JP6753182B2 - Aromatic polyester composite fiber - Google Patents

Aromatic polyester composite fiber Download PDF

Info

Publication number
JP6753182B2
JP6753182B2 JP2016140158A JP2016140158A JP6753182B2 JP 6753182 B2 JP6753182 B2 JP 6753182B2 JP 2016140158 A JP2016140158 A JP 2016140158A JP 2016140158 A JP2016140158 A JP 2016140158A JP 6753182 B2 JP6753182 B2 JP 6753182B2
Authority
JP
Japan
Prior art keywords
island
composite fiber
sea
stretchability
fabric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2016140158A
Other languages
Japanese (ja)
Other versions
JP2018009261A (en
Inventor
勇太 渡邉
勇太 渡邉
久人 齋藤
久人 齋藤
泰崇 加藤
泰崇 加藤
稔 藤森
稔 藤森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2016140158A priority Critical patent/JP6753182B2/en
Publication of JP2018009261A publication Critical patent/JP2018009261A/en
Application granted granted Critical
Publication of JP6753182B2 publication Critical patent/JP6753182B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Multicomponent Fibers (AREA)

Description

本発明は、優れた耐摩耗性、耐界面剥離性、並びに優れた伸縮性を兼ね備え、伸縮織物用に適した潜在捲縮性能を有するポリエステル系複合繊維に関するものである。 The present invention relates to a polyester-based composite fiber having excellent abrasion resistance, interfacial peeling resistance, and excellent stretchability, and having latent crimping performance suitable for stretchable woven fabrics.

近年、織編物の機能性、特に伸縮性能に対する要求が一段と強くなってきている。この織編物の伸縮性能は衣服着用時の着心地と圧迫感との間に密接な関係を有しており、例えば、伸縮性能が良好なものは、身体各部の動きに織編物の伸び縮みが容易に追従できるため、圧迫感がなく、着用時の活動が円滑に行えることになる。昨今、この特徴を活かした伸縮性織編物の用途展開が加速しており、スポーツウエアなどへの適用が急増している。 In recent years, the demand for functionality, especially stretchability, of woven and knitted fabrics has become stronger. The stretch performance of this woven or knit has a close relationship between the comfort when wearing clothes and the feeling of oppression. For example, if the stretch performance is good, the stretch and contraction of the woven and knit is due to the movement of each part of the body. Since it can be easily followed, there is no feeling of oppression, and activities during wearing can be performed smoothly. In recent years, the development of applications for elastic woven knits that take advantage of this feature is accelerating, and the application to sportswear and the like is rapidly increasing.

なかでも、ポリエステル系繊維は、その優れた機械特性と安価なコストから伸縮性織編物へ盛んに用いられており、ポリエステル系繊維を用いた布帛に伸縮性を与えるため、種々の方法が採用されている。例えば、織物中にポリウレタン系の弾性繊維を混用し、伸縮性を付与する方法、ポリエステル繊維に仮撚加工を施し、加撚/解撚トルクを発現させた繊維を用いることにより、織物に伸縮性を付与する方法、そして、ポリウレタン系繊維や仮撚加工糸を用いない方法として、サイドバイサイド型複合や、偏心芯鞘複合を利用した潜在捲縮発現性ポリエステル繊維が種々検討されている。 Among them, polyester fibers are widely used for stretchable woven and knitted fabrics due to their excellent mechanical properties and low cost, and various methods are adopted to give elasticity to fabrics using polyester fibers. ing. For example, a method in which polyurethane-based elastic fibers are mixed in a woven fabric to impart elasticity, or a fiber in which polyester fibers are false-twisted to express twisting / untwisting torque is used to make the woven fabric elastic. As a method of imparting the above, and a method of not using polyurethane fibers or false twisted yarns, various side-by-side composites and latent crimp-expressing polyester fibers using an eccentric core sheath composite have been studied.

例えば特許文献1では熱収縮性の異なる2種の脂肪族ポリエステルを単繊維内で偏心的に複合する自発捲縮性複合繊維が提案されている。しかし、脂肪族ポリエステルは耐摩耗性が低く、スポーツウエアなどでは着用時の擦過により布帛を構成する繊維が切断され、毛羽立ちや穴あき等が発生していた。対してポリトリメチレンテレフタレート(以下PTTと称する)やポリブチレンテレフタレート(以下PBTと称する)を利用したサイドバイサイド型複合糸や偏心芯鞘型複合糸は、脂肪族ポリエステル系繊維に比して耐摩耗性に優れ、布帛に適度な伸縮性を与えることができることから好適であり、特許文献2ではPTTとポリエチレンテレフタレート(以下PETと称する)のサイドバイサイド型または偏心芯鞘型複合糸が提案されている。たしかにPTTとPETの複合糸とすることで優れた伸縮性が得られ、更に芯成分をPTT、鞘成分をPETとした偏心芯鞘型複合糸とすることで耐摩耗性も格段に向上する。 For example, Patent Document 1 proposes a spontaneously crimpable composite fiber in which two types of aliphatic polyesters having different heat shrinkages are eccentrically composited in a single fiber. However, aliphatic polyester has low abrasion resistance, and in sportswear and the like, the fibers constituting the fabric are cut by rubbing during wearing, and fluffing and perforation occur. On the other hand, side-by-side type composite yarns and eccentric core sheath type composite yarns using polytrimethylene terephthalate (hereinafter referred to as PTT) and polybutylene terephthalate (hereinafter referred to as PBT) have abrasion resistance as compared with aliphatic polyester fibers. It is suitable because it is excellent in quality and can give appropriate elasticity to the fabric, and Patent Document 2 proposes a side-by-side type or eccentric core sheath type composite yarn of PTT and polyethylene terephthalate (hereinafter referred to as PET). It is true that excellent elasticity can be obtained by using a composite yarn of PTT and PET, and further, by using an eccentric core sheath type composite yarn in which the core component is PTT and the sheath component is PET, the abrasion resistance is remarkably improved.

特開平9−209216号公報Japanese Unexamined Patent Publication No. 9-209216 特開2002−339169号公報JP-A-2002-339169

特許文献2では、スポーツアウターなど、使用時に大きな擦過が生じうる条件で使用した場合、布帛表面が白化する現象が報告されている。この白化現象は、走査型電子顕微鏡(SEM)による布帛表面の形態観察から、布帛を構成する複合繊維において、PTT/PET界面が剥離することによって生じていると特定した。 Patent Document 2 reports a phenomenon in which the surface of a fabric is whitened when used under conditions such as sports outerwear where large abrasion may occur during use. From the morphological observation of the surface of the fabric with a scanning electron microscope (SEM), it was identified that this whitening phenomenon is caused by the peeling of the PTT / PET interface in the composite fibers constituting the fabric.

このように公知技術では伸縮性と耐摩耗性、耐界面剥離性の両立が不十分であり、優れた伸縮性とスポーツアウターなどの過酷な擦過にも耐えうる優れた耐摩耗性、耐界面剥離性を両立する技術が待ち望まれていた。 As described above, the known technology is insufficient to achieve both elasticity, abrasion resistance, and interfacial peeling resistance, and has excellent elasticity and excellent abrasion resistance and interfacial peeling resistance that can withstand severe scratches such as sports outerwear. A technology that balances sex has been long-awaited.

本発明は、優れた伸縮性とスポーツアウターなどの過酷な使用条件下にも耐えうる優れた耐摩耗性、耐界面剥離性を兼ね備え、伸縮織物用に適した潜在捲縮能を有するポリエステル系複合繊維を提案するものである。 The present invention is a polyester-based composite having excellent elasticity and excellent abrasion resistance and interfacial peeling resistance that can withstand harsh usage conditions such as sports outerwear, and has latent crimping ability suitable for elastic woven fabrics. It proposes fibers.

上記課題を解決するため、本発明は次の構成からなる。
(1)海島型複合繊維であって、横断面形状が次のA〜Dの要件を満足することを特徴とする芳香族ポリエステル系複合繊維。
A.複合繊維断面を2等分し、かつ2分割された断面のどちらか一方に含まれる島成分の面積比率を最大化するような直線を引いたとき、片側半分に島総面積の80〜95%が含まれる。
B.複合繊維断面において、島:海の面積比が40:60〜60:40の範囲にある。
C.島と複合繊維外周との間の厚み最薄部が複合繊維半径の3%以上である。
D.島の総面積をSとしたとき、島周長の合計LがL>(2πS)1/2+(8S/π)1/2を満たす。
In order to solve the above problems, the present invention has the following configuration.
(1) An aromatic polyester-based composite fiber which is a sea-island type composite fiber and whose cross-sectional shape satisfies the following requirements A to D.
A. When the composite fiber cross section is divided into two equal parts and a straight line is drawn that maximizes the area ratio of the island components contained in either of the two divided cross sections, 80 to 95% of the total island area is drawn on one half. Is included.
B. In the composite fiber cross section, the island: sea area ratio is in the range of 40:60 to 60:40.
C. The thinnest part of the thickness between the island and the outer circumference of the composite fiber is 3% or more of the radius of the composite fiber.
D. When the total area of the island is S, the total L of the island circumference satisfies L> (2πS) 1/2 + (8S / π) 1/2 .

(2)2成分よりなる海島型複合繊維であって、E,Fの要件を満足することを特徴とする(1)に記載の芳香族ポリエステル系複合繊維。
E.島成分ポリエステルの主たる繰り返し構造単位がトリメチレンテレフタレートまたはブチレンテレフタレートである。
F.海成分ポリエステルの主たる繰り返し構造単位がエチレンテレフタレートである。
(2) The aromatic polyester-based composite fiber according to (1), which is a sea-island type composite fiber composed of two components and is characterized by satisfying the requirements of E and F.
E. The main repeating structural unit of the island component polyester is trimethylene terephthalate or butylene terephthalate.
F. The main repeating structural unit of marine polyester is ethylene terephthalate.

(3)海島型複合繊維において、島が2つ以上であることを特徴とする(1)または(2)に記載の芳香族ポリエステル系複合繊維。 (3) The aromatic polyester-based composite fiber according to (1) or (2), wherein the sea-island type composite fiber has two or more islands.

(4)海島型複合繊維において、断面形状の扁平率が1.1以下の略円形であることを特徴とする(1)〜(3)のいずれかに記載の芳香族ポリエステル系複合繊維。 (4) The aromatic polyester-based composite fiber according to any one of (1) to (3), wherein the sea-island type composite fiber has a substantially circular shape with a flatness of 1.1 or less.

本発明によれば、優れた耐摩耗性、耐界面剥離性、並びに優れた伸縮性を兼ね備え、伸縮織物用に適した潜在捲縮能を有する芳香族ポリエステル系複合繊維を提供することができる。 According to the present invention, it is possible to provide an aromatic polyester-based composite fiber having excellent abrasion resistance, interfacial peeling resistance, and excellent stretchability, and having a latent crimping ability suitable for stretchable woven fabrics.

(a)〜(e)は、本発明において好ましく用いられる複合繊維の単糸横断面形状の一例を示す。(f)〜(j)は、比較例の単糸横断面形状の一例を示す。(A) to (e) show an example of a single yarn cross-sectional shape of a composite fiber preferably used in the present invention. (F) to (j) show an example of the single yarn cross-sectional shape of the comparative example. 本発明で好ましく用いられる製糸工程(直接紡糸延伸法)の一例を示す側面図。The side view which shows an example of the silk reeling process (direct spinning drawing method) preferably used in this invention.

本発明は、優れたストレッチ性と耐摩耗性、耐界面剥離性を両立するため、単糸横断面形態を詳細に規定した偏心海島型複合繊維とすることで達成できる。本発明における偏心海島型複合繊維とは、図1(a)〜(e)に示すような形態であり、このような形態により、捲縮が発現し、布帛としたときに優れたストレッチ性と耐摩耗性、耐界面剥離性を発揮することができる。 The present invention can be achieved by using an eccentric sea-island type composite fiber having a single yarn cross-sectional shape defined in detail in order to achieve both excellent stretchability, abrasion resistance, and interfacial peeling resistance. The eccentric sea-island type composite fiber in the present invention has a form as shown in FIGS. 1 (a) to 1 (e), and such a form causes crimping and excellent stretchability when made into a cloth. It can exhibit abrasion resistance and interfacial peeling resistance.

偏心海島型複合繊維の断面を2等分し、かつ2分割された断面のどちらか一方に含まれる島成分の面積比率を最大化するような直線を引いたとき、片側半分に島総面積の80〜95%が含まれる。80%未満であると偏心が不十分であり、布帛としたときのストレッチ性が不十分となる。また、95%超えると偏心が大きすぎるため、安定した捲縮形態を再現できない。更に好ましくは85〜90%である。 When the cross section of the eccentric sea-island type composite fiber is divided into two equal parts and a straight line is drawn to maximize the area ratio of the island components contained in either of the two divided cross sections, the total area of the island is halved on one side. 80-95% is included. If it is less than 80%, the eccentricity is insufficient, and the stretchability when made into a fabric is insufficient. Further, if it exceeds 95%, the eccentricity is too large, and a stable crimped form cannot be reproduced. More preferably, it is 85 to 90%.

偏心海島型複合繊維の断面における島成分と海成分の面積比(島:海)は、捲縮性能の向上のためには40:60〜60:40であり、更に好ましくは45:55〜55:45である。 The area ratio (island: sea) of the island component to the sea component in the cross section of the eccentric sea-island type composite fiber is 40:60 to 60:40, more preferably 45:55 to 55, in order to improve the crimping performance. : 45.

島成分は海成分に完全に覆われている。島成分が繊維表面に露出していると、偏心海島型複合繊維を製糸する際や偏心海島型複合繊維を使って織編物を作成する際に、工程通過時の各ガイドとの擦過による糸切れが増加したり、スポーツアウターとして使用した際に、繊維のフィブリル化や界面剥離が生じやすくなる。ここで偏心海島型複合繊維における島と複合繊維外周との間の厚み最薄部は複合繊維半径の3%以上であり、さらに好ましくは5%以上である。 The island component is completely covered by the sea component. If the island component is exposed on the fiber surface, yarn breakage due to rubbing with each guide during the process when making eccentric sea-island type composite fibers or when making woven or knitted fabrics using eccentric sea-island type composite fibers. When used as a sports outer, fibrillation of fibers and interfacial peeling are likely to occur. Here, in the eccentric sea-island type composite fiber, the thinnest portion of the thickness between the island and the outer periphery of the composite fiber is 3% or more, more preferably 5% or more of the radius of the composite fiber.

偏心海島型複合繊維の横断面において、島の総面積をSとした時、島周長合計LがL>(2πS)1/2+(8S/π)1/2を満たす。本パラメータは島の周長と島の面積の関係を表すパラメータであり、複合繊維横断面において、島が1つで、その島形状が半円の場合、L=(2πS)1/2+(8S/π)1/2となる。L≦(2πS)1/2+(8S/π)1/2であると、海成分と島成分の界面長が不十分であり、スポーツアウターなどの強度の擦過が生じ得る過酷な使用下では、2成分が複合繊維内の界面で剥離し、白化現象を生じやすくなる。 In the cross section of the eccentric sea-island type composite fiber, when the total area of the islands is S, the total island circumference L satisfies L> (2πS) 1/2 + (8S / π) 1/2 . This parameter is a parameter that expresses the relationship between the circumference of the island and the area of the island. When there is one island and the shape of the island is a semicircle in the cross section of the composite fiber, L = (2πS) 1/2 + ( 8S / π) 1/2 . When L ≦ (2πS) 1/2 + (8S / π) 1/2 , the interface length between the sea component and the island component is insufficient, and under harsh use such as sports outerwear where strong abrasion may occur. The two components are separated at the interface in the composite fiber, and a whitening phenomenon is likely to occur.

以上の断面形態を同時に満足することで優れたストレッチ性とスポーツアウターなどの過酷な条件下でも耐えうる耐摩耗性を両立できるのである。 By satisfying the above cross-sectional forms at the same time, it is possible to achieve both excellent stretchability and wear resistance that can withstand harsh conditions such as sports outerwear.

本発明の複合繊維は、ストレッチ性と耐摩耗性の両立のために芳香族ポリエステルで構成される。ここでいう芳香族ポリエステルとは、テレフタル酸、イソフタル酸、2,6−ナフタレンジカルボン酸といった芳香族ジカルボン酸を主たる酸成分とし、エチレングリコール、1,3−プロパンジオール、1,4−ブチレングリコール、アルキレングリコール成分から選ばれた少なくとも一種のグリコールを主たるグリコール成分とするポリエステルのことである。さらに、上記以外の第3成分が共重合された共重合ポリエステルを使用することもできる。共重合可能な化合物としては、例えばイソフタル酸、コハク酸、シクロヘキサンジカルボン酸、アジピン酸、ダイマ酸、セバシン酸、5−ナトリウムスルホイソフタル酸などのジカルボン酸類、エチレングリコール、ジエチレングリコール、ブタンジオール、ネオペンチルグリコール、シクロヘキサンジメタノール、ポリエチレングリコール、ポリプロピレングリコールなどのジオール類を挙げることができる。 The composite fiber of the present invention is composed of aromatic polyester in order to achieve both stretchability and abrasion resistance. The aromatic polyester referred to here contains aromatic dicarboxylic acids such as terephthalic acid, isophthalic acid, and 2,6-naphthalenedicarboxylic acid as the main acid components, and ethylene glycol, 1,3-propanediol, 1,4-butylene glycol, and the like. It is a polyester containing at least one kind of glycol selected from the alkylene glycol components as a main glycol component. Further, a copolymerized polyester in which a third component other than the above is copolymerized can also be used. Examples of copolymerizable compounds include dicarboxylic acids such as isophthalic acid, succinic acid, cyclohexanedicarboxylic acid, adipic acid, dimaic acid, sebacic acid, and 5-sodium sulfoisophthalic acid, ethylene glycol, diethylene glycol, butanediol, and neopentyl glycol. , Cyclohexanedimethanol, polyethylene glycol, polypropylene glycol and other diols.

海島型複合繊維において、島成分はPTTまたはPBTを主成分とするポリエステルからなることが好ましい。また、海成分はPETを主成分とするポリエステルからなることが好ましい。一方の成分がPTTまたはPBTを主成分とするポリエステルからなる偏心海島型複合繊維とすることで、PTT、PBTの特徴であるソフト性、ストレッチ性を最大限に活かした複合繊維とすることができる。 In the sea-island type composite fiber, the island component is preferably composed of PTT or polyester containing PBT as a main component. Further, the sea component is preferably made of polyester containing PET as a main component. By using an eccentric sea-island type composite fiber made of polyester containing PTT or PBT as the main component, it is possible to obtain a composite fiber that maximizes the softness and stretchability that are the characteristics of PTT and PBT. ..

本発明でいうPTTとはテレフタル酸を主たる酸成分とし、1,3−プロパンジオールを主たるグリコール成分として得られるポリエステルである。PTTは、90モル%以上がトリメチンテレフタレートの繰り返し単位からなることが好ましい。 The PTT referred to in the present invention is a polyester obtained by using terephthalic acid as a main acid component and 1,3-propanediol as a main glycol component. The PTT preferably comprises 90 mol% or more of a repeating unit of trimetine terephthalate.

また、PBTとはテレフタル酸を主たる酸成分とし、1,4−ブタンジオールを主たるグリコール成分として得られるポリエステルである。PBTは、90モル%以上がブチレンテレフタレートの繰り返し単位からなることが好ましい。 Further, PBT is a polyester obtained by using terephthalic acid as a main acid component and 1,4-butanediol as a main glycol component. The PBT preferably comprises 90 mol% or more of the repeating unit of butylene terephthalate.

ただし、PTT、PBTともに10モル%以下の割合で他の共重合成分を含むものであってもよい。共重合可能な化合物としては、例えばイソフタル酸、コハク酸、シクロヘキサンジカルボン酸、アジピン酸、ダイマ酸、セバシン酸、5−ナトリウムスルホイソフタル酸などのジカルボン酸類、エチレングリコール、ジエチレングリコール、ブタンジオール、ネオペンチルグリコール、シクロヘキサンジメタノール、ポリエチレングリコール、ポリプロピレングリコールなどのジオール類を挙げることができる。また、必要に応じて、艶消し剤として二酸化チタン、滑剤としてシリカ微粒子やアルミナ微粒抗酸化剤としてヒンダードフェノール誘導体、着色顔料などを添加してもよい。 However, both PTT and PBT may contain other copolymerization components at a ratio of 10 mol% or less. Examples of copolymerizable compounds include dicarboxylic acids such as isophthalic acid, succinic acid, cyclohexanedicarboxylic acid, adipic acid, dimaic acid, sebacic acid, and 5-sodium sulfoisophthalic acid, ethylene glycol, diethylene glycol, butanediol, and neopentyl glycol. , Cyclohexanedimethanol, polyethylene glycol, polypropylene glycol and other diols. Further, if necessary, titanium dioxide may be added as a matting agent, silica fine particles as a lubricant, a hindered phenol derivative as an alumina fine particle antioxidant, a coloring pigment, or the like may be added.

PETとはテレフタル酸を主たる酸成分とし、エチレングリコールを主たるグリコール成分として得られるポリエステルである。PETは、90モル%以上がエチレンテレフタレートの繰り返し単位からなることが好ましい。PTT、PBTと同様に、前記のような共重合成分を含むものであってもよい。また、艶消し剤等の添加剤を添加してもよい。 PET is a polyester obtained by using terephthalic acid as a main acid component and ethylene glycol as a main glycol component. It is preferable that 90 mol% or more of PET is a repeating unit of ethylene terephthalate. Similar to PTT and PBT, it may contain the above-mentioned copolymerization component. Moreover, you may add an additive such as a matting agent.

海島型複合繊維において、島は2つ以上が好ましい。島数を増やすことで、同じ島面積比率にて比較した場合、海成分と島成分の界面長が長くなるため、界面剥離防止効果が高くなる。より好ましくは3島以上、更に好ましくは4島以上である。優れたストレッチ性を保持するためには20島以下が好ましく、より好ましくは15島以下である。 In the sea-island type composite fiber, two or more islands are preferable. By increasing the number of islands, when compared with the same island area ratio, the interface length between the sea component and the island component becomes longer, so the interface peeling prevention effect becomes higher. It is more preferably 3 islands or more, and further preferably 4 islands or more. In order to maintain excellent stretchability, 20 islands or less is preferable, and 15 islands or less is more preferable.

複合繊維の断面形状は、複合繊維の外周形状が略円形で、外周形状の長径をA、短径をBとしたときA/Bで表される扁平率が1.1以下とすることが好ましい。このような形状とすることで、外部張力を受けたときに均一に力を分散して受けることができ、複合繊維のS−Sカーブにおける強伸度バラツキも少なくなり好ましい。 As for the cross-sectional shape of the composite fiber, it is preferable that the outer peripheral shape of the composite fiber is substantially circular, and the flatness represented by A / B is 1.1 or less when the major axis of the outer peripheral shape is A and the minor axis is B. .. With such a shape, when an external tension is applied, the force can be uniformly dispersed and received, and the variation in the strength and elongation of the composite fiber in the SS curve is reduced, which is preferable.

海島型複合繊維は、単糸繊度は0.3〜30dtex、総繊度は10〜1000dtexで採用することが好適である。総繊度を低く、単糸繊度を低くすることにより布帛の薄地化が図れ、発色性やソフト性は向上するが、ストレッチ性、特に布帛が伸ばされた時の反発性が低下するため、総繊度10〜100dtex、単糸繊度0.3〜6.0dtex、フィラメント数は10〜100本がより好ましい。 The sea-island type composite fiber is preferably used with a single yarn fineness of 0.3 to 30 dtex and a total fineness of 10 to 1000 dtex. By lowering the total fineness and the single yarn fineness, the fabric can be made thinner and the color development and softness are improved, but the stretchability, especially the resilience when the fabric is stretched, is reduced, so the total fineness is reduced. More preferably, 10 to 100 dtex, single yarn fineness of 0.3 to 6.0 dtex, and the number of filaments are 10 to 100.

強度は2.5cN/dtex以上、タフネスは15.0以上であることが好ましい。強度3.0cN/dtex以上、タフネス20.0以上であることがより好ましい。強度が2.5cN/dtex以上あると、布帛にした際にその強力も高く、衣料用布帛の薄地化,高密度化,軽量化に適している。強度の上限は6.0cN/dtex以下が好ましく、延伸倍率が高すぎることによる毛羽の発生を抑えることができ工程通過性が良好になる。また、繊維強度を高くするには製造時の延伸倍率を高くするのが一般的であるが、このようにすると強度は高くなるものの伸度が低くなり、毛羽が発生しやすく、製織などの工程通過性が悪くなる。このため、伸度を十分に保ちつつ高い強度を得るにはタフネスが15.0以上である好ましく、20.0以上であることがより好ましい。低粘度ポリマ側にPETを用いること、及び、紡糸温度を適正化することにより強度は高くなりタフネスは向上する。従って、強度は3.5cN/dtex以上であることがより好ましい。製糸条件の適正化によるタフネスの向上には限界があり、汎用ポリエステルにて到達可能な27.0以下であることが好ましい。 The strength is preferably 2.5 cN / dtex or more, and the toughness is preferably 15.0 or more. More preferably, the strength is 3.0 cN / dtex or more and the toughness is 20.0 or more. When the strength is 2.5 cN / dtex or more, the strength is high when it is made into a cloth, and it is suitable for thinning, increasing the density, and reducing the weight of the cloth for clothing. The upper limit of the strength is preferably 6.0 cN / dtex or less, and it is possible to suppress the generation of fluff due to the draw ratio being too high, and the process passability is improved. In addition, in order to increase the fiber strength, it is common to increase the draw ratio during manufacturing, but in this way, although the strength is increased, the elongation is decreased and fluff is likely to occur, and processes such as weaving Passability deteriorates. Therefore, in order to obtain high strength while maintaining sufficient elongation, the toughness is preferably 15.0 or more, and more preferably 20.0 or more. By using PET on the low-viscosity polymer side and optimizing the spinning temperature, the strength is increased and the toughness is improved. Therefore, the strength is more preferably 3.5 cN / dtex or more. There is a limit to the improvement of toughness by optimizing the yarn-making conditions, and it is preferably 27.0 or less that can be reached by general-purpose polyester.

伸度は20〜60%が好ましい。伸度を60%以下とすることで織編物を作成した際の寸法安定性に優れる。伸度を20%以上とすることで、製糸性や毛羽品位が向上し、さらには海成分の剥離が抑制される。より好ましくは25〜55%であり、さらに好ましくは25〜45%である。 The elongation is preferably 20 to 60%. By setting the elongation to 60% or less, the dimensional stability when a woven or knitted fabric is produced is excellent. By setting the elongation to 20% or more, the silk-reeling property and the fluff quality are improved, and further, the peeling of sea components is suppressed. It is more preferably 25 to 55%, still more preferably 25 to 45%.

繊維長手方向の太さムラの指標であるウースター斑U%は均一性の高い布帛を得るために1.8%以下とすることが好ましく、より好ましくは1.2%以下である。1.8%以下であると染色後の染め斑を抑制することができるので好ましい。染色工程において、糸斑の大きな部分は分子配向が小さいために染料が多く吸尽され、糸に太細の斑があると染め斑の原因となり商品価値を低下させるので、U%は小さいほど好ましく、1.2%以下であることがより好ましい。 The Worcester spot U%, which is an index of thickness unevenness in the fiber longitudinal direction, is preferably 1.8% or less, more preferably 1.2% or less in order to obtain a highly uniform fabric. When it is 1.8% or less, dyeing spots after dyeing can be suppressed, which is preferable. In the dyeing process, a large portion of the yarn spots has a small molecular orientation, so that a large amount of dye is absorbed, and if there are thick spots on the yarn, it causes dyeing spots and lowers the commercial value. More preferably, it is 1.2% or less.

本発明の複合繊維の伸縮伸長率は40〜90%である。この伸縮伸長率が高いほど捲縮発現能力が高いことを示しており、40%以上であれば快適なストレッチ特性を与えることができるので好ましい。また、90%以下とすることで布帛としたときにシボがなく、フラット感、寸法安定性が向上し好ましい。そして、より好ましくは50〜80%である。この伸縮伸長率の測定方法の詳細は後述するが、布帛内での拘束力に相当する0.0018cN/dtexと同じ荷重を繊維カセに吊して熱処理することで、布帛拘束下での捲縮発現能力を繊維カセの伸縮伸長率で表せるものである。 The expansion / contraction rate of the composite fiber of the present invention is 40 to 90%. The higher the stretch / stretch rate, the higher the ability to develop crimps, and if it is 40% or more, comfortable stretch characteristics can be provided, which is preferable. Further, when the content is 90% or less, there is no wrinkle when the fabric is used, and the flatness and dimensional stability are improved, which is preferable. And more preferably 50 to 80%. The details of the method for measuring the expansion / contraction rate will be described later, but by suspending the same load as 0.0018 cN / dtex, which corresponds to the binding force in the cloth, on the fiber skein and heat-treating it, the crimping under the cloth restraint is performed. The expression ability can be expressed by the expansion / contraction rate of the fiber case.

本発明の目的を達成するための好ましい製糸方法を説明する。
本発明の海島型複合繊維に用いる口金は、既存の複合用口金を用いることができるが、特開2011−174215号公報に記載されている計量プレート、分配プレート、吐出プレートの大きく3種類の部材が積層された複合口金を用いることで前述したような形態を詳細に規定した本発明の断面形態を安定して得ることができるため好ましい。
A preferred silk reeling method for achieving the object of the present invention will be described.
As the mouthpiece used for the sea-island type composite fiber of the present invention, an existing composite mouthpiece can be used, but there are roughly three types of members: a measuring plate, a distribution plate, and a discharge plate described in Japanese Patent Application Laid-Open No. 2011-174215. It is preferable to use a composite base in which the above-mentioned components are laminated so that the cross-sectional form of the present invention in which the above-mentioned form is defined in detail can be stably obtained.

溶融方法は、プレッシャーメルターによる方法、エクストルーダーによる方法が挙げられるが、エクストルーダーによる溶融が効率と分解抑制の観点から好ましい。溶融温度は使用するポリマの融点よりも10〜40℃高温に設定し行うことが好ましい。
好ましい紡糸温度は260〜290℃である。このような紡糸温度を採用することにより高タフネスで製糸性の良好な複合繊維を得ることができるのである。 本発明に用いる各成分の固有粘度(IV)は、島成分側が高いほうが好ましく、島成分IVは0.80以上であることが好ましい。より好ましくは0.90以上であるとタフネスやストレッチ性が得られやすい。生産性の観点から2.00以下が好ましく、より好ましくは1.80以下である。
Examples of the melting method include a pressure melter method and an extruder method, but melting with an extruder is preferable from the viewpoint of efficiency and decomposition suppression. The melting temperature is preferably set to 10 to 40 ° C. higher than the melting point of the polymer used.
The preferred spinning temperature is 260-290 ° C. By adopting such a spinning temperature, it is possible to obtain a composite fiber having high toughness and good spinning performance. The intrinsic viscosity (IV) of each component used in the present invention is preferably higher on the island component side, and the island component IV is preferably 0.80 or more. More preferably, when it is 0.90 or more, toughness and stretchability can be easily obtained. From the viewpoint of productivity, it is preferably 2.00 or less, and more preferably 1.80 or less.

海成分IVは、0.40以上であることが好ましく、0.45以上、0.80以下がより好ましい。 The sea component IV is preferably 0.40 or more, more preferably 0.45 or more and 0.80 or less.

高粘度の島成分と低粘度の海成分のIV差が0.40以上であると、良好なストレッチ性が発揮され好ましい。IV差は1.00以下であれば製糸性に悪影響を与えることも少なく好ましい。 When the IV difference between the high-viscosity island component and the low-viscosity sea component is 0.40 or more, good stretchability is exhibited, which is preferable. If the IV difference is 1.00 or less, it is preferable because it does not adversely affect the silk reeling property.

島成分に含まれる無機粒子の含有率は3.0wt%以下がタフネスとストレッチ性が向上するため好ましく、より好ましくは2.0wt%以下である。 The content of the inorganic particles contained in the island component is preferably 3.0 wt% or less because the toughness and stretchability are improved, and more preferably 2.0 wt% or less.

海成分に含まれる無機微粒子の含有率は0.05wt%以上であると工程通過性が向上するため好ましい。より好ましくは0.10wt%以上、更に好ましくは0.20wt%以上であり、3.0wt%以下、より好ましくは2.0wt%以下が工程通過中にガイドを過度に摩耗させること無く好ましい。無機微粒子は酸化チタンが不透明性に優れ、かつ取り扱い性のしやすさ、価格面、太陽光線に対する諸機能等の点で好ましい。 It is preferable that the content of the inorganic fine particles contained in the sea component is 0.05 wt% or more because the process passability is improved. More preferably 0.10 wt% or more, still more preferably 0.20 wt% or more, and more preferably 3.0 wt% or less, more preferably 2.0 wt% or less without excessive wear of the guide during the process passage. Titanium oxide is preferable as the inorganic fine particles in terms of opacity, ease of handling, price, and various functions against sunlight.

本発明の海島型複合繊維は、吐出されたポリマを未延伸糸として一旦巻き取った後に延伸する2工程法のほか、紡糸および延伸工程を連続して行う直接紡糸延伸法や高速製糸法など、いずれのプロセスにおいても製造できるが、均一性、ストレッチ性の観点から、引き取った複合繊維を一旦巻き取ることなく加熱ローラーで延伸、熱処理した後巻き取る1工程法を採用することが好ましい。上記の1工程法は、給油した後、引き取り、巻き取ることなく連続して延伸工程に導き、第1ホットローラ(1HR)に導き、1段または2段階で延伸し、第2ホットローラ(2HR)にて熱セットした後、巻き取る。この際に、好ましい紡糸速度は1100m/分以上、3000m/分以下である。3000m/分以下で紡糸することで、紡糸張力を0.3g/dtex以下に抑えることができ、繊維内部構造の歪みを抑制できるため好ましい。そして、引取後連続して延伸を行う直接紡糸延伸方式が品質の安定、特に繊維長手方向での強伸度バラツキを抑制でき、さらには工程の省略化によるコストダウンが図れるので好ましい。 The sea-island type composite fiber of the present invention includes a two-step method in which the discharged polymer is once wound as an undrawn yarn and then stretched, a direct spinning drawing method in which the spinning and drawing steps are continuously performed, a high-speed spinning method, and the like. Although it can be produced in any of the processes, from the viewpoint of uniformity and stretchability, it is preferable to adopt a one-step method in which the taken-up composite fiber is drawn by a heating roller without being wound once, heat-treated, and then wound. In the above one-step method, after refueling, it is continuously led to a stretching step without taking up and winding, leading to a first hot roller (1HR), stretching in one or two steps, and a second hot roller (2HR). ), Then wind up. At this time, the preferable spinning speed is 1100 m / min or more and 3000 m / min or less. By spinning at 3000 m / min or less, the spinning tension can be suppressed to 0.3 g / dtex or less, and the distortion of the fiber internal structure can be suppressed, which is preferable. The direct spinning and drawing method, in which the fiber is continuously drawn after being taken up, is preferable because the quality is stable, the variation in the strength and elongation in the fiber longitudinal direction can be suppressed, and the cost can be reduced by omitting the process.

延伸温度としては、未延伸糸のガラス転移温度付近である50℃以上、80℃以下で行なうことが好ましい。50℃以上とすることで均一延伸でき、80℃以下とすることで延伸ロールへの融着や繊維の自発伸長による操業性悪化を防ぐことができる。また、延伸後には、未延伸糸の結晶速度が最大となる温度で熱セットすることが好ましく、130℃以上、220℃以下が好ましい。熱セットすることで繊維の結晶化を促進し、強度を高くでき、伸縮伸長率、収縮応力、沸騰水収縮率を始め、各種の糸物性の安定化が図れるので好ましい。また、2HR−3ゴデットローラ(3GR)間でリラックス率を1.0〜5.5%とすることで延伸によって生じたポリエステル分子非晶部位の歪みを緩和することができるため、巻締り抑制効果、耐磨耗性向上効果、糸物性の均一化が得られ、さらにはストレッチ性を向上できるので好ましい。 The stretching temperature is preferably 50 ° C. or higher and 80 ° C. or lower, which is close to the glass transition temperature of the undrawn yarn. Uniform stretching can be achieved by setting the temperature to 50 ° C. or higher, and deterioration of operability due to fusion to the drawing roll or spontaneous elongation of the fiber can be prevented by setting the temperature to 80 ° C. or lower. Further, after drawing, the heat is preferably set at a temperature at which the crystal velocity of the undrawn yarn is maximized, preferably 130 ° C. or higher and 220 ° C. or lower. By heat setting, crystallization of fibers can be promoted, strength can be increased, and various yarn physical properties such as expansion / contraction rate, contraction stress, and boiling water shrinkage rate can be stabilized, which is preferable. Further, by setting the relaxation rate between the 2HR-3 Godet rollers (3GR) to 1.0 to 5.5%, the distortion of the polyester molecular amorphous portion caused by stretching can be alleviated, so that the effect of suppressing the tightening can be achieved. It is preferable because the effect of improving abrasion resistance, uniform thread physical properties, and stretchability can be obtained.

熱セットした糸条は巻取機で巻き取るが、巻取張力は0.02g/dtex以上、0.15g/dtex以下とすることが好ましい。パッケージに巻いた際に糸物性の内外層差の軽減、サドルやバルジの軽減、そして、伸縮伸長率、沸騰水収縮率の安定化が図れるので好ましい。 The heat-set yarn is wound by a winder, and the winding tension is preferably 0.02 g / dtex or more and 0.15 g / dtex or less. When wound around a package, it is preferable because it can reduce the difference between the inner and outer layers of the thread physical properties, reduce the saddle and bulge, and stabilize the expansion / contraction rate and the boiling water shrinkage rate.

以上、本発明の偏心海島型複合繊維は、均一な物性を有し、生産性が良好で、かつ、布帛として用いた時に、ソフトでストレッチ性、フラット感、寸法安定性に優れ、シボがなく、耐摩耗性、耐界面剥離性を具備することが、極限技術の製造方法により初めて達成できるのである。 As described above, the eccentric sea-island type composite fiber of the present invention has uniform physical properties, good productivity, is soft and has excellent stretchability, flatness, and dimensional stability when used as a fabric, and has no wrinkles. , Abrasion resistance and interfacial peeling resistance can be achieved for the first time by the manufacturing method of the extreme technology.

以下、実施例を挙げて具体的に説明する。なお、実施例の主な測定値は以下の方法で測定した。 Hereinafter, examples will be specifically described. The main measured values of the examples were measured by the following methods.

(1)固有粘度(IV)
定義式のηrは、純度98%以上のO−クロロフェノール(OCP)10mL中に試料ポリマを0.8g溶かし、25℃の温度にてオストワルド粘度計を用いて相対粘度ηrを下記の式により求め、固有粘度(IV)を算出した。
ηr=η/η0=(t×d)/(t0×d0)
固有粘度(IV)=0.0242ηr+0.2634
[η:ポリマ溶液の粘度、η0:OCPの粘度、t:溶液の落下時間(秒)、d:溶液の密度(g/cm)、t0:OCPの落下時間(秒)、d0:OCPの密度(g/cm)。
(1) Intrinsic viscosity (IV)
For the ηr of the definition formula, 0.8 g of the sample polymer is dissolved in 10 mL of O-chlorophenol (OCP) having a purity of 98% or more, and the relative viscosity ηr is calculated by the following formula using an Ostwald viscometer at a temperature of 25 ° C. , The intrinsic viscosity (IV) was calculated.
ηr = η / η0 = (t × d) / (t0 × d0)
Intrinsic viscosity (IV) = 0.0242ηr + 0.2634
[Η: viscosity of polymer solution, η0: viscosity of OCP, t: fall time of solution (seconds), d: density of solution (g / cm 3 ), t0: fall time of OCP (seconds), d0: OCP Density (g / cm 3 ).

(2)複合繊維断面の片側半分に含まれる島面積の割合、島:海の面積比、複合繊維の半径に対する島と複合繊維外周間の厚み、島の総面積と島周長(海島界面長)の関係
各実施例及び比較例により得られた繊維の断面をキーエンス(株)社マイクロスコープVHX−2000を用いて観察し、付属の画像解析ソフトにて各値を測定した。島面積と島周長の関係については、画像解析により算出した島面積Sと島周長Lが下式を満たす場合は○、満たさない場合は×とした。
(島総面積と島周長の関係)=L>(2πS)1/2+(8S/π)1/2
(2) Ratio of island area included in one half of the cross section of composite fiber, island: sea area ratio, thickness between island and composite fiber outer circumference to radius of composite fiber, total area of island and island circumference (sea-island interface length) ) Relationship The cross sections of the fibers obtained in each Example and Comparative Example were observed using a microscope VHX-2000 manufactured by Keyence Co., Ltd., and each value was measured with the attached image analysis software. Regarding the relationship between the island area and the island perimeter, if the island area S and the island perimeter L calculated by image analysis satisfy the following equation, it is evaluated as ◯, and if it does not satisfy, it is evaluated as ×.
(Relationship between total island area and island circumference) = L> (2πS) 1/2 + (8S / π) 1/2 .

(3)断面扁平率
前述(2)と同様に各実施例及び比較例により得られた繊維の断面を解析し、以下の式にしたがって断面扁平率を算出した。
(断面扁平率)=長径A/短径B 。
(3) Cross-sectional flatness The cross-sections of the fibers obtained in each Example and Comparative Example were analyzed in the same manner as in (2) above, and the cross-sectional flatness was calculated according to the following formula.
(Flattening in cross section) = major axis A / minor axis B.

(4)強度、伸度、タフネス
JIS L1013(2010、化学繊維フィラメント糸試験方法)に従い測定した。タフネスは以下の式にて算出した。
(タフネス)=(強度)×(伸度)0.5
(4) Strength, Elongation, Toughness Measured according to JIS L1013 (2010, chemical fiber filament yarn test method). The toughness was calculated by the following formula.
(Toughness) = (Strength) x (Elongation) 0.5 .

(5)伸縮伸長率
伸縮伸長率はJIS L1013(2010)、8.11項C法(簡便法)に従い算出した。
(5) Stretching / stretching ratio The stretching / stretching ratio was calculated according to JIS L1013 (2010), Section 8.11 C method (simple method).

(6)ウースター斑U%
Zellweger社製USTER TESTER 4−CXを使用し、200m/分の
速度で5分間糸を給糸しながらノーマルモードで測定を行った。
(6) Worcester spot U%
Using USTER TESTER 4-CX manufactured by Zellweger, the measurement was performed in the normal mode while feeding the yarn at a speed of 200 m / min for 5 minutes.

(7)操業性
製糸量5トンの連続紡糸を3回実施し、トンあたりの平均の糸切れ回数を算出した。糸切れ回数に応じ、以下の評価点数とした。
3点:糸切れ回数1.0回/トン未満
2点:糸切れ回数1.0回/トン以上、2.0回/トン未満
1点:糸切れ回数2.0回/トン以上、3.0回/トン未満
0点:糸切れ回数3.0回/トン以上 。
(7) Operability Continuous spinning with a spinning volume of 5 tons was carried out three times, and the average number of yarn breaks per ton was calculated. The following evaluation points were used according to the number of thread breaks.
3 points: Number of thread breaks less than 1.0 times / ton 2 points: Number of thread breaks 1.0 times / ton or more, less than 2.0 times / ton 1 point: Number of thread breaks 2.0 times / ton or more 3. 0 times / ton less than 0 points: Thread breakage 3.0 times / ton or more.

(8)耐摩耗性
各実施例及び比較例により得られた繊維を用い、経密度3580本/m、緯密度3580本/mでゾッキ平織物生機を作成し、摩擦子として綿6号帆布を用い、荷重を1000gとし、測定時間/擦過回数を30分/2588回とした以外はJIS L1076(2012,織物及び編物のピリング試験方法)7.3法(アピアランス・リテンション法)に準じて評価し、下記の通り点数化した。
3点:ピルの数が標準写真のN号程度のもの
2点:ピルの数が標準写真のL号程度のもの
1点:ピルの数が標準写真のM号程度のもの
0点:ピルの数が標準写真のH号程度のもの又はその程度を越えるもの 。
(8) Abrasion resistance Using the fibers obtained in each Example and Comparative Example, a Zokki plain woven fabric machine was prepared with a warp density of 3580 fibers / m and a weft density of 3580 fibers / m, and cotton No. 6 canvas was used as a friction element. Evaluated according to JIS L1076 (2012, pilling test method for woven fabrics and knitted fabrics) 7.3 method (appearance retention method) except that the load was 1000 g and the measurement time / number of scrapes was 30 minutes / 2588 times. , Scored as follows.
3 points: Number of pills is about N in the standard photo 2 points: Number of pills is about L in the standard photo 1 point: Number of pills is about M in the standard photo 0 points: Of pills The number is about H in the standard photo or more than that.

(9)耐界面剥離性
前述(8)にて得られた評価後の布帛表面をキーエンス(株)社走査型電子顕微鏡にて観察し、600μm×900μmの視野において、布帛を構成する複合繊維の界面が剥離している単糸本数を数え、耐界面剥離性を評価した。
3点:0本
2点:1本〜10本
1点:11本〜30本
0点:31本以上 。
(9) Interfacial peeling resistance The surface of the evaluated fabric obtained in (8) above was observed with a scanning electron microscope manufactured by KEYENCE CORPORATION, and the composite fibers constituting the fabric were observed in a field of view of 600 μm × 900 μm. The number of single yarns with peeled interfaces was counted to evaluate the peeling resistance.
3 points: 0 2 points: 1 to 10 1 point: 11 to 30 0 points: 31 or more.

(10)ストレッチ性布帛の品位
前述(8)と同じ要領で得られた生機を95℃にて精錬し、140℃にてプリセット後、起毛処理を施した。その後、130℃にてブルー色に染色し、ピンテンターを用い160℃にて仕上げセットを行い起毛織物を得た。得られた起毛編物を1m角に切り取り、経験年数3年以上の評価者3名により、該織物1点と比較例3のPTT/PETのサイドバイサイド糸使いの織物とを比較し、該評価者3名の合議によって以下の評価点数とした。
3点:比較例3のサイドバイサイド糸使用織物と比較して同等以上のストレッチ性とフラット感、寸法安定性を併せ持ち、シボ立ちがなく品位良好である。
2点:比較例3のサイドバイサイド糸使用織物と比較してストレッチ性がやや劣位、または布帛のフラット感、寸法安定性がやや乏しく、シボ立ちがあるなど品位がやや劣位である。
1点:比較例3のサイドバイサイド糸使用織物と比較してストレッチ性が劣位、またはまたは布帛のフラット感、寸法安定性が乏しく、シボ立ちが大きいなど品位が劣位である。
0点:ストレッチ性織物用途としての使用に適さない。
(10) Quality of Stretchable Fabric The raw material obtained in the same manner as in (8) above was refined at 95 ° C., preset at 140 ° C., and then brushed. Then, it was dyed blue at 130 ° C. and finished set at 160 ° C. using a pin tenter to obtain a brushed fabric. The obtained brushed knitted fabric was cut into 1 m squares, and three evaluators with three years or more of experience compared one point of the woven fabric with the woven fabric using side-by-side yarn of PTT / PET of Comparative Example 3, and the evaluator 3 The following evaluation points were given by the discussion of the names.
3 points: Compared with the woven fabric using side-by-side yarn of Comparative Example 3, it has the same or better stretchability, flatness, and dimensional stability, and has good quality without wrinkles.
2 points: Compared with the woven fabric using side-by-side yarn of Comparative Example 3, the stretchability is slightly inferior, or the flatness of the fabric, the dimensional stability is slightly poor, and the quality is slightly inferior such as wrinkles.
1 point: Compared with the woven fabric using side-by-side yarn of Comparative Example 3, the stretchability is inferior, or the quality of the fabric is inferior such as flatness, poor dimensional stability, and large graining.
0 points: Not suitable for use as stretchable woven fabrics.

(11)総合評価
前述(7)〜(10)の評価点数を足し合わせ、以下の基準で合格・不合格を判定した。
合格:10点以上
不合格:10点未満
実施例1
酸化チタンを0.30重量%含有した固有粘度(IV)が1.10のホモPTTポリマ(高粘度成分、融点225℃)と、酸化チタンを0.40重量%含有したIVが0.51のホモPETポリマ(低粘度成分、融点255℃)を準備し、高粘度成分はエクストルーダーにて255℃にて溶融し、低粘度成分はエクストルーダーにて285℃にて溶融し、紡糸温度を270℃に設定し、計量ポンプによる計量を行い、パック内での濾過を経て、口金ノズルにて図1(a)のような断面形状となるように複合面積比率50:50の偏心海島複合型に吐出させた。
(11) Comprehensive evaluation The evaluation points of (7) to (10) above were added up, and pass / fail was judged according to the following criteria.
Pass: 10 points or more Fail: Less than 10 points Example 1
Homo PTT polymer (high viscosity component, melting point 225 ° C.) containing 0.30% by weight of titanium oxide and IV having an intrinsic viscosity (IV) of 1.10 and 0.51 IV containing 0.40% by weight of titanium oxide. Homo PET polyma (low viscosity component, melting point 255 ° C) is prepared, the high viscosity component is melted at 255 ° C in the extruder, the low viscosity component is melted at 285 ° C in the extruder, and the spinning temperature is 270. Set to ℃, weigh with a measuring pump, filter in the pack, and then use the base nozzle to make an eccentric sea-island composite type with a composite area ratio of 50:50 so that the cross-sectional shape is as shown in FIG. 1 (a). It was discharged.

吐出したポリマは図2に示す製糸装置にて繊維化した。すなわち、冷却2、給油3を経て1250m/分の速度、55℃の表面温度に設定された引取りロール(第1HR5)にて引き取り、一旦巻き取ることなく、連続して4200m/分、165℃に設定された熱処理ロール(第2HR6)に引き回し、3.4倍の延伸を実施した。延伸、熱処理された糸条は4074m/分の速度に設定されたゴデットローラ(第3GR7、第4GR8)にて張力調整し、4075m/分の速度で0.15g/dtexの張力にてチーズ状パッケージを巻き取り、56dtex−24フィラメントの偏心海島型ポリトリメチレン系ポリエステル複合繊維を得た。得られた繊維に対する評価結果を表1に示した。 The discharged polymer was fibrized by the silk reeling apparatus shown in FIG. That is, after cooling 2 and refueling 3, the product is picked up by a take-up roll (1st HR5) set at a speed of 1250 m / min and a surface temperature of 55 ° C., and is continuously taken up at 4200 m / min and 165 ° C. without being wound once. It was routed to a heat treatment roll (second HR6) set in 1 and stretched 3.4 times. The tension of the stretched and heat-treated yarn is adjusted by a godet roller (3rd GR7, 4th GR8) set at a speed of 4074 m / min, and a cheese-like package is formed at a speed of 4075 m / min with a tension of 0.15 g / dtex. It was wound to obtain an eccentric sea-island type polytrimethylene polyester composite fiber having 56 dtex-24 filaments. The evaluation results for the obtained fibers are shown in Table 1.

実施例1は、強伸度、タフネスが高く、伸縮伸張率が65%と良好でU%斑も小さく、操業性も良好であった。得られた原糸を製織に供した結果、製織糸切れは少なく、布帛とした時のストレッチ性、品位、風合いが良好であった。さらに、布帛にて耐摩耗性を評価したところ、布帛の耐摩耗性は高く、表面の削れや、海島成分界面の剥離による白化現象は生じなかった。 In Example 1, the strength and toughness were high, the stretch and stretch ratio was as good as 65%, the U% spots were small, and the operability was also good. As a result of subjecting the obtained raw yarn to weaving, the weaving yarn breakage was small, and the stretchability, quality, and texture of the fabric were good. Furthermore, when the abrasion resistance of the fabric was evaluated, the abrasion resistance of the fabric was high, and no whitening phenomenon occurred due to surface scraping or peeling of the sea-island component interface.

実施例2〜3、比較例1
実施例2、3は島成分ポリマをそれぞれ表1の通り変更した以外は実施例1に準じた。
Examples 2-3, Comparative Example 1
Examples 2 and 3 conformed to Example 1 except that the island component polymers were changed as shown in Table 1.

実施例2は、操業性はやや実施例1と比べて劣るものの、原糸物性は同等レベルであった。布帛とした時のストレッチ性は実施例1に比べて高く、ややハリ感にかけるが、耐摩耗性、耐界面剥離性は実施例1と同等であった。 In Example 2, the operability was slightly inferior to that in Example 1, but the physical properties of the raw yarn were at the same level. The stretchability of the fabric was higher than that of Example 1, and the fabric was slightly firm, but the abrasion resistance and interfacial peeling resistance were the same as those of Example 1.

実施例3は、強伸度などの物性、操業性は良好であった。ストレッチ性がやや乏しいが、布帛にはハリ感があり、品位良好であった。 In Example 3, physical properties such as strength and elongation and operability were good. Although the stretchability was slightly poor, the fabric had a firm feeling and was of good quality.

比較例1は海島両成分にポリ乳酸(以下PLAと称する)を用いたところ、耐摩耗性が低く、界面剥離も確認された。また、ストレッチ性も不十分であった。 In Comparative Example 1, when polylactic acid (hereinafter referred to as PLA) was used for both components of Kaijima, wear resistance was low and interfacial peeling was confirmed. In addition, the stretchability was also insufficient.

Figure 0006753182
Figure 0006753182

実施例4〜7、比較例2〜6
海島型複合糸の断面複合形態を表2の通り変更し、複合繊維を得た。
Examples 4 to 7, Comparative Examples 2 to 6
The cross-sectional composite morphology of the Kaijima-type composite yarn was changed as shown in Table 2 to obtain composite fibers.

図1(b)の様な断面となるように口金を設計した実施例4では、実施例1と同様に優れたストレッチ性と耐摩耗性を持った布帛が得られた。 In Example 4 in which the base was designed so as to have a cross section as shown in FIG. 1 (b), a fabric having excellent stretchability and abrasion resistance was obtained as in Example 1.

実施例5は、図1(c)の様な断面の複合繊維を得た。実施例1よりも界面剥離が生じにくく、ストレッチ性も十分な布帛が得られた。 In Example 5, composite fibers having a cross section as shown in FIG. 1 (c) were obtained. A fabric having less interfacial peeling and sufficient stretchability than in Example 1 was obtained.

実施例6は、図1(d)の様に島数を5島とすることで、やや原糸の伸縮伸長率が低下したが、2HR−3GRストレッチ率を調整することで、合格レベルの伸縮伸長率を得、布帛とした時、ストレッチ性と耐摩耗性を両立した。 In Example 6, by setting the number of islands to 5 as shown in FIG. 1 (d), the expansion / contraction rate of the raw yarn was slightly reduced, but by adjusting the 2HR-3GR stretch rate, the expansion / contraction of the pass level was achieved. When an elongation rate was obtained and the fabric was used, both stretchability and abrasion resistance were achieved.

実施例7は、図1(e)の様な断面の複合繊維を得た。やや伸縮伸長率が低下したが、合格レベルであった。 In Example 7, a composite fiber having a cross section as shown in FIG. 1 (e) was obtained. The expansion / contraction rate decreased slightly, but it was at the passing level.

比較例2は、図1(f)の様なサイドバイサイド糸を製糸した。サイドバイサイドに貼り合わせることで、やや断面が扁平化したため、操業性が低下し、また、布帛での評価では、ストレッチ性は高いものの、耐摩耗性、耐界面剥離性に劣る結果となった。 In Comparative Example 2, a side-by-side yarn as shown in FIG. 1 (f) was produced. By sticking to the side-by-side, the cross section was slightly flattened, so that the operability was lowered. Moreover, in the evaluation of the fabric, although the stretchability was high, the abrasion resistance and the interfacial peeling resistance were inferior.

比較例3は、図1(g)の様な芯が真円に近い偏心芯鞘糸を製糸した。原糸の伸縮伸長率が低く、また、PTT、PET界面長が短いため、耐界面剥離性に劣る結果となった。 In Comparative Example 3, an eccentric core sheath yarn having a core close to a perfect circle as shown in FIG. 1 (g) was produced. Since the expansion and contraction rate of the raw yarn is low and the interface length between PTT and PET is short, the result is that the interface peeling resistance is inferior.

比較例4は、図1(h)の様な芯が半円状である偏心芯鞘糸を製糸した。偏心が大きいため、伸縮伸長率が高く、布帛とした時も優れたストレッチ性を示したが、芯部分の面積に対して界面長が不十分であるため、界面剥離が生じた。 In Comparative Example 4, an eccentric core sheath yarn having a semicircular core as shown in FIG. 1H was produced. Since the eccentricity is large, the expansion and contraction rate is high, and excellent stretchability is exhibited even when the fabric is used, but the interface length is insufficient with respect to the area of the core portion, so that interface peeling occurs.

比較例5は、図1(i)の様な偏心海島糸を製糸した。海島複合比を変更し、海リッチとしたことで、製糸性が向上し、タフネスがアップした。布帛とした時の耐摩耗性、耐界面剥離性も十分だが、ストレッチ性に乏しく不合格となった。 In Comparative Example 5, an eccentric sea island yarn as shown in FIG. 1 (i) was produced. By changing the sea-island composite ratio and making it sea-rich, the silk-reeling property has improved and the toughness has improved. Although it has sufficient abrasion resistance and interfacial peeling resistance when it is used as a fabric, it has poor stretchability and is rejected.

比較例6は、図1(j)の様に30島の偏心海島糸であり、複合成分の界面剥離は格段に生じにくくなったが、島成分を多数に分割して詰め込んだため、島融着、島成分の複合繊維表面への露出などが生じ、操業性が著しく低下した。 Comparative Example 6 is an eccentric sea island thread of 30 islands as shown in FIG. 1 (j), and although interfacial peeling of the composite component is much less likely to occur, the island component is divided into a large number and packed, so that the island fusion Wearing and exposure of island components to the surface of the composite fiber occurred, and the operability was significantly reduced.

Figure 0006753182
Figure 0006753182

実施例8〜11、比較例7〜8
海島複合比を表3の通り変更し、実施例8、9、比較例7については図1(a)の断面とした以外は実施例1と同様に製糸し複合繊維を得た。実施例10、11、比較例8については図1(d)の断面とし、2HR−3GR間ストレッチ率を1.5%とした以外は実施例1と同様に製糸し、複合繊維を得た。
Examples 8-11, Comparative Examples 7-8
The sea-island composite ratio was changed as shown in Table 3, and the composite fibers were obtained by spinning in the same manner as in Example 1 except that the cross sections of Examples 8 and 9 and Comparative Example 7 were taken in FIG. 1 (a). Examples 10 and 11 and Comparative Example 8 had the cross section shown in FIG. 1 (d), and the yarn was spun in the same manner as in Example 1 except that the stretch ratio between 2HR and 3GR was 1.5% to obtain composite fibers.

島:海の比率を45:55と、海リッチとした実施例8では、タフネスが若干低下したが、操業性は問題なかった。ストレッチ性がやや低下したものの、島成分と複合繊維外周間の間隔が広くなったことから、耐摩耗性が向上し、合格レベルであった。 In Example 8 in which the island: sea ratio was 45:55 and the sea was rich, the toughness was slightly reduced, but the operability was not a problem. Although the stretchability was slightly reduced, the distance between the island component and the outer circumference of the composite fiber was widened, so that the wear resistance was improved and the level was acceptable.

島:海の比率を40:60と、さらに海リッチとした実施例9では、タフネスが低下したものの、操業性は問題なかった。ストレッチ性が低下したものの、耐摩耗性は問題なく、耐界面剥離性も合格レベルであった。 In Example 9 in which the island: sea ratio was 40:60 and the sea was rich, the toughness was reduced, but the operability was not a problem. Although the stretchability was reduced, there was no problem with wear resistance, and the interfacial peeling resistance was at the acceptable level.

島:海の比率を55:45と、島リッチとした実施例10では、島成分と複合繊維外周間の間隔がやや狭まったが、操業性、耐摩耗性は十分であり、ストレッチ性も良好で、合格となった。 In Example 10 in which the island: sea ratio was 55:45 and the island was rich, the distance between the island component and the outer circumference of the composite fiber was slightly narrowed, but the operability and abrasion resistance were sufficient, and the stretchability was also good. So, I passed.

島:海の比率を60:40と、さらに島リッチとした実施例11では、島成分と複合繊維外周間の間隔がさらに狭まり、操業性、耐摩耗性の悪化が見られたが、ストレッチ性、耐界面剥離性が良好で、合格となった。 In Example 11 in which the island: sea ratio was 60:40 and the island was further rich, the distance between the island component and the outer periphery of the composite fiber was further narrowed, and the operability and abrasion resistance were deteriorated, but the stretchability was observed. , The interface peeling resistance was good, and it passed.

島:海の比率を35:65とした比較例7では、厚皮とすることで、操業性と布帛の耐摩耗性は向上したが、ストレッチ性に劣り不合格となった。 In Comparative Example 7 in which the island: sea ratio was 35:65, the thick skin improved the operability and the abrasion resistance of the fabric, but was inferior in stretchability and failed.

島:海の比率を65:35とした比較例8では、薄皮となったことで、製糸、高次加工でのガイドなどへの耐擦過性が低くなり、結果として布帛の耐摩耗性にも悪影響となったため、ストレッチ性は十分であるが、不合格となった。 In Comparative Example 8 in which the island: sea ratio was 65:35, the thin skin reduced the abrasion resistance to the guides in silk reeling and higher-order processing, and as a result, the abrasion resistance of the fabric was also improved. Due to the adverse effect, the stretchability was sufficient, but it was rejected.

実施例12、比較例9
海島複合繊維の断面扁平率を変更するため、口金最終プレートの吐出孔形状を変更した以外は、実施例1に準じた条件で製糸し、複合繊維を得た。扁平率とその他の条件、評価結果を表3に示す。
Example 12, Comparative Example 9
In order to change the cross-sectional flatness of the Kaijima composite fiber, silk reeling was performed under the conditions according to Example 1 except that the discharge hole shape of the final plate of the base was changed to obtain a composite fiber. Table 3 shows the flattening, other conditions, and the evaluation results.

断面をやや扁平化した実施例12では、操業性がやや低下したものの、良好なストレッチ性と耐摩耗性を両立した。 In Example 12, in which the cross section was slightly flattened, the operability was slightly lowered, but both good stretchability and wear resistance were achieved.

断面をさらに扁平化した比較例9では、操業性が大幅に低下した。ストレッチ性は高かったものの、耐摩耗性も低下し、不合格となった。 In Comparative Example 9 in which the cross section was further flattened, the operability was significantly reduced. Although the stretchability was high, the wear resistance was also reduced and the product was rejected.

Figure 0006753182
Figure 0006753182

実施例13〜14
海成分ポリマのIVを表3の通り変更した以外は、実施例1に準じた条件で製糸し、複合繊維を得た。
Examples 13-14
A composite fiber was obtained by spinning under the conditions according to Example 1 except that the IV of the marine polymer was changed as shown in Table 3.

海成分ポリマと島成分ポリマのIV差が小さくなるにつれて、原糸の伸縮伸長率並びに、布帛とした時のストレッチ性が低下したが、実施例13、14ともに合格となった。 As the IV difference between the sea component polymer and the island component polymer became smaller, the stretch / elongation rate of the raw yarn and the stretchability when made into a cloth decreased, but both Examples 13 and 14 passed.

実施例15〜20
海成分ポリマの酸化チタン含有量を表4の通り変更した以外は、実施例1に準じた条件で製糸し、複合繊維を得た。
Examples 15-20
A composite fiber was obtained by spinning under the conditions according to Example 1 except that the titanium oxide content of the marine polymer was changed as shown in Table 4.

実施例15は、繊維表面摩擦が高くなり操業性がやや悪化し、耐摩耗性も低下したが合格レベルであった。 In Example 15, the fiber surface friction was high, the operability was slightly deteriorated, and the abrasion resistance was also lowered, but the results were acceptable.

実施例16は、原糸のタフネスはやや向上した。繊維表面摩擦がやや高いが、耐摩耗性も問題なく合格レベルであった。 In Example 16, the toughness of the raw yarn was slightly improved. The fiber surface friction was a little high, but the wear resistance was at the acceptable level without any problem.

実施例17は、原糸物性、ストレッチ性、耐摩耗性、耐界面剥離性いずれも良好な結果を得た。 In Example 17, good results were obtained in all of the raw yarn physical properties, stretchability, abrasion resistance, and interfacial peeling resistance.

実施例18〜20は、繊維表面への酸化チタンの露出により、操業性が経時で悪化したが、耐摩耗性、耐界面剥離性、ストレッチ性布帛の品位は問題無く、合格であった。 In Examples 18 to 20, the operability deteriorated with time due to the exposure of titanium oxide to the fiber surface, but the abrasion resistance, the interfacial peeling resistance, and the quality of the stretchable fabric were not a problem and passed.

Figure 0006753182
Figure 0006753182

実施例21
実施例1と同じポリマを使用し、口金から吐出させるまでは実施例1と同条件とし、冷却、給油後1250m/分速度で複合繊維をワインダーで巻取り、未延伸糸を得た。得られた未延伸糸を公知の延伸機を用いホットロール65℃、ホットプレート155℃にて、延伸倍率は伸度が31%になるように調整し、延伸速度800m/分で延伸を行い、56dtex/24fの延伸糸を得た。得られた複合繊維はDSDに比べ、操業性が低下した以外は布帛の耐摩耗性、ストレッチ性ともに合格レベルであった。
Example 21
Using the same polymer as in Example 1, the conditions were the same as in Example 1 until the fibers were discharged from the mouthpiece, and after cooling and refueling, the composite fibers were wound with a winder at a speed of 1250 m / min to obtain undrawn yarn. The obtained undrawn yarn was adjusted to a draw ratio of 31% at a hot roll of 65 ° C. and a hot plate of 155 ° C. using a known drawing machine, and drawn at a drawing speed of 800 m / min. A drawn yarn of 56 dtex / 24f was obtained. Compared with DSD, the obtained composite fiber had acceptable levels of abrasion resistance and stretchability of the fabric except that the operability was lowered.

実施例22〜24
延伸倍率を表5の通り変更した以外は実施例1に準じた条件で製糸し複合繊維を得た。
Examples 22-24
A composite fiber was obtained by spinning under the conditions according to Example 1 except that the draw ratio was changed as shown in Table 5.

実施例22では高伸度となり、ストレッチ性布帛の品位はやや低下したが、操業性、耐摩耗性、耐界面剥離性いずれも良好な結果を得た。実施例23、24では操業性、耐摩耗性が悪化したものの合格レベルであった。 In Example 22, the elongation was high and the quality of the stretchable fabric was slightly lowered, but good results were obtained in all of operability, abrasion resistance, and interfacial peeling resistance. In Examples 23 and 24, the operability and wear resistance were deteriorated, but they were acceptable levels.

実施例25〜26
2HR−3GR間リラックス率を表5の通り変更した以外は実施例1に準じた条件で製糸し複合繊維を得た。
Examples 25-26
A composite fiber was obtained by spinning under the conditions according to Example 1 except that the relaxation rate between 2HR and 3GR was changed as shown in Table 5.

実施例25はやや操業性が低下したがストレッチ性は向上し、耐摩耗性、耐界面剥離性も合格レベルであった。実施例26はストレッチ性がやや低下したが合格レベルであった。 In Example 25, the operability was slightly lowered, but the stretchability was improved, and the wear resistance and the interfacial peeling resistance were also acceptable levels. In Example 26, the stretchability was slightly reduced, but it was a passing level.

Figure 0006753182
Figure 0006753182

1 紡糸口金
2 糸条冷却送風装置
3 油剤付与装置
4 交絡装置
5 第1ホットローラ
6 第2ホットローラ
7 交絡装置
8 第3ゴデットローラ
9 第4ゴデットローラ
10 コンタクトローラ
11 パッケージ
1 Spinning cap 2 Thread cooling blower 3 Oil agent 4 Entanglement device 5 1st hot roller 6 2nd hot roller 7 Entanglement device 8 3rd godet roller 9 4th godet roller 10 Contact roller 11 Package

Claims (4)

海島型複合繊維であって、断面形状が次の(1)から(4)の要件を満足することを特徴とする芳香族ポリエステル系複合繊維。
(1)複合繊維断面を2等分し、かつ2分割された断面のどちらか一方に含まれる島部分の面積比率を最大化するような直線を引いたとき、片側半分に島総面積の80〜95%が含まれる。
(2)複合繊維断面において、島:海の面積比が40:60〜60:40の範囲にある。
(3)島と複合繊維外周間の厚み最薄部が複合繊維半径の3%以上である。
(4)島の総面積をSとしたとき、島周長の合計LがL>(2πS)1/2+(8S/π)1/2を満たす。
An aromatic polyester-based composite fiber that is a sea-island type composite fiber and whose cross-sectional shape satisfies the following requirements (1) to (4).
(1) When the composite fiber cross section is divided into two equal parts and a straight line is drawn to maximize the area ratio of the island portion included in either of the two divided cross sections, 80 of the total island area is drawn on one half. Includes ~ 95%.
(2) In the cross section of the composite fiber, the area ratio of island: sea is in the range of 40:60 to 60:40.
(3) The thinnest portion between the island and the outer circumference of the composite fiber is 3% or more of the radius of the composite fiber.
(4) When the total area of the island is S, the total L of the island circumference satisfies L> (2πS) 1/2 + (8S / π) 1/2 .
2成分よりなる海島型複合繊維であって、(5)、(6)の要件を満足することを特徴とする請求項1に記載の芳香族ポリエステル系複合繊維。
(5)島成分ポリエステルの主たる繰り返し構造単位がトリメチレンテレフタレートまたはブチレンテレフタレートである。
(6)海成分ポリエステルの主たる繰り返し構造単位がエチレンテレフタレートである。
The aromatic polyester-based composite fiber according to claim 1, which is a sea-island type composite fiber composed of two components and satisfies the requirements of (5) and (6).
(5) The main repeating structural unit of the island component polyester is trimethylene terephthalate or butylene terephthalate.
(6) The main repeating structural unit of sea component polyester is ethylene terephthalate.
海島型複合繊維において、島が2つ以上であることを特徴とする請求項1または2に記載の芳香族ポリエステル系複合繊維。 The aromatic polyester-based composite fiber according to claim 1 or 2, wherein the sea-island type composite fiber has two or more islands. 海島型複合繊維において、断面形状の扁平率が1.1以下の略円形であることを特徴とする請求項1から3のいずれかに記載の芳香族ポリエステル系複合繊維。 The aromatic polyester-based composite fiber according to any one of claims 1 to 3, wherein the sea-island type composite fiber has a substantially circular shape having a flatness of 1.1 or less.
JP2016140158A 2016-07-15 2016-07-15 Aromatic polyester composite fiber Expired - Fee Related JP6753182B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016140158A JP6753182B2 (en) 2016-07-15 2016-07-15 Aromatic polyester composite fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016140158A JP6753182B2 (en) 2016-07-15 2016-07-15 Aromatic polyester composite fiber

Publications (2)

Publication Number Publication Date
JP2018009261A JP2018009261A (en) 2018-01-18
JP6753182B2 true JP6753182B2 (en) 2020-09-09

Family

ID=60995083

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016140158A Expired - Fee Related JP6753182B2 (en) 2016-07-15 2016-07-15 Aromatic polyester composite fiber

Country Status (1)

Country Link
JP (1) JP6753182B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4438181B2 (en) * 1999-05-11 2010-03-24 チッソ株式会社 Latent crimpable conjugate fiber and nonwoven fabric using the same
JP4433567B2 (en) * 1999-05-21 2010-03-17 チッソ株式会社 Latent crimpable conjugate fiber and nonwoven fabric using the same

Also Published As

Publication number Publication date
JP2018009261A (en) 2018-01-18

Similar Documents

Publication Publication Date Title
JP7135854B2 (en) Eccentric core-sheath composite fiber and mixed fiber yarn
JP4408880B2 (en) Composite fiber having excellent post-processability and method for producing the same
JP4318726B2 (en) False twisted yarn of polyester composite fiber and its production method
TWI722215B (en) Sea-island composite fiber, false twisted yarn and fiber structure with excellent moisture absorption
JP3859672B2 (en) Composite fiber and method for producing the same
JP2014080718A (en) Normal pressure cation-dyeable polyester fiber, and production method thereof
EP1939337A1 (en) Cheese-like package of highly crimpable conjugated fiber and process for the production of the same
JP2002339169A (en) Latently crimpable polyester conjugate yarn and method for producing the same, latently crimpable polyester conjugate yarn package
JP3885468B2 (en) Bulky polyester composite yarn, production method thereof and fabric
JPH10317230A (en) Sheath-core conjugate yarn
CN114008255A (en) Polyester composite fiber with good elasticity and preparation method thereof
JP6753182B2 (en) Aromatic polyester composite fiber
JP7476619B2 (en) Polyester composite fiber
JP2008274446A (en) Latently crimpable conjugate fiber
JP2007154343A (en) Core-sheath conjugate type partially oriented fiber of polyester and method for producing the same
JP7200624B2 (en) Flat cross-section polyester false twist yarn
JP4506130B2 (en) Dyed yarn and method for producing the same
JP4073835B2 (en) Polyester false twisted yarn for interlining
JP2003342843A5 (en)
JP4334320B2 (en) Package made of composite fiber for high-speed false twisting and manufacturing method thereof
JP3719258B2 (en) Soft stretch yarn, production method and fabric
JP2022040590A (en) Woven or knitted fabric
JP2005146503A (en) Soft stretch yarn and fabric
JP2005113369A (en) Method for producing soft stretch yarn
JP2005133252A5 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190606

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200710

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200721

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200803

R151 Written notification of patent or utility model registration

Ref document number: 6753182

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees