CN103003605B - 气体用调压阀 - Google Patents

气体用调压阀 Download PDF

Info

Publication number
CN103003605B
CN103003605B CN201180037248.XA CN201180037248A CN103003605B CN 103003605 B CN103003605 B CN 103003605B CN 201180037248 A CN201180037248 A CN 201180037248A CN 103003605 B CN103003605 B CN 103003605B
Authority
CN
China
Prior art keywords
valve body
pressure
valve
pressure regulator
path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201180037248.XA
Other languages
English (en)
Other versions
CN103003605A (zh
Inventor
野道薰
铃木丰
二宫诚
村上昭二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Motors Ltd
Original Assignee
Kawasaki Jukogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Jukogyo KK filed Critical Kawasaki Jukogyo KK
Publication of CN103003605A publication Critical patent/CN103003605A/zh
Application granted granted Critical
Publication of CN103003605B publication Critical patent/CN103003605B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/02Actuating devices; Operating means; Releasing devices electric; magnetic
    • F16K31/06Actuating devices; Operating means; Releasing devices electric; magnetic using a magnet, e.g. diaphragm valves, cutting off by means of a liquid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M21/00Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
    • F02M21/02Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
    • F02M21/0218Details on the gaseous fuel supply system, e.g. tanks, valves, pipes, pumps, rails, injectors or mixers
    • F02M21/023Valves; Pressure or flow regulators in the fuel supply or return system
    • F02M21/0239Pressure or flow regulators therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M21/00Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
    • F02M21/02Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M21/00Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
    • F02M21/02Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
    • F02M21/0218Details on the gaseous fuel supply system, e.g. tanks, valves, pipes, pumps, rails, injectors or mixers
    • F02M21/0245High pressure fuel supply systems; Rails; Pumps; Arrangement of valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/02Actuating devices; Operating means; Releasing devices electric; magnetic
    • F16K31/06Actuating devices; Operating means; Releasing devices electric; magnetic using a magnet, e.g. diaphragm valves, cutting off by means of a liquid
    • F16K31/0603Multiple-way valves
    • F16K31/061Sliding valves
    • F16K31/0613Sliding valves with cylindrical slides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/02Actuating devices; Operating means; Releasing devices electric; magnetic
    • F16K31/06Actuating devices; Operating means; Releasing devices electric; magnetic using a magnet, e.g. diaphragm valves, cutting off by means of a liquid
    • F16K31/0603Multiple-way valves
    • F16K31/0624Lift valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/02Actuating devices; Operating means; Releasing devices electric; magnetic
    • F16K31/06Actuating devices; Operating means; Releasing devices electric; magnetic using a magnet, e.g. diaphragm valves, cutting off by means of a liquid
    • F16K31/0644One-way valve
    • F16K31/0655Lift valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/12Actuating devices; Operating means; Releasing devices actuated by fluid
    • F16K31/42Actuating devices; Operating means; Releasing devices actuated by fluid by means of electrically-actuated members in the supply or discharge conduits of the fluid motor
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D16/00Control of fluid pressure
    • G05D16/20Control of fluid pressure characterised by the use of electric means
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D16/00Control of fluid pressure
    • G05D16/20Control of fluid pressure characterised by the use of electric means
    • G05D16/2006Control of fluid pressure characterised by the use of electric means with direct action of electric energy on controlling means
    • G05D16/2013Control of fluid pressure characterised by the use of electric means with direct action of electric energy on controlling means using throttling means as controlling means
    • G05D16/2022Control of fluid pressure characterised by the use of electric means with direct action of electric energy on controlling means using throttling means as controlling means actuated by a proportional solenoid
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D7/00Control of flow
    • G05D7/03Control of flow with auxiliary non-electric power
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04201Reactant storage and supply, e.g. means for feeding, pipes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04201Reactant storage and supply, e.g. means for feeding, pipes
    • H01M8/04208Cartridges, cryogenic media or cryogenic reservoirs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2250/00Fuel cells for particular applications; Specific features of fuel cell system
    • H01M2250/20Fuel cells in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/40Application of hydrogen technology to transportation, e.g. using fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/7722Line condition change responsive valves
    • Y10T137/7758Pilot or servo controlled
    • Y10T137/7759Responsive to change in rate of fluid flow
    • Y10T137/776Control by pressures across flow line valve
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/7722Line condition change responsive valves
    • Y10T137/7758Pilot or servo controlled
    • Y10T137/7761Electrically actuated valve
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/7722Line condition change responsive valves
    • Y10T137/7781With separate connected fluid reactor surface
    • Y10T137/7793With opening bias [e.g., pressure regulator]
    • Y10T137/7797Bias variable during operation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/7722Line condition change responsive valves
    • Y10T137/7781With separate connected fluid reactor surface
    • Y10T137/7793With opening bias [e.g., pressure regulator]
    • Y10T137/7801Balanced valve

Abstract

提供即使在高压的燃料气体环境下,也可以将其二次侧压更加正确地调节为目标压力,且能够防止燃料气体泄漏至大气中的气体用调压阀。电磁式调压阀(1)具备阀体(14),并通过电磁比例螺线管(27)使阀体(14)移动而调节阀通路(13)的开度,以此将二次侧压(p2)调节为目标压力。在外壳(12)内形成有压力返回室(24),在阀体(14)中设置有隔膜密封件(19)。隔膜密封件(19)受到压力返回室(24)的二次侧压(p2)以使阀体(14)向关闭位置方向移动。又,在阀体(14)和外壳(12)之间设置有轴承构件(18),在其间隙中比轴承构件(18)靠近阀通路(13)侧的位置上设置有高压密封构件(20),并且在比高压密封构件(20)靠近轴承构件(18)侧的位置上设置有低压密封构件(21)。在两个密封构件(20、21)之间形成有与二次侧端口(12c)连接的缓冲室(22)。

