JP6753794B2 - 流体制御弁及び流体弁制御装置 - Google Patents

流体制御弁及び流体弁制御装置 Download PDF

Info

Publication number
JP6753794B2
JP6753794B2 JP2017023955A JP2017023955A JP6753794B2 JP 6753794 B2 JP6753794 B2 JP 6753794B2 JP 2017023955 A JP2017023955 A JP 2017023955A JP 2017023955 A JP2017023955 A JP 2017023955A JP 6753794 B2 JP6753794 B2 JP 6753794B2
Authority
JP
Japan
Prior art keywords
pressure
flow path
valve body
valve
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017023955A
Other languages
English (en)
Other versions
JP2018132072A (ja
Inventor
森山 明信
明信 森山
夏樹 黒岩
夏樹 黒岩
原 直樹
直樹 原
鈴木 豊
豊 鈴木
二宮 誠
誠 二宮
友哉 早瀬
友哉 早瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Kawasaki Motors Ltd
Original Assignee
Nissan Motor Co Ltd
Kawasaki Jukogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd, Kawasaki Jukogyo KK filed Critical Nissan Motor Co Ltd
Priority to JP2017023955A priority Critical patent/JP6753794B2/ja
Publication of JP2018132072A publication Critical patent/JP2018132072A/ja
Application granted granted Critical
Publication of JP6753794B2 publication Critical patent/JP6753794B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

本発明は、流体制御弁及び流体弁制御装置に関する。
特許文献1には、水素タンク(2)と、水素タンク(2)に貯蔵されている高圧の水素ガスを燃料電池スタック(1)のアノード極に供給するための水素供給通路(3)と、を備える燃料電池システムが開示されている。特許文献1の燃料電池システムでは、水素タンク(2)に、燃料電池スタック(1)への水素ガスの供給状態と非供給状態を切り替え可能に開閉制御される主止弁(10)が設けられている。また、水素供給通路(3)には、上記主止弁(10)の下流において、水素ガスの圧力を減圧する減圧弁(5)が設けられている。
主止弁(10)は、一部が水素タンク(2)の内部に挿入されて固定されるボディ(11)と、ボディ(11)内に形成され水素タンク(2)の内部に通じる第1通路(15)と、ボディ(1)内に形成され水素タンク(2)の外部に通じる第2通路(17)と、第1通路(15)と第2通路(17)とを連通遮断するメインバルブ(18)と、メインバルブ(18)を閉弁方向に付勢するスプリング(23)と、水素タンク(2)の内部に通じてメインバルブ(18)に閉弁方向の流体圧力を付与する背圧室(25)と、第2通路(17)と背圧室(25)とを連通する第3通路(29)と、第3通路(29)上に配置され背圧室(25)の圧力を調圧可能なインジェクタ(30)と、を備えている。
そして、第1通路(15)内の圧力と、スプリング(23)の弾性力と、インジェクタ(30)により調圧された背圧室(25)の圧力と、第2通路(17)内の圧力とを用いてメインバルブ(18)を開閉する(特許文献1の図2等参照)。
また、この主止弁(10)は、燃料電池スタック(1)への水素ガスの供給状態と非供給状態の切り替えに加えて、水素タンク(2)から減圧弁(5)側に供給される水素ガスの圧力を調節する。
具体的に、インジェクタ(30)のコイルへの通電をデューティー比制御することで、メインバルブ(18)の開度を調節して、第3通路(29)及び背圧室(25)を介して、減圧弁(5)側の第2通路(17)の圧力を調節する。
特開2012−189108号公報
しかし、特許文献1の主止弁における圧力制御は、メインバルブ(18)による第3通路及び背圧室を介した間接的な制御である。したがって、応答性が悪く、要求される低圧側の要求圧力に応じた高精度の調圧機能を実現できない。そのため、低圧側の圧力制御を実行するにあたり、別途、減圧弁等の調圧手段を設ける必要があり、コストアップを招いていた。
したがって、本発明の目的は、コストアップを抑制しつつも、高圧流路と低圧流路の間の流体の調圧機能を実現できる流体制御弁及び流体弁制御装置を提供することにある。
本発明のある態様によれば、高圧流路と低圧流路の間に配置される流体制御弁が提供される。流体制御弁は、高圧流路側に設けられた電磁弁と、低圧流路側に設けられる機械式弁と、を有する。また、電磁弁体は、弁体と、弁体を駆動する弁体駆動機構と、を備える。さらに、機械式弁は、電磁弁の弁体が通過可能な弁体通過穴及び低圧流路に連通する低圧流体流出穴が形成されたハウジングと、低圧流体流出穴を開閉する弁体と、ハウジングに設けられるとともに低圧流体流出穴の開放する方向に機械式弁の弁体を付勢する付勢体と、を備える。さらに、機械式弁の弁体は、高圧流路と低圧流体流出穴を連通させるように貫通形成された弁体流路を有する。
さらに、本発明の他の態様によれば、高圧流路と低圧流路の間に配置される他の態様の流体制御弁が提供される。この流体制御弁は、高圧流路側に設けられる電磁弁と、低圧流路側に設けられる機械式弁と、を有する。さらに、機械式弁の弁体には、高圧流路と低圧流路を連通させるように弁体流路が貫通形成される。また、電磁弁の弁体は、弁体流路を開閉可能である。そして、この流体制御弁は、高圧流路と低圧流路との差圧が相対的に大きい場合には、電磁弁の弁体を駆動させることでこの弁体が弁体流路を開閉する。一方で、差圧が相対的に小さい場合には、電磁弁の弁体を駆動させることで機械式弁の弁体が該駆動に追従して高圧流路と低圧流路の間の流路を開閉するように構成されている。
本発明によれば、コストアップを抑制しつつも、高圧流路と低圧流路の間の流体の調圧機能を実現することができる。
図1は、本発明の一実施形態における流体制御弁の構成を説明する図である。 図2Aは、差圧が相対的に大きいときの流体制御弁の作動状態を説明する図である。 図2Bは、差圧が相対的に小さいときの流体制御弁の作動状態を説明する図である。 図3は、一実施形態における流体制御弁が適用された燃料電池システムの一例を説明する図である。 図4Aは、高圧流路の圧力(差圧)に応じた流体制御弁の要求流路面積を示すグラフである。 図4Bは、高圧流路の圧力(差圧)に応じて流体制御弁の要求応答時間の変化を示すグラフである。 図5は、一実施形態における流体制御弁が適用された燃料電池システムの一例を説明する図である。 図6は、一実施形態における下流圧の脈動制御の態様を説明する図である。
以下、図面を参照して、本発明の実施形態について説明する。
(第1実施形態)
図1は、第1実施形態に係る本発明の一実施形態における流体制御弁の構成を概略的に示す図である。特に図1では、高圧流路hpと低圧流路lpの連通がほぼ完全に遮断される流体制御弁10の全閉状態を示している。
図示のように、本実施形態の流体制御弁10は、所望の流体制御部分における高圧流路hpと低圧流路lpの間に配置される。
流体制御弁10は、弁ハウジング10aの内部に電磁弁12と機械式弁14が配置された構成をとっている。弁ハウジング10aには、高圧流路hpから流体が流れ込む流入口10bと、低圧流路lpへ流体が流れ出る流出口10cが形成されている。すなわち、弁ハウジング10a内には、流入口10bを介して高圧流体が流れ込み、流出口10cを介して低圧流体が低圧流路lpへ流れ出る。なお、以下では、弁ハウジング10a内において調圧前の高圧流体が存在する領域を「高圧領域Ahp」と称する。
弁ハウジング10aの内部には、流入口10b側、すなわち高圧流路hp側に電磁弁12が設けられており、この電磁弁12に対して流出口10c側、すなわち低圧流路lp側に機械式弁14が設けられている。
電磁弁12は、弁体16と、弁体16を駆動する弁駆動機構としてのソレノイド18と、を有している。なお、以下では、後述する機械式弁14の弁体との区別を明確にするため、「弁体16」を「電磁弁体16」と称する。
電磁弁体16は、ソレノイド18により図1の両矢印方向に沿って駆動される。機械式弁14に対して最も近接する位置と機械式弁14から最も離れる位置の範囲で移動する。なお、以下では、電磁弁体16が機械式弁14に対して最も近接する位置にある状態を「電磁弁体16の閉状態」と定義し、電磁弁体16が機械式弁14に対して最も離れた位置にある状態を「電磁弁体16の開状態」と定義する。また、電磁弁体16が機械式弁14に対して最も近接する位置に向かう方向を「電磁弁体16の閉塞方向」と定義し、電磁弁体16が機械式弁14に対して最も離れた位置に向かう方向を「電磁弁体16の開放方向」と定義する。そして、電磁弁体16は、ソレノイド18のオン・オフによって閉塞方向及び開放方向に駆動され、後述する機械式弁14の弁体流路34を開閉可能となっている。
具体的に、ソレノイド18は、主に、ボビン(図示せず)に巻回された電磁コイル20、コア21、及び弁体可動機構22を備える。
弁体可動機構22は、電磁コイル20への通電で発生する磁力によって電磁弁体16を開放方向に移動させる一方、通電の解除によって電磁弁体16を閉塞方向に移動させる図示しないプランジャや復帰スプリング等によって構成されている。すなわち、電磁コイル20への通電のオン・オフの切り替えによって、電磁弁体16の駆動を制御できる。
なお、例えば、電磁コイル20への通電電流の周波数を変化させることによって、弁体可動機構22による電磁弁体16の開閉の応答時間を、所定範囲(例えば数msec〜数十sec)の間で任意に調節することが可能である。すなわち、ソレノイド18によって電磁弁体16の移動速度を任意に調節することができる。
次に、機械式弁14は、電磁弁12に対して低圧流路lp側に隣接配置されている。機械式弁14は、低圧流路lp側に向かって漸次縮径する略台形状の外形を有するハウジング24を備える。
このハウジング24には、電磁弁体16が通過可能な弁体通過穴24aが高圧流路hp側の位置に形成され、低圧流路lpに連通する低圧流体流出穴24bが低圧流路lp側の位置に形成されている。なお、本実施形態において低圧流体流出穴24bは、所定の内径D1を有するオリフィス状に形成されている。
さらに、機械式弁14は、ハウジング24内に、低圧流体流出穴24bを開閉する弁体30と、低圧流体流出穴24bを開放する方向に弁体30(以下では、「機械弁体30」とも記載する)を付勢する付勢体としてのバネ部材32と、を有している。
機械弁体30は、バネ部材32が自然長の状態においては低圧流体流出穴24bを開放する一方で、バネ部材32の圧縮状態で低圧流体流出穴24bを閉塞するように、バネ部材32に支持されている。なお、機械弁体30は、ハウジング24との間、又はハウジング24と接触する部分に、低圧流体流出穴24bの流路面積よりも大きい流路を構成する図示しない孔部や切欠きが設けられている。
機械弁体30は、低圧流体流出穴24bを閉塞している状態においては、バネ部材32により開放方向への押圧力を受ける。
