旨を逸脱
しない限り、以上の実施例の条件により制限されるもの
ではない。
The above examples are illustrative for illustrating the present invention, and do not limit the present invention. The porous physical properties of the raw material silica gel, the conditions for the hydrophobic treatment, and the adsorbent for volatile organic compound gas Porous physical properties and the like are not limited by the conditions of the above-described examples unless they depart from the gist of the present invention.

【0055】[0055]

【発明の効果】本発明は、シリカを主成分とし、特定の
多孔質物性を備えた多孔質成形体から吸着剤を構成する
ことにより、良好な疎水化能と高いVOC吸着能を有
し、炭素数が1から12の揮発性有機化合物ガスを選択
的に吸着する、揮発性有機化合物ガス用吸着剤を実現で
きる。更に、特定の多孔質物性を備えたシリカ又はシリ
カゲル原料に特定の条件で疎水化処理条件を施すことに
より、揮発性有機化合物ガスの吸着に最適な本発明に係
る吸着剤を経済的に製造することができる。また、本発
明のコストの低い揮発性有機化合物ガス用吸着剤をVO
C−PSA装置に使用することにより、経済的な吸着剤
コストでVOC蒸気を回収することができ、大気環境保
全に有効で、経済的なVOC−PSA装置を実現でき
る。また、本発明の揮発性有機化合物ガス用吸着剤の優
れた疎水化能及び水に対する高い割れ耐性により、長期
間にわたり安定してVOCを回収することができる。
According to the present invention, by forming an adsorbent from a porous molded body containing silica as a main component and having specific porous physical properties, it has good hydrophobizing ability and high VOC adsorbing ability, A volatile organic compound gas adsorbent that selectively adsorbs a volatile organic compound gas having 1 to 12 carbon atoms can be realized. Furthermore, by subjecting a silica or silica gel raw material having specific porous properties to hydrophobic treatment conditions under specific conditions, an adsorbent according to the present invention optimal for the adsorption of volatile organic compound gas is economically produced. be able to. In addition, the low-cost volatile organic compound gas adsorbent of the present invention is VO
When used in a C-PSA device, VOC vapor can be recovered at an economical adsorbent cost, and an economical VOC-PSA device that is effective for preserving the atmospheric environment can be realized. In addition, the VOC can be stably recovered for a long period of time due to the excellent hydrophobicity of the adsorbent for volatile organic compound gas of the present invention and the high cracking resistance to water.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 吉澤 隆 埼玉県幸手市権現堂1134−2 株式会社コ スモ総合研究所研究開発センター内 (72)発明者 吉成 知博 埼玉県幸手市権現堂1134−2 株式会社コ スモ総合研究所研究開発センター内 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Takashi Yoshizawa 1134-2 Gongendo, Satte City, Saitama Prefecture Inside the R & D Center, Kosmo Research Institute, Inc. (72) Tomohiro Yoshinari 1134- Gongendo, Satte City, Saitama Prefecture 2 Research and Development Center, Cosmo Research Institute, Inc.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 シリカを主成分とし、比表面積が400
〜700m2 /g、平均細孔径が0.4〜3.0nm、
及び水蒸気吸着量が3〜10ml−水蒸気/g−吸着剤
の多孔質成形体からなる、炭素数が1から12の揮発性
有機化合物ガスを選択的に吸着することを特徴とする吸
着剤。
1. A silica-based material having a specific surface area of 400
700700 m 2 / g, average pore diameter is 0.4 to 3.0 nm,
An adsorbent characterized in that it selectively adsorbs a volatile organic compound gas having 1 to 12 carbon atoms, the adsorbent being made of a porous molded body having a water vapor adsorption amount of 3 to 10 ml-water vapor / g-adsorbent.