Description

气体用调压阀
技术领域
本发明涉及将高压燃料气体的压力调节为与外加的外加电压或外加电流相对应的压力的气体用调压阀。
背景技术
燃料电池汽车、氢气发动机汽车、及天然气汽车等使用氢气和天然气等的燃料气体的清洁能源汽车已被人们所知。这些清洁能源汽车具备高压箱及喷射器或电磁式调压阀,并且贮藏在高压箱内的燃料气体通过喷射器或电磁式调压阀供给到燃料电池和燃气发动机等,从而进行工作。喷射器及电磁式调压阀可调节供给到燃料电池和燃气发动机的燃料气体的流量(或者压力),通过喷射器或电磁式调压阀调节燃料气体的流量(或者压力),以此控制燃料电池和燃气发动机的输出。
喷射器设置为通过关闭或者打开其喷射孔可以调节燃料气体的流量,通过开闭喷射孔的时间之比、即通过占空比(duty ratio)改变燃料气体的流量。当喷射器的上游侧压力和输出侧压力的压差大时,打开喷射器的喷射孔时流过的燃料气体的流量极其增大,相对于喷射器的占空比的变化的燃料气体的流量变化增大。尤其是,在小流量区域(燃料电池或燃气发动机为低负荷状态)中,流量增益(燃料气体流量除以占空比的值)增大,控制变得困难。又,喷射器的上游侧压力增高时,存在由小流量至大流量的占空比控制跨度极其变窄的问题。
又,电磁式调压阀设置为通过调节阀通路的开度(开口面积)可以调节燃料气体的流量。因此,电磁式调压阀的上游侧压力增高时,该电磁式调压阀的前后的压差增大,仅仅略微扩大开度就能使流过的燃料气体的流量发生大的变化,相对于阀通路的开度变化的燃料气体的流量变化增大。因此,电磁式调压阀也与喷射器一样,使在小流量区域(低负荷状态)中的燃料气体的压力控制变得极其困难。
为了解决这样的困难的问题而在专利文献1中公开的燃料电池系统中,在喷射器的上游侧设置有两个调节器。两个调节器串联地配置,并用二阶段减压从高压箱供给的氢气。在燃料电池系统中,通过两个调节器将喷射器的上游压力维持在低压的一定压力以下,从而减小喷射器前后的压差,确保压力控制性。另外,在燃料电池系统中,在两个调节器的上游侧具备截止阀,通过截止阀阻断氢气箱和燃料电池之间,阻止氢气的供给。
现有技术文献:
专利文献1:日本特开2007-188857号公报。
发明内容
发明要解决的问题:
在专利文献1中记载的燃料电池系统中,为了用多阶段减压燃料气体的压力而需要多个调节器。但是,设置多个调节器时,构成要素增多,又需要用于设置调节器的空间。这样,整个系统变得大型化而成本提高,或者整个系统的重量增大。尤其是,由于构成要素的空间有限,因此在希望轻量化的汽车中,搭载上述的系统并不理想。
又,设置多个调节器会增大系统的压力损失,因此相对于燃料电池或燃气发动机的最低工作压力应该将高压箱的使用极限压力设定为较高值。这样,在高压箱内能够使用的燃料气体的量与不设置调节器的情况相比变少,缩短汽车的行驶续航距离。
像这样,增加多个调节器时,发生各种不理想的状况。又,如上所述,使用现有的喷射器及电磁式调压阀,在其上游侧压力较高时,在低负荷状态下进行燃料气体的压力控制是困难的。
此外,作为电磁式调压阀等的密封方式可以使用隔膜(diaphragm)方式,但是隔膜密封件一般耐压强度低,因此处理高压的燃料气体时,存在因隔膜的破损而使燃料气体泄漏至大气中的可能性。相对于此,O形环方式的情况下,存在高压时因没预想到的外部因素而使燃料气体泄漏至大气中的可能性。
因此,本发明的目的在于提供即使在高压的燃料气体环境下,也可以将其二次侧压更加正确地调节为目标压力,且能够防止燃料气体泄漏至大气中的气体用调压阀。
解决问题的手段:
本发明的气体用调压阀是具备:具有连接一次侧端口和二次侧端口的阀通路的外壳;设置于所述外壳内,在关闭所述阀通路的关闭位置和打开所述阀通路的打开位置之间移动以调节所述阀通路的开度的阀体;对该阀体向关闭位置方向施力的复位用弹簧;和与所述复位用弹簧的施力反抗地向所述阀体施加与外加的外加电压或外加电流相对应的驱动力以使所述阀体向所述打开位置方向移动的阀体驱动单元;并且将通过所述一次侧端口供给至所述阀通路的高压的燃料气体的压力调节为与所述阀体驱动单元的驱动力相对应的压力并从所述二次侧端口输出的气体用调压阀,其中,具备:形成于所述外壳内,并与所述二次侧端口连接的压力返回室;向与所述励磁力反抗的方向受到所述压力返回室的压力,根据所述压力返回室的压力使所述阀体向所述关闭位置移动的第一密封构件;介于所述阀体和所述外壳之间的间隙,并滑动支持所述阀体的轴承构件;设置于比所述轴承构件靠近所述阀通路侧的位置上,并密封所述间隙的第二密封构件;和设置于比所述第二密封构件更靠近所述阀通路侧的位置上,并密封所述间隙的第三密封构件;在所述第三密封构件和所述第二密封构件之间形成有与所述二次侧端口连接的缓冲室。
根据本发明,通过改变阀体驱动单元的驱动力而改变阀通路的开度,以此可以调节二次侧压。该二次侧压导入至压力返回室,并且第一密封构件受到压力返回室的二次侧压以使阀体向关闭位置移动。由二次侧压、驱动力以及由复位用弹簧引起的施力等作用于阀体的力相平衡的状态使二次侧压下降时,第一密封构件使阀体向打开位置侧移动而扩大阀通路的开度,以使二次侧压升压。借助于此,返回至作用于阀体的力相平衡的状态。通过返回至像这样的相平衡的状态,以此使二次侧压返回至原来的压力。即,二次侧压返回至与阀体驱动单元的驱动力相对应的一定压力,并且不管一次侧压的变化而保持所述一定压力。因此,气体用调压阀的压力控制性高,可以将高压的燃料气体更加正确地可变调节为目标压力。
又,在本发明中,由于第二密封构件配置在比第三密封构件更靠近轴承构件侧的位置上,因此即使从第三密封构件泄漏燃料气体,也可以通过第二密封构件使燃料气体不会泄漏至轴承构件侧。此外,在第三密封构件和第二密封构件之间形成有缓冲室,并且该缓冲室与二次侧端口连接。因此,即使从第三密封构件泄漏燃料气体,也可以通过缓冲室导入至二次侧。像这样,气体用调压阀是将从第三密封构件泄漏的燃料气体导入至二次侧的安全结构,并且即使容纳轴承构件的空间与外部连接,也可以防止燃料气体向外部释放。
此外,在本发明中,通过设置轴承构件,可以使阀体顺滑地移动,可以改善针对目标压力的追随性。而且,在间隙中,比轴承构件更靠近阀通路侧的位置上设置有第二密封构件,因此燃料气体不会流入至轴承构件侧,轴承构件不暴露在燃料气体中。借助于此,可以将对燃料气体不具有耐腐蚀性的材料使用于轴承构件,从而增加能选择的材料。又,例如对轴承构件实施润滑油润滑时,可以防止使用的润滑油与燃料气体一起向二次侧端口侧流出的情况。借助于此,可以实现阀体的顺滑的移动,并且可以防止润滑油混入至燃料气体中。
在上述发明中,优选的是所述二次侧端口和所述压力返回室通过压力返回通路相连接,所述压力返回通路形成于所述阀体中。
根据上述结构,无需在外壳中形成压力返回通路,可以改善外壳的刚性,还可以抑制燃料气体泄漏至大气中。
又,作为本发明的另一实施形态,优选的是所述二次侧端口和所述压力返回室通过压力返回通路相连接,所述压力返回通路形成于所述外壳内。
根据上述结构,由于在阀体中无需形成通路,因此可以减小阀体的直径。借助于此,可以使气体用调压阀本身趋于小型化。
在上述发明中,优选的是所述压力返回通路还与所述缓冲室连接。
根据上述结构,可以将泄漏至缓冲室的燃料气体通过压力返回通路导入至二次侧。借助于此,不需要形成与压力返回通路不同的其他通路,可以谋求阀体及外壳的小型化。即,可以谋求气体用调压阀的小型化。
在上述发明中,优选的是所述外壳具有作为所述阀体位于所述关闭位置上时就坐的阀座部,且具备与所述打开位置方向正交的阀座面的阀座部;所述阀体设置为利用与所述打开位置方向正交的阀体面就坐于所述阀座面上。
根据上述结构,由于阀座部的阀座面及阀体的阀体面一同与打开位置方向正交,因此即使重复使用而使阀座部或阀体随着时间变形,也会向打开位置方向塑性变形。因此,即使重复使用也几乎不会改变座径,并且不改变调压特性。因此,可以改善可靠性及调压特性的稳定性。
在上述发明中,优选的是所述阀通路具有与形成于所述阀座部和所述阀体之间的孔(orifice)的下游侧的二次侧端口连接的二次侧通路;所述阀体驱动单元设置在所述二次侧通路的外部且夹着所述阀体与所述阀座部相反侧的位置上,并通过所述驱动力拉动所述阀体以使所述阀体向所述打开位置方向移动。
根据上述结构,由于以通过阀体驱动单元夹着所述阀体从与阀体面相反侧拉动所述阀体以使阀体能够向打开位置方向移动的拉动型结构构成气体用电磁式调压阀,因此可以将阀体驱动单元配置在位于阀体的阀体面侧的二次侧通路的外部。借助于此,可以与将阀体驱动单元配置在二次侧通路中以向打开位置方向按压阀体的推动型结构的电磁式调压阀相同地确保二次侧通路的流路面积,并且与推动型结构的电磁式调压阀相比可以减小孔的直径(即,座径)。通过像这样减小座径,以此可以减小相对于阀体的行程的阀通路开度的变化。因此,与推动型结构的气体用电磁式调压阀相比可以进行阀通路开度的微调,可以改善气体用电磁式调压阀的调压精度的稳定性。
在上述发明中,优选的是所述阀座部沿着作为所述一次侧端口侧的开口的阀口的外边缘而形成在所述二次侧通路中,并且面向所述阀体向所述打开位置方向突出,所述阀体在与所述阀座部相对的位置上具有座构件,所述座构件形成为其一表面构成所述阀体面,并利用该阀体面就坐于所述阀座部的顶部。
根据上述结构,由于阀体是移动构件,因此在就坐位置上存在偏差,但是由于使阀座部突出,并扩大阀体的阀体面,从而即使多少存在偏差也可以使阀体确实地就坐于阀座部。又,沿着阀口的外边缘形成阀座部,因此可以使阀口的内径尺寸和阀座部的内径尺寸大致一致。借助于此,可以在确保必要的流路面积的同时减小座径,可以改善气体用电磁式调压阀的调压精度的稳定性。
在上述发明中,优选的是所述阀体形成为向所述打开位置方向受到所述一次侧端口的一次侧压的第一受压面的受压面积和向所述关闭位置方向受到所述一次侧压的第二受压面的受压面积相同。
根据上述结构,可以抵消阀体从一次侧压而受到的作用力。借助于此,可以消除因一次侧压的变化而引起的二次侧压的变化,可以进一步改善二次侧压的压力控制性。又,可以减小阀体驱动单元的驱动力。因此,可以使气体用调压阀趋于小型化。
在上述发明中,优选的是所述阀体形成为向所述打开位置方向受到所述一次侧端口的一次侧压的第一受压面的受压面积小于向所述关闭位置方向受到所述一次侧压的第二受压面的受压面积。
根据上述结构,阀体从一次侧压受到向关闭位置方向的作用力。借助于此,即使一次侧压急剧变化而增高,也不会发生阀体向打开位置侧移动而打开阀通路的情况。又,阀体从一次侧压受到向关闭位置方向的作用力,因此阀体驱动单元不工作时阀体保持在关闭位置。因此可以确实地关闭阀通路,可以防止阀体驱动单元不工作时燃料气体从一次侧泄漏至二次侧的情况。
在上述发明中,优选的是所述压力返回室位于相对于所述轴承构件与所述第二密封构件相反侧的位置上,所述第一密封构件位于所述轴承构件和所述压力返回室之间并堵住所述轴承构件和所述压力返回室之间。
根据上述结构,可以通过第一密封构件防止导入至压力返回室的燃料气体流入轴承构件侧的情况。借助于此,可以增加使用于轴承构件中的材料的选择性,即使对轴承构件实施润滑油润滑,润滑油也不混入至燃料气体中。
又,作为本发明的又一实施形态,所述压力返回室位于所述阀通路和所述阀体驱动单元之间,所述第一密封构件位于所述阀体驱动单元和所述压力返回室之间并堵住所述阀体驱动单元和所述压力返回室之间。
根据上述结构,可以防止燃料气体流入阀体驱动单元侧的情况。借助于此,可以防止阀体驱动单元暴露在燃料气体中的情况,并且可以防止燃料气体为腐蚀性流体时阀体驱动单元的构成构件被腐蚀的情况。又,即使阀体驱动单元配设在大气中,也可以防止燃料气体通过阀体驱动单元流出至大气中的情况。
