JP2009215110A - Unslaked lime powder for expansive material, expansive material for concrete, water-hardening type binding material, concrete, and method of constructing concrete structure - Google Patents

Unslaked lime powder for expansive material, expansive material for concrete, water-hardening type binding material, concrete, and method of constructing concrete structure Download PDF

Info

Publication number
JP2009215110A
JP2009215110A JP2008061006A JP2008061006A JP2009215110A JP 2009215110 A JP2009215110 A JP 2009215110A JP 2008061006 A JP2008061006 A JP 2008061006A JP 2008061006 A JP2008061006 A JP 2008061006A JP 2009215110 A JP2009215110 A JP 2009215110A
Authority
JP
Japan
Prior art keywords
mass
powder
concrete
expansion
quicklime
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008061006A
Other languages
Japanese (ja)
Inventor
Masafumi Osaki
雅史 大崎
Yoshio Matsubara
吉雄 松原
Hideaki Igarashi
秀明 五十嵐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP2008061006A priority Critical patent/JP2009215110A/en
Publication of JP2009215110A publication Critical patent/JP2009215110A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2/00Lime, magnesia or dolomite
    • C04B2/02Lime

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an unslaked lime powder for an expansive material for an early stage form removal concrete capable of materializing sufficient expansion by hydration in a concrete structure even if a form is removed in an early stage of 2-3 days after placing concrete, and drastically reducing the generation of dry shrinkage and cracks. <P>SOLUTION: The unslaked lime powder for the expansive material is an unslaked lime powder having an ignition loss of not greater than 6 mass%, containing not less than 90 mass% of CaO, having a Brain specific surface area of 3,000-7,000 cm<SP>2</SP>/g, and a BET specific surface area of the unslaked lime powder having a particle size within the range of 90 μm-1 mm of not greater than 2.0 m<SP>2</SP>/g wherein a second heat evolving peak in a hydration heat evolving rate curve obtained by measuring a mixed powder using an isothermal conduction type calorimeter is appeared only on and after 2 hours after when contacting water, the mixed powder consisting of 75 mass% of a mixture of 75 mass% of the unslaked lime and 25 mass% of anhydrous gypsum, and 25 mass% of an ordinary portland cement. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、コンクリート構造物などの建設工事に使用する早期脱型コンクリートにおいて、収縮ひび割れ発生を低減することができる膨張材用生石灰粉末、その生石灰粉末を含む膨張材、その膨張材を含む水硬性結合材料、早期脱型コンクリートおよびそのコンクリートを用いたコンクリート構造物の構築方法に関する。   The present invention relates to quick lime powder for an expansion material that can reduce the occurrence of shrinkage cracks in early-stage demolding concrete used for construction work such as a concrete structure, an expansion material including the quick lime powder, and a hydraulic property including the expansion material The present invention relates to a binding material, early demolding concrete, and a method for constructing a concrete structure using the concrete.

コンクリート構造物の建造においては、まず、セメント、骨材、および化学混和材料等ならびに水を所定量計量して練り混ぜたコンクリートを、予め組立てられた型枠内に打設し、所定期間養生後に型枠を外す(脱型)ことにより、硬化したコンクリートからなるコンクリート構造物を得るという工程を経る。近年の土木・建築構造物の建設工事においては、コンクリートのフレッシュ時の作業性やその硬化体の強度特性・耐久性とともに、建設期間の短縮が強く求められている。このため、コンクリート構造物に所定の強度を確保したうえで、できるだけ脱型の時期を早めることが望まれている。その脱型時期は、打設条件(気温、設計強度等)によっても異なるが、コンクリートの打設後2〜3日であることが求められている。このように、脱型の時期を早めることのできるコンクリートを早期脱型コンクリートという。   In the construction of concrete structures, first, cement, aggregate, chemical admixture, etc., and concrete mixed with a predetermined amount of water measured and mixed in a pre-assembled formwork, after curing for a predetermined period of time By removing the mold (demolding), a process of obtaining a concrete structure made of hardened concrete is performed. In recent construction works for civil engineering and building structures, there is a strong demand for shortening the construction period as well as the workability of fresh concrete and the strength characteristics and durability of the hardened body. For this reason, it is desired to remove the mold release as soon as possible after securing a predetermined strength to the concrete structure. The demolding time varies depending on the placing conditions (temperature, design strength, etc.), but is required to be 2 to 3 days after placing concrete. In this way, concrete that can advance the time of demolding is called early demolding concrete.

一方、脱型後、通常、コンクリート構造物は、その表面から乾燥が進むため、収縮し、その収縮応力がコンクリートの引張り強度を上回るとひび割れを生じることとなる。このひび割れを低減するためには、コンクリートに所定のコンクリート混和材料を配合することにより、コンクリートの乾燥収縮量を補償するに足りる膨張量を与えること、あるいは乾燥収縮量を低減することが必要である。そのためのコンクリート混和材料として、膨張材や収縮低減剤が知られている。   On the other hand, after demolding, the concrete structure usually shrinks as the drying proceeds from the surface thereof, and when the shrinkage stress exceeds the tensile strength of the concrete, cracking occurs. In order to reduce the cracks, it is necessary to add an amount of expansion sufficient to compensate for the amount of drying shrinkage of the concrete, or to reduce the amount of drying shrinkage by blending a predetermined concrete admixture with concrete. . As a concrete admixture for that purpose, expansion materials and shrinkage reducing agents are known.

このうち、膨張材は水和反応に伴って膨張する材料を含み、水和膨張によりコンクリート構造物の乾燥収縮を補償する。このような膨張材は、各種のコンクリート用混和材料として実用化されている。水和膨張性を有する材料としては、カルシウムサルフォアルミネート(3CaO・3Al23・CaSO4)、カルシウムアルミネート(CaO・Al23)、無水石膏(CaSO4)、酸化カルシウム(CaO)が知られている。これらの材料は、単独あるいは複数の成分原料を調合し、焼成して得られるクリンカーを粉砕して製造される。膨張材の膨張速度や膨張量の制御は、クリンカー中に生成する材料の組成およびクリンカー組織を制御することにより、ならびに無水石膏粉末および生石灰粉末等の材料のうち1種または2種以上を添加・混合することにより行われている(例えば特許文献1〜3)。膨張材の膨張速度や膨張量の制御には、高度な製造技術と品質管理が要求されるため、市販の膨張材は高価である。 Among these, the expansion material includes a material that expands with a hydration reaction, and compensates for drying shrinkage of the concrete structure by hydration expansion. Such an expansion material is put into practical use as various admixtures for concrete. As materials having hydration expansibility, calcium sulfoaluminate (3CaO · 3Al 2 O 3 · CaSO 4 ), calcium aluminate (CaO · Al 2 O 3 ), anhydrous gypsum (CaSO 4 ), calcium oxide (CaO) )It has been known. These materials are produced by preparing a single component or a plurality of component raw materials and pulverizing a clinker obtained by firing. The expansion rate and expansion amount of the expansion material are controlled by controlling the composition of the material generated in the clinker and the clinker structure, and by adding one or more materials such as anhydrous gypsum powder and quicklime powder. It is performed by mixing (for example, patent documents 1 to 3). In order to control the expansion speed and expansion amount of the expansion material, advanced manufacturing technology and quality control are required, and therefore, a commercially available expansion material is expensive.

コンクリート構造物の乾燥収縮量を補償するために、所定の膨張量を短期間、例えば型枠存置期間、コンクリート養生期間の間に実現させることが必要であるが、そのためには高度な技術が要求される。従来は、短期間に所定の膨張量を得るため、単に、上記した種々の膨張材の配合量を増量することにより対応していた。しかしながら、このような膨張材は中長期的に水和するため、コンクリートが充分硬化したのちも水和膨張反応が進行することが多く、それにより、強固に形成されたコンクリート組織が壊されてしまい、強度が低下する恐れがある。また、極端な場合には、膨張材の単位配合量が過剰になり、過大な膨張やひび割れを生じさせ、構造物が崩壊することにもなりかねない。このような異常膨張現象を回避するために、充分な養生期間を取ることにより膨張材の水和反応を養生期間中に完結させることが求められ、結果として工期の短縮や建設コストの低減が困難となっていた。   In order to compensate for the amount of drying shrinkage of concrete structures, it is necessary to achieve a predetermined expansion amount for a short period of time, for example, during the form retention period and concrete curing period, but this requires advanced technology. Is done. Conventionally, in order to obtain a predetermined expansion amount in a short period of time, it has been dealt with by simply increasing the blending amount of the above-mentioned various expansion materials. However, since such an expandable material hydrates in the medium to long term, the hydration expansion reaction often proceeds after the concrete is sufficiently hardened, thereby destroying the concrete structure that has been firmly formed. , There is a risk that the strength will decrease. In an extreme case, the unit amount of the expansion material becomes excessive, which may cause excessive expansion and cracking, and the structure may collapse. In order to avoid such an abnormal expansion phenomenon, it is required to complete the hydration reaction of the expanded material during the curing period by taking a sufficient curing period, resulting in difficulty in shortening the construction period and reducing the construction cost. It was.

一方、安価な膨張材として、生石灰粉末は古くから用いられており、生石灰粉末と無水石膏粉末とを組み合わせることにより、その膨張量が増進することが知られている(例えば非特許文献1)。この安価な材料を活用した膨張材の改良検討が進められ、生石灰粉末の比表面積や水和発熱特性を所定の範囲とすることにより、より大きな膨張量を得る技術が開示されている(特許文献4、5)。
特開昭48−12325号公報 特許第3494238号公報 特公昭53−13650号公報 特開2004−299989号公報 特開2005−162565号公報 佐藤雅男他、「せっこう粉末が“死焼”石灰の膨張作用におよぼす増進効果について」、セメント技術年報、No.29、pp.118−121(1975)
On the other hand, quick lime powder has been used as an inexpensive expansion material for a long time, and it is known that the amount of expansion is increased by combining quick lime powder and anhydrous gypsum powder (for example, Non-Patent Document 1). Improvement of the expansion material utilizing this inexpensive material has been studied, and a technique for obtaining a larger expansion amount by setting the specific surface area and hydration heat generation characteristics of quicklime powder within a predetermined range is disclosed (Patent Document) 4, 5).
Japanese Patent Laid-Open No. 48-12325 Japanese Patent No. 3494238 Japanese Patent Publication No.53-13650 Japanese Patent Application Laid-Open No. 2004-299989 JP 2005-162565 A Masao Sato et al., “On the enhancement effect of gypsum powder on the expansion of“ dead-fired ”lime,” Cement Technology Annual Report, No. 29, pp. 118-121 (1975)

本発明は、打設約2〜3日後の早期に脱型した場合でも、コンクリート構造物に充分な水和膨張を発現し、その後の乾燥収縮およびひび割れ発生を大幅に低減できる早期脱型コンクリート用の膨張材用生石灰粉末、その生石灰粉末を含む早期脱型コンクリート用膨張材、早期脱型コンクリート用膨張材を用いた水硬性結合材料、早期脱型コンクリートおよびそのコンクリートを用いたコンクリート構造物の構築方法を提供する。   The present invention is for early demolding concrete that can exhibit sufficient hydration expansion in a concrete structure even after demolding at an early stage after about 2 to 3 days after placing, and can greatly reduce subsequent drying shrinkage and cracking. Quick lime powder for expansive material, expansive material for early demolding concrete containing the quick lime powder, hydraulic bond material using expansive material for early demolding concrete, early demolding concrete and construction of concrete structure using the concrete Provide a method.

本発明者等は、上記のような課題を解決するために鋭意研究を行った結果、コンクリート打設後、早期脱型(約2〜3日後)しても、その後のコンクリートの乾燥収縮を充分に補償し得る膨張量を発現できる生石灰粉末系の早期脱型コンクリート用膨張材を見出した。また、この早期脱型コンクリート用膨張材に用いる生石灰粉末のキャラクタリゼーションを行い、その適正なキャラクターを見出した。   As a result of intensive studies to solve the above-mentioned problems, the present inventors are able to sufficiently dry-shrink the concrete even after early casting (after about 2 to 3 days) after casting the concrete. We have found an expansion material for early demolding concrete based on quick lime powder that can express an expansion amount that can be compensated for. Moreover, the quick lime powder used for this early-stage demolding concrete expansion material was characterized, and the appropriate character was found.

すなわち、本発明の膨張材用生石灰粉末は、強熱減量が6質量%以下、かつCaOを90質量%以上含有し、ブレーン比表面積が3000〜7000cm/gである膨張材用生石灰粉末であって、粒径が90μmから1mmの範囲の生石灰粉末のBET比表面積、すなわち窒素ガス吸着による比表面積が2.0m/g以下である、膨張材用生石灰粉末である。また、本発明の膨張材用生石灰粉末は、さらに、生石灰粉末75質量%および無水石膏25質量%の混合物75質量%と普通ポルトランドセメント25質量%との混合粉末を、等温伝導型熱量計を用いて測定した水和発熱速度曲線において、第2発熱ピークが接水後2時間以降においてのみ現れる、膨張材用生石灰粉末である。 That is, the quick lime powder for an expanding material of the present invention is a quick lime powder for an expanding material having a loss on ignition of 6% by mass or less, containing 90% by mass or more of CaO, and having a brain specific surface area of 3000 to 7000 cm 2 / g. Thus, the Blime specific surface area of the quicklime powder having a particle size in the range of 90 μm to 1 mm, that is, the specific surface area by nitrogen gas adsorption is 2.0 m 2 / g or less. Further, the quick lime powder for inflating material of the present invention is further obtained by using an isothermal conduction calorimeter for a mixed powder of 75 mass% of a mixture of 75 mass% of quick lime powder and 25 mass% of anhydrous gypsum and 25 mass% of ordinary Portland cement. In the hydration exotherm rate curve measured in the above, the second exothermic peak is quicklime powder for inflating material, which appears only after 2 hours after water contact.

また、本発明は、膨張材用生石灰粉末と無水石膏粉末とを含む早期脱型コンクリート用膨張材であって、生石灰:無水石膏の割合が、30:70〜90:10である、早期脱型コンクリート用膨張材である。   The present invention is also an early-stage demolding concrete expansion material containing quick lime powder for expansion material and anhydrous gypsum powder, wherein the ratio of quick lime: anhydrous gypsum is 30:70 to 90:10. It is an expansion material for concrete.

本発明は、さらに、水硬性結合材料および水を含むコンクリート組成物であって、水硬性結合材料が、上記の膨張材とセメントとを含み、膨張材の含有量が、膨張材とセメントとの合計量に対して3〜9質量%であり、水/(セメント+膨張材)質量比が45〜60%である、早期脱型コンクリート組成物である。   The present invention further relates to a concrete composition comprising a hydraulic binder material and water, wherein the hydraulic binder material includes the above-mentioned expansion material and cement, and the content of the expansion material is that of the expansion material and cement. It is an early demolding concrete composition which is 3-9 mass% with respect to the total amount, and has a water / (cement + expansion material) mass ratio of 45-60%.

また、本発明は、上記の早期脱型コンクリート組成物を用いて打設・養生し、早期脱型コンクリート組成物の膨張が収束するまで、すなわち材齢2日〜3日で脱型する、コンクリート構造物の構築方法である。   Further, the present invention is a concrete which is cast and cured using the above-mentioned early demolding concrete composition, and is demolded until the expansion of the early demolding concrete composition converges, that is, at a material age of 2 to 3 days. It is a construction method of a structure.

本発明の早期脱型コンクリート用膨張材を用いると、打設約2〜3日後の早期に脱型した場合でも、コンクリートは充分な水和膨張を発現し、その後の乾燥収縮およびひび割れ発生を大幅に低減できる早期脱型コンクリートを得ることができる。このような早期脱型コンクリートによって、コンクリート構造物の建設期間が短縮できる。さらに、コンクリート構造物のひび割れ発生を抑制でき、コンクリート構造物の耐久性が向上することができる。   When the expansive material for early-stage demolding concrete of the present invention is used, even if the mold is demolded about 2 to 3 days after casting, the concrete exhibits sufficient hydration expansion, and the subsequent drying shrinkage and cracking are greatly generated. It is possible to obtain early-stage demolding concrete that can be reduced significantly. Such early demolding concrete can shorten the construction period of the concrete structure. Furthermore, the occurrence of cracks in the concrete structure can be suppressed, and the durability of the concrete structure can be improved.

本発明の膨張材用生石灰粉末は、硬焼生石灰と称される1100〜1200℃を超える高い温度で焼成時間を長くして焼成度を上げることにより、水和活性が抑制されるように調整されたものであり、その具体的な特性として、強熱減量が6質量%以下であり、CaOを90質量%以上含有する。強熱減量は、少量の未分解炭酸カルシウムや、焼成後の生石灰粉末が大気中の湿分や炭酸ガスと水和反応または炭酸化反応して、いわゆる風化により生石灰粒子表面に生じた水酸化カルシウムおよび炭酸カルシウムが強熱時に分解することによる重量減少である。強熱減量が大きいと生石灰の反応活性は低下するので、これが6質量%以下であれば、膨張に寄与する遊離酸化カルシウム量が減少することがない。CaOが90質量%以上であると、必要な膨張量が得られる。ここで、CaOを90質量%以上にするには、原料である石灰石の純度を90質量%以上とする。これにより、生石灰中の遊離CaO量が減少することがないので、膨張量の低下を抑えることができる。   The quick lime powder for expansion material of the present invention is adjusted so that the hydration activity is suppressed by increasing the firing time by increasing the firing time at a high temperature exceeding 1100 to 1200 ° C., which is called hard calcined quick lime. As its specific characteristics, the loss on ignition is 6% by mass or less, and CaO is contained by 90% by mass or more. The loss on ignition is a small amount of undecomposed calcium carbonate or calcium hydroxide produced on the surface of quick lime particles by so-called weathering due to the hydration or carbonation reaction of calcined quick lime powder with moisture and carbon dioxide in the atmosphere. And weight loss due to decomposition of calcium carbonate when ignited. When the ignition loss is large, the reaction activity of quicklime decreases, so if this is 6% by mass or less, the amount of free calcium oxide contributing to expansion will not decrease. When the CaO is 90% by mass or more, a necessary expansion amount can be obtained. Here, in order to make CaO 90 mass% or more, the purity of the limestone which is a raw material shall be 90 mass% or more. Thereby, since the amount of free CaO in quicklime does not reduce, the fall of the amount of expansion can be suppressed.

本発明の膨張材用生石灰粉末は、上記のように高温焼成された塊状物を粉砕することによって得ることができる。その適正な粉末比表面積は、JIS R 5201:1997で規定するブレーン比表面積(BL比表面積)が3000〜7000cm/gの範囲である。また、膨張特性に関連する生石灰粉末のキャラクターとして、JIS Z 8801−1:2000規定する公称目開き1mmのふるいを通過し、同規格が規定する目開き90μmのふるい上に残る粒径が90μmから1mmの範囲の生石灰粉末の窒素ガス吸着による比表面積(BET比表面積)が2.0m/g以下である。 The quick lime powder for inflating material of the present invention can be obtained by pulverizing a mass that has been fired at a high temperature as described above. The appropriate powder specific surface area is the range whose Blaine specific surface area (BL specific surface area) prescribed | regulated by JISR5201: 1997 is 3000-7000 cm < 2 > / g. In addition, as a character of quicklime powder related to expansion characteristics, the particle size that passes through a sieve with a nominal aperture of 1 mm specified by JIS Z 8801-1: 2000 and remains on a sieve with an aperture of 90 μm specified by the same standard is from 90 μm. The specific surface area (BET specific surface area) by nitrogen gas adsorption of quicklime powder in the range of 1 mm is 2.0 m 2 / g or less.

ここで、本発明において規定する、「粒径が90μmから1mmの範囲の生石灰粉末のBET比表面積」とは、生石灰粉末の原料である生石灰焼塊の焼成度、すなわち粉体の緻密化の程度(多孔性)を反映する数値であり、これは、粉体の粒度(分布)と多孔性を反映する数値である粉体全体のBET比表面積とは異なる。本発明において、生石灰は炭酸カルシウム(CaCO)を主成分とする岩石である石灰石を焼成して製造される。焼成の過程で石灰石中の炭酸が解離して酸化カルシウムを生成するが、この脱炭酸により焼塊は多孔質となる。焼成時間が長くなると、焼結の進行と結晶成長により結晶粒は成長し、焼塊は緻密化していく。このようにして得た焼塊を粉砕して生石灰粉末を得る。このとき、粉体全体のBET比表面積は、粉末粒度分布と粉体粒子の多孔性の両方が影響しているが、焼結の初期には多孔性の影響が強く現れ、焼結の進行とともに多孔性の影響が反映されなくなる。言い換えると、結晶粒が小さく焼成度の低い生石灰粉末では、粉体全体のBET比表面積は粒度分布よりも生石灰焼塊の多孔性を反映するが、結晶粒が大きく焼成度の高い硬焼生石灰では必ずしも当てはまらず、前述の篩い分けして得た粒径が90μmから1mmの範囲の生石灰粉末のBET比表面積にのみ、その多孔性を反映した値を得ることができる。 Here, “the BET specific surface area of quicklime powder having a particle size in the range of 90 μm to 1 mm” as defined in the present invention means the degree of firing of the quicklime ingot, which is the raw material of quicklime powder, that is, the degree of densification of the powder This is a numerical value reflecting (porosity), which is different from the particle size (distribution) of the powder and the BET specific surface area of the whole powder, which is a numerical value reflecting the porosity. In the present invention, quicklime is produced by firing limestone, which is a rock mainly composed of calcium carbonate (CaCO 3 ). During the firing process, the carbonic acid in the limestone is dissociated to produce calcium oxide, and this decarbonation makes the calcined mass porous. As the firing time becomes longer, crystal grains grow due to the progress of sintering and crystal growth, and the ingots become denser. The calcined mass thus obtained is pulverized to obtain quicklime powder. At this time, the BET specific surface area of the whole powder is affected by both the powder particle size distribution and the porosity of the powder particles, but the influence of the porosity appears strongly at the initial stage of sintering, and as the sintering proceeds The effect of porosity is no longer reflected. In other words, for quick lime powder with small crystal grains and a low degree of firing, the BET specific surface area of the whole powder reflects the porosity of the quick lime ingot than the particle size distribution, but with hard calcined quick lime with large crystal grains and a high degree of firing. This is not necessarily the case, and a value reflecting the porosity can be obtained only for the BET specific surface area of quicklime powder having a particle size in the range of 90 μm to 1 mm obtained by sieving.

生石灰粉末のブレーン比表面積が7000cm/gを超える粉末では、水和反応速度が早くなりすぎ、収縮を補償するための有効な膨張を得ることができない場合があるが、7000cm/g以下であると水和反応速度が適切な値であり、収縮を補償するための有効な膨張を得ることができる。また、ブレーン比表面積が3000cm/g未満の場合には粗粒子が生じやすくなり、未水和物が長期的に水和してポップアウト現象を起こしたりする場合があるが、ブレーン比表面積が3000cm/g以上の場合には、これらの現象は問題とならない。なお、ブレーン比表面積を上記範囲に制御するには、生石灰(焼塊)を粉砕する工程における、ミルの回転数、挽き入れ量等を制御する。 When the brane specific surface area of quicklime powder exceeds 7000 cm 2 / g, the hydration reaction rate becomes too fast, and effective expansion to compensate for shrinkage may not be obtained, but at 7000 cm 2 / g or less. In some cases, the hydration reaction rate is an appropriate value, and an effective expansion to compensate for the shrinkage can be obtained. Further, when the specific surface area of the brane is less than 3000 cm 2 / g, coarse particles are likely to be generated, and the unhydrated product may be hydrated for a long time to cause a pop-out phenomenon. In the case of 3000 cm 2 / g or more, these phenomena are not a problem. In order to control the Blaine specific surface area within the above range, the number of revolutions of the mill, the amount of grinding, etc. in the step of pulverizing quicklime (burned ingot) are controlled.

また、上記の粒径が90μmから1mmの範囲の生石灰粉末のBET比表面積が2.0m/gを超える場合、生石灰粉末の反応活性が高くなりすぎ、水和反応速度が速くなり、収縮を補償する有効な膨張が得られなくなるという問題が生じる場合があるが、2.0m/g以下では、これらは適切な値となる。BET比表面積を2.0m/g以下に制御するには、焼成温度を高くし、かつ焼成時間を長くした硬焼生石灰を好適に使用することができる。 In addition, when the BET specific surface area of the quick lime powder having a particle size in the range of 90 μm to 1 mm exceeds 2.0 m 2 / g, the reaction activity of the quick lime powder becomes too high, the hydration reaction rate increases, and shrinkage occurs. There may be a problem that effective expansion to be compensated cannot be obtained, but these are appropriate values at 2.0 m 2 / g or less. In order to control the BET specific surface area to 2.0 m 2 / g or less, hard calcined lime having a high firing temperature and a long firing time can be suitably used.

また、本発明の膨張材用生石灰粉末は、さらに、膨張材用生石灰粉末75質量%および無水石膏25質量%の混合物75質量%と普通ポルトランドセメント25質量%との混合粉末を、等温伝導型熱量計を用いて測定した水和発熱速度曲線において、第2発熱ピークが接水後2時間以降においてのみ現れる膨張材用生石灰粉末である。第2発熱ピークを示さない、あるいは接水後2時間以内に生じる場合はコンクリート硬化時に適切な膨張を与えることができなくなる。なお、等温伝導型熱量計の測定は、装置内に試料粉体と水をそれぞれ独立した試料容器に入れ、外部からの操作により装置内で試料粉体と水とを混合し、その際に生じる発熱量を測定して行う。したがって、「接水」とは、この試料粉体と水が接触する時点を意味する。第2発熱ピークを示す生石灰と示さない生石灰の差異は明らかでないものの、生石灰の反応性に関連し、生石灰が水と触れ水和した際(第1ピーク)の生石灰表面への水和生成物の成膜とその後の膜の破壊と水和の再開(第2ピーク)によるものではないかと考えている。したがって、水和発熱速度曲線における第2発熱ピークの出現が接水後2時間以降とするために、生石灰の焼成度の制御が有効である。   Further, the quick lime powder for expanding material of the present invention further comprises a mixed powder of 75% by weight of a mixture of 75% by weight of quick lime powder for expanding material and 25% by weight of anhydrous gypsum and 25% by weight of ordinary Portland cement. In the hydration exothermic rate curve measured using a meter, the second exothermic peak is quick lime powder for intumescent material that appears only after 2 hours after water contact. If the second exothermic peak is not shown or it occurs within 2 hours after water contact, it will not be possible to give appropriate expansion during concrete hardening. In addition, the measurement of the isothermal conduction calorimeter occurs when the sample powder and water are put into independent sample containers in the apparatus, and the sample powder and water are mixed in the apparatus by an external operation. Measure the calorific value. Therefore, “water contact” means a point in time when the sample powder comes into contact with water. Although the difference between quicklime that shows the second exothermic peak and quicklime that is not shown is not clear, it is related to the reactivity of quicklime, and when the quicklime touches water and hydrates (first peak) I think that this may be due to film formation, subsequent film destruction, and resumption of hydration (second peak). Accordingly, since the second exothermic peak appears in the hydration exothermic rate curve after 2 hours after water contact, it is effective to control the calcining degree of quicklime.

本発明の早期脱型コンクリート用膨張材は、上記の生石灰粉末と無水石膏粉末とを含む。生石灰粉末の含有率は30〜90質量%が好ましく、40〜80質量%がより好ましい。生石灰粉末の含有率の増加とともに膨張効果は増すものの、生石灰粉末の含有率が90質量%を越えると、生石灰の膨張効果の増加は小さくなる。無水石膏粉末の含有量は10〜70質量%が好ましく、20〜60質量%がより好ましい。したがって、早期脱型コンクリート用膨張材中の生石灰:無水石膏の割合は、30:70〜90:10であることが好ましく、40:60〜80:20がより好ましい。   The expansion material for early demolding concrete of the present invention includes the above-mentioned quick lime powder and anhydrous gypsum powder. 30-90 mass% is preferable, and, as for the content rate of quicklime powder, 40-80 mass% is more preferable. Although the expansion effect increases with the increase in the content of quicklime powder, the increase in the expansion effect of quicklime becomes small when the content of quicklime powder exceeds 90% by mass. The content of the anhydrous gypsum powder is preferably 10 to 70% by mass, and more preferably 20 to 60% by mass. Therefore, the ratio of quicklime: anhydrite in the expansive material for early demolding concrete is preferably 30:70 to 90:10, and more preferably 40:60 to 80:20.

本発明の早期脱型コンクリート用膨張材中の無水石膏粉末は、通常、セメント製造用に工業的に使用されている品質の天然無水石膏や化学工業プロセスで生じる副産無水石膏を使用することができる。また、無水石膏粉末を併用することにより生石灰粉末の水和膨張が適度に発現するようになる。無水石膏粉末中の硫酸カルシウムの純度は、SO3基準で約50〜57質量%であることが好ましく、少量、例えば5質量%程度の二水石膏を共存していてもよい。生石灰粉末の水和膨張をより効果的に生じさせるために、無水石膏粉末のブレーン比表面積は3000cm2/g以上、好ましくは3500〜7000cm2/gの範囲とする。ブレーン比表面積がこの範囲からはずれると生石灰粉末の水和速度の調節が適正に行われないため、好ましくない。 The anhydrous gypsum powder in the expansive material for early demolding concrete of the present invention may use natural anhydrous gypsum of the quality that is usually used industrially for cement production or anhydrous gypsum produced as a by-product in chemical industrial processes. it can. Moreover, the hydration expansion | swelling of quicklime powder comes to express moderately by using anhydrous gypsum powder together. The purity of calcium sulfate in the anhydrous gypsum powder is preferably about 50 to 57% by mass based on SO 3 , and a small amount, for example, about 5% by mass of dihydrate gypsum may coexist. To generate hydration expansion of quicklime powder more effectively, Blaine specific surface area of the anhydrite powder 3000 cm 2 / g or more, preferably in the range of 3500~7000cm 2 / g. If the Blaine specific surface area is out of this range, it is not preferable because the hydration rate of the quicklime powder is not properly adjusted.

本発明の早期脱型コンクリート用膨張材は生石灰粉末と、無水石膏粉末と、からなることが好ましい。アウインのようなアルミネート系の膨張成分は、長期的に膨張することから、含有しないことが好ましい。   The expansion material for early demolding concrete of the present invention preferably comprises quick lime powder and anhydrous gypsum powder. It is preferable not to contain an aluminate-based expansion component such as Auin because it expands in the long term.

また、本発明は、上記の膨張材およびセメントを含む早期脱型水硬性結合材料である。セメントには、普通ポルトランドセメント、早強ポルトランドセメント、中庸ポルトランドセメントあるいは混合セメントを使用することができる。   Moreover, this invention is an early demolding hydraulic binder material containing said expansion | swelling material and cement. As the cement, ordinary Portland cement, early-strength Portland cement, intermediate Portland cement, or mixed cement can be used.

本発明の早期脱型水硬性結合材料中の、早期脱型コンクリート用膨張材とセメントとの合計量に対する膨張材の添加量は、膨張材を構成する成分、特に生石灰粉末と無水石膏粉末との割合によって異なるが、3〜9質量%、より好ましくは4〜8質量%である。3質量%未満では収縮を補償するに充分な膨張量を発現できず、9質量%を超えるとコンクリート構造物の強度低下を引き起こす可能性が高まるが、上記の範囲の膨張材の添加ではこれらの問題は生じない。コンクリート中の膨張材の単位量は、単位セメント量によって異なるが、概ね10〜30kg/m3に相当する。 In the early demolding hydraulic binder material of the present invention, the amount of the expansion material added to the total amount of the early demolding concrete expansion material and cement is the component of the expansion material, particularly quick lime powder and anhydrous gypsum powder. Although it varies depending on the ratio, it is 3 to 9% by mass, more preferably 4 to 8% by mass. If the amount is less than 3% by mass, the amount of expansion sufficient to compensate for shrinkage cannot be expressed. If the amount exceeds 9% by mass, the strength of the concrete structure may be reduced. There is no problem. The unit amount of the expansion material in the concrete varies depending on the unit cement amount, but generally corresponds to 10 to 30 kg / m 3 .

本発明のコンクリートは、上記の水硬性結合材料を、骨材、水およびAE減水剤と練り混ぜることにより得ることができる。コンクリート中の水/(セメント+膨張材)の質量比は、0.45〜0.60の範囲で好適に使用できる。   The concrete of the present invention can be obtained by kneading the above hydraulic binding material with aggregate, water and an AE water reducing agent. The mass ratio of water / (cement + expansion material) in the concrete can be suitably used in the range of 0.45 to 0.60.

さらに、本発明は、上記のコンクリートを用いて打設および養生し、コンクリートの膨張が収束する材齢2日〜3日で脱型することを特徴とするコンクリート構造物の構築方法である。本発明のコンクリートは、打設後2日〜3日後のような早期の材齢で脱型しても問題がなく、収縮ひび割れが生じ難い優れたコンクリート構造物を構築することができる。   Furthermore, the present invention is a method for constructing a concrete structure, wherein the concrete is cast and cured using the above concrete, and is demolded at a material age of 2 to 3 days when the expansion of the concrete converges. Even if the concrete of the present invention is demolded at an early age such as 2 to 3 days after placement, it is possible to construct an excellent concrete structure in which shrinkage cracking hardly occurs.

以下に、実施例を挙げて、本発明を更に詳しく説明するが、本発明は以下の実施例に限定されるものではない。   Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to the following examples.

表1に示す特性の異なる5種類の生石灰粉末を使用した。A1、A2は前述の硬焼生石灰であり、A4およびA5は軟焼生石灰と呼ばれるものである。軟焼生石灰とは、石灰石を900から1400℃の高温で比較的短い時間で焼成製造したもので、比表面積が大きく反応性が高いものである。A3は、強熱減量が13%もある、風化が著しく進行した生石灰粉末である。   Five types of quicklime powders having different characteristics shown in Table 1 were used. A1 and A2 are the above-mentioned hard calcined quicklime, and A4 and A5 are called soft calcined quicklime. Soft calcined lime is produced by calcining limestone at a high temperature of 900 to 1400 ° C. in a relatively short time, and has a large specific surface area and high reactivity. A3 is quick lime powder that has been significantly weathered and has a loss on ignition of as much as 13%.

無水石膏粉末は、表2に示すフッ酸無水石膏を使用した。
As anhydrous gypsum powder, hydrofluoric acid anhydrous gypsum shown in Table 2 was used.

セメントにはJIS R 5210:2003に適合する普通ポルトランドセメント(宇部三菱セメント(株)販売)を使用した。   As the cement, ordinary Portland cement (sold by Ube Mitsubishi Cement Co., Ltd.) conforming to JIS R 5210: 2003 was used.

表1記載の生石灰粉末をJIS Z 8801−1:2000規定する公称目開き1mmを通過し、同規格が規定する公称目開き90μmのふるい上に残る、粒径90μmから1mmの粉体を採取した。この粉体の窒素ガス吸着による比表面積(BET比表面積)を測定した。測定には日本ベル株式会社製BELSORP−miniを用いた。また、生石灰種別A1およびA4の90μmのふるい上に残る粉末粒子の走査型電子顕微鏡(SEM)写真を図1および図2に示す。ここで、ふるいに残った粒子はエポキシ樹脂に包理したのち、切断・研磨を行って、倍率3000倍でSEM観察を行った。A1では生石灰の結晶粒がよく成長し、一方A4では生石灰の顕著な成長は認められず、粒子表面に微細な空隙が存在しているのが認められる。   A powder with a particle size of 90 μm to 1 mm was collected after passing the quick lime powder described in Table 1 through a nominal aperture of 1 mm defined by JIS Z8801-1: 2000 and remaining on a sieve having a nominal aperture of 90 μm defined by the same standard. . The specific surface area (BET specific surface area) of the powder by nitrogen gas adsorption was measured. BELSORP-mini manufactured by Nippon Bell Co., Ltd. was used for the measurement. Moreover, the scanning electron microscope (SEM) photograph of the powder particle | grains which remain | survives on the 90 micrometer sieve of quicklime classification A1 and A4 is shown in FIG. 1 and FIG. Here, after the particles remaining on the sieve were embedded in an epoxy resin, they were cut and polished, and SEM observation was performed at a magnification of 3000 times. In A1, quicklime crystal grains grow well, while in A4, no remarkable growth of quicklime is observed, and it is recognized that fine voids exist on the particle surface.

また、表1記載の生石灰粉末75質量%と表2記載の無水石膏25質量%を混合した混合物、およびこの混合物75質量%と普通ポルトランドセメント25質量%混合した試料粉体を調製した。この両者について、双子型コンダクションカロリメータ(東京理工株式会社製TCC−26)を用いて、20℃における水和発熱速度を測定した。なお、測定条件は、水粉体比5、粉体2g、水10gとし、水は蒸留水を使用した。   Moreover, the mixture powder which mixed 75 mass% of quicklime powder of Table 1 and 25 mass% of anhydrous gypsum of Table 2, and the sample powder which mixed 75 mass% of this mixture and 25 mass% of normal Portland cement were prepared. About these both, the hydration exothermic rate in 20 degreeC was measured using the twin type | mold conduction calorimeter (Tokyo Riko Co., Ltd. TCC-26). The measurement conditions were a water powder ratio of 5, a powder of 2 g, and a water of 10 g, and distilled water was used as the water.

JIS A 6202:1997附属書1に規定の膨張材のモルタルによる膨張性試験方法に準拠して試験体の作製および測定を行い、拘束条件下での材齢7日におけるモルタルの長さ変化率をもって膨張材の膨張性を評価した。   In accordance with JIS A 6202: 1997 Annex 1 in accordance with the expansibility test method of expansive material using mortar, the test specimen was prepared and measured, and the rate of change in mortar length at age 7 days under restraint conditions The expandability of the expansion material was evaluated.

図3に、表1記載の生石灰粉末75質量%と表2記載の無水石膏25質量%の混合物の水和発熱速度曲線を示す。また、この混合物75質量%と普通ポルトランドセメント25質量%とを混合した場合の水和発熱速度曲線を図4に示す。   In FIG. 3, the hydration exothermic rate curve of the mixture of 75 mass% of quicklime powder of Table 1 and 25 mass% of anhydrous gypsum of Table 2 is shown. Moreover, the hydration exothermic rate curve at the time of mixing 75 mass% of this mixture and 25 mass% of normal Portland cement is shown in FIG.

表3に、粒径が90μmから1mmの範囲の生石灰粉末のBET比表面積と、生石灰粉末75質量%および無水石膏25質量%の混合物75質量%と普通ポルトランドセメント25質量%との混合粉末を、等温伝導型熱量計を用いた水和発熱速度曲線における第2ピーク出現時期を示す。   Table 3 shows a BET specific surface area of quick lime powder having a particle size ranging from 90 μm to 1 mm, a mixed powder of 75% by weight of a mixture of 75% by weight of quick lime powder and 25% by weight of anhydrous gypsum and 25% by weight of ordinary Portland cement. The second peak appearance time in the hydration exothermic rate curve using an isothermal conduction calorimeter is shown.

図3に示すように、いずれの生石灰粉末を用いた場合にも、接水後1時間以内に第1発熱ピークを示し、その後第2ピークは出現しなかった。   As shown in FIG. 3, when any quicklime powder was used, the first exothermic peak was shown within 1 hour after water contact, and the second peak did not appear thereafter.

図4に示すように、普通ポルトランドセメントを混合した条件で測定した水和発熱速度曲線では、図3とは異なり、接水後1時間以内に第1発熱ピークを示すものの、その後に第2発熱ピークを示す生石灰があることが分る(A1、A2)。すなわち、生石灰の水和反応がセメントの共存によって影響を受け、その影響は生石灰によって異なることを示唆している。   As shown in FIG. 4, in the hydration exothermic rate curve measured under the condition of mixing ordinary Portland cement, unlike FIG. 3, the first exothermic peak is shown within 1 hour after water contact, but then the second exothermic peak is reached. It turns out that there exists quicklime which shows a peak (A1, A2). In other words, it suggests that the hydration reaction of quicklime is affected by the coexistence of cement, and that the effect varies depending on the quicklime.

発明者らはこの発熱特性と生石灰のキャラクターおよび膨張材とした場合の膨張特性との関係を詳細に検討した。その結果、表3に示すように、粒径90μmから1mmの生石灰粉末のBET比表面積と水和発熱速度における第2発熱ピークの出現時期に関係があることを知見した。   The inventors examined in detail the relationship between the heat generation characteristics and the expansion characteristics of the quicklime character and expansion material. As a result, as shown in Table 3, it was found that the BET specific surface area of quick lime powder having a particle size of 90 μm to 1 mm is related to the appearance time of the second exothermic peak in the hydration exothermic rate.

表4に、生石灰粉末の種類および生石灰粉末と無水石膏粉末の配合割合を変えた場合の膨張特性を示す。   Table 4 shows the expansion characteristics when the kind of quicklime powder and the blending ratio of quicklime powder and anhydrous gypsum powder are changed.

表4および図5に示すように、生石灰:無水石膏の配合割合が75:25の一定条件において、生石灰粉末(A1)を用いた場合に長さ変化率が最も大きく(実施例1)、次いで生石灰粉末(A2)が大きく(実施例2)、生石灰粉末(A3)から生石灰粉末(A5)はほぼ同じ値を示した(比較例1から3)。   As shown in Table 4 and FIG. 5, in a fixed condition where the mixing ratio of quicklime: anhydrite is 75:25, when the quicklime powder (A1) is used, the rate of change in length is the largest (Example 1), then Quicklime powder (A2) was large (Example 2), and quicklime powder (A3) to quicklime powder (A5) showed almost the same value (Comparative Examples 1 to 3).

また、表3に示した粒径90μmから1mmの生石灰粉末のBET比表面積と、水和発熱速度の第2発熱ピークの出現時期とを比較すると、大きな膨張が得られる生石灰粉末は、粒径が90μmから1mmの範囲の生石灰粉末のBET比表面積が2.0m/g以下で、かつ第2発熱ピークの出現時期が2時間以降であることが分る。この関係は、表1で示した生石灰粉末全体のBET比表面積からは見出すことはできず、特に、生石灰焼塊の多孔性を保持すると考えられる、粒径が90μmから1mmの範囲の生石灰粉末のBET比表面積と、セメントとの相互作用が生じる条件で測定した水和発熱速度曲線とによってのみ知見・評価できるものである。 Further, comparing the BET specific surface area of the quick lime powder having a particle size of 90 μm to 1 mm shown in Table 3 with the appearance time of the second exothermic peak of the hydration heat generation rate, the quick lime powder having a large expansion has a particle size of It can be seen that the BET specific surface area of the quicklime powder in the range of 90 μm to 1 mm is 2.0 m 2 / g or less, and the second exothermic peak appears after 2 hours. This relationship cannot be found from the BET specific surface area of the entire quick lime powder shown in Table 1, and in particular, for the quick lime powder having a particle size in the range of 90 μm to 1 mm, which is considered to maintain the porosity of the quick lime calcined mass. It can be known and evaluated only by the BET specific surface area and the hydration exothermic rate curve measured under the condition where the interaction with the cement occurs.

生石灰粉末(A1)および無水石膏粉末(B1)の配合割合(質量基準)を変えて調製した膨張材を使用したモルタルは、その長さ変化が生石灰粉末の割合の増加とともに大きくなった。また、生石灰粉末割合が30質量%から90質量%の範囲で良好な膨張が得られた。なお、膨張材の生石灰粉末の割合が90質量%の場合では、生石灰粉末の配合割合が70質量%とほぼ同程度の長さ変化率であり、生石灰粉末を大量に配合しても、膨張の更なる増加は期待できないことが分る。実用上、膨張材中の生石灰粉末の割合は40〜80質量%が好ましいといえる。   As for the mortar using the expansion material prepared by changing the blending ratio (mass basis) of the quicklime powder (A1) and the anhydrous gypsum powder (B1), the length change increased with the increase of the ratio of the quicklime powder. Moreover, favorable expansion | swelling was obtained in the range whose quicklime powder ratio is 30 mass% to 90 mass%. In addition, when the ratio of the quicklime powder of an expansion material is 90 mass%, the mixing ratio of quicklime powder is a length change rate substantially the same as 70 mass%, and even if it mix | blends a large amount of quicklime powder, expansion | swelling of expansion | swelling is carried out. It can be seen that no further increase can be expected. Practically, it can be said that the ratio of quicklime powder in the expanded material is preferably 40 to 80% by mass.

図6に、生石灰粉末(A1)および無水石膏粉末(B1)の配合割合(質量基準)を変えて調製した膨張材を使用したモルタルの長さ変化の経時変化を示す。これより、膨張は材齢3日以内に収束していることが分かる。すなわち、コンクリート打設後、2〜3日程度で膨張反応は収束するため、型枠を早期に脱型することができるようになる。   In FIG. 6, the time-dependent change of the mortar length change using the expansion material prepared by changing the mixture ratio (mass basis) of quicklime powder (A1) and anhydrous gypsum powder (B1) is shown. From this, it can be seen that the expansion has converged within the age of 3 days. That is, since the expansion reaction converges in about 2 to 3 days after placing the concrete, the mold can be removed at an early stage.

本発明の膨張材を用いた場合の膨張特性を、コンクリート組成物を作製して評価した。表5に使用した材料を、表6にコンクリートの配合を示す。   The expansion characteristics when using the expansion material of the present invention were evaluated by preparing concrete compositions. Table 5 shows the materials used, and Table 6 shows the concrete composition.

コンクリートは、容量50Lの強制に軸練りミキサに、粗骨材、細骨材、セメント、膨張材を投入し、30秒間空練りした後に、予め所定量(粉体に対して0.25質量%)のAE減水剤を混和した練混ぜ水を加えて90秒間練り混ぜて作製した。なお、練混ぜ量は45Lとした。   Concrete is forced to a capacity of 50 L, and coarse aggregate, fine aggregate, cement and expansion material are put into a shaft mixer, and after kneading for 30 seconds, a predetermined amount (0.25% by mass with respect to the powder) AE water reducing agent) was added and mixed for 90 seconds. The kneading amount was 45L.

膨張特性は、図7に示すように、丸鋼(PC鋼棒)と、その両端に配置した厚さ19mmの鋼板により構成される拘束具により拘束された10×10×40cmのコンクリート供試体を用いて評価した。ひずみは丸鋼中央部に貼りつけたひずみゲージを使用して測定した。直径6mm、10mmおよび20mmの3種類の丸鋼をそれぞれ使用して、拘束鋼材比を0.2、0.8および3.2%と変えた条件で膨張量を測定した。練り上がったコンクリートを、図7に示す拘束具を取り付けた型枠内に打設して締め固めた後、10時間後に型枠をはずした。また、無拘束での膨張量を測定するため、図8に示すような、型枠からの拘束の影響を排除するため、テフロンシートおよびポリスチレンボードを敷設した型枠を使用し、埋め込み型ひずみ計をコンクリートに埋設してひずみを測定した。拘束および無拘束のいずれの条件でも、打設後から測定終了まで、乾燥が生じないようにラップで覆ってコンクリート試験体を養生して、ひずみを測定した。   As shown in FIG. 7, the expansion characteristic is a 10 × 10 × 40 cm concrete specimen restrained by a restraint composed of a round steel (PC steel bar) and a 19 mm-thick steel plate disposed at both ends thereof. Evaluated. The strain was measured using a strain gauge attached to the center of the round steel. Three kinds of round steels having a diameter of 6 mm, 10 mm, and 20 mm were used, and the amount of expansion was measured under the condition that the ratio of restrained steel was changed to 0.2, 0.8, and 3.2%. The kneaded concrete was placed in a mold with a restraint shown in FIG. 7 and compacted, and then the mold was removed after 10 hours. Moreover, in order to measure the unconstrained expansion amount, in order to eliminate the influence of restraint from the mold as shown in FIG. 8, a mold with a Teflon sheet and a polystyrene board was used, and an embedded strain gauge was used. Was embedded in concrete and the strain was measured. Under either restraint or unconstrained condition, from the time of placing until the end of measurement, the concrete specimen was cured with a wrap so as not to cause drying, and the strain was measured.

図9に、本発明の膨張材を用いたコンクリートの長さ変化率を示す。これより、無拘束条件で非常に大きな膨張が得られ、しかも大きな拘束を与えた条件でも膨張を発現することが確認できた。また、膨張は概ね材齢1日で収束することが確認できた。   FIG. 9 shows the rate of change in length of concrete using the expansion material of the present invention. From this, it was confirmed that very large expansion was obtained under unconstrained conditions, and that expansion was also exhibited under conditions where large restraints were applied. Moreover, it has confirmed that expansion | swelling substantially converged by material age 1 day.

本発明の膨張材を使用することにより、例えば材齢2日〜3日のような極めて短い養生期間後に脱型しても、乾燥収縮に伴うひび割れが発生し難いコンクリート構造物あるいは部材を構築することができる。   By using the expandable material of the present invention, for example, a concrete structure or member that does not easily crack due to drying shrinkage is constructed even after demolding after a very short curing period such as 2 to 3 days of age. be able to.

90μmのふるい上に残った生石灰粉末粒子A1を走査型電子顕微鏡により観察した反射電子像を示す図である。It is a figure which shows the reflected-electron image which observed the quicklime powder particle | grains A1 which remained on the 90 micrometer sieve with the scanning electron microscope. 90μmのふるい上に残った生石灰粉末粒子A4を走査型電子顕微鏡により観察した反射電子像を示す図である。It is a figure which shows the reflected-electron image which observed the quicklime powder particle | grains A4 which remained on the 90 micrometer sieve with the scanning electron microscope. 各種生石灰粉末75質量%と無水石膏25質量%を混合した膨張材の水和発熱速度曲線を示す図である。It is a figure which shows the hydration exothermic rate curve of the expansion | swelling material which mixed 75 mass% of various quicklime powders, and 25 mass% of anhydrous gypsum. 各種生石灰粉末75質量%および無水石膏25質量%の混合物75質量%と普通ポルトランドセメント25質量%との混合粉末の水和発熱速度曲線を示す図である。It is a figure which shows the hydration exothermic rate curve of the mixed powder of 75 mass% of mixtures of various quicklime powders 75 mass% and anhydrous gypsum 25 mass%, and normal Portland cement 25 mass%. 各種生石灰粉末75質量%と無水石膏25質量%を混合した膨張材を使用したモルタルの長さ変化率を示す図である。It is a figure which shows the length change rate of the mortar using the expansion material which mixed 75 mass% of various quicklime powders, and 25 mass% of anhydrous gypsum. 生石灰粉末(A1)および無水石膏粉末(B1)を用い、これらの割合(質量基準)を変えて調製した膨張材を使用したモルタルの長さ変化率を示す図である。It is a figure which shows the length change rate of the mortar using the expansion material prepared by changing these ratios (mass basis) using quicklime powder (A1) and anhydrous gypsum powder (B1). 拘束膨張ひずみ測定用拘束具および拘束膨張ひずみ試験用供試体の概要を示す図である。It is a figure which shows the outline | summary of the restraint tool for restraint expansion-strain measurement, and the specimen for restraint expansion-strain test. 無拘束ひずみ測定用供試体の概要を示す図である。It is a figure which shows the outline | summary of the test piece for unconstrained strain measurement. 膨張材を添加したコンクリートの無拘束および拘束条件での長さ変化を示す図である。It is a figure which shows the length change in the unconstrained and restraint conditions of the concrete which added the expansion | swelling material.

Claims (5)

強熱減量が6質量%以下、かつCaOを90質量%以上含有し、ブレーン比表面積が3000〜7000cm/gである膨張材用生石灰粉末であって、粒径が90μmから1mmの範囲の生石灰粉末のBET比表面積が2.0m/g以下である、膨張材用生石灰粉末。 Quick lime powder for inflating material containing 6% by mass or less of ignition loss and 90% by mass or more of CaO and having a Blaine specific surface area of 3000 to 7000 cm 2 / g and having a particle size in the range of 90 μm to 1 mm. Quick lime powder for expanding material, wherein the powder has a BET specific surface area of 2.0 m 2 / g or less. 生石灰粉末75質量%および無水石膏25質量%の混合物75質量%と普通ポルトランドセメント25質量%との混合粉末を、等温伝導型熱量計を用いて測定した水和発熱速度曲線において、第2発熱ピークが接水後2時間以降においてのみ現れる、請求項1記載の膨張材用生石灰粉末。   The second exothermic peak in the hydration exothermic rate curve obtained by measuring 75% by mass of a mixture of 75% by mass of quicklime powder and 25% by mass of anhydrous gypsum and 25% by mass of ordinary Portland cement using an isothermal conduction calorimeter The quicklime powder for inflatable materials according to claim 1, which appears only after 2 hours after water contact. 請求項1または2記載の膨張材用生石灰粉末と無水石膏粉末とを含む早期脱型コンクリート用膨張材であって、生石灰:無水石膏の割合が、30:70〜90:10である、早期脱型コンクリート用膨張材。   An early demolding concrete expansion material comprising the quick lime powder for expansion material according to claim 1 or 2 and anhydrous gypsum powder, wherein the ratio of quick lime: anhydrous gypsum is 30:70 to 90:10. Expansion material for mold concrete. 水硬性結合材料および水を含むコンクリート組成物であって、水硬性結合材料が、請求項3記載の膨張材とセメントとを含み、膨張材の含有量が、膨張材とセメントとの合計量に対して3〜9質量%であり、水/(セメント+膨張材)質量比が45〜60%である、早期脱型コンクリート組成物。   A concrete composition comprising a hydraulic binder material and water, wherein the hydraulic binder material comprises the expansion material according to claim 3 and cement, and the content of the expansion material is a total amount of the expansion material and cement. An early demolding concrete composition having a water / (cement + expansion material) mass ratio of 45 to 60% with respect to 3 to 9% by mass. 請求項4記載の早期脱型コンクリート組成物を用いて打設・養生し、早期脱型コンクリート組成物の膨張が収束する時間までに脱型する、コンクリート構造物の構築方法。   A method for constructing a concrete structure, wherein the early demolding concrete composition according to claim 4 is cast and cured, and demolding by the time when the expansion of the early demolding concrete composition converges.
JP2008061006A 2008-03-11 2008-03-11 Unslaked lime powder for expansive material, expansive material for concrete, water-hardening type binding material, concrete, and method of constructing concrete structure Pending JP2009215110A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008061006A JP2009215110A (en) 2008-03-11 2008-03-11 Unslaked lime powder for expansive material, expansive material for concrete, water-hardening type binding material, concrete, and method of constructing concrete structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008061006A JP2009215110A (en) 2008-03-11 2008-03-11 Unslaked lime powder for expansive material, expansive material for concrete, water-hardening type binding material, concrete, and method of constructing concrete structure

Publications (1)

Publication Number Publication Date
JP2009215110A true JP2009215110A (en) 2009-09-24

Family

ID=41187376

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008061006A Pending JP2009215110A (en) 2008-03-11 2008-03-11 Unslaked lime powder for expansive material, expansive material for concrete, water-hardening type binding material, concrete, and method of constructing concrete structure

Country Status (1)

Country Link
JP (1) JP2009215110A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012017213A (en) * 2010-07-06 2012-01-26 Kawai Sekkai Kogyo Kk Expansive solidifying material
ITUB20155433A1 (en) * 2015-11-10 2017-05-10 Chimica Edile S R L USE OF AN INORGANIC PRODUCT AS AN EXPANSIVE AGENT, ANTI-RETRACTOR, ABRASION REDUCER AND IMPROVEMENT OF MECHANICAL RESISTANCE, FOR CONCRETE USED IN INDUSTRIAL PAVEMENTS OF LARGE SIZE
JPWO2017150426A1 (en) * 2016-02-29 2018-12-20 宇部マテリアルズ株式会社 Calcium oxide powder, adsorbent and method for producing calcium oxide powder
JP2020152610A (en) * 2019-03-20 2020-09-24 デンカ株式会社 Expansive admixture, cement composition, and, concrete
WO2022196633A1 (en) * 2021-03-18 2022-09-22 デンカ株式会社 Cement admixture, cement composition, and method for producing concrete product
CN116373103A (en) * 2023-03-06 2023-07-04 中国长江三峡集团有限公司 Preparation method of high-crack-resistance hydraulic concrete

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001039748A (en) * 1999-07-26 2001-02-13 Taiheiyo Cement Corp High-early-strength cement admixture and concrete and concrete product containing the same
JP2001294460A (en) * 2000-04-10 2001-10-23 Maeta Techno Research Inc Ultra high-early-strength expansive admixture for concrete and production process of concrete product using the same
JP2007297226A (en) * 2006-04-28 2007-11-15 Dc Co Ltd Cement admixture and cement composition using the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001039748A (en) * 1999-07-26 2001-02-13 Taiheiyo Cement Corp High-early-strength cement admixture and concrete and concrete product containing the same
JP2001294460A (en) * 2000-04-10 2001-10-23 Maeta Techno Research Inc Ultra high-early-strength expansive admixture for concrete and production process of concrete product using the same
JP2007297226A (en) * 2006-04-28 2007-11-15 Dc Co Ltd Cement admixture and cement composition using the same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012017213A (en) * 2010-07-06 2012-01-26 Kawai Sekkai Kogyo Kk Expansive solidifying material
ITUB20155433A1 (en) * 2015-11-10 2017-05-10 Chimica Edile S R L USE OF AN INORGANIC PRODUCT AS AN EXPANSIVE AGENT, ANTI-RETRACTOR, ABRASION REDUCER AND IMPROVEMENT OF MECHANICAL RESISTANCE, FOR CONCRETE USED IN INDUSTRIAL PAVEMENTS OF LARGE SIZE
JPWO2017150426A1 (en) * 2016-02-29 2018-12-20 宇部マテリアルズ株式会社 Calcium oxide powder, adsorbent and method for producing calcium oxide powder
JP2020152610A (en) * 2019-03-20 2020-09-24 デンカ株式会社 Expansive admixture, cement composition, and, concrete
JP7269044B2 (en) 2019-03-20 2023-05-08 デンカ株式会社 Expansion admixture, cement composition and concrete
WO2022196633A1 (en) * 2021-03-18 2022-09-22 デンカ株式会社 Cement admixture, cement composition, and method for producing concrete product
CN116373103A (en) * 2023-03-06 2023-07-04 中国长江三峡集团有限公司 Preparation method of high-crack-resistance hydraulic concrete

Similar Documents

Publication Publication Date Title
EP2514727B1 (en) An alkali activated limestone concrete composition and use of composition in concrete casting
JP2009215110A (en) Unslaked lime powder for expansive material, expansive material for concrete, water-hardening type binding material, concrete, and method of constructing concrete structure
CA2985958C (en) Concrete composition with very low shrinkage
JP2013519616A (en) Hydraulic lime composition
JP2009057226A (en) Method for manufacturing autoclaved lightweight concrete
JP5061704B2 (en) Method for constructing concrete admixture, hydraulic binder, concrete and concrete structure
JP5157925B2 (en) Concrete expansion material and concrete composition
JPWO2007097435A1 (en) Hardened concrete and concrete composition
JP6509671B2 (en) Submersible concrete composition in water and its cured product
JP5403496B2 (en) Hardened concrete and concrete composition
JP5724188B2 (en) Concrete production method
JP5157926B2 (en) Concrete expansion material and concrete composition
JP7257278B2 (en) EXPANSION COMPOSITION FOR CEMENT AND CEMENT COMPOSITION
JP2007145670A (en) Expansive admixture for resin-finished floor, and its use
JP2004284873A (en) Hydraulic complex material
JP2004210551A (en) Expansive clinker mineral and expansive composition containing the same
JP6837856B2 (en) Expandable admixture for exposed concrete and exposed concrete containing it
JP4820253B2 (en) Method for producing hardened cement and hardened cement
JP6400426B2 (en) Underwater inseparable concrete composition and cured body thereof
JP2013018663A (en) Method of producing ultra-high strength cement-based cured body
JP7303996B2 (en) Soil improvement material, improved soil, and method for producing improved soil
JP2011132106A (en) Hydraulic composition and cured product
JP2018131359A (en) Expanding material for an underwater anti-washout concrete, anti-washout underwater concrete composition, and hardened article thereof
JP2747294B2 (en) Admixture for cement mortar and concrete
JP2004352534A (en) Expansive material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101214

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111107

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121108

A131 Notification of reasons for refusal

Effective date: 20121113

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130402