【請求項2】 炭素数が1から12の揮発性有機化合物
ガスを選択的に吸着する吸着剤の製造方法であって、 比表面積が600m2 /g以上で、細孔容積が0.05
〜0.5cm3 /gの範囲及び平均細孔径が0.4〜
3.0nmの範囲のシリカ又はシリカゲルの成形ペレッ
トを1〜20℃/分の範囲の昇温速度で550℃〜70
0℃の範囲の所定温度に昇温し、所定温度で所定時間保
持することを特徴とする吸着剤の製造方法。
2. A method for producing an adsorbent for selectively adsorbing a volatile organic compound gas having 1 to 12 carbon atoms, wherein the specific surface area is at least 600 m 2 / g and the pore volume is 0.05.
~ 0.5 cm 3 / g and average pore size is 0.4 ~
A molded pellet of silica or silica gel in the range of 3.0 nm is heated to a temperature of 550 ° C. to 70
A method for producing an adsorbent, comprising raising the temperature to a predetermined temperature in a range of 0 ° C. and maintaining the temperature at the predetermined temperature for a predetermined time.
【請求項3】 請求項2に記載の吸着剤の製造方法によ
り製造してなる吸着剤であって、比表面積の減少率が4
0%以下であって、水蒸気吸着量が3〜10ml−水蒸
気/g−吸着剤であることを特徴とする吸着剤。
3. An adsorbent produced by the method for producing an adsorbent according to claim 2, wherein the rate of decrease in specific surface area is 4%.
An adsorbent, which is 0% or less and has a water vapor adsorption amount of 3 to 10 ml-water vapor / g-adsorbent.
【請求項4】 次式で定義されるVOC選択率が、80
%以上であることを特徴とする請求項1又は3に記載の
吸着剤。 VOC選択率={(A)/(A+B)}×100 ここで、Aは、温度20℃での揮発性有機化合物の飽和
蒸気圧の1/10の圧力下、温度20℃における吸着剤
への揮発性有機化合物の平衡吸着量(ml/g(stp))
である。Bは、圧力2mmHg、温度20℃における吸着
剤への水蒸気の平衡吸着量(ml/g(stp))である。
4. A VOC selectivity defined by the following equation:
% Or more. VOC selectivity = {(A) / (A + B)} × 100 Here, A is a value of 1/10 of the saturated vapor pressure of the volatile organic compound at a temperature of 20 ° C., Equilibrium adsorption of volatile organic compounds (ml / g (stp))
It is. B is the equilibrium adsorption amount (ml / g (stp)) of water vapor on the adsorbent at a pressure of 2 mmHg and a temperature of 20 ° C.
JP07887498A 1997-05-07 1998-03-26 Adsorbent and production method thereof Expired - Lifetime JP3944302B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP07887498A JP3944302B2 (en) 1997-05-07 1998-03-26 Adsorbent and production method thereof
PCT/JP1998/002013 WO1998050149A1 (en) 1997-05-07 1998-05-06 Adhesive, process for preparing the same, and method for recovering vapor of hydrocarbon by utilizing condensation by cooling
KR1019997010276A KR20010012324A (en) 1997-05-07 1998-05-06 Adhesive, process for preparing the same, and method for recovering vapor of hydrocarbon by utilizing condensation by cooling
CNB98806944XA CN1230246C (en) 1997-05-07 1998-05-06 Adhesive, process for preparing same, and method for recovering vapor of hydrocarbon by utilizing condensation by cooling
TW087107050A TW415854B (en) 1997-05-07 1998-05-07 Adhesive, process for preparing same, and method for recovering vapor of hydrocarbon by utilizing condensation by cooling

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP11661297 1997-05-07
JP9-116612 1997-05-07
JP07887498A JP3944302B2 (en) 1997-05-07 1998-03-26 Adsorbent and production method thereof

Publications (2)

Publication Number Publication Date
JPH1119507A true JPH1119507A (en) 1999-01-26
JP3944302B2 JP3944302B2 (en) 2007-07-11

Family

ID=26419932

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07887498A Expired - Lifetime JP3944302B2 (en) 1997-05-07 1998-03-26 Adsorbent and production method thereof

Country Status (1)

Country Link
JP (1) JP3944302B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007102384A1 (en) * 2006-02-28 2007-09-13 The Honjo Chemical Corporation Method for photooxidative decomposition of volatile organic compound contained in gas phase
KR101164928B1 (en) * 2008-06-27 2012-07-12 주식회사 에코프로 A MATERIAL FOR REDUCING THE PRODUCTION OF tVOC AND ACRYL OR STYREN BASED RESIN COMPRISING THE SAME
JP2020018965A (en) * 2018-07-31 2020-02-06 富士シリシア化学株式会社 Bitter peptide remover, method for producing food or pharmaceutical, and method for removing bitter peptide

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007102384A1 (en) * 2006-02-28 2007-09-13 The Honjo Chemical Corporation Method for photooxidative decomposition of volatile organic compound contained in gas phase
KR101164928B1 (en) * 2008-06-27 2012-07-12 주식회사 에코프로 A MATERIAL FOR REDUCING THE PRODUCTION OF tVOC AND ACRYL OR STYREN BASED RESIN COMPRISING THE SAME
JP2020018965A (en) * 2018-07-31 2020-02-06 富士シリシア化学株式会社 Bitter peptide remover, method for producing food or pharmaceutical, and method for removing bitter peptide

Also Published As

Publication number Publication date
JP3944302B2 (en) 2007-07-11

Similar Documents

Publication Publication Date Title
Guo et al. Adsorption of carbon dioxide on activated carbon
EP2233438B1 (en) Aluminum silicate complex, and high-performance adsorbent comprising the same
EP2961688B1 (en) Adsorbent composition for argon purification
TW555587B (en) Process for the decarbonation of gas flows using zeolite adsorbents
KR101378184B1 (en) Processes for purification of silicon tetrafluoride
Yuan et al. Characterization of high-alumina coal fly ash based silicate material and its adsorption performance on volatile organic compound elimination
WO1998050149A1 (en) Adhesive, process for preparing the same, and method for recovering vapor of hydrocarbon by utilizing condensation by cooling
JP2023542069A (en) microporous airgel
JPH1119507A (en) Adsorbent and its production
JPH08224468A (en) Cylindrically pelletized carbon based adsorbent
CN109153003A (en) Air-conditioning device, air-conditioning system, the removing method of carbon dioxide, adsorbent and carbon dioxide remover
US7319082B2 (en) Process for the preparation of molecular sieve adsorbent for selective adsorption of oxygen from air
Yan et al. Characterization of high-alumina coal fly ash based silicate material and its adsorption performance to CO 2
KR100635961B1 (en) Process for removing water from ammonia
CN110711456A (en) Application of PVDC resin derived microporous carbon material in adsorption separation of xenon and krypton
JP2012055807A (en) Adsorbent for trimethylsilanol and chemical filter carrying the adsorbent
Tihmillioglu et al. Use of clinoptilolite in ethanol dehydration
JPH11114411A (en) Adsorbent and its production
Saaroni et al. CO2 adsorption using 3-triethoxysilylpropylamine (APTES)-modified commercial rice husk activated carbon
KR20180018713A (en) Adsorbent for hydrocarbon recovery
Hernández Huesca et al. Adsorption kinetics of N2O on natural zeolites
JPH1199331A (en) Adsorbent and its production
CN107998815A (en) A kind of method and device that methane is enriched with by separation of nitrogen
Huong Preparation and characterization of organophosphate functionalized mordenite zeolite for removal of Benzen vapour in the air
Livanova et al. Synthesis of aluminum-oxide adsorbents using alkalis at the hydration stage and study of their physicochemical and adsorptive properties

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060314

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20060426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060704

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060811

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070403

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070409

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110413

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120413

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130413

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130413

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140413

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term