在上述发明中,优选的是所述第一密封构件是隔膜密封件;所述第二密封构件是摩擦阻力小的低压密封件。
根据上述结构,通过使第一密封构件采用隔膜密封件,可以消除因第一密封构件引起的滑动摩擦。又,通过使第二密封构件采用摩擦阻力小的低压密封件,可以抑制滑动摩擦。借助于此,可以使阀体顺滑地运动,在一次侧压发生变化时和驱动力发生变化时等,可以将二次侧压迅速地调节为与驱动力相对应的一定压力。因此,可以改善二次侧压的响应性。
在上述发明中,优选的是第三密封构件是摩擦阻力小,而且起动阻力和滑动阻力之差小的高压密封件。
根据上述结构,可以使阀体顺滑地运动,并且可以改善阀体的响应性。又,由于是高压密封件,因此可以改善对于一次侧压的耐压性能,可以提高从一次侧端口供给的一次侧压的极限压力。
在上述发明中,优选的是形成为在外加在所述阀体驱动单元上的外加电压或外加电流为零时,通过所述复位用弹簧使所述阀体位于所述关闭位置的常闭型。
根据上述结构,通过切断外加在阀体驱动单元上的外加电压或外加电流,以此可以紧急阻断阀通路。
发明的效果:
根据本发明,可以提供即使在高压的燃料气体环境下,也可以将其二次侧压更正确地调节为目标压力,且能够防止燃料气体泄漏至大气中的气体用调压阀。
附图说明
图1是示出具备第一实施形态的电磁式调压阀的燃料气体供给系统的结构的回路图;
图2是示出第一实施形态的电磁式调压阀的结构的剖视图;
图3是示出第二实施形态的电磁式调压阀的结构的剖视图;
图4是示出第三实施形态的电磁式调压阀的结构的剖视图;
图5是示出第四实施形态的电磁式调压阀的结构的剖视图;
图6是示出第五实施形态的电磁式调压阀的结构的剖视图;
图7是示出第六实施形态的电磁式调压阀的结构的剖视图;
图8是示出第七实施形态的电磁式调压阀的结构的剖视图;
图9是示出第八实施形态的电磁式调压阀的结构的剖视图;
图10是示出第九实施形态的电磁式调压阀的结构的剖视图;
图11是示出第十实施形态的电磁式调压阀的结构的剖视图;
图12是示出第十一实施形态的电磁式调压阀的结构的剖视图;
图13是示出第十二实施形态的电磁式调压阀的结构的剖视图;
图14是示出第十三实施形态的电磁式调压阀的结构的剖视图;
图15是示出第十四实施形态的电磁式调压阀的结构的剖视图;
图16是局部地示出第十五实施形态的电磁式调压阀的结构的剖视图;
图17是局部地示出第十六实施形态的电磁式调压阀的结构的剖视图;
图18是局部地示出第十七实施形态的电磁式调压阀的结构的剖视图;
图19是局部地示出第十八实施形态的电磁式调压阀的结构的剖视图;
图20是示出第十九实施形态的电磁式调压阀的结构的剖视图;
图21是示出第二十实施形态的电磁式调压阀的结构的剖视图;
图22是示出第二十一实施形态的电磁式调压阀的结构的剖视图;
图23是示出第二十二实施形态的电磁式调压阀的结构的剖视图;
具体实施方式
以下,参照上述的附图说明根据本发明的第一实施形态~第二十二实施形态的调压阀1、1A~1V、及具备该调压阀的燃料气体供给系统2。另外,实施形态中的上下、左右及前后等的方向的概念是便于说明而使用的,关于调压阀1、1A~1V及燃料气体供给系统2,并不是用于暗示将这些结构的配置及朝向等限定在该方向。又,以下说明的调压阀1、1A~1V及燃料气体供给系统2只是本发明的一个实施形态,本发明并不限于该实施形态,在不脱离发明的主旨的范围内可以进行增加、删除、变更。
[燃料气体供给系统]
燃料气体供给系统2设置在以高压状态贮藏氢气和压缩天然气等的燃料气体的高压箱3上。燃料气体供给系统2与燃料电池和燃气发动机等的燃料气体消耗器连接,从而将高压的燃料气体调节为希望的低压而供给至燃料气体消耗器中。这样构成的燃料气体供给系统2具备容器阀4、压力传感器5以及运算控制器6。容器阀4形成为置于箱上的类型,从而设置于高压箱3的开口部上。另外,容器阀4并不限于置于箱上的类型,也可以是置于箱内的类型。容器阀4具有电磁式调压阀1和电磁式截止阀7。
电磁式截止阀7设置于从高压箱3连接至燃料气体消耗器的供给通路2a中。电磁式截止阀7是所谓的电磁开闭阀,具有根据发送至其上的信号开闭供给通路2a的功能。又,在供给通路2a中,在电磁式截止阀7的下游侧设置有电磁式调压阀1。电磁式调压阀1具有调节高压的燃料气体的压力的功能。此外,在供给通路2a中,在相对于电磁式调压阀1的下游侧设置有压力传感器5。压力传感器5检测流过供给通路2a的燃料气体的压力。压力传感器5通过信号线8与运算控制器6连接,与检测到的压力相对应的检测压力信号输入至运算控制器6中。又,与目标压力相对应的目标压力指令信号从未图示的输入装置和控制装置等输入至运算控制器6中。
运算控制器6运算目标压力指令信号和检测压力信号之间的差值,并使对应于该差值的大小的电流流过电磁式调压阀1。电磁式调压阀1将高压的燃料气体的压力调节为与流过的电流相对应的一定压力。以下详述设置于燃料气体供给系统2中的电磁式调压阀1。另外,第一实施形态的电磁式调压阀1仅仅是设置于燃料气体供给系统2中的电磁式调压阀的一个示例,除此之外还有各种实施形态。以下,接着第一实施形态的电磁式调压阀1,详述几个代表性的实施形态。
[第一实施形态]
<电磁式调压阀的结构>
图2中所示的第一实施形态的电磁式调压阀1具备外壳12。外壳12以达到密封的状态安装于高压箱3(参照图1)的开口部上。在外壳12上形成有一次侧端口12a、阀体孔12b以及二次侧端口12c。一次侧端口12a与电磁式截止阀7(参照图1)连接,并通过形成于外壳12上的一次侧通路12d与阀体孔12b连接。
阀体孔12b沿着上下延伸的轴线L1延伸,并且下侧堵住,上侧开口。阀体孔12b的断面形成为圆形状,在其中间部分具有与剩余部分相比以大直径形成的阀空间12e。一次侧通路12d与该阀空间12e相连接。又,阀体孔12b通过形成在外壳12上的二次侧通路12f与二次侧端口12c连接。二次侧通路12f通过比上述阀空间12e更靠近上侧的二次侧区域12g与上述阀体孔12b连接。而且,二次侧端口12c通过供给通路2a(参照图1)与燃料气体消耗器连接。像这样一次侧端口12a和二次侧端口12c通过一次侧通路12d、阀空间12e、二次侧区域12g及二次侧通路12f相连接。由这些一次侧通路12d、阀空间12e、二次侧区域12g及二次侧通路12f构成连接一次侧端口12a和二次侧端口12c的阀通路13。
像这样构成的外壳12具有座部15。座部15位于连接二次侧区域12g和阀空间12e的开口附近,并形成在围绕该开口的外周上。又,在外壳12中沿着阀体孔12b的轴线L1插入有阀体14,阀体14以将其梢端部(即,上端部)14a插入于二次侧区域12g的状态就坐于座部15上。阀体14大致形成为圆柱状,在梢端部14a侧具有锥体部14b。锥体部14b形成为随着向上侧行进而梢部越来越细的锥体形状,阀体14位于如图2所示的关闭位置时就坐于座部15上,并堵住阀通路13。在阀体14的相对于锥体部14b的下端14d侧具有与二次侧区域12g的内径大致相同的外径。
又,外壳12在阀空间12e的下侧具有密封件安装部16。密封件安装部16在外壳12的内表面上,在周方向全周上形成。密封件安装部16的内径与二次侧区域12g的孔径及阀体14的外径大致一致。又,外壳12的相对于密封件安装部16的下侧的内径大于密封件安装部16的内径。借助于此,在外壳12和阀体14之间形成有大致圆环状的轴承构件容纳空间17,在该轴承构件容纳空间17中容纳轴承构件18。
轴承构件18大致形成为圆筒状,例如由滚珠导具、滚珠轴承、或者滑动轴承构成。轴承构件18外设在阀体14上并介于阀体14和外壳12之间,支持阀体14。通过该轴承构件18,阀体14能够在外壳12内沿着轴线L1在上下方向上顺滑地移动。另外,轴承构件18使阀体14的运动更加顺滑,且为了提高耐久性而实施润滑油润滑。
在像这样配置有轴承构件18的轴承构件容纳空间17的下侧,为了堵住此处而设置有隔膜密封件19。作为第一密封构件的隔膜密封件19是所谓的隔膜,大致形成为圆环状。隔膜密封件19的外边缘部安装于外壳12,内边缘部安装于阀体14。详细地说,外壳12形成为可分割成上下两个的结构,通过在这两个部分之间夹住隔膜密封件19的外边缘部,以此安装于外壳12。又,隔膜构件19的内边缘部由阀体14的下端部和安装于其上的安装构件14c夹住,从而安装于阀体14上。而且,在外壳12的密封件安装部16上,为了堵住轴承构件容纳空间17的上侧而设置有高压密封构件20。
作为第三密封构件的高压密封构件20是摩擦阻力小且起动阻力和滑动阻力之差小的高压密封件,例如是由氟树脂等进行表面处理而形成的O形环。高压密封构件20安装为嵌入至密封件安装部16的内周部,以密封阀体14和密封件安装部16之间的间隙。又,在密封件安装部16中设置有低压密封构件21。 
作为第二密封构件的低压密封构件21是大致圆环状的O形环,并由树脂等实施表面处理以减小摩擦阻力而形成。低压密封构件21位于比高压密封构件20更靠近轴承构件18侧的位置上,安装为嵌入至密封件安装部16的内周部。低压密封构件21密封密封件安装部16和阀体14之间的间隙,在高压密封构件20和低压密封构件21之间形成缓冲室22。
缓冲室22设置为减小高压密封构件20的上侧和下侧的压力差以抑制从高压密封构件20的周围泄漏,并且捕捉阀体14移动时从高压密封构件20的周围泄漏的燃料气体。又,由于缓冲室22和轴承构件容纳空间17之间被低压密封构件21密封,因此捕捉的燃料气体不会泄漏至轴承构件容纳空间17侧。另外,高压密封构件20及低压密封构件21也可以安装为嵌入至阀体14的外周部。
像这样上下两侧由隔膜密封件19及低压密封构件21堵住的轴承构件容纳空间17,与形成在外壳12内的其他空间(例如,阀空间12e和二次侧区域12g等)隔断而隔开。像这样被隔开的轴承构件容纳空间17通过形成在外壳12上的大气连通路23而向大气开放。因此,润滑轴承构件18的润滑油不暴露在燃料气体中,又,也不泄漏至外壳12内的其他空间,例如阀空间12e和二次侧端口12c等。因此,抑制润滑油的耗尽,可以良好地维持轴承构件18的润滑状态。借助于此,能够改善轴承构件18的耐久性,并且可以使阀体14顺滑地移动。又,也可以防止润滑油混入到燃料气体中。
又,在阀体孔12b的相对于隔膜密封件19的下侧形成有压力返回室24。压力返回室24是由外壳12的底部、隔膜密封件19及阀体14的下端部包围而成的大致圆板状的空间。隔膜密封件19位于压力返回室24和轴承构件容纳空间17之间,用隔膜密封件19堵住压力返回室24和轴承构件容纳空间17之间。又,压力返回室24通过均压通路25与阀通路13的二次侧区域12g连接。
均压通路25形成在阀体14内,并具有返回室侧连通部25a、二次侧连通部25b、和返回部25c。返回室侧连通部25a向压力返回室24开口,从该处沿着阀体14的轴线(在本实施形态中,与轴线L1大致一致)延伸至梢端部14a。而且,返回室侧连通部25a与形成在阀体14的梢端部14a上的二次侧连通部25b相连接。二次侧连通部25b以在半径方向上贯通阀体14地延伸,其两端向二次侧区域12g开放。返回部25c在半径方向上贯通阀体14,在内侧与返回室侧连通部25a连接,其两端向缓冲室22开口。借助于此,缓冲室22通过均压通路25与压力返回室24和二次侧区域12g连接。
像这样,均压通路25连接二次侧端口12c和压力返回室24,并向压力返回室24供给二次侧压p2。又,均压通路25连接二次侧端口12c和缓冲室22,并将泄漏至缓冲室22的燃料气体导入到压力返回室24和二次侧端口12c。即,捕捉到缓冲室22中的燃料气体通过均压通路25返回至二次侧区域12g。即,电磁式调压阀1成为不会使从阀空间12e等的一次侧的区域泄漏的燃料气体泄漏至外侧而能够返回至二次侧区域的安全结构的阀。另外,由于二次侧压p2与大气压的压差小,因此几乎不存在从低压密封构件21周围向轴承构件容纳空间17的泄漏。因此,可以防止缓冲室22的二次侧压p2泄漏至大气中。
又,阀体14具有法兰14e。法兰14e在周方向全周上形成在锥体部14b的下侧,并从锥体部14b进一步向半径方向外方突出。法兰14e在密封件安装部16的上端相对地配置。在法兰14e和密封件安装部16的上端之间配置有复位用弹簧26。复位用弹簧26是所谓的压缩螺旋弹簧,以压缩的状态外设在阀体14上,对阀体14向关闭位置方向(阀体14向关闭位置行进的方向)施力。被施力的阀体14就坐于座部15,堵住阀通路13。在外壳12的开口端部(即,上端部)上,为了对阀体14施加与复位用弹簧26的施力反抗的力,而设置有电磁比例螺线管27。
作为阀体驱动手段的电磁比例螺线管27螺纹结合并固定在外壳12的开口端部的外周。电磁比例螺线管27具有螺线管线圈28。螺线管线圈28大致形成为圆筒状,在其下端侧嵌插有外壳12。螺线管线圈28具有大致圆筒状的壳体28a,在其中设置有线轴28b和线圈线28c。线轴28b也形成为大致圆筒状,线圈线28c卷绕在该线轴28b上而构成螺线管线圈28。在该螺线管线圈28内,在下端部设置有磁轭29,上端部由盖体30堵住。而且,在磁轭29和盖体30之间设置有可动构件31。
可动构件31由磁性材料形成并形成为大致圆柱状。沿着轴线L1配置可动构件31。可动构件31的外径小于螺线管线圈28的内径,圆环状的引导构件32介于可动构件31和螺线管线圈28之间。引导构件32由非磁性体形成,并使可动构件31沿着轴线L1在上下方向上可滑动地支持。磁轭29与该可动构件31的下端部以隔着间隔的状态上下相对。磁轭29由磁性材料、例如电磁不锈钢形成,并形成为大致圆环状。磁轭29通过电流流过螺线管线圈28而磁化,并吸引可动构件31。
又,在可动构件31的上端部和盖体30之间设置有压缩螺旋弹簧34,通过压缩螺旋弹簧34对可动构件31向阀体14侧施力。在可动构件31的下端部设置有按压构件33。按压构件33沿着轴线L1延伸,并插通在磁轭29内。按压构件33的基端部固定于可动构件31。按压构件33的梢端形成为部分球面状。压缩螺旋弹簧34通过可动构件31对按压构件33施力,按压构件33的梢端被按压并与阀体14的梢端部14a接触。像这样配置的按压构件33设置为通过使电流流过螺线管线圈28而将可动构件31吸引至磁轭29侧,以此以与电流相对应的力向打开位置方向按压阀体14,从而打开阀通路13。
这样构成的电磁式调压阀1在阀体14的锥体部14b及法兰14e的上表面(相当于第一受压面的受压面P1)向打开位置方向受到从高压箱3导入至阀空间12e的一次侧压p1,在法兰14e的下表面(相当于第二受压面的受压面P2)向关闭位置方向受到所述一次侧压p1。另外,受压面P1是在俯视下在锥体面上的比二次侧区域12g更靠近半径方向外侧的区域。一次侧压p1向相互反抗的方向作用在各受压面P1、P2上,并相互抵消。由于阀体14的相对于法兰14e的下端14d侧具有与二次侧区域12g的内径(即,座径)大致相同的外径,因此受压面P1、P2的受压面积大致相同。因此,在受压面P1上受到的一次侧压p1引起的作用力和在受压面P2上受到的一次侧压p1引起的作用力相互抵消,从而可以防止在阀体14中因一次侧压p1的变化而引起的影响。
又,电磁式调压阀1在阀体14的梢端及锥体部14b的锥体面(受压面P3)上向打开位置方向受到流过二次侧区域12g的二次侧压p2,在隔膜密封件19及阀体14的下端14d(受压面P4)上向关闭位置方向受到导入至压力返回室24的二次侧压p2。另外,受压面P4是在俯视下与二次侧区域12g重叠的区域。又,二次侧压p2以相互反抗的方向作用于受压面P3、P4。但是,阀体14具有与座径r1大致相同的外径r2,并且隔膜密封件19的有效径r3大于上述座径r1及阀体14的外径r2。因此,与向打开位置方向受到二次侧压p2的受压面P3相比,向关闭位置方向受到二次侧压p2的受压面P4的受压面积大隔膜密封件19的有效面积的量。借助于此,在阀体14上,在各受压面P3、P4上受到的二次侧压p2引起的作用力不完全抵消,而在各受压面P3、P4的受压面积之差相对应的作用力向关闭位置方向作用。又,复位用弹簧26向关闭位置方向对阀体14施力以使阀体14就坐于座部15。像这样二次侧压p2引起的作用力及复位用弹簧26向关闭位置方向对阀体14施力,电磁式调压阀1形成为常闭型阀的结构。借助于此,通过切断流过螺线管线圈28的电流,可以紧急阻断阀通路13。
<电磁式调压阀的动作>
以下参照图2说明电磁式调压阀1的动作。电流流过螺线管线圈28时,励磁力(驱动力)作用于可动构件31,可动构件31被吸引至磁轭29侧。借助于此,通过按压构件33向打开位置方向按压阀体14,以使阀体14从座部15分离。此时,阀通路13被打开,阀空间12e的燃料气体流向二次侧区域12g。此时,通过形成于阀体14和座部15之间的孔(未图示),从阀空间12e流向二次侧区域12g的燃料气体减压为二次侧压p2。像这样,电磁式调压阀1形成为电流流过螺线管线圈28时,阀体14被按压构件33按压而打开阀通路的结构(即,为推动型的电磁式调压阀)。
二次侧区域12g的燃料气体通过二次侧通路12f从二次侧端口12c排出,并且通过均压通路25导入至压力返回室24。隔膜密封件19受到导入至压力返回室24的燃料气体的二次侧压p2。阀体14移动直至到达可动构件31所受到的励磁力、在受压面P3、P4上分别所受到的二次侧压p2引起的作用力以及复位用弹簧26的弹簧力相平衡的位置。即,通过调节阀通路13的开度(即,孔的开度)以使上述力相平衡,以此调节流过二次侧区域12g的燃料气体的二次侧压p2。借助于此,二次侧压p2达到与流过螺线管线圈28的电流相对应的压力(即,目标压力)。
例如,二次侧压p2低于目标压力时,励磁力大于因二次侧压p2而引起的作用力,阀体14向打开位置方向移动以从座部15分离。阀体14移动直至到达二次侧压p2引起的作用力、励磁力、以及复位用弹簧26的弹簧力相平衡的位置,伴随与此阀通路13的开度扩大并且二次侧压p2上升。借助于此,二次侧压p2调节为目标压力。因此,电磁式调压阀1即使在一次侧压p1发生变化时,也可以与此相应地控制阀通路13的开度,将二次侧压p2调节为目标压力。因此,即使不将一次侧压p1预先减压为一定压力,也可以通过单个电磁式调压阀1将高压的燃料气体减压并调节至低压的目标压力。因此,电磁式调压阀1的压力控制性高。
又,在电磁式调压阀1中,由于将受压面P1及受压面P2的受压面积设置为大致相同,因此抵消阀体14从一次侧压p1所受到的作用力。借助于此,可以抑制因一次侧压p1的变化而引起的二次侧压p2的变化。因此可以改善针对高压的燃料气体的压力控制性,并且与现有的电磁式调压阀相比,可以更加正确地控制二次侧压p2。又,通过抵消从一次侧压p1受到的作用力,以此可以减小电磁比例螺线管27的励磁力,可以使电磁式调压阀1小型化。
又,在电磁式调压阀1中,由于一次侧压p1和二次侧压p2的压差大,因此阀体14移动时,存在在高压密封构件20中燃料气体从阀空间12e稍微泄漏至缓冲室22的情况。但是,电磁式调压阀1形成为低压密封构件21相对于高压密封构件20配置在轴承构件容纳空间17侧的结构,因此即使燃料气体从高压密封构件20泄漏,也可以通过低压密封构件21使燃料气体不会泄漏至轴承构件容纳空间17。此外,缓冲室22通过均压通路25与压力返回室24及二次侧区域12g等连接,并形成使在高压密封构件20中泄漏的燃料气体返回至二次侧的安全结构。因此,从高压密封构件20泄漏的燃料气体不释放到电磁式调压阀1的外部。即,燃料气体不会泄漏至大气中。
又,采用隔膜密封件19时,可以消除阀体14移动时的滑动摩擦。又,通过采用摩擦阻力小的低压密封构件21,可以尽量抑制滑动摩擦。像这样通过抑制作用于阀体14的滑动摩擦,可以使阀体14顺滑地运动。借助于此,可以将二次侧压快速地调节为目标压力,改善二次侧压的响应性。此外,通过采用高压密封构件20,可以改善相对于电磁式调压阀1的一次侧压p1的耐压性能,从而可以改善从一次侧端口12a供给的一次侧压的极限压力。
又,在燃料气体供给系统2中,通过在电磁式调压阀1的上游侧设置电磁式截止阀7,以此通过具有阻断功能的两个阀1、7可以阻断高压箱3和燃料气体消耗器之间。借助于此,改善燃料气体供给系统2的安全性。又,通过在高压箱3的开口部上配置电磁式调压阀1,以此使来自于高压箱3的输出压力水平达到低压,大幅度改善燃料气体供给系统2的安全性。
[第二实施形态]
根据本发明的第二实施形态的电磁式调压阀1A与根据第一实施形态的电磁式调压阀1结构类似。因此,关于根据第二实施形态的电磁式调压阀1A的结构,仅说明不同于第一实施形态的电磁式调压阀1的结构,关于相同的结构,标以相同的符号并省略其说明。对于第三实施形态以后的实施形态也是一样的。
根据本发明的第二实施形态的电磁式调压阀1A如图3所示在外壳12A中具有压力返回通路35。压力返回通路35形成为连接阀通路13的二次侧通路12f和压力返回室24,并将二次侧压p2导入至压力返回室24。又,在阀体14A中,均压通路25A的返回室侧连通部25a的下侧(即,压力返回室侧)的开口被关闭,缓冲室22仅与二次侧区域12g连接。
像这样构成的根据第二实施形态的电磁式调压阀1A发挥与根据第一实施形态的电磁式调压阀1相同的作用效果。
[第三实施形态]
根据本发明的第三实施形态的电磁式调压阀1B具有如图4所示的阀体14B。阀体14B在高压密封构件20及低压密封构件21之间形成有向半径方向内方凹入的周向槽36。周向槽36在阀体14B的外周的全周上形成,并与外壳12B的内周面一起在高压密封构件20及低压密封构件21之间形成缓冲室22B。
又,在外壳12B上形成有压力返回通路35B。压力返回通路35B连接二次侧通路12f和压力返回室24,并且也连接二次侧通路12f和缓冲室22B。借助于此,通过压力返回通路35B可以将二次侧压p2导入至压力返回室24,并且可以使泄漏至缓冲室22B的燃料气体返回至二次侧。
像这样构成的根据第三实施形态的电磁式调压阀1B发挥与根据第一实施形态的电磁式调压阀1相同的作用效果。
[第四实施形态~第六实施形态]
根据本发明的第四实施形态~第六实施形态的电磁式调压阀1C~1E分别与根据第一实施形态~第三实施形态的电磁式调压阀1、1A、1B相类似。根据第四实施形态~第六实施形态的电磁式调压阀1C~1E与根据第一实施形态~第三实施形态的电磁式调压阀1、1A、1B在同样的点上分别不同。以下仅说明其不同点,对于相同结构省略其说明。
根据第四实施形态~第六实施形态的电磁式调压阀1C~1E,如图5~图7所示分别具有阀体14C~14E。阀体14C~14E设置为梢端部14a延伸至外壳12、12A、12B的开口附近。轴承构件37外设于阀体14C~14E的梢端部14a上。轴承构件37形成为大致圆筒状,例如由滚珠导具、滚珠轴承、或者滑动轴承构成。轴承构件37介于梢端部14a和外壳12之间并支持阀体14C~14E。借助于此,阀体14C~14E能够在上下方向上顺滑地移动。
在像这样构成的根据第四实施形态~第六实施形态的电磁式调压阀1C~1E中,阀体14C~14E的上下两端部分别由轴承构件18、37支持,因此可以使阀体14C~14E以高精度运动,因此可以更加改善压力控制性。
除此之外,根据第四实施形态~第六实施形态的电磁式调压阀1C~1E分别发挥与根据第一实施形态~第三实施形态的电磁式调压阀1、1A、1B相同的作用效果。
[第七实施形态]