特に、バネ部材32の付勢力は、高圧流路hpと低圧流路lpとの差圧ΔPが相対的に大きい場合には差圧ΔPに起因する機械弁体30の閉塞力よりも小さく、差圧ΔPが相対的に小さい場合には差圧ΔPに起因する機械弁体30の閉塞力よりも大きくなるように調節される。
より具体的には、機械弁体30の受圧面30aには高圧領域Ahpの高圧流体によって高圧流路hp側(上流)から低圧流路lp(下流)に向かう方向(点線矢印A方向)の押圧力が与えられる。そして、この点線矢印A方向に沿った押圧力が、実質的に機械弁体30の閉塞力に相当する。
したがって、バネ部材32は、差圧ΔPが相対的に大きい場合には、圧縮時の復元力(付勢力)が上記押圧力よりも小さくなる一方で、差圧ΔPが相対的に小さい場合には、圧縮時の復元力が上記押圧力よりも小さくなるように、そのバネ定数等が調節される。
さらに、機械弁体30は、ハウジング24の弁体通過穴24aと低圧流体流出穴24bを連通させるように弁体流路34が貫通形成されている。弁体流路34は、低圧流体流出穴24bの内径D1よりも小さい内径D2を有するオリフィス状に形成されている。すなわち、弁体流路34の内径D2に比例する流路面積は、低圧流体流出穴24bの流路面積よりも小さくなる。弁体流路34の内径D2は、例えば低圧流体流出穴24bの内径D1の1/4〜1/2程度である。なお、弁体流路34の内径D2の具体的な大きさについては、加工精度等の製造上の利点を考慮しつつ任意に設定することができる。
さらに、本実施形態では、上述のように、機械弁体30の弁体流路34は電磁弁体16によって開閉されることとなる。以下では、上記構成を有する流体制御弁10の作動状態をより詳細に説明する。
図2Aは、差圧ΔPが相対的に大きい場合の流体制御弁10の作動状態を説明する図であり、図2Bは、差圧ΔPが相対的に小さい場合の流体制御弁10の作動状態を説明する図である。
先ず、図2Aに示すように、差圧ΔPが相対的に大きい場合(以下では、単に「高圧力差状態」とも記載する)には、電磁コイル20の通電のオフにすることで、電磁弁体16を機械弁体30の弁体流路34の閉塞位置(図2Aにおいて一点鎖線で示す位置)に駆動させ、当該通電をオンにすることで電磁弁体16を弁体流路34の開放位置(図2Aにおいて実線で示す位置)に駆動させることができる。
高圧力差状態では、既に説明したように、機械弁体30に作用するバネ部材32の圧縮時の付勢力(図2A上では上向き)が、高圧流体によって機械弁体30の受圧面30aに与えられる押圧力(図2A上では下向き)よりも小さい。したがって、機械弁体30は、電磁弁体16の駆動状態にかかわらず、低圧流体流出穴24bを閉塞する状態に固定されることとなる。
これにより、電磁コイル20の通電のオン・オフを実行すると、電磁弁体16は閉塞状態に固定された機械弁体30に対して開閉移動することとなる。したがって、電磁弁体16を開閉駆動させることで、低圧流体流出穴24bを機械弁体30で閉塞した状態に維持しつつ、弁体流路34を開閉状態のみを切り替えることができる。
特に、高圧力差状態では、電磁弁体16が弁体流路34を閉塞状態にすると、弁体流路34及び弁体通過穴24aの双方が、それぞれ、電磁弁体16及び機械弁体30により閉塞されることとなるので、高圧流路hpと低圧流路lpとの間の連通が遮断される。すなわち、図1に示す流体制御弁10の全閉状態となる。したがって、例えば、高圧流路hpの圧力が部品の耐圧性等の観点から定まる許容値以上に上昇した場合においても、電磁弁体16を駆動させて弁体流路34を閉塞するだけで、高圧流路hpと低圧流路lpを遮断する全閉状態を実現することができる。すなわち。流体制御弁10は、いわゆる主止弁としての機能を備えている。
次に、図2Bに示すように、差圧ΔPが相対的に小さい場合(以下では、単に「低圧力差状態」とも記載する)には、電磁コイル20の通電のオン・オフによる電磁弁体16の移動に機械弁体30が追従する。すなわち、電磁コイル20の通電をオフとすると、機械弁体30が電磁弁体16の移動に追従して、低圧流体流出穴24bの閉塞位置(図2Bにおいて一点鎖線で示す位置)に移動する。一方、電磁コイル20の通電をオンにすると、機械弁体30が電磁弁体16の移動に追従して、低圧流体流出穴24bの開放位置(図2Bにおいて実線で示す位置)に移動する。
低圧力差状態では、既に説明したように、機械弁体30に作用するバネ部材32の圧縮時の付勢力(図2B上では上向き)が、高圧流体によって機械弁体30の受圧面30aに与えられる押圧力(図2B上では下向き)よりも大きい。
したがって、低圧力差状態では、機械弁体30はバネ部材32の復元力で押圧され、上記閉塞位置から上記開放位置に向かって移動することとなる。すなわち、機械弁体30は、電磁弁体16からの作用等の他の外部からの押圧力を受けない限り、バネ部材32が自然長となる上記開放位置に向かうようにガイドされる。
この場合に、電磁コイル20の通電をオフにして電磁弁体16を閉塞方向に向かって駆動させると、電磁弁体16は、機械弁体30の弁体流路34を閉塞しつつ当該機械弁体30を低圧流体流出穴24bの閉塞方向に移動させる。すなわち、機械弁体30は、電磁弁体16によって、バネ部材32の復元力に抗して低圧流体流出穴24bの閉塞方向に向かうように規制されることとなる。結果として、機械弁体30は、電磁弁体16に追従して移動することとなる。
一方で、電磁コイル20の通電をオンにして電磁弁体16を開放位置に向かって駆動させると、電磁弁体16から機械弁体30に作用していた規制力が解除される。したがって、機械弁体30は、バネ部材32の復元力に応じて電磁弁体16に追従して低圧流体流出穴24bを開放する方向に移動する。
特に、電磁弁体16の移動速度を機械弁体30の開閉の応答速度以下に制御することで、電磁コイル20の通電をオンにする場合において、電磁弁体16の移動と機械弁体30の移動を同期させて、実質的に電磁弁体16と機械弁体30を一体として動作させることができる。したがって、電磁弁体16による機械弁体30の弁体流路34の閉塞状態をより確実に維持しつつも、低圧流体流出穴24bの開度を調節することができる。
以上説明した本実施形態によれば、以下の作用効果を奏する。
本実施形態の一側面によれば、高圧流路hpと低圧流路lpの間に配置される流体制御弁10が提供される。この流体制御弁10は、高圧流路hp側に設けられた電磁弁12と、低圧流路lp側に設けられる機械式弁14と、を有する。
電磁弁12は、弁体としての電磁弁体16と、電磁弁体16を駆動する弁体駆動機構としてのソレノイド18と、を備える。機械式弁14は、電磁弁体16が通過可能な弁体通過穴24a及び低圧流路lpに連通する低圧流体流出穴24bが形成されたハウジング24と、低圧流体流出穴24bを開閉する弁体としての機械弁体30と、ハウジング24に設けられるとともに低圧流体流出穴24bを開放する方向に機械弁体30を付勢する付勢体としてのバネ部材32と、を備える。そして、機械弁体30は、高圧流路hpと低圧流体流出穴24bを連通させるように貫通形成された弁体流路34を有し、電磁弁体16は、弁体流路34を開閉するように構成されている。
これによれば、ソレノイド18によって、機械弁体30の弁体流路34を閉塞するように電磁弁体16を駆動することで、電磁弁体16の駆動とともに機械弁体30を低圧流体流出穴24bの閉塞方向に移動させることができる。すなわち、電磁弁体16を閉塞方向に駆動することで、弁体流路34及び低圧流体流出穴24bの閉塞状態(全閉状態)を実現することができる。
また、機械弁体30の弁体流路34を開放するように電磁弁体16を駆動することで、電磁弁体16が機械弁体30から離れる方向に駆動されることとなり、電磁弁体16を介して機械弁体30が受けていた低圧流体流出穴24bの閉塞方向への拘束力が解除される。したがって、この場合、差圧ΔPが相対的に大きい高圧力差状態において弁体流路34を開放させる方向に電磁弁体16を駆動すると、差圧ΔPによる押圧力で機械弁体30は低圧流体流出穴24bの閉塞位置に拘束されることとなる。結果として、弁体流路34が開放されつつ、低圧流体流出穴24bが閉塞される状態を実現できる。
一方で、差圧ΔPが相対的に小さい低圧力差状態において弁体流路34を開放させる方向に電磁弁体16を駆動すると、バネ部材32の付勢力で低圧流体流出穴24bを開放する方向に駆動されることとなる。これにより、機械弁体30が電磁弁体16に追従して、低圧流体流出穴24bを開放する方向に移動するので、電磁弁体16により弁体流路34が閉塞された状態を維持しつつ、低圧流体流出穴24bが開放されることとなる。
したがって、本実施形態の流体制御弁10は、電磁弁12の駆動制御によって、電磁弁12及び機械式弁14を統合的に制御することができるので、構成や制御の複雑化が抑制される。また、差圧ΔPの大小に応じて弁体流路34と低圧流体流出穴24bの間で流体の経路を適切に切り替えて低圧流路lpの圧力制御を行うことができる。これにより、コストアップを抑制しつつも、高圧流路hpと低圧流路lpの間の流体の調圧機能を好適に実現することができる。
なお、本実施形態の流体制御弁10は、低圧流体流出穴24b及び弁体流路34の双方を閉塞することで、高圧流路hpと低圧流路lpとの連通を遮断して全閉状態とすることができる。すなわち、主止弁としての機能を備えている。
また、本実施形態の流体制御弁10では、弁体流路34の流路面積に対応する内径D2は、低圧流体流出穴24bの流路面積に対応する内径D1よりも小さく構成される。
これにより、弁体流路34が開放して低圧流体流出穴24bが閉塞する高圧力差状態においては、流路面積の小さい弁体流路34を介して高圧流路hpから低圧流路lpに流体が流れることとなるので、差圧ΔPが大きいことに起因する低圧流路lpの急速な流量の増加を抑制することができる。結果として、電磁弁体16の開放時間あたりの低圧流路lp側の圧力変化を小さくすることができるので、高圧力差状態におけるより決め細やかな低圧流路lpの調圧制御が可能となる。
一方で、弁体流路34が閉塞して低圧流体流出穴24bが開放する低圧力差状態においては、流路面積の大きい低圧流体流出穴24bを介して高圧流路hpから低圧流路lpに流体が流れることとなるので、差圧ΔPが小さいことに起因する流量の不足を抑制することができる。結果として、電磁弁体16の開放時間あたりの低圧流路lp側の圧力変化を大きくすることができるので、低圧力差状態におけるより好適な低圧流路lpの調圧制御が可能となる。
さらに、本実施形態の流体制御弁10において、バネ部材32の付勢力は、高圧力差状態の場合には、差圧ΔPに起因する機械弁体30の閉塞力よりも小さく、低圧力差状態の場合には、差圧ΔPに起因する機械弁体30の閉塞力よりも大きくなるように調節されている。
これにより、高圧力差状態においては、電磁弁体16が開放位置にある場合、すなわち
弁体流路34が開放状態である場合に、差圧ΔPによって機械弁体30を低圧流体流出穴24bの閉塞位置により確実に拘束することができる。一方、低圧力差状態においては、電磁弁体16が開放位置にあり弁体流路34が開放状態である場合に、バネ部材32の付勢力によって機械弁体30を電磁弁体16に追従させる機能をより確実に発揮することができる。したがって、差圧ΔPの大小に応じた弁体流路34と低圧流体流出穴24bの間の圧力制御に用いる流体経路の切り替えをより好適に行うことができ、低圧流路lpの調圧制御の精度の向上により資することとなる。
さらに、本実施形態の別の側面によれば、高圧流路hpと低圧流路lpの間に配置される流体制御弁10が提供される。この流体制御弁10は、高圧流路hp側に設けられた電磁弁12と、低圧流路lp側に設けられる機械式弁14と、を有する。
この流体制御弁10では、機械弁体30には、高圧流路hpと低圧流路lpを連通させるように弁体流路34が貫通形成される。また、電磁弁体16は、弁体流路34を開閉可能である。そして、この流体制御弁10においては、高圧流路hpと低圧流路lpとの差圧ΔPが相対的に大きい高圧力差状態の場合には、電磁弁体16を駆動させることで該電磁弁体16が弁体流路34を開閉する。一方、差圧ΔPが相対的に小さい低圧力差状態の場合には、電磁弁体16を駆動させることで機械弁体30が該駆動に追従して、高圧流路hpと低圧流路lpの間の流路である低圧流体流出穴24bを開閉するように構成されている。
これにより、電磁弁12の制御によって、電磁弁12及び機械式弁14を統合的に制御することができるので、構成や制御の複雑化が抑制される。さらに、差圧ΔPの大小に応じて弁体流路34と低圧流体流出穴24bの間で流体の経路を適切に切り替えて低圧流路lpの圧力調節を行うことができる。これにより、コストアップを抑制しつつも、高圧流路hpと低圧流路lpの間の流体の調圧機能を好適に実現することができる。
特に、本実施形態の流体制御弁10では、高圧力差状態の場合には、差圧ΔPによって機械弁体30の開放方向への移動が制限される。一方、低圧力差状態の場合には、機械弁体30の開放方向への移動の制限が解除される。
これにより、高圧力差状態において、弁体流路34の開放方向に電磁弁体16が移動しても、差圧ΔPによって機械弁体30を低圧流体流出穴24bの閉塞位置により確実に維持することができる。一方、低圧力差状態においては、弁体流路34の開放方向に電磁弁体16が移動する際に、機械弁体30を電磁弁体16により確実に追従させることができる。したがって、差圧ΔPの大小に応じた弁体流路34と低圧流体流出穴24bの間の流体の経路の切り替えをより好適に行うことができ、調圧制御の精度の向上に資することとなる。
(第2実施形態)
以下、第2実施形態について説明する。なお、第1実施形態と同様の要素には、同一の符号を付し、その説明を省略する。本実施形態では、第1実施形態に係る流体制御弁10を、燃料電池システムの水素ガス供給機構に適用した例について説明する。
図3は、第1実施形態で説明した流体制御弁10が適用された燃料電池システムの水素ガス供給機構の一例を説明する図である。なお、図3においては、図面の簡略化のため、燃料電池システムの水素ガス供給機構に関連する部分のみを示し、水素ガス排出機構や酸化ガス給排機構等の他の燃料電池システムを構成する要素は省略する。
本実施形態の燃料電池システム100は、燃料電池スタック110と、燃料電池スタック110に供給する水素ガスを高圧状態(例えば、70Mpa)で充填した高圧タンク120と、流体制御弁10を制御する流体弁制御装置としてのコントローラ130と、を有している。
燃料電池スタック110は、複数の燃料電池セルが積層された積層電池として構成される。燃料電池スタック110には、システム外部からの要求負荷や燃料電池セルの電解質膜の湿潤状態等に応じて、所望の圧力及び流量に調節された水素ガス及び酸化ガスの供給を受けて発電する。
高圧タンク120には、その内部の水素ガス充填部からタンク入口までの間に水素ガスが流れる通路が形成されており、この通路が高圧流路hpに相当する。そして、高圧タンク120のタンク入口に第1実施形態で説明した流体制御弁10が設けられる。
したがって、この構成により、流体制御弁10に対して燃料電池スタック110側の流路である低圧流路lpにおける水素ガスの供給及び遮断、並びに圧力調節を、流体制御弁10の制御により実行することができる。すなわち、流体制御弁10の制御で、燃料電池スタック110への水素ガスの供給の遮断や圧力制御を実行することができる。
また、燃料電池システム100には、高圧流路hpの圧力を検出する高圧圧力検出センサ140、及び低圧流路lpの圧力を検出する低圧圧力検出センサ150が設けられている。
コントローラ130は、中央演算装置(CPU)、読み出し専用メモリ(ROM)、ランダムアクセスメモリ(RAM)、及び入出力インタフェース(I/Oインタフェース)を備えたマイクロコンピューターで構成される。
本実施形態では、コントローラ130は、高圧圧力検出センサ140の検出値(以下では、「高圧センサ検出値」とも記載する)の信号、低圧圧力検出センサ150の検出値(以下では、「低圧センサ検出値」とも記載する)の信号、及び燃料電池システム100への負荷を検出する負荷検出センサ200(例えば、燃料電池システム100が搭載される車両のアクセルペダルセンサ)からの入力信号に基づいて、流体制御弁10を制御する。
具体的には、コントローラ130は、高圧センサ検出値に基づいて、低圧センサ検出値が負荷の検出値に応じた所望の目標圧力値に近づくように、弁体可動機構22による電磁弁体16の移動速度を調節する。すなわち、電磁弁体16の移動速度が制御されることで、高圧流路hpから低圧流路lpに流れる水素ガスの流量が調節され、低圧流路lpの圧力を目標圧力値に制御することができる。また、例えば目標圧力値は、負荷が大きくなるほど大きく設定される。以下では、コントローラ130による流体制御弁10の制御をより具体的に説明する。
コントローラ130は、高圧センサ検出値と予め定められる所定の圧力閾値Pthを比較し、その大小に応じて流体制御弁10の制御態様を変更する。ここで、圧力閾値Pthは、第1実施形態で説明した高圧力差状態と低圧力差状態を判断する基準となる値として定められる。
例えば、燃料電池システム100においては、高圧タンク120内の水素ガス残量に応じて高圧流路hpの圧力(以下では、「タンク圧」とも記載する)が3Mpa〜70Mpaの範囲で変動することが想定されるが、その場合においても、低圧流路lpの圧力(以下では、「下流圧」とも記載する)を負荷に応じた上記目標圧力値に制御する。
したがって、下流圧の目標圧力値に対してタンク圧が変動して、差圧ΔPが数Mpa〜数十Mpaの範囲で変動することが想定される。このような広い範囲で差圧ΔPが変動することで、差圧ΔPが比較的大きい高圧力差状態と差圧ΔPが比較的小さい低圧力差状態では、下流圧を目標圧力値に高精度に制御するにあたり、高圧流路hpと低圧流路lpを連通させる流体制御弁10における流路面積(内径D1又は内径D2)として好適な値が異なることとなる。
より具体的には、高圧力差状態では同じ流路面積であっても流量が相対的に高くなるため、急速な水素ガス流量の増加に起因して下流圧が急激に変化する。したがってこの急激な下流圧の変化を抑制すべく、流体制御弁10における流路面積を比較的小さくすることが好ましい。一方では、低圧力差状態では同じ流路面積であっても流量が相対的に低くなるため、下流圧を目標圧力値に到達させるための流量を確保するために流体制御弁10における流路面積を比較的大きくすることが好ましい。本実施形態では、このような観点から流体制御弁10の開閉制御が行われる。以下、流体制御弁10の高圧力差状態における制御と低圧力差状態における制御についてより詳細に説明する。
図4Aは、タンク圧の大きさに応じた流体制御弁10の要求流路面積の変化を示すグラフである。ここで、図4Aに示す曲線C1は、下流圧を目標圧力値に制御するにあたり、タンク圧の大きさに応じて要求される好適な流路面積である要求流路面積の変化を表している。また、点線で示す直線L1は、機械弁体30による低圧流体流出穴24bの開放によって確保される流路面積(すなわち、低圧流体流出穴24bの内径D1に相当)を表している。さらに、二点鎖線で示す直線L2は、弁体流路34の開放によって確保される流路面積(すなわち、弁体流路34の内径D2に相当)を表している。
さらに、図4Bは、タンク圧の大きさに応じた流体制御弁10の要求応答時間の変化を示すグラフである。ここで、図4Bに示す曲線C2は、下流圧を目標圧力値に制御するにあたり、タンク圧の大きさに応じて要求される流体制御弁10の流路の開閉応答時間としての要求応答時間の変化を表している。また、直線L3は、機械弁体30の応答時間を示している。また、直線L4は、電磁弁体16の応答時間を示している。なお、電磁弁体16の応答時間は、電磁弁体16の移動速度の逆数に比例する。また、機械弁体30の応答時間(図4Bの低圧力差状態における応答時間)は、バネ部材32のバネ定数の逆数に比例する。
[低圧力差状態における流体制御弁10の制御]
図4Aに示すように、低圧力差状態では、流量確保の観点から、曲線C1で表される要求流路面積が、高圧力差状態の場合よりも高くなっている。一方、図4Bに示すように、低圧力差状態では、直線L4で表される電磁弁体16の応答時間が、直線L3より表される機械弁体30の応答時間以下に設定されている。すなわち、低圧力差状態では、電磁弁体16の移動速度が機械弁体30の応答速度以下に設定される。したがって、実質的に電磁弁体16と機械弁体30が一体として動作させることができる(図2B参照)。
したがって、流路面積の小さい弁体流路34が電磁弁体16で閉塞された状態を維持したまま、流路面積の大きい低圧流体流出穴24bに対する機械弁体30による開閉を、電磁弁体16の駆動制御によって任意に調節することができる。
これにより、流量を確保し難い低圧力差状態においても、流路面積の大きい低圧流体流出穴24bを用いることで十分な流量を確保して好適に下流圧の制御を行うことができる。特に、低圧力差状態では、そもそも流量が増加し難い傾向にあることから、低圧流体流出穴24bの開閉周期あたりの下流圧の変化が少ないので、低圧流体流出穴24bの開閉動作において要求される応答性も相対的に低くなる。したがって、電磁弁体16の開閉移動の速度を機械弁体30の応答速度以下としても、支障なく好適に下流圧を制御することができる。
[高圧力差状態における流体制御弁10の制御]
図4Aに示すように、高圧力差状態では、急激な水素ガス流量の増大による下流圧の急激な変化を抑制すべく、曲線C1で表される要求流路面積が相対的に低くなる。一方で、高圧力差状態では、第1実施形態でも説明したように、差圧ΔPによる機械弁体30に対する低圧流体流出穴24bの閉塞方向の押圧力によって、機械弁体30が低圧流体流出穴24bを閉塞した状態に固定される(図2A参照)。したがって、この状態で、電磁弁体16を移動させても、機械弁体30は低圧流体流出穴24bを閉塞した状態に維持される。すなわち、図4Bの直線L3で示すように、機械弁体30の応答速度はゼロとなる(応答時間が発散する)。
これにより、電磁弁体16を駆動することで、流路面積の大きい低圧流体流出穴24bを閉塞した状態のまま、流路面積の小さい弁体流路34のみを開閉することができる。
したがって、高圧力差状態においては、流路面積の小さい弁体流路34を開閉することで、急激な水素ガス流量の増大による下流圧の急激な上昇を抑制して、燃料電池スタック110等の下流の構造物の保護を図るとともに、高精度な下流圧の調圧制御を実行することができる。特に、高圧力差状態では流路面積の小さい弁体流路34が調圧に用いられることから、電磁弁体16の開閉周期あたりの水素ガス流量の変化量が少なくなるので、下流圧のきめ細やかな制御が可能となる。
さらに、高圧力差状態では、図4Bの直線L4で示すように、タンク圧の大きさに応じた要求流路面積を満たすように弁体流路34の開度を調節すべく、コントローラ130は、電磁弁体16の応答時間を調節する。具体的には、タンク圧が大きいほど、電磁弁体16の応答時間が短くなるように、電磁コイル20への通電電流の周波数を大きくする。すなわち、タンク圧が大きいほど、電磁弁体16の移動速度を早くする。これにより、タンク圧が大きいほど、電磁弁体16の開閉周期あたり弁体流路34の開放時間が短くなるので、電磁弁体16の1回の開放あたりの下流圧の変化量をより少なくすることができ、下流圧のよりきめ細やかな制御が可能となる。
以上説明した本実施形態によれば、以下の作用効果を奏する。
本実施形態の流体制御装置としてのコントローラ130は、高圧流路hpの圧力であるタンク圧に基づいて電磁弁体16の移動速度を調節する。これによれば、タンク残量等に応じたタンク圧の変化に応じて電磁弁体16の移動速度を調節することで、低圧流体流出穴24b又は弁体流路34の開度を調節することができる。したがって、タンク圧の大きさ、すなわち差圧ΔPに応じて下流圧を好適に制御することができる。
特に、コントローラ130は、タンク圧が所定の圧力閾値Pth未満である場合(低圧力差状態の場合)に、電磁弁体16の移動速度を、該移動速度が機械弁体30の応答速度以下となるように調節する。
これにより、高圧流路hpと低圧流路lpの流量が確保し難い低圧力差状態においても、相対的に内径の大きい低圧流体流出穴24bを調圧制御に用いることで流量をより確実に確保して好適な下流圧の調圧制御を行うことができる。
また、低圧力差状態では、そもそも流量が増加し難い傾向にあることから、低圧流体流出穴24bの開閉周期あたりの下流圧の変化が少ないので、低圧流体流出穴24bの開閉動作において要求される応答性も相対的に低くなる。したがって、電磁弁体16の開閉移動の速度を機械弁体30の応答速度程度に合わせても、支障なく好適に下流圧を制御することができる。
特に、電磁弁体16の移動速度と機械弁体30の応答速度が略同一となるように電磁弁12を制御することによって、電磁弁体16の移動速度と機械弁体30の応答速度の相違による衝突やそれによる異音の発生をより確実に抑制することができる。
さらに、コントローラ130は、タンク圧が圧力閾値Pth以上である場合に、タンク圧が大きいほど電磁弁体16の移動速度を速くする。
すなわち、差圧ΔPが大きくなって急激な流量の増大がより懸念される状況であるほど、電磁弁体16の移動速度を早くして弁体流路34の開閉の切り替え頻度を高くする。これにより、タンク圧が大きいほど、電磁弁体16の開閉周期あたりの水素ガス流量の変化量を少なくすることができるので、下流圧のきめ細やかな制御が可能となる。
なお、電磁弁体16の開閉移動の速度を機械弁体30の応答速度以下となる範囲で一定としても良い。また、機械弁体30の応答速度に応じて電磁弁体16の移動速度を変化させるようにしても良い。例えば、バネ部材32のバネ定数と機械弁体30の応答特性の関係を示すマップ等をメモリ等に記録しておき、コントローラ130が当該マップを参照し、バネ部材32のバネ定数に応じた機械式弁14の応答特性に応じて適宜、電磁弁体16の移動速度の設定値を補正するようにしても良い。
また、本実施形態では、高圧センサ検出値に基づいて下流圧が目標圧力値に近づくように流体制御弁10を制御している。しかしながら、高圧センサ検出値と低圧センサ検出値の差に基づいて、下流圧が目標圧力値に近づくように流体制御弁10を制御しても良い。
また、下流圧の目標圧力値は、燃料電池システム100に対する負荷に応じて適宜変化させることも可能である。例えば、燃料電池システム100が車両に搭載される場合に、車両がアイドル状態や低速度定常運転状態等の負荷が相対的に低い状態である場合には、下流圧の目標圧力値の目標値を相対的に低く調節しても良い。一方、逆に、燃料電池システム100を搭載する車両が、高速走行状態や登坂走行時等の負荷が相対的に高い状態である場合には、下流圧の目標圧力値を相対的に高く調節しても良い。
さらに、下流圧の目標圧力値は、低圧圧力検出センサ150が設けられる低圧流路lp上の位置に応じて適宜変更することもできる。例えば、本実施形態では、負荷に応じて燃料電池スタック110に実際に供給される水素ガスの圧力を調節することを意図している。しかし、低圧流路lp上で低圧圧力検出センサ150が設けられる位置などによっては、低圧流路lpにおける低圧圧力検出センサ150と燃料電池スタック110までの経路における圧損の影響が大きくなる場合が想定される。この場合には、圧損の影響を考慮して下流圧の目標圧力値を補正しても良い。
また、高圧力差状態において、差圧ΔPの大きさによって流量が増加することによる圧損の増大が想定される。したがって、高圧力差状態において、流量が増加することによる圧損の増大を考慮するために、差圧ΔPの大きさに応じて下流圧の目標圧力値を補正しても良い。
さらに、本実施形態の流体制御弁10及びその制御の適用は、燃料電池システム100の水素ガス供給機構以外にも、高圧側と低圧側の差圧ΔPが比較的大きい種々の流路における流体の制御に適用することができる。例えば、本実施形態の流体制御弁10及びその制御を、天然ガス自動車等に搭載されるCNG(Compressed Natural Gas)タンクのガス供給機構に適用しても良い。
(第3実施形態)
以下、第3実施形態について説明する。なお、第1実施形態又は第2実施形態と同様の要素には、同一の符号を付し、その説明を省略する。本実施形態では、特に、流体制御弁10を、第2実施形態とは異なる他の燃料電池システム100´の水素ガス供給機構に適用した例について説明する。
図5は、流体制御弁10が適用された燃料電池システム100´の水素ガス供給機構の一例を説明する図である。なお、図5においては、図面の簡略化のため、燃料電池システムの水素ガス供給機構に関連する部分のみを示し、水素ガス排出機構や酸化ガス給排機構等の他の燃料電池システムを構成する要素は省略する。
図示のように、本実施形態の燃料電池システム100´は、低圧流路lpにおける高圧タンク120と燃料電池スタック110の間に所定容積を有する調圧領域としての調圧室160を有している。また、本実施形態において、低圧圧力検出センサ150は調圧室160に設けられている。すなわち、低圧圧力検出センサ150は、調圧室160内部の圧力を上記低圧センサ検出値として検出する。なお、以下の説明の簡略化のため、低圧流路lpにおける流体制御弁10から調圧室160までの経路を「前半低圧流路lpα」と称し、低圧流路lpにおける調圧室160から燃料電池スタック110までの経路を「後半低圧流路lpβ」と称する。
図6は、本実施形態における調圧室160の圧力制御の態様を説明する図である。図示のように、コントローラ130は、調圧室160内部の圧力が所定の上限圧PUと所定の下限圧PLの間で脈動するように、流体制御弁10の開閉制御を実行する。
ここで、上限圧PUは、例えば、後半低圧流路lpβにおける圧損をもっとも高く想定した場合における圧力損失値に、負荷に応じたスタック要求圧力の想定変動範囲の上限を加算することで求めることができる。なお、後半低圧流路lpβにおける圧損がもっとも高く想定される場合とは、例えば、高圧力差状態において想定される差圧ΔPの最大値における水素ガス流量に基づいて評価される後半低圧流路lpβの圧損である。また、負荷に応じたスタック要求圧力の想定変動範囲とは、例えば、負荷の状態を高負荷、中負荷、及び低負荷などのいくつかの負荷領域に分類した場合に、各負荷領域ごとに想定されるスタック要求圧力の変動の範囲を意味する。
一方、下限圧PLは、例えば、後半低圧流路lpβにおける圧損をもっとも低く想定した場合における圧力損失値を負荷に応じたスタック要求圧力の想定変動範囲の下限を加算することで求めることができる。なお、後半低圧流路lpβにおける圧損がもっとも低く想定される場合とは、例えば、低圧力差状態において想定される差圧ΔPの最小値における水素ガス流量に基づいて評価される後半低圧流路lpβの圧損である。
そして、図6に示すように、コントローラ130は、電磁コイル20の通電をオンにして電磁弁体16を開放位置に制御する電磁弁12のON状態と、電磁コイル20の通電をオフにして電磁弁体16を閉塞位置に制御する電磁弁12のOFF状態と、を切り替える。
具体的に、例えば、コントローラ130は、低圧センサ検出値が下限圧PL又はその近傍となったときに、電磁弁12をONにする。これにより、低圧流体流出穴24b又は弁体流路34の何れかが開放されるので、調圧室160内部の圧力が増加して低圧センサ検出値が上限圧PUに到達する。そして、コントローラ130は、低圧センサ検出値が上限圧PUに到達すると、電磁弁12をOFFにする。これにより、低圧流体流出穴24b及び弁体流路34が閉塞されるので、調圧室160内部の圧力が減少して低圧センサ検出値が下限圧PLに到達する。
以上の制御を繰り返すことで、調圧室160内部の圧力を、上限圧PUと下限圧PLの間の脈動レンジΔPLU内で脈動させることができる。このような脈動制御によって、燃料電池スタック110の負荷変動等による要求圧力の逐次変動に応じた、調圧室160内部の圧力の細かい制御値の変更を抑制することができる。したがって、調圧制御が簡素化される。
また、調圧室160内部の圧力を脈動レンジΔPLU内で脈動制御することによって、流体制御弁10の開閉制御による流量変化の影響を、燃料電池スタック110内の水素ガス供給圧力や供給流量にダイレクトに反映させることなく、調圧室160で吸収することができる。すなわち、調圧室160が燃料電池スタック110内の圧力制御におけるバッファ要素として機能する。
特に、本実施形態では、図6に示すように、調圧室160内部の圧力を減少させる電磁弁12のOFF時間TOFFに対する、調圧室160内部の圧力を増加させる電磁弁12のON時間TONの比率(以下、「電磁弁デューティー比TON/TOFF」とも記載する)が、差圧ΔPに応じて変化することとなる。
より具体的には、差圧ΔPが大きいほど、電磁弁デューティー比TON/TOFFが小さくなる。したがって、燃料電池スタック110の要求に応じて無駄なく電磁弁12がONされるので、無駄な水素ガスの消費を抑制することができる。一方、差圧ΔPが小さいほど、電磁弁デューティー比TON/TOFFが大きくなる。これにより、差圧ΔPが小さく、燃料電池スタック110で要求される水素ガス流量に対して実際に供給される水素ガス流量が不足する傾向にある状況においては、電磁弁12がONされる時間が長くなるので、燃料電池スタック110における水素ガス流量の不足を好適に抑制することができる。
さらに、本実施形態における流体制御弁10の制御では、電磁弁12が比較的短時間でON/OFFされて調圧室160内部の圧力が変化する。したがって、例えば電磁弁12に何らかの異常が発生した場合には、短時間の間に低圧センサ検出値が異常値を示すこととなる。すなわち、低圧センサ検出値を参照することで、電磁弁12の異常を速やかに検出することができる。
以上説明した本実施形態によれば、以下の作用効果を奏する。
本実施形態の流体制御装置としてのコントローラ130は、低圧流路lpの圧力(下流圧)としての調圧室160内部の圧力が、所定の下限圧力としての下限圧PLに達したら電磁弁12を開放(電磁弁12をON)し、所定の上限圧力としての上限圧PUに達したら電磁弁12の弁体を閉塞(電磁弁12をOFF)する。
これにより、下流圧としての調圧室160内部の圧力を、上限圧PUと下限圧PLの間の脈動レンジΔPLU内で脈動させる脈動制御を実行することができる、したがって、燃料電池スタック110の負荷変動等による要求圧力の逐次変動に応じた、下流圧の細かい制御値の変更を抑制することができる。したがって、調圧制御が簡素化される。
特に、本実施形態では、低圧流路lpの圧力は、低圧流路lpに設けられる所定容積を有する調圧領域としての調圧室160の圧力である。これにより、調圧室160内部の圧力を脈動レンジΔPLU内で脈動制御することによって、流体制御弁10(電磁弁12)の開閉制御による流量変化の影響を、燃料電池スタック110内の水素ガス供給圧力や供給流量にダイレクトに反映させることなく、調圧室160で吸収することができる。したがって、燃料電池スタック110へ供給する水素ガス流量の急激な増加などをより確実に抑制することができる。
なお、本実施形態では、低圧流路lpに調圧室160を設けた燃料電池システム100´で調圧室160内部の圧力の脈動制御を行う例を説明した。しかしながら、調圧室160を設けることなく、脈動制御を行うようにしても良い。すなわち、低圧流路lpの任意の領域の圧力を検出するようにして、当該領域の位置に応じた脈動レンジΔPLUを設定し、これに基づいて脈動制御を実行するようにしても良い。
以上、本発明の実施形態について説明したが、上記実施形態は本発明の適用例の一部を示したに過ぎず、本発明の技術的範囲を上記実施形態の具体的構成に限定する趣旨ではない。
例えば、上記各実施形態では、弁体流路34及び低圧流体流出穴24bが、それぞれ、機械弁体30及びハウジング24に一つずつ設けられている。しかしながら、弁体流路34及び低圧流体流出穴24bを複数設け、これらを開閉する電磁弁体16及び機械弁体30を対応する個数設けても良い。なお、この場合でも、複数の電磁弁体16及び機械弁体30は、一つのソレノイド18で駆動制御可能に構成される。
また、弁体流路34及び低圧流体流出穴24bの断面形状は、略円形に限られず、矩形等の他の任意の形状に形成することができる。その場合、電磁弁体16及び機械弁体30の断面形状も、弁体流路34及び低圧流体流出穴24bの断面形状に合せて変更することができる。
さらに、上記各実施形態の流体制御弁10は、電磁弁12と機械式弁14以外の他の弁構成を含んでいても良い。
また、上記各実施形態における機械弁体30を付勢するバネ部材32に代わる付勢体として、当該バネ部材32と同等に付勢力を発揮し得るゴム等の弾性材料や、パンダグラフ等の形状変化による付勢力を発揮できる弾性体を用いても良い。
10 流体制御弁
10a 弁ハウジング
10b 流入口
10c 流出口
12 電磁弁
14 機械式弁
16 電磁弁体(電磁弁の弁体)
18 ソレノイド(弁体駆動機構)
24 ハウジング
24a 弁体通過穴
24b 低圧流体流出穴
30 機械弁体(機械式弁の弁体)
32 バネ部材(付勢体)
34 弁体流路
110 燃料電池スタック
120 高圧タンク
130 コントローラ(流体弁制御装置)
160 調圧室
D1 低圧流体流出穴の内径(低圧流体流出穴の流路面積)
D2 弁体流路の内径(弁体流路の流路面積)
L 下限圧(下限圧力)
U 上限圧(上限圧力)
Pth 圧力閾値
hp 高圧流路
lp 低圧流路
ΔP 差圧
ΔPLU 脈動レンジ

Claims (10)

  1. 高圧流路と低圧流路の間に配置される流体制御弁であって、
    高圧流路側に設けられた電磁弁と、低圧流路側に設けられる機械式弁と、を有し、
    前記電磁弁は、弁体と、弁体を駆動する弁体駆動機構と、を備え、
    前記機械式弁は、前記電磁弁の弁体が通過可能な弁体通過穴及び前記低圧流路に連通する低圧流体流出穴が形成されたハウジングと、前記低圧流体流出穴を開閉する弁体と、前記ハウジングに設けられるとともに前記低圧流体流出穴を開放する方向に前記機械式弁の弁体を付勢する付勢体と、を備え、
    前記機械式弁の弁体は、前記高圧流路と前記低圧流体流出穴を連通させるように貫通形成された弁体流路を有し、
    前記電磁弁の弁体は、前記弁体流路を開閉するように構成された、
    流体制御弁。
  2. 請求項1に記載の流体制御弁であって、
    前記弁体流路の流路面積は、前記低圧流体流出穴の流路面積よりも小さく構成される、
    流体制御弁。
  3. 請求項1又は2に記載の流体制御弁であって、
    前記付勢体の付勢力は、
    前記高圧流路と前記低圧流路との差圧が相対的に大きい場合には、前記差圧に起因する前記機械式弁の弁体の閉塞力よりも小さく、
    前記差圧が相対的に小さい場合には、前記差圧に起因する前記機械式弁の弁体の閉塞力よりも大きくなるように調節されている、
    流体制御弁。
  4. 請求項1〜3の何れか1項に記載の流体制御弁を制御する流体弁制御装置であって、
    前記高圧流路の圧力に基づいて前記弁体駆動機構を制御することで、前記電磁弁の弁体の移動速度を調節する、
    流体弁制御装置。
  5. 請求項4に記載の流体弁制御装置であって、
    前記高圧流路の圧力が所定の圧力閾値未満である場合に、前記電磁弁の弁体の移動速度を、該移動速度が前記機械式弁の弁体の応答速度以下となるように調節する、
    流体弁制御装置。
  6. 請求項5に記載の流体制御弁を制御する流体弁制御装置であって、
    前記高圧流路の圧力が所定の圧力閾値以上である場合に、該高圧流路の圧力が大きいほど前記電磁弁の弁体の移動速度を速くする、
    流体弁制御装置。
  7. 請求項4〜6の何れか1項に記載の流体弁制御装置であって、
    前記低圧流路の圧力が所定の下限圧力に達したら前記電磁弁の弁体を開放し、所定の上限圧力に達したら前記電磁弁の弁体を閉塞する、
    流体弁制御装置。
  8. 請求項7に記載の流体弁制御装置であって、
    前記低圧流路の圧力は、該低圧流路に設けられる所定容積を有する調圧領域の圧力である、
    流体弁制御装置。
  9. 高圧流路と低圧流路の間に配置される流体制御弁であって、
    高圧流路側に設けられる電磁弁と、低圧流路側に設けられる機械式弁と、を有し、
    前記機械式弁の弁体には、前記高圧流路と前記低圧流路を連通させるように弁体流路が貫通形成され、
    前記電磁弁の弁体は、前記弁体流路を開閉可能であり、
    前記高圧流路と前記低圧流路との差圧が相対的に大きい場合には、前記電磁弁の弁体を駆動させることで前記電磁弁の弁体が前記弁体流路を開閉し、
    前記差圧が相対的に小さい場合には、前記電磁弁の弁体を駆動させることで前記機械式弁の弁体が該駆動に追従して前記高圧流路と前記低圧流路の間の流路を開閉するように構成された、
    流体制御弁。
  10. 請求項9に記載の流体制御弁であって、
    前記差圧が相対的に大きい場合には、前記差圧によって前記機械式弁の弁体の開放方向への移動が制限され、
    前記差圧が相対的に小さい場合には、前記機械式弁の弁体の開放方向への移動の制限が解除される、
    流体制御弁。
JP2017023955A 2017-02-13 2017-02-13 流体制御弁及び流体弁制御装置 Active JP6753794B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017023955A JP6753794B2 (ja) 2017-02-13 2017-02-13 流体制御弁及び流体弁制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017023955A JP6753794B2 (ja) 2017-02-13 2017-02-13 流体制御弁及び流体弁制御装置

Publications (2)

Publication Number Publication Date
JP2018132072A JP2018132072A (ja) 2018-08-23
JP6753794B2 true JP6753794B2 (ja) 2020-09-09

Family

ID=63249497

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017023955A Active JP6753794B2 (ja) 2017-02-13 2017-02-13 流体制御弁及び流体弁制御装置

Country Status (1)

Country Link
JP (1) JP6753794B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2767568C1 (ru) * 2021-06-09 2022-03-17 Акционерное Общество "Контрольприбор" Устройство управления давлением сжатого воздуха с приводом от линейного актуатора

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102209808B1 (ko) * 2019-11-05 2021-01-29 주식회사 유니크 배출밸브
JP7423050B2 (ja) 2020-01-16 2024-01-29 株式会社タカギ 吐止水装置
IT202000005917A1 (it) * 2020-03-19 2021-09-19 Metatron S P A Sistema di cella a combustibile e regolatore elettronico di pressione di combustibile per tale sistema

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7309113B2 (en) * 2003-11-18 2007-12-18 Dynetek Industries Ltd. Flow control system for a valve
US20130037146A1 (en) * 2011-08-11 2013-02-14 Richard James Anagnos Fluid valves having multiple fluid flow control members
JP5809967B2 (ja) * 2011-12-27 2015-11-11 日産自動車株式会社 燃料電池システムの圧力調整装置
US20150030948A1 (en) * 2012-03-13 2015-01-29 Nissan Motor Co., Ltd. Fuel cell system and control method of fuel cell system
JP6769886B2 (ja) * 2017-02-08 2020-10-14 リンナイ株式会社 ガス燃焼装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2767568C1 (ru) * 2021-06-09 2022-03-17 Акционерное Общество "Контрольприбор" Устройство управления давлением сжатого воздуха с приводом от линейного актуатора

Also Published As

Publication number Publication date
JP2018132072A (ja) 2018-08-23

Similar Documents

Publication Publication Date Title
JP6753794B2 (ja) 流体制御弁及び流体弁制御装置
CN103180645B (zh) 燃料电池系统的氢气供给装置
CN103003605B (zh) 气体用调压阀
JP3467438B2 (ja) 背圧制御弁
JP5438745B2 (ja) 流体供給システム
EP2581799A1 (en) Pressure-reducing valve with injector and fuel cell system including pressure-reducing valve
JP6868371B2 (ja) 高圧流体制御弁および燃料電池システム
US11306874B2 (en) Gas supply system and method for estimating infernal pressure of gas tank
JP6018517B2 (ja) ソレノイドバルブ
JP5809967B2 (ja) 燃料電池システムの圧力調整装置
JP2010038139A (ja) 蓄圧式燃料噴射装置
US7717400B2 (en) Fluid pressure regulating device
JP2005123076A (ja) 遮断弁の開閉状態判定システム及び遮断弁の開閉状態判定方法
JP2009068648A (ja) 燃料電池の反応ガス供給装置
JP2004319413A (ja) 燃料電池システムのガス減圧装置
JP2005129427A (ja) 燃料電池用ガス減圧弁及び燃料電池発電システム
JPH11257517A (ja) 両方向動作流路開閉弁とそれを用いた油圧供給装置
CN110799784B (zh) 用于控制气态介质的比例阀
JP2012189108A (ja) インジェクタ付きタンク弁と燃料電池システム
JP2002106745A (ja) 流量調整弁
US20030196615A1 (en) Electromagnetic valve control apparatus and control method thereof
KR101415969B1 (ko) 보일러 온수용 가스제어 압전식 밸브
JP2007148498A (ja) 流体圧力制御装置及び燃料電池自動車
JP2004319412A (ja) 燃料電池システムのガス減圧装置
US20030136362A1 (en) Control unit of electromagnetically driven valve and control method thereof

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170223

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200811

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200812

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200820

R150 Certificate of patent or registration of utility model

Ref document number: 6753794

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350