在根据第七实施形态的电磁式调压阀1F中,如图8所示,阀体14F的梢端部14a延伸至外壳12F的开口附近,并且按压构件33F的梢端部通过螺纹结合与该梢端部14a接合。又,在外壳12F的开口附近设置有隔膜密封件19F。隔膜密封件19F的外边缘部安装于外壳12F,并且内边缘部安装于阀体14F。具体地说,隔膜密封件19F的外边缘部夹在上下分割成两个的外壳12F的各部位之间,又,内边缘部夹在按压构件33F和阀体14之间。设置有隔膜密封件19F的外壳12F的开口附近具有比二次侧区域12g的内径大的内径,并形成压力返回室24F。该压力返回室24F位于二次侧区域12g和电磁比例螺线管27的内空间27a之间。又,隔膜密封件19F位于压力返回室24F和电磁比例螺线管27的内空间(电磁比例螺线管27内的空间)27a之间,并用隔膜密封件19F堵住压力返回室24F和电磁比例螺线管27的内空间27a之间的间隙。另外,压力返回室24F位于电磁比例螺线管27侧,因此均压通路25F形成为连接二次侧区域12g和缓冲室22的结构。
像这样构成的根据第七实施形态的电磁式调压阀1F与根据其他实施形态的电磁式调压阀1、1A~1E相同地在隔膜密封件19F上向关闭位置方向受到二次侧压p2。隔膜密封件19F的有效受压面积大于阀体14F的受压面P4的受压面积。因此,可以根据二次侧压p2调节阀通路13的开度,并可以将二次侧压p2控制为目标压力。
又,根据第七实施形态的电磁式调压阀1F形成为用隔膜密封件19F堵住压力返回室24F和电磁比例螺线管27的内空间27a之间的间隙的结构,因此燃料气体不会从外壳12F流入至电磁比例螺线管27的内空间27a。因此,燃料气体不会通过电磁比例螺线管27的内空间27a释放至大气中,因此可以将电磁比例螺线管27配置在大气中。由于像这样可以将电磁比例螺线管27配置在大气中,因此燃料气体中使用氢气等腐蚀性流体时,可以防止电磁比例螺线管27的各构成构件暴露在该腐蚀性流体中的情况。因此,可以防止各构成构件的腐蚀。
除此之外,根据第七实施形态的电磁式调压阀1F发挥与根据第一实施形态的电磁式调压阀1相同的作用效果。
[第八实施形态]
根据第八实施形态的电磁式调压阀1G,如图9所示,在外壳12G上沿着轴线L1形成有阀体孔12b,在阀空间12e的下侧具有二次侧区域12g。又,外壳12G在二次侧区域12g上的阀空间12e侧的开口附近具有座部15G,座部15G形成为包围该开口的外围。此外,在外壳12G的阀体孔12b中沿着轴线L1插入有阀体14G。阀体14G在其下端侧具有随着向下方行进而梢部越来越细的锥体部14b,锥体部14b的梢端部分以向二次侧区域12g突出的状态就坐于座部15G。
外壳12G在相对于阀空间12e的上侧具有轴承构件容纳空间17,并在它们之间具有密封件安装部16。在密封件安装部16中,如第一实施形态的情况相同地在阀空间12e侧设置有高压密封构件20,在轴承构件容纳空间17侧设置有低压密封构件21。而且,在高压密封构件20和低压密封构件21之间形成有缓冲室22。又,大致圆筒状的轴承构件18以外设于阀体14G的状态容纳在轴承构件容纳空间17中。轴承构件18介于外壳12G和阀体14G之间并支持阀体14G。借助于此,阀体14G能够在上下方向上顺滑地移动。
又,电磁比例螺线管27G螺纹结合并固定在外壳12G的开口端部的外周。电磁比例螺线管27G具有螺线管线圈28和固定磁极29G。固定磁极29G设置在螺线管线圈28的上侧开口部上并堵住该上侧开口部。又,在螺线管线圈28内设置有可动构件31G。可动构件31G是由磁性材料形成的大致圆柱状的构件。可动构件31G的上端与固定磁极29G相对,其下端侧插入于外壳12G的阀体孔12b中。由非磁性体形成的圆环状的引导构件32介于可动构件31G和螺线管线圈28之间。可动构件31G的下端到达至阀体14G的上端部,并且阀体14G的上端部螺纹结合并固定在可动构件31G的下端。
又,在外壳12G的阀体孔12b中,其开口端部和轴承构件容纳空间17之间的部分与阀空间12e相同地形成为大直径,并且此处设置有隔膜密封件19G。隔膜密封件19G位于轴承构件容纳空间17的上侧,并且其外边缘部安装于外壳12G上,内边缘部安装于阀体14G上。具体地说,隔膜密封件19G的外边缘部夹在上下分割成两个的外壳12G的各部位之间,又,内边缘部夹在可动构件31G和阀体14G之间。
借助于此,在外壳12G的阀体孔12b中相对于隔膜密封件19G的上侧的区域成为压力返回室24G。又,在外壳12G中形成有压力返回通路35G,通过该压力返回通路35G压力返回室24G和二次侧区域12g相连接。借助于此,将二次侧压p2导入至压力返回室24G。
又,可动构件31G在其下端侧的外周面上具有法兰31a。法兰31a向半径方向外方突出,并在周方向全周上形成。外壳12G在与法兰31a的上表面相对的位置上具有支撑部12h。在该支撑部12h和法兰31a之间配置有复位用弹簧26G。复位用弹簧26G是所谓的压缩螺旋弹簧,并以压缩的状态外设于可动构件31G,并通过可动构件31G对阀体14G向关闭位置方向施力。另一方面,当电流流过电磁比例螺线管27G时,与复位用弹簧26G的弹簧力反抗的方向(即,打开位置方向)的励磁力作用于可动构件31G。
在根据第八实施形态的电磁式调压阀1G中,阀体14G的相对于锥体部14b的上侧(但是,除去与可动构件31G螺纹结合的部分)具有与座径大致相同的外形。因此,受压面P1(法兰14e的上表面)及受压面P2(锥体部14b的锥体面)的受压面积大致相同。因此,阀体14G在受压面P1及受压面P2上分别受到的一次侧压p1引起的作用力相抵消,从而可以防止在阀体14中因一次侧压p1的变化而引起的影响。
另一方面,受压面P3的受压面积相对于受压面P4的受压面积大隔膜密封件19G的有效受压面积的量。在受压面P3及受压面P4上向与关闭位置方向以及打开位置方向相反抗的方向分别受到二次侧压p2引起的作用力,并且各作用力相互抵消,但是与各受压面P3、P4的受压面积之差相对应的作用力作用于阀体14G。像这样因二次侧压p2引起的作用力向关闭位置方向作用于阀体14G,并且复位用弹簧26G向关闭位置方向对阀体14G施力。因此,电磁式调压阀1G作为常闭型的阀而构成。
像这样构成的根据第八实施形态的电磁式调压阀1G除了形成为电流流过螺线管线圈28时,为了使阀体14G向关闭位置方向运动而向上方提升阀体14G的结构(即为拉动型的电磁式调压阀)这一点以外,以与第一实施形态的电磁式调压阀1相同的动作可以将二次侧压p2调节为目标压力。又,根据第八实施形态的电磁式调压阀1G发挥与第一实施形态的电磁式调压阀1相同的作用效果。
[第九实施形态]
根据本发明的第九实施形态的电磁式调压阀1H与根据第八实施形态的电磁式调压阀1G结构类似。因此,关于根据第九实施形态的电磁式调压阀1H的结构,仅说明不同于第一实施形态的电磁式调压阀1的结构,对于相同的结构,标以相同的符号并省略其说明。对于第十实施形态也是同样的。
根据第九实施形态的电磁式调压阀1H如图10所示具有阀体14H。阀体14H在高压密封构件20及低压密封构件21之间形成有向半径方向内方凹入的周向槽36H。周向槽36H在阀体14H的外周的全周上形成,并且与外壳12H的内周面一起在高压密封构件20及低压密封构件21之间形成缓冲室22H。缓冲室22H与压力返回通路35H连接,泄漏至缓冲室22H的燃料气体通过压力返回通路35H返回至压力返回室24G和二次侧区域12g等的二次侧。
像这样构成的根据第九实施形态的电磁式调压阀1H发挥与根据第八实施形态的电磁式调压阀1G相同的作用效果。
[第十实施形态]
根据第十实施形态的电磁式调压阀1J如图11所示在阀体14J中形成有均压通路25J。均压通路25J具有连通部25d和返回部25e。连通部25d沿着阀体14J的轴线L1从下端贯通至上端,返回部25e向半径方向延伸,并连接缓冲室22和连通部25d。又,在可动构件31J内形成有连接室31b。连接室31b与均压通路25J连通,并通过形成于可动构件31J中的连接通路31c与压力返回室24G连接。
像这样构成的根据第十实施形态的电磁式调压阀1J使二次侧区域12g的二次侧压p2通过均压通路25J、连接室31b及连接通路31c导入至压力返回室24G中。又,泄漏至缓冲室22的燃料气体通过均压通路25J等返回至压力返回室24G和二次侧区域12g等的二次侧。
像这样构成的根据第十实施形态的电磁式调压阀1J发挥与根据第八实施形态的电磁式调压阀1G相同的作用效果。
[第十一实施形态~第十四实施形态]
根据第十一实施形态~第十四实施形态的电磁式调压阀1K~1N分别与根据第一实施形态~第四实施形态的电磁式调压阀1、1A~1C相类似,但是,如图12~图15所示在受压面积A1及受压面积A2不相同的这一点上与根据第一实施形态~第四实施形态的电磁式调压阀1、1A~1C不同。以下详述这一点。
在根据第十一实施形态~第十四实施形态的电磁式调压阀1K~1N中,阀体14的外径r2小于座径r1。因此,受压面P1的受压面积小于受压面P2的受压面积。因此,与受压面P1的受压面积和受压面P2的受压面积之差相对应的一次侧压p1引起的作用力向关闭位置方向作用于阀体14。因此,切断流过螺线管线圈28的电流时阀体14K~14N向关闭位置行进的速度变快,提高阻断性能。
又,由于向关闭位置方向作用着一次侧压p1引起的作用力,因此阀体14K~14N与座部15的就坐部分的密封面压力增高。因此,电磁式调压阀1D~1G可以确实地关闭阀通路13从而不会使燃料气体从一次侧泄漏至二次侧。
除此之外,根据第十一实施形态~第十四实施形态的电磁式调压阀1K~1N发挥与根据第一实施形态的电磁式调压阀1相同的作用效果。
[第十五实施形态]
根据第十五实施形态的调压阀1O类似于第一实施形态的电磁式调压阀1,如图16所示代替电磁比例螺线管27而具备压电执行器27O。作为阀体驱动手段的压电执行器27O由压电元件(例如压电元件)形成,并产生与外加的外加电压相对应的驱动力,且通过按压构件33使阀体14向打开位置方向运动从而打开阀通路13。此时,以与产生的驱动力相对应的开度打开阀通路13,电磁式调压阀1O也可以将二次侧压p2调节为与外加于压电执行器27O的外加电压相对应的压力。
除此之外,根据第十五实施形态的调压阀1O具有与根据第一实施形态的电磁式调压阀1相同的结构,并发挥相同的作用效果。
[第十六实施形态]
根据第十六实施形态的调压阀1P类似于第一实施形态的电磁式调压阀1,如图17所示代替电磁比例螺线管27而具备力马达27P。力马达27P设置为在圆筒状的永久磁铁61中插入有可动线圈62,电流流过可动线圈62时产生与电流相对应的励磁力,通过该励磁力可动线圈62在磁轭63内向下方运动。通过可动线圈62向下方运动,以此通过与其一体设置的按压构件33向打开位置方向按压阀体14以打开阀通路13。此时,以与产生的励磁力相对应的开度打开阀通路13,调压阀1P也可以将二次侧压p2调节为与流过力马达27P的电流相对应的压力。
除此之外,根据第十六实施形态的调压阀1P具有与根据第一实施形态的电磁式调压阀1相同的结构,并发挥相同的作用效果。
[第十七实施形态]
第十七实施形态的调压阀1Q类似于第八实施形态的电磁式调压阀1G,如图18所示代替电磁比例螺线管27G而具备压电执行器27Q。压电执行器27Q通过外加电压以使压电元件(piezoelectric element)27a(例如压电元件(piezo element))收缩,以此通过与压电元件27a一体设置的可动构件31Q使阀体14向打开位置方向(上方向)移动而打开阀通路13。此时,以与产生的驱动力相对应的开度打开阀通路13,并且调压阀1Q也可以将二次侧压p2调节为与外加于压电执行器27Q的外加电压相对应的压力。
除此之外,根据第十七实施形态的调压阀1Q具有根据第八实施形态的电磁式调压阀1G相同的结构,并发挥相同的作用效果。
[第十八实施形态]
第十八实施形态的调压阀1R类似于第八实施形态的电磁式调压阀1G,如图18所示代替电磁比例螺线管27G而具备力马达27R。在力马达27R的可动线圈62上一体地设置有可动构件31R,通过使电流流过可动线圈62而使可动线圈62移动,以此阀体14向打开位置方向移动以打开阀通路13。此时,以与产生的励磁力相对应的开度打开阀通路13,调压阀1R也可以将二次侧压p2调节为与流过力马达27R的电流相对应的压力。
除此之外,根据第十八实施形态的调压阀1R具有与根据第八实施形态的电磁式调压阀1G相同的结构,并发挥相同的作用效果。
[第十九实施形态]
第十九实施形态的电磁式调压阀1S类似于根据第八实施形态的电磁式调压阀1G,如图20所示,主要是阀座部15S的形状、阀体14S的梢端部14a的形状以及复位用弹簧26S的位置不相同。阀座部15S包围作为连接二次侧通路12f和阀空间12e的开口的阀口10附近以沿着其外边缘而形成。阀座部15S向上方突出,并在阀座部15S的顶部分形成阀座面15a。该阀座面15a与轴线L1正交。
阀体14S使其梢端部14a与阀座部15S相对并位于外壳12G的阀体孔12b中,通过阀体14S向下方移动并位于关闭位置,使梢端部14a就坐于阀座部15S,相反地通过阀体14S向上方移动并位于打开位置,如图20所示使梢端部14a从阀座部15S分离。又,阀体14S在其梢端部14a具有调压座构件11。
调压座构件11是由橡胶和树脂等形成的大致圆板状的构件,其外径大于阀座部15S的直径、即座径r1。该调压座构件11配置为与阀座部15S相对,并形成为就坐于阀座部15S的阀座面15a上的阀体面11a与轴线L1正交。即,阀体14S的调压座构件11与阀座面15a垂直地接触。
又,阀体14S的梢端部14a与剩余部分相比形成为大直径,梢端部14a在外周部具有法兰14e。法兰14e向半径方向外侧突出,在周方向全周上延伸。法兰14e的上表面与限定阀空间12e的顶面相对,在法兰14e的上表面和所述顶面之间设置有复位用弹簧26S。复位用弹簧26S是所谓的压缩螺旋弹簧,以压缩的状态外设于阀体14S,对阀体14S向作为关闭位置方向的下方施力。通过施力,阀体14S的梢端部14a就坐于阀座部15S以堵住阀通路13。
又,形成于外壳12G中的压力返回通路35设置为泄漏至缓冲室22的燃料气体通过压力返回通路35返回至压力返回室24G和二次侧通路12f等的二次侧区域。即,电磁式调压阀1S设置为不会使从阀空间12e等的一次侧的区域泄漏的燃料气体泄漏至外侧而能够返回至二次侧区域的安全结构的阀。
在这样构成的电磁式调压阀1S中,通过形成于阀座部15S和阀体14S之间的圆环状的孔38使一次侧压p1减压为二次侧压p2,该减压的二次侧压p2通过二次侧通路12f导入至二次侧端口12c。另外,在电磁式调压阀1S中,阀体14S在其梢端部14a的比孔38更靠近内侧的区域(受压面P3)上向打开位置方向受到二次侧压p2,并且在隔膜密封件19G的上表面及阀体14S的基端面(受压面P4)上向关闭位置方向受到二次侧压p2,在这些两个受压面P3、P4上以相互反抗的方向受到二次侧压p2
在电磁式调压阀1S中,隔膜密封件19G的有效径r3大于所述座径r1(与孔38的直径大致一致),受压面P4的受压面积A4大于受压面P3的受压面积A3。因此,与两个受压面P3、P4的受压面积A3、A4之差相对应的作用力向关闭位置方向作用于阀体14S,电磁式调压阀1S与第八实施形态的电磁式调压阀1G相同地形成为常闭型的阀结构。另外,受压面P1、P2的受压面积大致一致,阀体14S所受到的一次侧压p1被抵消。电磁式调压阀1S的动作与第八实施形态的电磁式调压阀1G的动作大致相同,因此省略其动作的说明。关于以下说明的第二十实施形态~第二十二实施形态也是同样的。
像这样构成的电磁式调压阀1S设置为阀座部15S的阀座面15a及阀体14S的阀体面11a一同与轴线L1正交,即与打开位置方向正交,因此通过重复使用会使阀座部15S或调压座构件11向打开位置方向塑性变形。因此,即使发生塑性变形也几乎不改变座径r1,即使重复使用也几乎不改变调压特性。因此,可以改善电磁式调压阀1S的可靠性及调压特性的稳定性。
电磁式调压阀1S形成为与第八实施形态的电磁式调压阀1G相同地能够通过电磁比例螺线管27G拉动阀体14S以向打开位置方向移动的拉动型结构,因此可以将电磁比例螺线管27G配置在阀通路13的外部。借助于此,在电磁式调压阀1S中,与将电磁比例螺线管27G配置在二次侧通路12f以向打开位置方向按压阀体14S的推动型结构的电磁式调压阀相同地能够确保二次侧通路12f的流路面积,并且与推动型结构的电磁式调压阀相比可以减小孔38的直径(即,座径r1)。通过像这样减小座径r1,相对于阀体14S的行程变化的阀通路13的开度变化量变小,因此与推动型结构的气体用电磁式调压阀相比可以微调阀通路13的开度,可以改善电磁式调压阀1S的稳定性及调压精度。
此外,由于阀体14S是移动构件,因此在就坐位置上存在偏差,但是由于阀体面11a就坐于突出的阀座部15S,因此通过与阀座部15S相比加宽阀体14S的阀体面11a,以此即使多少存在就坐位置的偏差也可以确实地使阀体14S就坐于阀座部15S。又,由于沿着阀口10的外边缘形成阀座部15S,因此阀口10的内径尺寸和阀座部15S的内径尺寸大致一致,可以在确保所需的流路面积的同时减小座径r1。借助于此,可以改善电磁式调压阀1S的调压精度的稳定性。
另外,也可以在电磁式调压阀1S的阀体14S的阀体面11a侧设置突起,即、也可以在阀体14S的梢端设置突起。但是,此时,可以设想将该突起部分的内径尺寸设定为与阀口10的内径尺寸一致的情况下,突起部分就坐于偏离规定的就坐位置的位置、例如阀口10上时,不能关闭阀口10。因此,需要与阀口10的内径尺寸相比加大突起部分的内径尺寸以形成能够确实地关闭阀口10的尺寸关系。
除此之外,根据第十九实施形态的电磁式调压阀1S发挥与第八实施形态的电磁式调压阀1G相同的作用效果。
[第二十实施形态]
根据本发明的第二十实施形态的电磁式调压阀1T与根据第十九实施形态的电磁式调压阀1S结构类似,并且仅说明不同于第十九实施形态的电磁式调压阀1S的结构。而且,对于相同的结构,标以相同的符号并省略其说明。对于以下说明的第二十一实施形态及第二十二实施形态也是同样的。
在根据本发明的第二十实施形态的电磁式调压阀1T中,如图21所示,与根据第十实施形态的电磁式调压阀1J的阀体14J相同地在阀体14T中形成有均压通路25J。通过该均压通路25J,二次侧通路12f和压力返回室24G相连接,并且二次侧压p2导入至压力返回室24G。而且,电磁式调压阀1T与第十九实施形态的电磁式调压阀1S相同地由隔膜密封件19G受到压力返回室24G的二次侧压p2,并根据该二次侧压p2调节阀通路13的开度,从而调节二次侧压p2。另外,调压座构件11T形成为大致圆环状,并包围均压通路25J的下侧的开口(即,面对二次侧通路12f的开口),且位于稍微远离所述开口的外边缘的位置上。
又,在电磁式调压阀1T中,缓冲室22通过均压通路25J与二次侧通路12f连接,并使泄漏至缓冲室22的燃料气体返回至二次侧通路12f。借助于此,电磁式调压阀1T也形成为使从高压密封构件20泄漏的燃料气体返回至二次侧的安全结构的阀。
像这样构成的根据第二十实施形态的电磁式调压阀1T发挥与根据第十九实施形态的电磁式调压阀1S相同的作用效果。
[第二十一实施形态]
在根据本发明的第二十一实施形态的电磁式调压阀1U中,与第八实施形态的电磁式调压阀1G相同地可动构件31U在其外周面部具有法兰31a(参照图22),在该法兰31a和位于与其相对的位置上的外壳12G的弹簧支撑座12h之间设置有复位用弹簧26U。复位用弹簧26U以压缩的状态介于弹簧支撑座12h和法兰31a之间,并通过可动构件31U对阀体14U向关闭位置方向施力。
像这样构成的根据第二十一实施形态的电磁式调压阀1U发挥与根据第十九实施形态的电磁式调压阀1S相同的作用效果。
[第二十二实施形态]
在根据本发明的第二十二实施形态的电磁式调压阀1V中,如图23所示,阀体14V的外径r2小于座径r1,受压面P1的受压面积A1大于受压面P2的受压面积。因此,由与两个受压面积A1、A2之差相对应的一次侧压p1引起的作用力向关闭位置方向作用。
又,由于一次侧压p1引起的作用力向关闭位置方向作用,因此阀体14V和阀座部15S之间的就坐部的密封面压力增高,并且在电磁比例螺线管27G不工作时阀体14V保持在关闭位置上。因此,可以确实地关闭阀通路13,改善就坐时的气密性。
除此之外,根据第二十二实施形态的电磁式调压阀1V发挥与根据第十九实施形态的电磁式调压阀1S相同的作用效果。
[其他实施形态]
在本实施形态中,虽然由隔膜密封件19受到压力返回室24的二次侧压p2,但是并不一定是隔膜密封件,也可以是O形环等的低压密封构件。
在第十九实施形态~第二十二实施形态的电磁式调压阀1S~1V中,虽然各个阀体14S~14V的外径r2形成为除了法兰14e及与可动构件31G螺纹结合的部分以外大致一致,但是也可以使支持于轴承构件18的部分的外径大于外径r2。借助于此,可以增大轴承构件18的内径,因此可以改善阀体14S~14V的直线运动性能,可以减少在阀体14S~14V中的就坐位置的偏差。其他实施形态也是同样的。
又,在第十九实施形态~第二十二实施形态的电磁式调压阀1S~1V中,虽然低压密封构件20和高压密封构件21的密封直径大致相同,但是没有必要一定设置为相同的密封直径。通过将低压密封构件21的密封直径设置为大于高压密封构件20的密封直径,以此可以使阀体14S~14V的基端部变粗,可以改善阀体14S~14V的刚性。借助于此,可以形成为对于外部的干扰更加牢固的结构体。与此相反,通过将低压密封构件21的密封直径设置为小于高压密封构件20的密封直径,以此可以使由导入至缓冲室22的二次侧压p2引起的关闭位置方向的力作用于阀体14S~14V。借助于此,可以更加改善阀体14S~14V保持在关闭位置时的就坐部的气密性。另外,其他实施形态中也是同样的。在第十九实施形态~第二十二实施形态的电磁式调压阀1S~1V中,虽然将电磁比例螺线管27作为阀体驱动手段举例说明,但是与第十六实施形态~第十八实施形态同样地也可以代替电磁比例螺线管27G而采用压电元件(压电元件)或力马达。
工业应用性:
本发明可以适用于将高压的燃料气体的压力调节为与外加的外加电压或外加电流相对应的压力的气体用调压阀。
符号说明:
1、1A~1N、1S~1V     电磁式调压阀;
1O~1R       调压阀;
2             燃料气体供给系统;
12            外壳;
12a           一次侧端口;
12c           二次侧端口;
13            阀通路;
14、14A~14N、14S~14V  阀体;
17            轴承构件容纳空间;
18            轴承构件;
19、19F、19G  隔膜密封件;
20            高压密封构件;
21            低压密封构件;
22、22B、22G、22H   缓冲室;
24、24F、24G  压力返回室;
25、25F、25J   均压通路;
26、26G       复位用弹簧;
27、27G       电磁比例螺线管;
27O、27Q      压电执行器;
27P、27R      力马达。

Claims (12)

1.一种气体用调压阀,具备:具有连接一次侧端口和二次侧端口的阀通路的外壳;
设置于所述外壳内,在关闭所述阀通路的关闭位置和打开所述阀通路的打开位置之间移动以调节所述阀通路的开度的阀体;
对所述阀体向关闭位置方向施力的复位用弹簧;和
与所述复位用弹簧的施力反抗地向所述阀体施加与外加的外加电压或外加电流相对应的驱动力以使所述阀体向所述打开位置方向移动的阀体驱动单元;
并且将通过所述一次侧端口供给至所述阀通路的高压的燃料气体的压力调节为与所述阀体驱动单元的驱动力相对应的压力并从所述二次侧端口输出,
其特征在于,具备:
形成于所述外壳内,并与所述二次侧端口连接的压力返回室;
向与所述驱动力反抗的方向受到所述压力返回室的压力,根据所述压力返回室的压力使所述阀体向所述关闭位置移动的第一密封构件;
介于所述阀体和所述外壳之间的间隙,并滑动支持所述阀体的轴承构件;
设置于比所述轴承构件靠近所述阀通路侧的位置上,并密封所述间隙的第二密封构件;和
设置于比所述第二密封构件更靠近所述阀通路侧的位置上,并密封所述间隙的第三密封构件;
在所述第三密封构件和所述第二密封构件之间形成有与所述二次侧端口连接的缓冲室。
2.根据权利要求1所述的气体用调压阀,其特征在于,
所述二次侧端口和所述压力返回室通过压力返回通路相连接;
所述压力返回通路形成于所述阀体中。
3.根据权利要求1所述的气体用调压阀,其特征在于,
所述二次侧端口和所述压力返回室通过压力返回通路相连接;
所述压力返回通路形成于所述外壳内。
4.根据权利要求3所述的气体用调压阀,其特征在于,
所述压力返回通路还与所述缓冲室连接。
5.根据权利要求1所述的气体用调压阀,其特征在于,
所述外壳具有作为所述阀体位于所述关闭位置上时就坐的阀座部,且具备与所述打开位置方向正交的阀座面的阀座部;
所述阀体设置为利用与所述打开位置方向正交的阀体面就坐于所述阀座面上。
6.根据权利要求5所述的气体用调压阀,其特征在于,
所述阀通路具有与形成于所述阀座部和所述阀体之间的孔的下游侧的二次侧端口连接的二次侧通路;
所述阀体驱动单元设置在所述二次侧通路的外部且夹着所述阀体与所述阀座部相反侧的位置上,并通过所述驱动力拉动所述阀体以使所述阀体向所述打开位置方向移动。
7.根据权利要求6所述的气体用调压阀,其特征在于,
所述阀座部沿着作为所述一次侧端口侧的开口的阀口的外边缘而形成在所述二次侧通路中,并且面向所述阀体向所述打开位置方向突出;
所述阀体在与所述阀座部相对的位置上具有座构件;
所述座构件形成为其一表面构成所述阀体面,并利用该阀体面就坐于所述阀座部的顶部。
8.根据权利要求1所述的气体用调压阀,其特征在于,
所述阀体形成为向所述打开位置方向受到所述一次侧端口的一次侧压的第一受压面的受压面积和向所述关闭位置方向受到所述一次侧压的第二受压面的受压面积相同。
9.根据权利要求1所述的气体用调压阀,其特征在于,
所述阀体形成为向所述打开位置方向受到所述一次侧端口的一次侧压的第一受压面的受压面积小于向所述关闭位置方向受到所述一次侧压的第二受压面的受压面积。
10.根据权利要求1所述的气体用调压阀,其特征在于,
所述压力返回室位于相对于所述轴承构件与所述第二密封构件相反侧的位置上;
所述第一密封构件位于所述轴承构件和所述压力返回室之间并堵住所述轴承构件和所述压力返回室之间。
11.根据权利要求1所述的气体用调压阀,其特征在于,
所述压力返回室位于所述阀通路和所述阀体驱动单元之间;
所述第一密封构件位于所述阀体驱动单元和所述压力返回室之间并堵住所述阀体驱动单元和所述压力返回室之间。
12.根据权利要求1所述的气体用调压阀,其特征在于,形成为在外加在所述阀体驱动单元上的外加电压或外加电流为零时,通过所述复位用弹簧使所述阀体位于所述关闭位置的常闭型。
CN201180037248.XA 2010-08-06 2011-08-04 气体用调压阀 Active CN103003605B (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2010177868 2010-08-06
JP2010-177868 2010-08-06
JP2011063087 2011-03-22
JP2011-063087 2011-03-22
PCT/JP2011/004438 WO2012017667A1 (ja) 2010-08-06 2011-08-04 ガス用調圧弁

Publications (2)

Publication Number Publication Date
CN103003605A CN103003605A (zh) 2013-03-27
CN103003605B true CN103003605B (zh) 2014-07-30

Family

ID=45559186

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201180037248.XA Active CN103003605B (zh) 2010-08-06 2011-08-04 气体用调压阀

Country Status (7)

Country Link
US (1) US8960221B2 (zh)
EP (1) EP2602525B1 (zh)
JP (1) JP5427296B2 (zh)
KR (1) KR101455945B1 (zh)
CN (1) CN103003605B (zh)
CA (1) CA2806811C (zh)
WO (1) WO2012017667A1 (zh)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2990003B1 (fr) * 2012-04-25 2014-05-30 Cahouet Dispositif de regulation de pression a pression de sortie pilotable et vehicule equipe d'un tel dispositif
EP2872958B1 (en) 2012-07-11 2018-05-02 Flextronics AP, LLC Direct acting solenoid actuator
CN103047426B (zh) * 2013-01-11 2014-05-07 浙江大学台州研究院 气动比例压力阀
JP6172798B2 (ja) * 2013-06-26 2017-08-02 株式会社ダンレイ 減圧弁
US9762101B2 (en) * 2014-06-09 2017-09-12 Flextronics Automotive, Inc. Linear bearing for an electromagnetic solenoid and solenoid having said linear bearing
WO2017213629A1 (en) * 2016-06-07 2017-12-14 Borg Warner Inc. On-off solenoid-actuated valve for fast fill of accumulator for automatic transmissions
DE102016225580A1 (de) * 2016-12-20 2018-06-21 Robert Bosch Gmbh Einrichtung zur Zumessung eines gasförmigen Brennstoffs zu einem Injektor
DE102017210362A1 (de) * 2017-06-21 2018-12-27 Robert Bosch Gmbh Proportionalventil zum Steuern eines gasförmigen Mediums
CN107461537A (zh) * 2017-07-27 2017-12-12 绍兴上虞尚益德机电有限公司 安全可靠的汽车用压缩天然气减压调节器
DE102017214506A1 (de) * 2017-08-21 2019-02-21 Robert Bosch Gmbh Proportionalventil zum Steuern eines gasförmigen Mediums
DE102017214720A1 (de) * 2017-08-23 2019-02-28 Audi Ag Proportionalventil für ein Brennstoffzellensystem, Brennstoffzellensystem sowie Fahrzeug
DE102017221329A1 (de) * 2017-11-28 2019-05-29 Robert Bosch Gmbh Gasdruckregler zur Regelung des Drucks eines gasförmigen Kraftstoffs, System zur Versorgung einer Brennkraftmaschine mit gasförmigem Kraftstoff unter Verwendung eines solchen Gasdruckreglers und Verfahren zum Betreiben dieses Systems
JP7191297B2 (ja) * 2017-12-08 2022-12-19 Smc株式会社 サーボバルブ
JP6892990B2 (ja) * 2018-11-05 2021-06-23 株式会社タツノ 弁機構及びシール機構からなる構造体
DE102019205640B4 (de) * 2019-04-17 2021-12-23 Hawe Hydraulik Se Proportionales Hydraulikventil
KR102157830B1 (ko) * 2019-06-05 2020-09-21 주식회사 유니크 전자제어 현가장치용 솔레노이드 밸브
JP7461644B2 (ja) 2019-06-18 2024-04-04 株式会社初田製作所 減圧装置、防災機器、及び防災設備
CN110486527B (zh) * 2019-08-01 2024-03-12 中山市华捷智能科技有限公司 一种先导式动线圈燃气比例阀
CN110630408B (zh) * 2019-11-22 2020-04-17 潍柴动力股份有限公司 稳压器、燃气发动机系统及燃气压力控制方法
IT201900025390A1 (it) * 2019-12-23 2021-06-23 Westport Fuel Systems Italia S R L Gruppo regolatore di pressione per un impianto di alimentazione di un carburante gassoso ad un motore a combustione interna
KR200493605Y1 (ko) * 2019-12-30 2021-04-30 주식회사 한국가스기술공사 정압기의 스프링용 아답터 구조체
KR102491802B1 (ko) * 2020-12-01 2023-02-02 주식회사 유니크 연료전지 차량용 배출밸브
CN116045048B (zh) * 2023-04-03 2023-07-07 成都君梓昊能源科技有限公司 一种调节电磁控制燃气恒压的阀和方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1222468A (zh) * 1998-01-09 1999-07-14 住友电气工业株式会社 电磁平衡压力控制阀的控制方法
GB2352495A (en) * 1999-07-21 2001-01-31 Imi Webber Ltd Pressure balanced flow control valve
CN101189432A (zh) * 2005-06-03 2008-05-28 伊格尔工业股份有限公司 容量控制阀

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3535124A1 (de) * 1985-10-02 1987-04-02 Bosch Gmbh Robert Elektromagnetisch betaetigbares kraftstoffeinspritzventil
JPH0634143A (ja) * 1992-07-21 1994-02-08 Toshiba Corp 加熱調理器
JP2578621Y2 (ja) 1992-09-30 1998-08-13 フジオーゼックス株式会社 排気ブレーキ用バタフライバルブ装置
JP2991231B2 (ja) 1996-03-29 1999-12-20 大阪瓦斯株式会社 圧力制御弁
JP3634733B2 (ja) * 2000-09-22 2005-03-30 Smc株式会社 流体圧力調整装置
JP2002243068A (ja) * 2001-02-19 2002-08-28 Kawasaki Steel Corp 配管の固定方法
JP2002243058A (ja) * 2001-02-19 2002-08-28 Saginomiya Seisakusho Inc 電磁制御弁
JP3925096B2 (ja) 2001-03-29 2007-06-06 いすゞ自動車株式会社 流量制御弁
US6725876B2 (en) * 2001-10-15 2004-04-27 Woodward Governor Company Control valve with integrated electro-hydraulic actuator
JP3911443B2 (ja) * 2002-05-27 2007-05-09 太平洋工業株式会社 制御弁
JP3933563B2 (ja) * 2002-11-29 2007-06-20 株式会社ケーヒン レギュレータ
EP1591144B1 (en) * 2003-01-10 2012-08-29 Air Water Safety Service Inc. Rapid opening pressure regulating valve, fire extinguishing device using the pressure regulating valve, high-pressure gas cylinder device, and rapid fluid feeding device
JP4213484B2 (ja) * 2003-02-10 2009-01-21 株式会社鷺宮製作所 電磁制御弁
CA2586211C (en) * 2004-11-22 2010-06-29 Kabushiki Kaisha Kawasaki Precision Machinery Electromagnetic valve device
JP4446172B2 (ja) * 2004-12-15 2010-04-07 トヨタ自動車株式会社 調圧弁
JP5041272B2 (ja) * 2005-12-12 2012-10-03 トヨタ自動車株式会社 燃料電池システム及び移動体
WO2008086437A1 (en) * 2007-01-10 2008-07-17 Albemarle Corporation Formulations for reaction injection molding and for spray systems
JP4952504B2 (ja) * 2007-10-17 2012-06-13 トヨタ自動車株式会社 減圧弁
JP5292231B2 (ja) * 2009-09-01 2013-09-18 川崎重工業株式会社 制御弁
JP5320221B2 (ja) * 2009-09-01 2013-10-23 川崎重工業株式会社 電気機械変換器、及びそれを備える流体制御アセンブリ

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1222468A (zh) * 1998-01-09 1999-07-14 住友电气工业株式会社 电磁平衡压力控制阀的控制方法
GB2352495A (en) * 1999-07-21 2001-01-31 Imi Webber Ltd Pressure balanced flow control valve
CN101189432A (zh) * 2005-06-03 2008-05-28 伊格尔工业股份有限公司 容量控制阀

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
JP特开2002-243058A 2002.08.28
JP特开2002-295709A 2002.10.09
JP特开2004-245243A 2004.09.02
JP特开2007-188857A 2007.07.26
JP特开2009-98961A 2009.05.07

Also Published As

Publication number Publication date
KR101455945B1 (ko) 2014-10-28
KR20130033459A (ko) 2013-04-03
WO2012017667A1 (ja) 2012-02-09
CN103003605A (zh) 2013-03-27
JP5427296B2 (ja) 2014-02-26
US20130167950A1 (en) 2013-07-04
CA2806811C (en) 2014-09-09
US8960221B2 (en) 2015-02-24
EP2602525A4 (en) 2016-05-18
EP2602525A1 (en) 2013-06-12
JPWO2012017667A1 (ja) 2013-10-03
EP2602525B1 (en) 2018-10-24
CA2806811A1 (en) 2012-02-09

Similar Documents

Publication Publication Date Title
CN103003605B (zh) 气体用调压阀
CN103109070B (zh) 燃气发动机的燃料气体供给系统
CN103109069B (zh) 燃料气体供给填充系统
CN103180645B (zh) 燃料电池系统的氢气供给装置
JP5873451B2 (ja) 弁装置
CN103003607A (zh) 气体用调压阀
CN103003606A (zh) 气体用调压阀
JP5894558B2 (ja) 過流防止機能付き弁装置
US20160195152A1 (en) Damping force control type shock absorber
US10352390B2 (en) Damper and method of assembling damper
JP2013204441A (ja) 気体燃料用圧力制御装置
CN212717754U (zh) 多腔室型空气弹簧装置及气体弹簧
JP2014214804A (ja) 過流防止機能付き弁装置
US20180038317A1 (en) Gas fuel supply apparatus
KR20190074162A (ko) 수소용 2단감압 전자식 레귤레이터
US7717400B2 (en) Fluid pressure regulating device
JP2012073886A (ja) レギュレータ
JP4375046B2 (ja) サーボピストン機構及び流量調整弁

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant