JP6751827B1 - Fungal growth suppression method - Google Patents

Fungal growth suppression method Download PDF

Info

Publication number
JP6751827B1
JP6751827B1 JP2020090779A JP2020090779A JP6751827B1 JP 6751827 B1 JP6751827 B1 JP 6751827B1 JP 2020090779 A JP2020090779 A JP 2020090779A JP 2020090779 A JP2020090779 A JP 2020090779A JP 6751827 B1 JP6751827 B1 JP 6751827B1
Authority
JP
Japan
Prior art keywords
air conditioning
conditioning system
sterilization
room
period
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020090779A
Other languages
Japanese (ja)
Other versions
JP2021188752A (en
Inventor
雅一朗 北川
雅一朗 北川
芳夫 南
芳夫 南
康夫 高野
康夫 高野
Original Assignee
菱機工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 菱機工業株式会社 filed Critical 菱機工業株式会社
Priority to JP2020090779A priority Critical patent/JP6751827B1/en
Application granted granted Critical
Publication of JP6751827B1 publication Critical patent/JP6751827B1/en
Publication of JP2021188752A publication Critical patent/JP2021188752A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/25Greenhouse technology, e.g. cooling systems therefor

Landscapes

  • Greenhouses (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

【課題】室内環境及び空調システムにおいて真菌増殖を防ぐことを目的する。【解決手段】植物工場内の栽培室や病室などの室内及びこれに付随する空調システムにて真菌増殖を抑制する方法に含まれる真菌抑制モードS7Aでは、空調システムの除湿運転を行って室内を低湿度状態に維持する室内除湿工程S11と、空調システムへも減菌が必要かどうかを確認する同時減菌確認工程S13とを含む。同時減菌確認工程S13で肯定的な判定であれば、空調システムを除湿運転から送風運転に切り替えて、空調システム内の経路に室内の乾燥空気を導入し、空調システムと室内との間を循環させるシステム減菌工程S15Aを含み、第2減菌期間の経過後に真菌抑制モードS7Aを完了することを特徴とする。本発明を植物工場に適用する場合は、真空抑制モードS7Aの開始判定に栽培効率や植物の食味悪化防止の面を踏まえた追加条件の確認工程を含むことが好ましい。【選択図】図3PROBLEM TO BE SOLVED: To prevent fungal growth in an indoor environment and an air conditioning system. SOLUTION: In the fungus suppression mode S7A included in the method of suppressing fungal growth in a room such as a cultivation room or a hospital room in a plant factory and an air conditioning system associated therewith, the room is lowered by dehumidifying the air conditioning system. The indoor dehumidification step S11 for maintaining the humidity state and the simultaneous sterilization confirmation step S13 for confirming whether or not the air conditioning system also needs to be sterilized are included. If the judgment is positive in the simultaneous sterilization confirmation step S13, the air conditioning system is switched from the dehumidifying operation to the ventilation operation, dry air in the room is introduced into the path in the air conditioning system, and the air is circulated between the air conditioning system and the room. The system comprises a sterilization step S15A, characterized in that the fungus suppression mode S7A is completed after the lapse of the second sterilization period. When the present invention is applied to a plant factory, it is preferable that the start determination of the vacuum suppression mode S7A includes a step of confirming additional conditions in consideration of cultivation efficiency and prevention of deterioration of plant taste. [Selection diagram] Fig. 3

Description

本発明は、空調システム内で真菌増殖を抑制する方法に関し、例えば、人工光型植物工場において、植物の栽培効率を維持しながら、栽培環境内及び空調システム内の真菌増殖を抑制する方法に関するものである。 The present invention relates to a method of suppressing fungal growth in an air conditioning system, for example, a method of suppressing fungal growth in a cultivation environment and an air conditioning system while maintaining plant cultivation efficiency in an artificial light type plant factory. Is.

(空調システム内の真菌増殖)
空調システムは、住居、病院や食品工場の大型施設の他、後述の人工光型植物工場等の環境を所望の条件に整えるために設置される。しかしながら、空調システム内の熱交換器表面に真菌が発生・増殖することで、人の健康や食品及び植物の品質に悪影響を及ぼすことが問題となっている。
(Fungal growth in air conditioning system)
The air-conditioning system is installed in order to adjust the environment such as a residence, a large facility of a hospital or a food factory, or an artificial light type plant factory described later to a desired condition. However, there is a problem that fungi grow and multiply on the surface of the heat exchanger in the air conditioning system, which adversely affects human health and the quality of food and plants.

(問題1:熱交換器表面での真菌の増殖、空調環境への胞子混入)
具体的には、冷房運転又は除湿運転中の空調システム内において、温度操作用熱交換器の表面は常に高相対湿度である。風下側に加熱源を設け、環境空気を低相対湿度に抑えることができたとしても、前述の熱交換器表面を暖めるには至らず(もし温められてしまったら、除湿機能を果たさない)、熱交換器の表面は絶えず高相対湿度のままである。この結果、該熱交換器表面は真菌増殖の温床(図7参照)となり、環境中への胞子混入を促進してしまう。なお、加熱・送風運転の場合、熱交換器表面での水分凝縮は起きず、相対湿度は上昇しないため、真菌増殖や胞子混入も起きない。
(Problem 1: Fungal growth on the surface of the heat exchanger, spore contamination in the air-conditioned environment)
Specifically, the surface of the temperature control heat exchanger always has a high relative humidity in the air conditioning system during the cooling operation or the dehumidifying operation. Even if a heating source is provided on the leeward side and the environmental air can be suppressed to a low relative humidity, it does not warm the surface of the heat exchanger described above (if it is warmed, it does not perform the dehumidifying function). The surface of the heat exchanger constantly remains high relative humidity. As a result, the surface of the heat exchanger becomes a hotbed for fungal growth (see FIG. 7) and promotes spore contamination into the environment. In the case of heating / blowing operation, water condensation does not occur on the surface of the heat exchanger and the relative humidity does not rise, so that fungal growth and spore contamination do not occur.

(問題2:熱交換器表面への殺菌処理上の問題)
ここで、空調システム内に乾燥空気を導入して熱交換器表面に対して殺菌処理を行う事を考えてみる。導入する乾燥空気はどのような方法で用意しても構わないが、空調対象室の環境空気を導入するのが一番簡単である。しかしながら、乾燥空気として環境空気を採用する場合は、空調システムを(冷房運転ではなく)送風運転に切り替える必要があろう。
(Problem 2: Problem in sterilization treatment on the surface of heat exchanger)
Now, consider introducing dry air into the air conditioning system to sterilize the surface of the heat exchanger. The dry air to be introduced may be prepared by any method, but it is easiest to introduce the environmental air of the air-conditioned room. However, if environmental air is used as the dry air, it will be necessary to switch the air conditioning system to ventilation operation (rather than cooling operation).

何故ならば、空調システム自体の持つ送風機をそのまま活用するのが合理的であるし、熱交換器の表面温度を露点温度以上に保ちつつ環境空気を乾燥させるためには、冷房運転を停止させなければならないからである。従って、殺菌処理を行う期間中は、同空調システムでは環境の温度調節を実施できないことになる(空調対象室の温度調整機能の停止)。 This is because it is rational to use the blower of the air conditioning system itself as it is, and in order to dry the environmental air while keeping the surface temperature of the heat exchanger above the dew point temperature, the cooling operation must be stopped. Because it must be. Therefore, during the period of sterilization, the air conditioning system cannot control the temperature of the environment (stopping the temperature control function of the air-conditioned room).

(先行技術の説明)
空調システム内の真菌増殖を抑制するための先行技術としては、例えば、特許文献1がある。この特許文献1では温度及び湿度を検出してカビ等発生評価値を求め、この値が基準値を超えると、空調システムを送風運転に切り替えて所定時間だけ実施する。その後、オゾン発生器を作動させて殺菌処理を行うものである。ここで、オゾンの強い酸化作用は有用であり、工業的には浄化・殺菌、脱色、有機物除去等、様々な用途に応用されている。特許文献1では、オゾンを用いることで、酸化力に応じた短い時間で殺菌できると考えられ、空調停止期間を短く抑えることに成功している。
(Explanation of prior art)
For example, Patent Document 1 is a prior art for suppressing fungal growth in an air conditioning system. In Patent Document 1, the temperature and humidity are detected to obtain an evaluation value for the occurrence of mold and the like, and when this value exceeds the reference value, the air conditioning system is switched to the ventilation operation and carried out for a predetermined time. After that, the ozone generator is operated to perform sterilization treatment. Here, the strong oxidizing action of ozone is useful, and it is industrially applied to various applications such as purification / sterilization, decolorization, and removal of organic substances. In Patent Document 1, it is considered that ozone can be used for sterilization in a short time according to the oxidizing power, and the air conditioning stop period has been successfully suppressed.

(オゾン利用の弊害)
しかし、オゾンの強すぎる酸化力は、取扱いの困難さも招く。具体的には、オゾンが触れる部分や接触可能性のある材料には耐腐食性の付与を考慮しなければならない。さらにオゾンによる生体への悪影響も明らかにされている。ヒト(人間)は、0.01〜0.02ppm程度で臭気の知覚、0.1ppm程度から鼻や喉への刺激、0.2〜0.5ppmで視力の低下、1〜2ppm程度で疲労感、頭痛や呼吸機能の変化、5〜10ppmで呼吸困難、脈拍増加、50ppm以上で生命の危険が生ずるとされる。このように生活環境と密接に関わる空調システムには、短時間で殺菌処理可能でかつより安全な殺菌技術が求められる。
(Adverse effects of using ozone)
However, the too strong oxidizing power of ozone also causes difficulty in handling. Specifically, it is necessary to consider imparting corrosion resistance to parts that come into contact with ozone and materials that may come into contact with ozone. Furthermore, the adverse effects of ozone on living organisms have been clarified. Humans (humans) perceive odor at about 0.01 to 0.02 ppm, irritate the nose and throat from about 0.1 ppm, decrease their eyesight at about 0.2 to 0.5 ppm, and feel tired at about 1 to 2 ppm. , Headache and changes in respiratory function, dyspnea at 5-10 ppm, increased pulse, and life-threatening at 50 ppm or higher. An air conditioning system that is closely related to the living environment is required to have a safer sterilization technology that can be sterilized in a short time.

安全性の観点に着目すると、空調システムの殺菌技術に関しては、例えば、特許文献2のような先行技術がある。この特許文献2では、冷房運転又は除湿運転の後に水切り運転を行って空調システム内部の水分の大半を除去してから、暖房運転(乾燥運転)を行うことが開示されている。 Focusing on the viewpoint of safety, there is a prior art such as Patent Document 2 regarding the sterilization technique of the air conditioning system. Patent Document 2 discloses that after a cooling operation or a dehumidifying operation, a draining operation is performed to remove most of the water inside the air conditioning system, and then a heating operation (drying operation) is performed.

(冷房運転から暖房運転への切替えによる温熱環境の悪化)
しかしながら、本来、冷房運転を要求している環境に対し、短時間であっても暖房運転を行うことは温熱環境の悪化につながる。暖房運転ではなく送風運転による乾燥効果のみに期待した場合でさえも、送風機圧縮による空気加熱や電動機排熱による昇温は起こるし、冷房負荷未処理期間の長さによっても、温熱環境が悪化し得る。
(Deterioration of thermal environment due to switching from cooling operation to heating operation)
However, in contrast to an environment that originally requires a cooling operation, performing a heating operation even for a short time leads to deterioration of the thermal environment. Even when only the drying effect of the blower operation is expected instead of the heating operation, the temperature rise due to the air heating by the blower compression and the exhaust heat of the motor occurs, and the thermal environment deteriorates due to the length of the cooling load untreated period. obtain.

ここまで述べてきた問題点を整理すると、空調システムの殺菌処理には、以下の2つの要望の同時達成が求められる。
(1) 真菌殺菌用の媒体は、金属に対する腐食性が低く、かつ、人体に安全であること
(2) 空調対象室の温熱環境を悪化させず、短時間の送風運転で処理可能であること
To summarize the problems described so far, the sterilization process of the air conditioning system requires the simultaneous achievement of the following two requirements.
(1) The medium for fungal sterilization has low corrosiveness to metals and is safe for the human body. (2) It does not deteriorate the thermal environment of the air-conditioned room and can be processed by blowing air for a short time.

(環境内の商品への悪影響)
ところで、人工光型植物工場の空調システムは、基本的に常時冷房運転している。温度操作用熱交換器の表面は、常に相対湿度が高く、真菌は増殖し、空調システム内に生じた胞子が継続的に植物栽培環境内に混入し、該環境を汚染する。さらに都合の悪いことに、植物の蒸散作用や工場環境内部を循環する栽培用培養液の蒸発により、空調システムだけでなく工場内までも常に高相対湿度に維持される。真菌は高相対湿度の環境を好むため、空調システム内では飽き足らず工場内でもその増殖や環境汚染が進んでしまう。
(Adverse effects on products in the environment)
By the way, the air conditioning system of the artificial light type plant factory is basically always in cooling operation. The surface of the temperature control heat exchanger is always high in relative humidity, fungi grow, and spores generated in the air conditioning system continuously enter the plant cultivation environment and pollute the environment. To make matters worse, high relative humidity is always maintained not only in the air conditioning system but also in the factory due to the transpiration of plants and the evaporation of the cultivation culture solution that circulates inside the factory environment. Since fungi prefer a high relative humidity environment, they are not satisfied in the air conditioning system and their growth and environmental pollution progress in the factory.

また、チャタテムシ類などの微小昆虫は主に真菌を餌としているため、真菌の増殖は工場内への虫の侵入や増加を招き、ひいては商品への虫混入リスクとなる。同様の問題は、植物工場だけでなく、食品加工工場でも起こり得る。 In addition, since micro-insects such as booklices mainly feed on fungi, the growth of fungi causes the invasion and increase of insects in the factory, which in turn poses a risk of insect contamination in products. Similar problems can occur not only in plant factories but also in food processing factories.

このような問題は、単純に工場内の相対湿度を低下させることで解決できそうである。しかしながら、植物工場に適用する場合、今度は、植物の栽培効率低下や食味悪化が問題になる。 Such a problem seems to be solved by simply lowering the relative humidity in the factory. However, when it is applied to a plant factory, a decrease in plant cultivation efficiency and a deterioration in taste become problems.

(植物の栽培効率低下)
乾燥空気中の植物は、成長率が悪化する。例えば光合成を行う明期の場合、体内の水分を保持するために気孔を閉じる。気孔が閉じられると、空気中の二酸化炭素を取り込みにくくなり、植物の光合成反応を阻害する。明期における植物工場の低湿度環境は植物の光合成反応を阻害し、そして成長率を悪化させてしまう。一方、暗期の低湿度環境ではこれとは異なる機構で成長率を悪化させる。具体的には、暗期に低湿度となると葉表面のクチクラ層からの蒸散量が増え、呼吸作用等の基礎代謝量が大きくなり、結果として、葉・茎の伸長量が減るのである。
(Lower plant cultivation efficiency)
Plants in dry air have a poor growth rate. For example, in the light period when photosynthesis is performed, the pores are closed to retain water in the body. When the stomata are closed, it becomes difficult to take in carbon dioxide in the air, which inhibits the photosynthetic reaction of plants. The low humidity environment of the plant factory in the light period inhibits the photosynthetic reaction of plants and deteriorates the growth rate. On the other hand, in a low humidity environment in the dark period, the growth rate is deteriorated by a mechanism different from this. Specifically, when the humidity becomes low in the dark period, the amount of evapotranspiration from the cuticle layer on the leaf surface increases, the basal metabolic rate such as respiration increases, and as a result, the amount of leaf / stem elongation decreases.

(植物の食味悪化)
また、植物の食味の内、苦味やえぐみは、硝酸態窒素の濃度により決まり、この濃度が低ければ、苦味・えぐみが薄れ、相対的に甘く感じることができると言われている。そして、低相対湿度の環境で光合成を阻害された植物の体内では、硝酸態窒素濃度が上昇し、苦みやえぐみの強い植物が出来ることがわかっている。また、高い硝酸態窒素濃度は人体への悪影響も指摘されている。
(Deterioration of plant taste)
In addition, among the tastes of plants, bitterness and harshness are determined by the concentration of nitrate nitrogen, and it is said that if this concentration is low, the bitterness and harshness are diminished and the plant feels relatively sweet. It has been found that in plants whose photosynthesis is inhibited in a low relative humidity environment, the concentration of nitrate nitrogen increases, resulting in plants with strong bitterness and harshness. It has also been pointed out that high nitrate nitrogen concentration has an adverse effect on the human body.

(低硝酸態窒素野菜の栽培に関する先行技術)
因みに、低硝酸態窒素野菜の栽培技術として特許文献3が既知である。これは、光合成により硝酸態窒素を消費すると同時に、肥料としての硝酸態窒素の供給を停止するという技術である。培養液により野菜を成育して一定期間栽培後、その収穫に先立って培養液の供給を停止、回収し、これに代えて水を供給する。ここで光合成を行わせると植物体内に蓄積された硝酸態窒素が消費され、硝酸態窒素濃度が下がる。この方法には、培養液と水の2つの液利用システムが必要である。このシステム構築には、難易度や複雑さ、コスト等を念頭におくと問題があると言わざるを得ず、より簡易な別の方法で硝酸態窒素濃度を低く抑える必要がある。
(Prior art for cultivation of low nitrate nitrogen vegetables)
Incidentally, Patent Document 3 is known as a cultivation technique for low nitrate nitrogen vegetables. This is a technique of consuming nitrate nitrogen by photosynthesis and at the same time stopping the supply of nitrate nitrogen as fertilizer. After growing vegetables with the culture solution and cultivating them for a certain period of time, the supply of the culture solution is stopped and collected prior to the harvest, and water is supplied instead. When photosynthesis is performed here, the nitrate nitrogen accumulated in the plant body is consumed, and the nitrate nitrogen concentration decreases. This method requires two liquid utilization systems, culture medium and water. It must be said that there is a problem in constructing this system if the difficulty, complexity, cost, etc. are taken into consideration, and it is necessary to keep the nitrate nitrogen concentration low by another simpler method.

以上のように、人工光型植物工場では、安全性や経営的な観点から、真菌増殖リスクや虫混入リスクを低下させるために環境内の相対湿度を低く保ちたい。しかし、相対湿度を安易に下げると、商品となる植物の栽培効率の低下、食味の悪化、ひいては、商品を摂取する人間の健康に対する懸念まで生じるという相反問題を抱えている。 As described above, in the artificial light type plant factory, from the viewpoint of safety and management, we want to keep the relative humidity in the environment low in order to reduce the risk of fungal growth and the risk of insect contamination. However, if the relative humidity is easily lowered, there is a conflicting problem that the cultivation efficiency of the plant as a product is lowered, the taste is deteriorated, and the health of the person who ingests the product is concerned.

特許第5180489号公報Japanese Patent No. 5180489 特開平11−211184号公報Japanese Unexamined Patent Publication No. 11-21184 特開2008−061570号公報Japanese Unexamined Patent Publication No. 2008-061570 特許第2710903号公報Japanese Patent No. 2710903 特許第3510309号公報Japanese Patent No. 3510309

(本発明の目的)
本発明は、このような事情に鑑みてなされたものであり、空調対象室の温熱環境を著しく悪化させず、安全に、空調システム内の熱交換器表面の真菌増殖を抑制する方法を提供することを目的とする。
(Purpose of the present invention)
The present invention has been made in view of such circumstances, and provides a method for safely suppressing fungal growth on the surface of a heat exchanger in an air conditioning system without significantly deteriorating the thermal environment of the air-conditioned room. The purpose is.

また、本発明の別の目的は、植物工場において、植物を効率よく育成しつつ、工場内の真菌増殖を防ぐことである。 Another object of the present invention is to prevent fungal growth in a plant factory while efficiently growing plants.

また、本発明のもう一つの目的は、植物工場において、食味の悪化を防止しつつ、工場内の真菌増殖を防ぐことである。 Another object of the present invention is to prevent the growth of fungi in a plant factory while preventing the deterioration of taste.

本発明者らは、鋭意検討の末、上述の問題点を見事に解決する装置及び方法を見出し、本発明を完成した。 After diligent studies, the present inventors have found a device and a method for brilliantly solving the above-mentioned problems, and have completed the present invention.

すなわち本発明は、例えば、以下の構成・特徴を備えるものである。
(態様1)
空調システムが設置された室内の真菌増殖を抑制する方法であって、
前記室内の温度及び湿度を計測する室内計測工程と、
計測された前記温度及び前記湿度、並びに、予め取得しておいた真菌の生育速度と前記温度及び前記湿度との相関関係から真菌増殖指数を算出する指数算出工程と、
前記真菌増殖指数が予め定めた閾値を超えたことを確認する指数確認工程と、
前記指数確認工程で前記閾値を超えたことを確認した後に真菌抑制モードを開始するモード開始判定工程と、
を含み、
前記真菌抑制モードでは、
前記空調システムの除湿運転を行い、前記室内を低湿度状態に維持する室内除湿工程と、
前記空調システムへも減菌が必要かどうかを確認する同時減菌確認工程と、
を含み、かつ、
前記同時減菌確認工程で否定的な判定であれば、第1減菌期間の経過後に前記真菌抑制モードを完了し、
前記同時減菌確認工程で肯定的な判定であれば、前記空調システムを前記除湿運転から送風運転に切り替えて、該空調システム内の経路に前記室内の乾燥空気を導入し、該空調システムと前記室内との間を循環させるシステム減菌工程を含み、かつ、第1減菌期間以上長い期間である第2減菌期間の経過後に前記真菌抑制モードを完了し、かつ、
前記室内が人工光型植物工場内で植物を栽培するための栽培室内であり、
前記栽培室内の環境に合わせて予め定めた胞子発芽期間が経過したことを確認する発芽確認工程と、
前記植物に適した栽培効率維持期間が経過したことを確認する第1追加確認工程と、
をさらに含み、
前記モード開始判定工程では、前記指数確認工程の他に、前記発芽確認工程と、第1追加確認工程と、の全てで肯定的な結果を得られた後に前記真菌抑制モードを開始すること
を特徴とする真菌増殖抑制方法。
(態様2)
前記栽培室内が暗期にあるかどうか、かつ、該暗期であった場合に前記真菌抑制モードを実行するには十分な期間が残っているかどうかを確認する第2追加確認工程と、
をさらに含み、
前記モード開始判定工程では、前記指数確認工程の他に、前記発芽確認工程と、第1追加確認工程と、第2追加確認工程と、の全てで肯定的な結果を得られた後に前記真菌抑制モードを開始すること
を含むことを特徴とする態様に記載の真菌増殖抑制方法。
(態様3)
前記システム減菌工程は、前記空調システム内の熱交換器付近に設置された紫外線照射装置から前記熱交換器に向けて紫外線を照射する照射工程と、
をさらに含むこと
を特徴とする態様1又は態様2に記載の真菌増殖抑制方法。
(態様4)
前記室内に対して前記空調システムを複数設置しておき、
前記同時減菌確認工程で肯定的な判定であれば、前記空調システムを、前記システム減菌工程を先に実行するものと、後に実行するものと、に割り当て、
前記先の空調システムが前記システム減菌工程を実行する間、前記後の空調システムは、前記除湿運転を維持或いは増強して前記室内の前記低湿度状態を維持し、
前記先の空調システムへの前記システム減菌工程を実行した後、前記先の空調システムでは前記送風運転から元の除湿運転に戻し、前記後の空調システムでは前記システム減菌工程を開始すること
を特徴とする態様1〜3のいずれかに記載の真菌増殖抑制方法。
That is, the present invention has, for example, the following configurations and features.
(Aspect 1)
It is a method of suppressing the growth of fungi in the room where the air conditioning system is installed.
The indoor measurement process for measuring the temperature and humidity in the room, and
An index calculation step for calculating the fungal growth index from the measured temperature and humidity, and the correlation between the fungal growth rate acquired in advance and the temperature and humidity.
An index confirmation step for confirming that the fungal growth index has exceeded a predetermined threshold value, and
A mode start determination step of starting the fungus suppression mode after confirming that the threshold value has been exceeded in the index confirmation step, and
Including
In the fungal suppression mode,
An indoor dehumidifying step of performing a dehumidifying operation of the air conditioning system to maintain the room in a low humidity state, and
Simultaneous sterilization confirmation process to confirm whether sterilization is necessary for the air conditioning system,
Including and
If the determination is negative in the simultaneous sterilization confirmation step, the fungal suppression mode is completed after the lapse of the first sterilization period.
If the determination is positive in the simultaneous sterilization confirmation step, the air conditioning system is switched from the dehumidifying operation to the blowing operation, dry air in the room is introduced into the path in the air conditioning system, and the air conditioning system and the air conditioning system are described. The fungus suppression mode is completed after the lapse of the second sterilization period, which is a period longer than the first sterilization period, and includes a system sterilization step of circulating between the room and the room .
The room is a cultivation room for cultivating plants in an artificial light type plant factory.
A germination confirmation step for confirming that a predetermined spore germination period has elapsed according to the environment in the cultivation room, and
The first additional confirmation step for confirming that the cultivation efficiency maintenance period suitable for the plant has passed, and
Including
The mode start determination step is characterized in that the fungus suppression mode is started after a positive result is obtained in all of the germination confirmation step and the first additional confirmation step in addition to the index confirmation step. A method for suppressing fungal growth.
(Aspect 2)
A second additional confirmation step of confirming whether or not the cultivation room is in a dark period and whether or not there is a sufficient period remaining to execute the fungal suppression mode in the dark period.
Including
In the mode start determination step, in addition to the index confirmation step, the fungus suppression is performed after a positive result is obtained in all of the germination confirmation step, the first additional confirmation step, and the second additional confirmation step. The method for suppressing fungal growth according to aspect 1 , which comprises initiating a mode .
(Aspect 3)
The system sterilization step includes an irradiation step of irradiating the heat exchanger with ultraviolet rays from an ultraviolet irradiation device installed near the heat exchanger in the air conditioning system.
The method for suppressing fungal growth according to the first or second aspect, which further comprises.
(Aspect 4)
A plurality of the air conditioning systems are installed in the room,
If the determination is positive in the simultaneous sterilization confirmation step, the air conditioning system is assigned to one that executes the system sterilization step first and one that executes the system sterilization step later.
While the earlier air conditioning system performs the system sterilization step, the subsequent air conditioning system maintains or enhances the dehumidifying operation to maintain the low humidity state in the room.
After executing the system sterilization step on the above-mentioned air conditioning system, the above-mentioned air conditioning system returns from the blowing operation to the original dehumidifying operation, and the subsequent air-conditioning system starts the system sterilization step. The method for suppressing fungal growth according to any one of the characteristics 1 to 3 .

ここで、本発明で言う「湿度」としては、相対湿度が好ましいが、これに限らず、絶対湿度、飽差、水蒸気分圧など、空気中に含まれる水分量を差し示すあらゆる公知の指標を用いることができる。更に、この「湿度」には、公知の指標の他にも、空気中の水分量を利用して導出可能な温熱環境指標や、新しく定めた指標なども含まれる。 Here, the "humidity" referred to in the present invention is preferably relative humidity, but is not limited to this, and any known index indicating the amount of water contained in the air, such as absolute humidity, saturation, and partial pressure of water vapor, can be used. Can be used. Further, in addition to the known index, the "humidity" includes a thermal environment index that can be derived by using the amount of water in the air, a newly defined index, and the like.

本発明の真菌増殖抑制方法における上述の真菌抑制モードは、植物工場での真菌増殖の抑制に好適に使用可能であるが、これ以外にも食品工場の加工室や病院の病室、これらに付随する空調システム内での真菌増殖の抑制に使用可能である。 The above-mentioned fungal suppression mode in the fungal growth suppression method of the present invention can be suitably used for suppressing fungal growth in a plant factory, but in addition to this, it is associated with a processing room of a food factory, a hospital room of a hospital, and the like. It can be used to control fungal growth in air conditioning systems.

また、本発明の方法によれば、空調システム内の殺菌処理の媒体には、栽培室内の乾燥空気か、乾燥空気以外ではLEDやランプ等の光源から照射される紫外線を利用するだけであり、金属に対する腐食性が低く、かつ、人体に安全である。また、本発明を実行する間は、室内環境を管理する空調システムを除湿運転と送風運転とに切り替えるだけであり、空調対象室の温熱環境を悪化させず、短時間の運転で処理可能である。 Further, according to the method of the present invention, as the medium for the sterilization treatment in the air conditioning system, only dry air in the cultivation room or ultraviolet rays emitted from a light source such as an LED or a lamp other than the dry air is used. It is less corrosive to metals and safe for the human body. Further, during the execution of the present invention, only the air conditioning system that manages the indoor environment is switched between the dehumidifying operation and the blowing operation, and the processing can be performed in a short time without deteriorating the thermal environment of the air-conditioned room. ..

本発明の方法によれば、上述の真菌抑制モードを含み、かつ、このモードの開始条件を真菌増殖指数の他、植物栽培に係るパラメータも踏まえながら判定しているため、植物工場において、植物栽培効率を維持しつつ、栽培室内及び空調システム内の減菌(真菌抑制)を実現することが可能となる。 According to the method of the present invention, the above-mentioned fungal suppression mode is included, and the start condition of this mode is determined in consideration of not only the fungal growth index but also the parameters related to plant cultivation. Therefore, plant cultivation is performed in a plant factory. It is possible to realize sterilization (fungal suppression) in the cultivation room and the air conditioning system while maintaining efficiency.

本発明の好適な態様によれば、暗期にのみ上述の真菌抑制モードを実行させているため、これによって栽培される植物の苦みや食味悪化を軽減することができる。 According to a preferred embodiment of the present invention, since the above-mentioned fungal suppression mode is executed only in the dark period, the bitterness and deterioration of taste of the cultivated plant can be reduced.

(a)複数又は(b)単数の空調システムが組み込まれた人工光型植物工場の概略図を示す。(A) A schematic diagram of an artificial light type plant factory incorporating a plurality of or (b) a single air conditioning system is shown. 本発明の真菌抑制方法の工程全体を説明したフローチャートを示す。The flowchart explaining the whole process of the fungus suppression method of this invention is shown. 本発明の第1真菌抑制モードの各工程を説明したフローチャートを示す。The flowchart explaining each step of the 1st fungus suppression mode of this invention is shown. 本発明の第2真菌抑制モードの各工程を説明したフローチャートを示す。The flowchart explaining each step of the 2nd fungus suppression mode of this invention is shown. 低湿度環境を暗期又は明期にあててレタスを栽培した場合のレタス内の硝酸態窒素量を比較した図である。It is a figure which compared the amount of nitrate nitrogen in lettuce when lettuce was cultivated in a low humidity environment in a dark period or a light period. 自然界における相対湿度の経時的変化と、本発明の方法を実施した植物工場内の相対湿度の経時的変化とを示したグラフである。It is a graph which showed the time-dependent change of the relative humidity in the natural world, and the time-dependent change of the relative humidity in the plant factory which carried out the method of this invention. 真菌が増殖した熱交換器表面を示した画像である。It is an image which showed the surface of the heat exchanger where the fungus grew.

以下、添付の図面を参照しながら下記の具体的な実施形態に基づき本発明の技術的内容を説明するが、本発明はこれらの実施形態に何等限定されるものではない。 Hereinafter, the technical contents of the present invention will be described based on the following specific embodiments with reference to the accompanying drawings, but the present invention is not limited to these embodiments.

(人工光型植物工場)
植物生産システムは、一般に、開放型システム(田畑等)と、半閉鎖型システム(園芸施設等)と、閉鎖型システム(人工光型植物工場等)とに大別できる。このうち最も収量が高いのは、閉鎖型の人工光型植物工場である。
(Artificial light type plant factory)
The plant production system can be roughly divided into an open system (fields, etc.), a semi-closed system (horticultural facilities, etc.), and a closed system (artificial light type plant factory, etc.). The highest yield of these is the closed artificial light type plant factory.

人工光型植物工場は、その名の通り人工光により植物を栽培する。人工光によって明期(すなわち、植物に光を照射し、光合成を促す期間)と、暗期(すなわち、消灯し、植物は呼吸する期間)とを周期的に作り出すことが一般的である。なお、明期と暗期との周期を24時間とする必要は無いと考えられており、電気料金などを念頭に明暗タイミングの最適化が実施される。 As the name suggests, artificial light type plant factories grow plants using artificial light. It is common to periodically create a light period (that is, a period in which a plant is irradiated with light to promote photosynthesis) and a dark period (that is, a period in which the plant is extinguished and the plant breathes) by artificial light. It is considered that the cycle between the light period and the dark period does not need to be 24 hours, and the light / dark timing is optimized in consideration of electricity charges and the like.

人工光を作り出す照明具は工場内部で発熱源になる。このため、閉鎖型の人工光型植物工場では、年間を通じて、室内環境への強制冷却が必要である。内部の温度コントロールは、通常、空調システムによって実施する。 Lighting equipment that produces artificial light becomes a heat source inside the factory. For this reason, in a closed artificial light type plant factory, forced cooling to the indoor environment is required throughout the year. Internal temperature control is usually carried out by an air conditioning system.

図1に、空調システムが組み込まれた人工光型植物工場1(1A,1B)(以下、単に「植物工場」と呼ぶ。)の概略図を示す。ここで、図1(a)に示す植物工場1Aでは、一つの栽培室2に対し複数(図では4つ)の空調システム11,12,13,14が組み込まれている。一方、図1(b)に示す植物工場1Bでは単数(1台)の空調システム11のみが組み込まれている。 FIG. 1 shows a schematic view of an artificial light type plant factory 1 (1A, 1B) (hereinafter, simply referred to as a “plant factory”) in which an air conditioning system is incorporated. Here, in the plant factory 1A shown in FIG. 1A, a plurality of (four in the figure) air conditioning systems 11, 12, 13, and 14 are incorporated in one cultivation room 2. On the other hand, in the plant factory 1B shown in FIG. 1B, only a single air conditioning system 11 is incorporated.

栽培室2には、養液栽培装置3が設置されている。植物4の育成に必要な肥料を水に溶かした液(培養液)31が容器32に蓄積されており、この培養液31はポンプPにより供給管33に送出される。 A nutrient solution cultivation device 3 is installed in the cultivation room 2. A liquid (culture liquid) 31 in which fertilizer necessary for growing the plant 4 is dissolved in water is accumulated in the container 32, and the culture liquid 31 is sent to the supply pipe 33 by the pump P.

植物4を栽培する栽培棚35は、通常、栽培室2の空間を有効利用するため、高さ方向に複数段、積層される。各栽培棚35には、多数の植物4が通常、水平方向に直列に置かれるため、一側に設置された供給管33から導入された培養液31が栽培棚35内を長手方向に流れる際に各植物4に付与される。なお、常に新鮮な培養液31が植物4に供給されるよう、栽培棚35の他側に排出管34を設置して培養液31を元の容器32に戻す方式(すなわち、循環式)の構造を採用してもよい。 The cultivation shelves 35 for cultivating the plant 4 are usually stacked in a plurality of stages in the height direction in order to effectively utilize the space of the cultivation room 2. Since a large number of plants 4 are usually placed in series in the horizontal direction on each cultivation shelf 35, when the culture solution 31 introduced from the supply pipe 33 installed on one side flows in the cultivation shelf 35 in the longitudinal direction. Is given to each plant 4. A structure of a method (that is, a circulation type) in which a discharge pipe 34 is installed on the other side of the cultivation shelf 35 and the culture solution 31 is returned to the original container 32 so that the fresh culture solution 31 is always supplied to the plant 4. May be adopted.

また、栽培棚35の上部にはLEDやランプなどの人工光を植物4に照射するための光源36が栽培棚35の長手方向(水平方向)に直列に設置される。この光源36を一定時間、点灯と消灯を繰り返すよう制御することで、栽培室2内に植物4を育成するための明期と暗期とが定期的に作りだされる。 Further, on the upper part of the cultivation shelf 35, a light source 36 for irradiating the plant 4 with artificial light such as an LED or a lamp is installed in series in the longitudinal direction (horizontal direction) of the cultivation shelf 35. By controlling the light source 36 to repeatedly turn on and off for a certain period of time, a light period and a dark period for growing the plant 4 in the cultivation room 2 are periodically created.

(本発明の真菌増殖抑制方法)
次に、図1〜図4を参照しながら、本発明の真菌増殖抑制方法について詳しく説明する。この方法では、真菌抑制モード(以下、単に「抑制モード」とも呼ぶ。)と、植物栽培モード(以下、単に「栽培モード」とも呼ぶ。)と、に分け、植物工場1の環境条件を随時監視しながら各モードの切替えが行われる。
(Method for suppressing fungal growth of the present invention)
Next, the method for suppressing fungal growth of the present invention will be described in detail with reference to FIGS. 1 to 4. This method is divided into a fungus suppression mode (hereinafter, also simply referred to as "suppression mode") and a plant cultivation mode (hereinafter, also simply referred to as "cultivation mode"), and the environmental conditions of the plant factory 1 are monitored at any time. While switching each mode, it is performed.

(室内の温度及び湿度の実測)
先ず、栽培室2の温度及び湿度(例えば、相対湿度)の計測を開始する(工程S1、室内計測工程)。なお、この時点では、後述する比較的低湿度の真菌抑制モードでは無く、比較的高湿度の植物栽培モードに設定されていることに留意されたい。
(Actual measurement of indoor temperature and humidity)
First, the temperature and humidity (for example, relative humidity) of the cultivation room 2 are measured (step S1, indoor measurement step). At this point, it should be noted that the mode is set to the relatively high humidity plant cultivation mode, not the relatively low humidity fungus suppression mode described later.

(真菌増殖指数の算出)
工程S1から実測された値を基に、真菌増殖の危険度を示す指数(以下、「真菌増殖指数」と呼ぶ。)Iを算出する(工程S2、指数算出工程)。なお、真菌増殖指数Iを算出する方法としては、例えば、特許文献4に開示されているように、真菌の生育速度と、温度及び湿度との相関関係を調査して得られたデータベース(テンプレート)を利用しても良いし、又は、特許文献5に示すように数式化したものや同様の方法で独自調査して得られた結果を用いても良い。
(Calculation of fungal growth index)
Based on the value actually measured from step S1, an index (hereinafter, referred to as “fungal growth index”) I indicating the risk of fungal growth is calculated (step S2, index calculation step). As a method for calculating the fungal growth index I, for example, as disclosed in Patent Document 4, a database (template) obtained by investigating the correlation between the growth rate of fungi and temperature and humidity. , Or a mathematical formula as shown in Patent Document 5, or the result obtained by an independent search by the same method may be used.

また、上述の工程S1,S2は、基本的に、本発明の方法が終了するまで、絶えず定期的に(例えば、1分毎に)実行(実測及び算出)し続けることにも留意されたい。 It should also be noted that the steps S1 and S2 described above are basically continuously executed (measured and calculated) on a regular basis (for example, every minute) until the method of the present invention is completed.

(胞子発芽期間の経過確認)
次に、胞子発芽期間を経過しているかどうかを判定する(工程S3、発芽確認工程)。未経過であれば、高相対湿度の状態(栽培モード)を維持したまま待機する(工程S1〜S3のループを繰り返す)。これは、未発芽状態の真菌胞子は低湿度であっても死滅しないため、先ずは真菌胞子を発芽させておく必要があるからである。このように、本発明では、栽培室2を通常の栽培環境(高相対湿度)のままに維持し、胞子の発芽を促す期間(胞子発芽期間)を確保する。なお、胞子発芽期間は対象環境の状況(例えば、カビが生息・繁茂しやすい湿度状況)により変えるべきだが、例えば、7〜10日間に設定すればよい。
(Confirmation of progress of spore germination period)
Next, it is determined whether or not the spore germination period has passed (step S3, germination confirmation step). If it has not passed, the process waits while maintaining the high relative humidity state (cultivation mode) (the loop of steps S1 to S3 is repeated). This is because ungerminated fungal spores do not die even at low humidity, so it is necessary to germinate the fungal spores first. As described above, in the present invention, the cultivation room 2 is maintained in a normal cultivation environment (high relative humidity), and a period for promoting spore germination (spore germination period) is secured. The germination period of spores should be changed depending on the conditions of the target environment (for example, the humidity conditions in which molds easily inhabit and grow), but for example, it may be set to 7 to 10 days.

(抑制モードへの判定ルーチン)
一方、胞子発芽期間の経過が確認できれば、次に、抑制モードへ入るべきかどうかの判定に移る。本発明の好適な態様(植物工場1への適用)においては、抑制モードに入ることを許可するには、後述の複数の連続した条件を満足(クリア)しなければならないことが特徴的である。
(Judgment routine to suppress mode)
On the other hand, if the passage of the spore germination period can be confirmed, the next step is to determine whether or not to enter the suppression mode. In a preferred embodiment of the present invention (application to the plant factory 1), it is characteristic that a plurality of consecutive conditions described later must be satisfied (cleared) in order to permit entering the suppression mode. ..

(条件1:真菌増殖指数が閾値を超えたか)
先ず、この判定ルーチンの一条件として、上述の真菌増殖指数Iについて閾値(例えば、5)を設定しておき、上述の指数Iがこの閾値を超えたか(真菌増殖レベルが危険域に達したか)どうかの判定を行う(工程S4、指数確認工程)。閾値を超えなければ、栽培モードを維持する(つまり、工程S1に戻り、工程S1〜S4のループを繰り返す)。
(Condition 1: Did the fungal growth index exceed the threshold)?
First, as one condition of this determination routine, a threshold value (for example, 5) is set for the above-mentioned fungal growth index I, and whether the above-mentioned index I exceeds this threshold value (whether the fungal growth level has reached the dangerous range). ) Whether or not (step S4, index confirmation step). If the threshold value is not exceeded, the cultivation mode is maintained (that is, the process returns to step S1 and the loop of steps S1 to S4 is repeated).

一方、上述の指数Iが閾値を超えたと判定されれば、次の段階に移る。ただし、この判定のみで、真菌増殖レベルが危険度に達したと判断して直ぐに抑制モードに移行してしまうと、上述のとおり、相対湿度が下がることで栽培室2内の減菌が促されるものの、商品となる植物4の栽培効率の低下や食味の悪化を招いてしまう虞がある。 On the other hand, if it is determined that the above-mentioned index I exceeds the threshold value, the process proceeds to the next stage. However, if it is determined that the fungal growth level has reached the risk level and the mode is immediately shifted to the suppression mode based on this judgment alone, as described above, the relative humidity is lowered and the sterilization in the cultivation room 2 is promoted. However, there is a risk that the cultivation efficiency of the commercial plant 4 will decrease and the taste will deteriorate.

(条件2:栽培効率維持期間を経過したか)
そこで、本発明では、抑制モードへの移行に、更に別の条件(条件2)を満足するかどうかについても判定を行っている。具体的には、生育環境のより厳しい抑制モードに入ってからでも植物4が育ち続け、充分な食味や糖度が得られるよう、抑制モードに入る前にある程度の大きさや熟度を持つまで植物4が育つのに必要な期間(「栽培効率維持期間」と呼ぶ。)を栽培対象毎に予め決めておく(例えば、レタスの場合9〜12日間)。
(Condition 2: Has the cultivation efficiency maintenance period passed?)
Therefore, in the present invention, it is also determined whether or not the transition to the suppression mode satisfies yet another condition (condition 2). Specifically, the plant 4 continues to grow even after entering the stricter suppression mode of the growing environment, and the plant 4 has a certain size and maturity before entering the suppression mode so that a sufficient taste and sugar content can be obtained. The period required for growing the plants (referred to as the "cultivation efficiency maintenance period") is determined in advance for each cultivation target (for example, 9 to 12 days in the case of lettuce).

そして、工程S4の後に、条件2として、上述の栽培効率維持期間を経過しているかどうかを判定する(工程S5、第1追加確認工程)。栽培効率維持期間を経過していれば、次の段階に移る。一方、未経過であれば、高相対湿度の状態(栽培モード)を維持したまま待機する(つまり、工程S1に戻り、工程S1〜S5を繰り返す)。 Then, after the step S4, as a condition 2, it is determined whether or not the above-mentioned cultivation efficiency maintenance period has passed (step S5, first additional confirmation step). If the cultivation efficiency maintenance period has passed, the process moves to the next stage. On the other hand, if it has not passed, it waits while maintaining the state of high relative humidity (cultivation mode) (that is, returns to step S1 and repeats steps S1 to S5).

(条件3:暗期に入っているか)
加えて、本発明では、更に別の条件(条件3)も追加的に判定しておくことが好ましい。具体的には、植物工場1が暗期に入っているかどうか、かつ、この暗期の終了までに後述の抑制モードを行うのに十分な残り時間があるかどうかを判定する(工程S6、第2追加確認工程)。なお、植物工場1の運用方法によっては、1回あたりの暗期期間を1時間など短期に設定しているものや、あるいはそもそも暗期期間を設けていない場合もある。この様な場合には、本方法で食味悪化を防ぐことはできないため、暗期に入っているかどうかの条件判断を設ける必要は無い。
(Condition 3: Is it in the dark period?)
In addition, in the present invention, it is preferable to additionally determine yet another condition (condition 3). Specifically, it is determined whether or not the plant factory 1 has entered the dark period, and whether or not there is sufficient remaining time to perform the suppression mode described later by the end of the dark period (step S6, first). 2 additional confirmation process). Depending on the operation method of the plant factory 1, there are cases where the dark period is set to a short period such as one hour, or the dark period is not provided in the first place. In such a case, since the deterioration of taste cannot be prevented by this method, it is not necessary to determine the condition of whether or not the dark period has been entered.

この工程S6の操作によって、植物4の光合成が活発な明期を栽培モードにあて、光合成が不活発な暗期を真菌抑制モードに確実にあてられれば、植物4の食味の悪化を最低限に抑えつつ、環境内の真菌増殖も抑制可能となる。言い換えれば、明期の間に真菌抑制モード(低湿度環境)に入ると、その光合成を阻害された状態で植物4が育成され、植物4の体内では、硝酸態窒素濃度が上昇し、苦みやえぐみの強い植物が出来やすい。従って、植物工場1の環境では、明期ではなく暗期の間に、本発明の真菌抑制モード(低湿度環境)を持ってくるのが良いと言える。 By the operation of this step S6, if the light period when the photosynthesis of the plant 4 is active is assigned to the cultivation mode and the dark period when the photosynthesis is inactive is surely applied to the fungus suppression mode, the deterioration of the taste of the plant 4 is minimized. While suppressing, fungal growth in the environment can also be suppressed. In other words, when the fungus suppression mode (low humidity environment) is entered during the light period, the plant 4 is grown in a state where its photosynthesis is inhibited, and the nitrate nitrogen concentration rises in the body of the plant 4, causing bitterness. It is easy to grow strong plants. Therefore, in the environment of the plant factory 1, it can be said that it is better to bring the fungal suppression mode (low humidity environment) of the present invention during the dark period instead of the light period.

(真菌抑制モードへの移行)
本発明の方法では、上述の工程S3〜S6の全てで肯定的な判定結果が得られた場合に、ようやく後述の真菌抑制モードが開始される(工程S7、モード開始判定工程)。一方、否定的な判定結果が得られた場合は、次の暗期の開始時点まで待機する(工程S1〜S6を繰り返す)。
(Transition to fungal suppression mode)
In the method of the present invention, when a positive determination result is obtained in all of the above steps S3 to S6, the fungus suppression mode described later is finally started (step S7, mode start determination step). On the other hand, if a negative determination result is obtained, the process waits until the start of the next dark period (steps S1 to S6 are repeated).

(第1真菌抑制モード:植物工場に空調システムが2台以上設置されている場合)
一例として、植物工場1(1A)に、図1(a)に示すように、複数の空調システムが設置されている場合の真菌増殖抑制方法(第1真菌抑制モード)S7Aについて説明する。説明の便宜上、設置総数がN個の場合、第1・第2・第3・第4…第Nの空調システム11,12,13,14(図1(a)では4個)と呼ぶことにする。図3に、複数の空調システム11,12,13,14が存在する場合の第1真菌抑制モードS7Aのフローチャートを示す。
(1st fungus suppression mode: when two or more air conditioning systems are installed in the plant factory)
As an example, a fungus growth suppression method (first fungus suppression mode) S7A when a plurality of air conditioning systems are installed in the plant factory 1 (1A) as shown in FIG. 1A will be described. For convenience of explanation, when the total number of installations is N, they are referred to as the first, second, third, fourth ... Nth air conditioning systems 11, 12, 13, 14 (4 in FIG. 1A). To do. FIG. 3 shows a flowchart of the first fungus suppression mode S7A when a plurality of air conditioning systems 11, 12, 13, and 14 are present.

上述の工程S6の判定後にようやく第1真菌抑制モードS7Aに入ると、先ず、空調システム11,12,13,14において相対温度目標値を低湿度の値(例えば、40〜60%RH)に設定して栽培室2内を低湿度状態に変更する(工程S11、室内除湿工程)。つまり、空調システム11〜14を除湿運転にする。これにより、植物4が載置された栽培室2内にて真菌を死滅させたり、真菌の発育を防いだりすることができる。 When the first fungus suppression mode S7A is finally entered after the determination in the above step S6, first, the relative temperature target value is set to a low humidity value (for example, 40 to 60% RH) in the air conditioning systems 11, 12, 13, and 14. Then, the inside of the cultivation room 2 is changed to a low humidity state (step S11, indoor dehumidification step). That is, the air conditioning systems 11 to 14 are dehumidified. As a result, the fungus can be killed or the growth of the fungus can be prevented in the cultivation room 2 in which the plant 4 is placed.

次に、工程S11の後、栽培室2内の温度や湿度が目標値に達したかどうか判定する(工程S12)。ここで、肯定的な判定結果が得られれば、栽培室2内には充分に乾燥した空気Aが生成できたと判断される。 Next, after step S11, it is determined whether or not the temperature and humidity in the cultivation room 2 have reached the target values (step S12). Here, if a positive determination result is obtained, it is determined that sufficiently dry air A can be generated in the cultivation room 2.

(空調システム内への真菌抑制(同時減菌処理)の有無)
そして、栽培空間である栽培室2内環境だけでなく、空調システム11,12,13,14内の空気流通経路11a〜11d,12a〜12d,13a〜13d,14a〜14d(特に、熱交換器11d,12d,13d,14dの表面)に対しても真菌抑制(減菌)処理が必要かどうかを判断する(工程S13、同時減菌確認工程)。例えば、図示しないオペレータからの希望の有無を入力することで判断しても良いし、空調システム11,12,13,14の累積使用時間や前回の減菌処理からの経過時間、熱交換器11d,12d,13d,14dの表面に付着した真菌の量(例えば、図示しないカメラ等にて観察した結果)などのパラメータに基づいて、その必要性の有無を判断しても良い。
(Presence or absence of fungal suppression (simultaneous sterilization treatment) in the air conditioning system)
Then, not only the environment in the cultivation room 2 which is the cultivation space, but also the air flow paths 11a to 11d, 12a to 12d, 13a to 13d, 14a to 14d in the air conditioning systems 11, 12, 13, 14 (particularly, the heat exchanger). It is determined whether or not the fungal suppression (sterilization) treatment is necessary for the surfaces of 11d, 12d, 13d, and 14d (step S13, simultaneous sterilization confirmation step). For example, it may be determined by inputting the presence or absence of a request from an operator (not shown), the cumulative usage time of the air conditioning systems 11, 12, 13 and 14, the elapsed time from the previous sterilization treatment, and the heat exchanger 11d. , 12d, 13d, 14d may or may not be necessary based on parameters such as the amount of fungi adhering to the surface (for example, the result of observation with a camera (not shown)).

ここで、図1(a)中、符号11a,12a,13a,14a、符号11b,12b,13b,14b、及び、符号11c,12c,13c,14cは、夫々、各システム11〜14における空気吸い込み用風導管、空気吐き出し用風導管、及び、本体内の空気流通空間を示す。 Here, in FIG. 1A, reference numerals 11a, 12a, 13a, 14a, reference numerals 11b, 12b, 13b, 14b, and reference numerals 11c, 12c, 13c, 14c are air suctions in the systems 11 to 14, respectively. The air duct, the air outlet air duct, and the air flow space inside the main body are shown.

(減菌処理が不要な場合)
なお、工程S13にて、空調システム11,12,13,14内への減菌処理が不要であると判断された場合は、所定期間(第1減菌期間)だけ、栽培室2が上記低湿度環境に保持される(工程S14)。ここで、第1減菌期間としては、1回あたり10〜12時間程度とすることが好ましい。第1減菌期間を経過したと判定されれば、第1真菌抑制モード(工程S7A)は完了する。その後、植物4の生育度が充分であるかどうかを判定する(工程S8、育成度確認工程、図2を参照)。肯定的な結果であれば本発明の方法は完了する。一方、否定的な結果であれば再度、栽培モード(つまり、工程S1)に戻る。
(When sterilization treatment is unnecessary)
If it is determined in step S13 that the sterilization treatment in the air conditioning systems 11, 12, 13, and 14 is unnecessary, the cultivation room 2 is lowered for a predetermined period (first sterilization period). It is maintained in a humid environment (step S14). Here, the first sterilization period is preferably about 10 to 12 hours each time. If it is determined that the first sterilization period has passed, the first fungal suppression mode (step S7A) is completed. After that, it is determined whether or not the growth degree of the plant 4 is sufficient (see step S8, growth degree confirmation step, FIG. 2). If the result is positive, the method of the present invention is completed. On the other hand, if the result is negative, the process returns to the cultivation mode (that is, step S1) again.

(減菌処理が必要な場合)
これに対し、栽培室2のみならず空調システム11,12,13,14へも同時に減菌処理を行う方法について、以下に詳述する。空調システム11,12,13,14への減菌は、栽培室2内の乾燥空気Aを経路に導入するのが合理的である。例えば、図1(a)に示すように、空調システム11,12,13,14が複数存在する場合、そのうちの1つの空調システム(例えば、11)を除湿運転から送風運転に変更し、該システム11の経路(例えば、11a)に乾燥空気Aを導入して、熱交換器11dを通過して栽培室2内に戻るように循環させる(工程S15A、システム減菌工程)。その間、残りの空調システム(例えば、12,13,14)だけで、栽培室2内の低湿度環境(第1真菌抑制モードS7A)が保たれるように除湿運転を継続・強化する。
(When sterilization treatment is required)
On the other hand, a method of simultaneously performing the sterilization treatment not only on the cultivation room 2 but also on the air conditioning systems 11, 12, 13 and 14 will be described in detail below. For sterilization of the air conditioning systems 11, 12, 13, and 14, it is rational to introduce the dry air A in the cultivation room 2 into the route. For example, as shown in FIG. 1A, when a plurality of air conditioning systems 11, 12, 13, and 14 exist, one of the air conditioning systems (for example, 11) is changed from the dehumidifying operation to the blowing operation, and the system is changed. Dry air A is introduced into the path 11 (for example, 11a) and circulated so as to pass through the heat exchanger 11d and return to the cultivation room 2 (step S15A, system sterilization step). During that time, the dehumidifying operation is continued and strengthened so that the low humidity environment (first fungus suppression mode S7A) in the cultivation room 2 is maintained only by the remaining air conditioning system (for example, 12, 13, 14).

(別の空調システムへの減菌処理)
第1の空調システム11への減菌処理が完了した(例えば、導入時間が所定期間(第1の送風期間)を経過した)と判断された場合(工程S15B)には、第1の空調システム11の運転を送風運転から元の除湿運転に戻すとともに、別の第2の空調システム12を除湿運転から送風運転に切り替えて第1空調システム11へ既に行った減菌処理と同様の処理を施すことが好ましい(工程S15C、システム減菌工程)。そして、第2の送風期間経過まで工程S15Cを実行する(工程S15D)。ここで、第2の送風期間を十分に確保できない場合(確保することで合計の減菌期間が長くなり過ぎて、植物4の栽培効率を低下させてしまう場合など)は、後述する紫外線照射も併せて実行することにより各システムへの減菌期間を短く抑えるか、又は、空調システムの一部又は全部へのシステム減菌工程の実施を次のタイミングに先送りしたりする、といった工夫が必要であろう。
(Bactericidal treatment to another air conditioning system)
When it is determined that the sterilization treatment for the first air conditioning system 11 is completed (for example, the introduction time has passed a predetermined period (first ventilation period)) (step S15B), the first air conditioning system The operation of 11 is returned from the ventilation operation to the original dehumidification operation, and another second air conditioning system 12 is switched from the dehumidification operation to the ventilation operation to perform the same processing as the sterilization treatment already performed on the first air conditioning system 11. It is preferable (step S15C, system sterilization step). Then, step S15C is executed until the elapse of the second ventilation period (step S15D). Here, if the second ventilation period cannot be sufficiently secured (for example, if the total sterilization period becomes too long and the cultivation efficiency of the plant 4 is lowered), the ultraviolet irradiation described later is also performed. It is necessary to take measures such as shortening the sterilization period for each system by executing it at the same time, or postponing the implementation of the system sterilization process for a part or all of the air conditioning system to the next timing. There will be.

もし、植物工場1に、図1(a)に示すように空調システムが3つ以上設置されている場合には、第2の空調システム12を送風運転から元の除湿運転に戻した後、第3の空調システム13にも同様の減菌処理を施すのが好ましい(工程S15E,S15F)。なお、図3には示さないが、引き続き、第4(第N)の空調システム14にも同様の減菌処理を行うことが可能である。 If three or more air conditioning systems are installed in the plant factory 1 as shown in FIG. 1A, the second air conditioning system 12 is returned from the ventilation operation to the original dehumidification operation, and then the second air conditioning system 12 is installed. It is preferable that the air conditioning system 13 of No. 3 is also subjected to the same sterilization treatment (steps S15E and S15F). Although not shown in FIG. 3, the same sterilization treatment can be continuously applied to the fourth (Nth) air conditioning system 14.

また、植物工場1(1A)全体の減菌処理時間の節約のため、同時に複数の空調システムへの減菌を行うことも可能である。例えば、第1・第3の空調システム11,13を同時に送風運転に切り替えて、これらのシステム11,13の各経路に乾燥空気A(図1(a)中の実線矢印を参照)を導入して減菌処理を行いつつ(工程S15A、システム減菌工程)、第2・第4の空調システム12,14は除湿運転を維持又は強化して栽培室2の抑制モードを確保するようにしてもよい。そして、第1・第3の空調システム11,13の経路11a〜11d,13a〜13dへの減菌処理が完了したら各システム11,13の運転モードを元に戻し、第2・第4の空調システム12,14の方へ同様の減菌処理(除湿運転→送風運転)を実施するようにしてもよい(工程S15C、システム減菌工程、図1(a)中の一点鎖線矢印を参照))。 Further, in order to save the sterilization processing time of the entire plant factory 1 (1A), it is possible to sterilize a plurality of air conditioning systems at the same time. For example, the first and third air conditioning systems 11 and 13 are simultaneously switched to the ventilation operation, and dry air A (see the solid line arrow in FIG. 1A) is introduced into each path of these systems 11 and 13. While performing the sterilization treatment (step S15A, system sterilization step), the second and fourth air conditioning systems 12 and 14 maintain or strengthen the dehumidifying operation to secure the suppression mode of the cultivation room 2. Good. Then, when the sterilization treatment for the routes 11a to 11d and 13a to 13d of the first and third air conditioning systems 11 and 13 is completed, the operation modes of the systems 11 and 13 are returned to the original state, and the second and fourth air conditioning systems are used. The same sterilization treatment (dehumidification operation → ventilation operation) may be performed on the systems 12 and 14 (see step S15C, system sterilization step, one-dot chain line arrow in FIG. 1A)). ..

(第1真菌抑制モードの完了)
以上のように、栽培室2とともに第1〜第4(第N)の空調システム11〜14への減菌処理(工程S15A〜S15F)が行われるが、この処理が予め決められた第2減菌期間を経過したと判定されれば、第1真菌抑制モードS7Aは完了する(工程S16)。第2減菌期間は、少なくとも第1減菌期間以上の期間を確保する。その後、植物4の生育度が充分であるかどうかを判定する(工程S8、図2を参照)。これが肯定的な結果であれば本発明の方法は完了する。一方、否定的な結果であれば再度、栽培モード(つまり、工程S1)に戻る。
(Completion of the first fungal suppression mode)
As described above, the sterilization treatment (steps S15A to S15F) of the first to fourth (Nth) air conditioning systems 11 to 14 is performed together with the cultivation room 2, and this treatment is a predetermined second reduction. If it is determined that the bacterial period has passed, the first fungal suppression mode S7A is completed (step S16). As the second sterilization period, at least a period equal to or longer than the first sterilization period is secured. After that, it is determined whether or not the growth of the plant 4 is sufficient (see step S8 and FIG. 2). If this is a positive result, the method of the invention is complete. On the other hand, if the result is negative, the process returns to the cultivation mode (that is, step S1) again.

(第2真菌抑制モード:植物工場に空調システムが1台のみ設置されている場合)
別の例として、植物工場1に、図1(b)に示すように空調システム11が1台のみ設置されている場合の真菌抑制方法(第2真菌抑制モードS7B)について説明する。図4に、第1空調システム11が1台のみ存在する場合の抑制モードS7Bのフローチャートを示す。
(Second fungus suppression mode: when only one air conditioning system is installed in the plant factory)
As another example, a fungus suppression method (second fungus suppression mode S7B) in the case where only one air conditioning system 11 is installed in the plant factory 1 as shown in FIG. 1B will be described. FIG. 4 shows a flowchart of the suppression mode S7B when only one first air conditioning system 11 exists.

上述の工程S6の判定後に第2真菌抑制モードS7Bに入ると、上述の第1真菌抑制モードS7Aでの処理と同様に、第1空調システム11を用いて栽培室2内を低湿度状態に変更し(工程S21、室内除湿工程)、栽培室2内の温度や湿度が目標値に達したかどうか判定する(工程S22)。そして、好ましくは、栽培空間である栽培室2内だけでなく、第1空調システム11内の空気流通経路11a〜11d(特に、熱交換器11dの表面)に対しても真菌抑制(減菌)処理が必要かどうかを判断する(工程S23、同時減菌確認工程)。予め決められた所定期間(第1減菌期間)だけ、栽培室2が上記低湿度環境に保持される(工程S24)。 When the second fungus suppression mode S7B is entered after the determination in the above step S6, the inside of the cultivation room 2 is changed to a low humidity state by using the first air conditioning system 11 as in the treatment in the first fungus suppression mode S7A described above. (Step S21, indoor dehumidification step), and it is determined whether or not the temperature and humidity in the cultivation room 2 have reached the target values (step S22). Then, preferably, the fungus is suppressed (sterilized) not only in the cultivation room 2 which is the cultivation space but also in the air flow paths 11a to 11d (particularly, the surface of the heat exchanger 11d) in the first air conditioning system 11. It is determined whether or not the treatment is necessary (step S23, simultaneous sterilization confirmation step). The cultivation room 2 is maintained in the low humidity environment for a predetermined period (first sterilization period) (step S24).

そして、工程S23において第1空調システム11への減菌が不要と判定された場合には、第1減菌期間が経過するまで、第2真菌抑制モードS7Bが維持され(工程S24)、その後、直ぐに第2真菌抑制モードS7Bは完了する。 When it is determined in step S23 that sterilization of the first air conditioning system 11 is unnecessary, the second fungus suppression mode S7B is maintained until the first sterilization period elapses (step S24), and then, Immediately, the second fungal suppression mode S7B is completed.

一方、工程S23において第1空調システム11への減菌が必要と判定された場合には、第1空調システム11を除湿運転から送風運転に切り替え、栽培室2内の乾燥空気Aをその経路11a〜11d(特に、熱交換器11dの表面)に導入し、栽培室2と第1空調システム11との間で乾燥空気Aを循環させる(工程S25A、システム減菌工程、図1(b)中の実線矢印を参照)。 On the other hand, when it is determined in step S23 that sterilization of the first air conditioning system 11 is necessary, the first air conditioning system 11 is switched from the dehumidifying operation to the blowing operation, and the dry air A in the cultivation room 2 is passed through the path 11a. It is introduced into ~ 11d (particularly the surface of the heat exchanger 11d), and the dry air A is circulated between the cultivation room 2 and the first air conditioning system 11 (step S25A, system sterilization step, in FIG. 1B). See the solid arrow in).

ただし、第2真菌抑制モードS7Bでは、工程S25Aの送風運転の間、栽培室2内の低湿度環境を保持するため別の空調システムが存在しないため、第1空調システム11への減菌を極めて短期間で効率的に行う工夫が求められる。そこで、図1(b)に示すように、第1空調システム11の経路11a〜11d内に紫外線照射装置11eを予め設けておき、送風運転の間に、乾燥空気Aが流れる熱交換器11dの表面に紫外線Uを更に照射する(工程S26)ことが好ましい。ここで、照射する紫外線Uは、260nmを中心とした波長域とし、照射面では3500J/m程度の積算線量を確保する必要がある。この紫外線照射装置11eに一般的な公知の照射装置を用いた場合は、少なくとも5分程度以上の照射期間を設ける必要がある。 However, in the second fungus suppression mode S7B, since there is no other air conditioning system to maintain the low humidity environment in the cultivation room 2 during the blowing operation in step S25A, the bacteria are extremely sterilized to the first air conditioning system 11. Ingenuity is required to do it efficiently in a short period of time. Therefore, as shown in FIG. 1B, an ultraviolet irradiation device 11e is provided in advance in the paths 11a to 11d of the first air conditioning system 11, and the heat exchanger 11d through which the dry air A flows during the blowing operation It is preferable that the surface is further irradiated with ultraviolet rays U (step S26). Here, it is necessary to irradiate the ultraviolet U in a wavelength range centered on 260 nm and secure an integrated dose of about 3500 J / m 2 on the irradiated surface. When a general known irradiation device is used for the ultraviolet irradiation device 11e, it is necessary to provide an irradiation period of at least about 5 minutes or more.

上記処理(工程S25A,S26)を第1の送風期間が経過するまで第1空調システム11への減菌処理を行い(工程S25B)、栽培室2及び第1空調システム11に対する減菌処理(S21〜S26)の合計時間が第2減菌期間になるまで処理を継続する(工程S27)。 The above treatments (steps S25A and S26) are sterilized in the first air conditioning system 11 until the first ventilation period elapses (step S25B), and the sterilization treatments in the cultivation room 2 and the first air conditioning system 11 (S21). The treatment is continued until the total time of ~ S26) reaches the second sterilization period (step S27).

上述の工程S24(又は、条件によって工程S27)が終了すれば、第2真菌抑制モードS7Bは完了する。その後、植物4の生育度が充分であるかどうかを判定する(工程S8、育成度確認工程、図2を参照)。肯定的な結果であれば本発明の方法は完了する。一方、否定的な結果であれば再度、栽培モード(つまり、工程S1)に戻る。 When the above-mentioned step S24 (or step S27 depending on the conditions) is completed, the second fungus suppression mode S7B is completed. After that, it is determined whether or not the growth degree of the plant 4 is sufficient (see step S8, growth degree confirmation step, FIG. 2). If the result is positive, the method of the present invention is completed. On the other hand, if the result is negative, the process returns to the cultivation mode (that is, step S1) again.

(フリルレタスを使った実証試験)
実際に本発明の真菌抑制方法を用いてフリルレタスを栽培し、後述の比較例も検討し、その効果を比較検証してみた(実施例2)。比較例の栽培実験では、環境要因の影響を極力排除するため、後述のように、相対湿度以外の環境条件を実施例2に極力一致させた。なお、栽培室2への空調システム11は1台のみ利用した。
(Demonstration test using frilled lettuce)
Frill lettuce was actually cultivated using the fungal suppression method of the present invention, comparative examples described later were also examined, and the effects were compared and verified (Example 2). In the cultivation experiment of the comparative example, in order to eliminate the influence of environmental factors as much as possible, the environmental conditions other than the relative humidity were matched with Example 2 as much as possible as described later. Only one air conditioning system 11 for the cultivation room 2 was used.

光源36として、LEDタイプの照明具を用い、LED素子としては光合成に必要な波長成分である赤色と青色の出力をそれぞれ自在に設定できるタイプを用いた。赤色と青色の比率をR/B=4とし、床面光合成有効光量子束密度は150μmol/(sec・m)に調整した。明期及び暗期は、1日当たり16時間、8時間に設定した。実施例2及び比較例とも、同じ栽培室2内を用いて栽培とすることでCO濃度も一致させた。 As the light source 36, an LED type illuminator was used, and as the LED element, a type capable of freely setting the outputs of red and blue, which are wavelength components required for photosynthesis, was used. The ratio of red and blue was set to R / B = 4, and the effective photon flux density of floor photosynthesis was adjusted to 150 μmol / (sec · m 2 ). The light and dark periods were set to 16 hours and 8 hours per day. In both Example 2 and Comparative Example, the CO 2 concentration was also matched by cultivating in the same cultivation room 2.

栽培室2の温度は25±0.3℃であり、相対湿度は通常(つまり、栽培モード)で75%、真菌抑制モードS7Bに入った場合には、50%又は60%を目標に制御した。これに対し、比較例では常に75%に設定した(つまり、真菌抑制モードS7Bに入れない設定にした)。なお、相対湿度の制御幅は±0.4%である。培養液31の条件も一致させ、同じ容器32を利用した。なお、実験期間の培養液管理はpHと電気伝導度ECの調整により実施した。それぞれの制御範囲は、pH=6.4±0.4及びEC=1.00±0.02mS/cmである。 The temperature of the cultivation room 2 was 25 ± 0.3 ° C., the relative humidity was controlled to 75% in the normal state (that is, the cultivation mode), and 50% or 60% when the fungus suppression mode S7B was entered. .. On the other hand, in the comparative example, it was always set to 75% (that is, it was set not to enter the fungus suppression mode S7B). The control range of relative humidity is ± 0.4%. The conditions of the culture solution 31 were also matched, and the same container 32 was used. The culture solution was controlled during the experimental period by adjusting the pH and the electrical conductivity EC. The respective control ranges are pH = 6.4 ± 0.4 and EC = 1.00 ± 0.02 mS / cm.

上述の試験条件の下でフリルレタスの栽培を行った。なお、フリルレタスの定植から収穫に至るまでの期間は約24日である。この実証実験の結果を以下の表1に示す。 Frill lettuce was cultivated under the above-mentioned test conditions. The period from planting of frilled lettuce to harvesting is about 24 days. The results of this demonstration experiment are shown in Table 1 below.

(植物栽培効率の維持と真菌抑制の両立)
この表1から、実施例2(真菌抑制モードS7B実装下で)のレタスの成長率は、どの相対湿度の場合でも、比較例と比べほぼ同等かむしろ向上しているのに対し、真菌胞子については発芽させた上で菌糸の伸長を停止させることに成功したことを確認できた。一方、比較例では真菌胞子は発芽後も持続的に伸長していることを確認した。これらの比較検討結果から、本発明の方法によれば、植物の栽培効率維持と真菌抑制との両立を実現できることが判った。
(Both maintenance of plant cultivation efficiency and fungal control)
From this Table 1, the growth rate of lettuce in Example 2 (under the implementation of fungal suppression mode S7B) was almost the same as or rather improved as compared with Comparative Example at any relative humidity, whereas for fungal spores. Was able to confirm that it succeeded in stopping the growth of hyphae after germination. On the other hand, in the comparative example, it was confirmed that the fungal spores were continuously elongated even after germination. From these comparative study results, it was found that the method of the present invention can achieve both maintenance of plant cultivation efficiency and fungal control.

(明期・暗期の比較実験)
また、本発明者らは、本発明の抑制モード(低相対湿度環境)を暗期にあてた場合(実施例3)と、明期にあてた場合(比較例)でのレタス体内での硝酸態窒素量を測定した。この測定結果を図5に示す。図5より、比較例(明期)に比べて実施例3の場合の方が、レタス体内での硝酸態窒素量が有意に低くなっていることが判った。
(Comparative experiment between light and dark periods)
In addition, the present inventors have applied nitrate in the lettuce body when the suppression mode (low relative humidity environment) of the present invention is applied to the dark period (Example 3) and when it is applied to the light period (comparative example). The amount of lettuce was measured. The measurement result is shown in FIG. From FIG. 5, it was found that the amount of nitrate nitrogen in the lettuce body was significantly lower in the case of Example 3 than in the case of Comparative Example (light period).

この現象は以下のように考察できる。すなわち、比較例のように明期に低相対湿度環境にすると、暗期と同様に蒸散量が増える(但し、蒸散量が増える機構は異なる)。しかし、明期の場合は蒸散量が増えすぎると、植物は水分量を保持するために気孔を閉じようとする。気孔を閉じると二酸化炭素を吸収しにくくなり、光合成反応を阻害する。そして光合成反応が阻害されると植物体内で硝酸態窒素(苦味・えぐみの成分)を消費できなくなる。逆に言えば、実施例3のように、明期の相対湿度を高く保つ一方で暗期にのみ相対湿度を低くすることで、収穫物の苦味・えぐみを抑制できる。上述の背景技術で説明したように、硝酸態窒素量を低く抑えることができれば、消費者の健康維持の観点からも有用と考えられる。 This phenomenon can be considered as follows. That is, when the environment is set to a low relative humidity in the light period as in the comparative example, the amount of transpiration increases as in the dark period (however, the mechanism by which the amount of transpiration increases is different). However, in the light season, if the amount of transpiration increases too much, the plant will try to close the stomata to retain the amount of water. When the pores are closed, it becomes difficult to absorb carbon dioxide and inhibits the photosynthetic reaction. When the photosynthetic reaction is inhibited, nitrate nitrogen (a component of bitterness and harshness) cannot be consumed in the plant body. Conversely, as in Example 3, by keeping the relative humidity in the light period high while lowering the relative humidity only in the dark period, the bitterness and harshness of the harvested product can be suppressed. As explained in the background technology described above, if the amount of nitrate nitrogen can be kept low, it will be useful from the viewpoint of maintaining the health of consumers.

なお、本発明の好適な態様(実施例3)のように暗期に相対湿度を下げる操作は、自然界で一般的に起きる現象の「逆」であることに留意されたい。自然界では、通常、図6(a)に示すように日中、気温の上昇と共に相対湿度が低下し、夜間は気温の低下と共に相対湿度が上昇する。これに対し、図6(b)に示すように、低湿度期間を暗期に限定するという本発明の操作は、これとは逆に光合成が行われない暗期に敢えて相対湿度を低下させる発想である。自然界の現象を模倣するのが一般的な手法だが、本発明者らは逆転の発想で上述の利点を見出したのである。 It should be noted that the operation of lowering the relative humidity in the dark period as in the preferred embodiment of the present invention (Example 3) is the "reverse" of the phenomenon generally occurring in the natural world. In the natural world, as shown in FIG. 6A, the relative humidity usually decreases as the temperature rises during the day, and the relative humidity rises as the temperature decreases at night. On the other hand, as shown in FIG. 6B, the operation of the present invention of limiting the low humidity period to the dark period is conversely the idea of intentionally lowering the relative humidity in the dark period when photosynthesis is not performed. Is. Although it is a common method to imitate phenomena in the natural world, the present inventors have found the above-mentioned advantages in the idea of reversal.

(変形例:植物工場以外の環境への用途)
上述の実施例1〜3では植物工場内の栽培室及びこれに付随する空調システムに対して真菌増殖を抑制しながら植物を栽培する方法について説明したが、必ずしも上記用途に限定されない。
(Modification example: Use for environment other than plant factory)
In Examples 1 to 3 described above, a method of cultivating a plant while suppressing fungal growth in a cultivation room in a plant factory and an air conditioning system associated therewith has been described, but the present invention is not necessarily limited to the above application.

例えば、植物を栽培しない食品工場内の加工室や病院の病室などの室及びこれらに付随する空調システムに対しても本発明の真菌増殖抑制方法を適用できる。但し、この場合、実施例1で説明した植物栽培モードは、通常の空調モード(室内への冷房運転や暖房運転)であり、真空抑制モード(工程S7)へ入る判定条件には、真菌増殖指数Iの判定工程S4は含まれるものの、植物工場特有又は植物栽培特有の追加的な判定工程(工程S3,S5,S6)は含まれないことに留意されたい。言い換えれば、上述した真菌抑制モード(工程S7A,S7B)の内容自体(例えば、乾燥空気を用いた室内及び空調システムへの同時殺菌処理)は、植物工場以外の室内環境への減菌処理にも適用可能である。 For example, the method for suppressing fungal growth of the present invention can be applied to rooms such as processing rooms in food factories where plants are not cultivated, hospital rooms, and air conditioning systems associated therewith. However, in this case, the plant cultivation mode described in Example 1 is a normal air conditioning mode (indoor cooling operation or heating operation), and the determination condition for entering the vacuum suppression mode (step S7) is the fungal growth index. It should be noted that although the determination step S4 of I is included, the additional determination step (steps S3, S5, S6) peculiar to the plant factory or plant cultivation is not included. In other words, the content itself of the above-mentioned fungal suppression mode (steps S7A, S7B) (for example, simultaneous sterilization treatment for indoors and air conditioning systems using dry air) can also be used for sterilization treatments for indoor environments other than plant factories. Applicable.

本発明の方法によれば、植物工場において、植物栽培効率の維持を保ちつつ、栽培室内及び空調システム内の減菌(真菌抑制)を実現することが可能となる。 According to the method of the present invention, it is possible to realize sterilization (fungal suppression) in the cultivation room and the air conditioning system while maintaining the plant cultivation efficiency in the plant factory.

また、本発明の方法は、金属に対する腐食性が低く、かつ、人体に安全であり、空調対象室の温熱環境を悪化させず、短時間の運転で処理可能である。 In addition, the method of the present invention has low corrosiveness to metals, is safe for the human body, does not deteriorate the thermal environment of the air-conditioned room, and can be processed in a short time.

また、本発明の好適な態様によれば、暗期にのみ上述の真菌抑制モードを実行させているため、これによって栽培される植物の苦みや食味悪化を軽減することができる。 Further, according to a preferred embodiment of the present invention, since the above-mentioned fungal suppression mode is executed only in the dark period, the bitterness and deterioration of taste of the cultivated plant can be reduced.

このように、本発明の真菌抑制方法は、産業上の利用可能性及び利用価値が非常に高い。 As described above, the fungal control method of the present invention has very high industrial applicability and utility value.

1,1A,1B 植物工場
2 栽培室
3 養液栽培装置
4 植物
11,12,13,14 空調システム
11a,12a,13a,14a 空気吸い込み用風導管
11b,12b,13b,14b 空気吐き出し用風導管
11c,12c,13c,14c 空調システムの本体内の空気流通空間
11d,12d,13d,14d 熱交換器
11e 紫外線照射装置
31 培養液
32 容器
33 供給管
34 排出管
35 栽培棚
36 光源
A 乾燥空気
I 真菌増殖指数
P ポンプ
U 紫外線
S1 室内計測工程
S2 指数算出工程
S3 発芽確認工程
S4 指数確認工程
S5 第1追加確認工程
S6 第2追加確認工程
S7 モード開始判定工程
S7A,S7B 第1真菌抑制モード,第2真菌抑制モード
S8 育成度確認工程
S11,S21 室内除湿工程
S13,S23 同時減菌確認工程
S15A,S15C,S15E,S25A システム減菌工程
S26 紫外線照射工程
1,1A, 1B Plant factory 2 Cultivation room 3 Hydroponic cultivation equipment 4 Plants 11, 12, 13, 14 Air conditioning system 11a, 12a, 13a, 14a Air suction air duct 11b, 12b, 13b, 14b Air discharge air duct 11c, 12c, 13c, 14c Air flow space in the main body of the air conditioning system 11d, 12d, 13d, 14d Heat exchanger 11e Ultraviolet irradiation device 31 Culture solution 32 Container 33 Supply pipe 34 Discharge pipe 35 Cultivation shelf 36 Light source A Dry air I Fungal growth index P pump U UV S1 Indoor measurement process S2 Index calculation process S3 Sprouting confirmation process S4 Index confirmation process S5 First additional confirmation process S6 Second additional confirmation process S7 Mode start determination process S7A, S7B First fungus suppression mode, first 2 Fungus suppression mode S8 Growth degree confirmation step S11, S21 Indoor dehumidification step S13, S23 Simultaneous sterilization confirmation step S15A, S15C, S15E, S25A System sterilization step S26 Ultraviolet irradiation step

Claims (4)

空調システムが設置された室内の真菌増殖を抑制する方法であって、
前記室内の温度及び湿度を計測する室内計測工程と、
計測された前記温度及び前記湿度、並びに、予め取得しておいた真菌の生育速度と前記温度及び前記湿度との相関関係から真菌増殖指数を算出する指数算出工程と、
前記真菌増殖指数が予め定めた閾値を超えたことを確認する指数確認工程と、
前記指数確認工程で前記閾値を超えたことを確認した後に真菌抑制モードを開始するモード開始判定工程と、
を含み、
前記真菌抑制モードでは、
前記空調システムの除湿運転を行い、前記室内を低湿度状態に維持する室内除湿工程と、
前記空調システムへも減菌が必要かどうかを確認する同時減菌確認工程と、
を含み、かつ、
前記同時減菌確認工程で否定的な判定であれば、第1減菌期間の経過後に前記真菌抑制モードを完了し、
前記同時減菌確認工程で肯定的な判定であれば、前記空調システムを前記除湿運転から送風運転に切り替えて、該空調システム内の経路に前記室内の乾燥空気を導入し、該空調システムと前記室内との間を循環させるシステム減菌工程を含み、かつ、第1減菌期間以上長い期間である第2減菌期間の経過後に前記真菌抑制モードを完了し、かつ、
前記室内が人工光型植物工場内で植物を栽培するための栽培室内であり、
前記栽培室内の環境に合わせて予め定めた胞子発芽期間が経過したことを確認する発芽確認工程と、
前記植物に適した栽培効率維持期間が経過したことを確認する第1追加確認工程と、
をさらに含み、
前記モード開始判定工程では、前記指数確認工程の他に、前記発芽確認工程と、第1追加確認工程と、の全てで肯定的な結果を得られた後に前記真菌抑制モードを開始すること
を特徴とする真菌増殖抑制方法。
It is a method of suppressing the growth of fungi in the room where the air conditioning system is installed.
The indoor measurement process for measuring the temperature and humidity in the room, and
An index calculation step for calculating the fungal growth index from the measured temperature and humidity, and the correlation between the fungal growth rate acquired in advance and the temperature and humidity.
An index confirmation step for confirming that the fungal growth index has exceeded a predetermined threshold value, and
A mode start determination step of starting the fungus suppression mode after confirming that the threshold value has been exceeded in the index confirmation step, and
Including
In the fungal suppression mode,
An indoor dehumidifying step of performing a dehumidifying operation of the air conditioning system to maintain the room in a low humidity state, and
Simultaneous sterilization confirmation process to confirm whether sterilization is necessary for the air conditioning system,
Including and
If the determination is negative in the simultaneous sterilization confirmation step, the fungal suppression mode is completed after the lapse of the first sterilization period.
If the determination is positive in the simultaneous sterilization confirmation step, the air conditioning system is switched from the dehumidifying operation to the blowing operation, dry air in the room is introduced into the path in the air conditioning system, and the air conditioning system and the air conditioning system are described. The fungus suppression mode is completed after the lapse of the second sterilization period, which is a period longer than the first sterilization period, and includes a system sterilization step of circulating between the room and the room .
The room is a cultivation room for cultivating plants in an artificial light type plant factory.
A germination confirmation step for confirming that a predetermined spore germination period has elapsed according to the environment in the cultivation room, and
The first additional confirmation step for confirming that the cultivation efficiency maintenance period suitable for the plant has passed, and
Including
The mode start determination step is characterized in that the fungus suppression mode is started after a positive result is obtained in all of the germination confirmation step and the first additional confirmation step in addition to the index confirmation step. A method for suppressing fungal growth.
前記栽培室内が暗期にあるかどうか、かつ、該暗期であった場合に前記真菌抑制モードを実行するには十分な期間が残っているかどうかを確認する第2追加確認工程と、
をさらに含み、
前記モード開始判定工程では、前記指数確認工程の他に、前記発芽確認工程と、第1追加確認工程と、第2追加確認工程と、の全てで肯定的な結果を得られた後に前記真菌抑制モードを開始すること
を含むことを特徴とする請求項に記載の真菌増殖抑制方法。
A second additional confirmation step of confirming whether or not the cultivation room is in a dark period and whether or not there is a sufficient period remaining to execute the fungal suppression mode in the dark period.
Including
In the mode start determination step, in addition to the index confirmation step, the fungus suppression is performed after a positive result is obtained in all of the germination confirmation step, the first additional confirmation step, and the second additional confirmation step. The method for suppressing fungal growth according to claim 1 , which comprises initiating a mode .
前記システム減菌工程は、前記空調システム内の熱交換器付近に設置された紫外線照射装置から前記熱交換器に向けて紫外線を照射する照射工程と、
をさらに含むこと
を特徴とする請求項1又は請求項2に記載の真菌増殖抑制方法。
The system sterilization step includes an irradiation step of irradiating the heat exchanger with ultraviolet rays from an ultraviolet irradiation device installed near the heat exchanger in the air conditioning system.
The method for suppressing fungal growth according to claim 1 or 2 , further comprising.
前記室内に対して前記空調システムを複数設置しておき、
前記同時減菌確認工程で肯定的な判定であれば、前記空調システムを、前記システム減菌工程を先に実行するものと、後に実行するものと、に割り当て、
前記先の空調システムが前記システム減菌工程を実行する間、前記後の空調システムは、前記除湿運転を維持或いは増強して前記室内の前記低湿度状態を維持し、
前記先の空調システムへの前記システム減菌工程を実行した後、前記先の空調システムでは前記送風運転から元の除湿運転に戻し、前記後の空調システムでは前記システム減菌工程を開始すること
を特徴とする請求項1〜3のいずれかに記載の真菌増殖抑制方法。
A plurality of the air conditioning systems are installed in the room,
If the determination is positive in the simultaneous sterilization confirmation step, the air conditioning system is assigned to one that executes the system sterilization step first and one that executes the system sterilization step later.
While the earlier air conditioning system performs the system sterilization step, the subsequent air conditioning system maintains or enhances the dehumidifying operation to maintain the low humidity state in the room.
After executing the system sterilization step on the above-mentioned air conditioning system, the above-mentioned air-conditioning system returns from the blowing operation to the original dehumidifying operation, and the subsequent air-conditioning system starts the system sterilization step. The method for suppressing fungal growth according to any one of claims 1 to 3 .
JP2020090779A 2020-05-25 2020-05-25 Fungal growth suppression method Active JP6751827B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020090779A JP6751827B1 (en) 2020-05-25 2020-05-25 Fungal growth suppression method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020090779A JP6751827B1 (en) 2020-05-25 2020-05-25 Fungal growth suppression method

Publications (2)

Publication Number Publication Date
JP6751827B1 true JP6751827B1 (en) 2020-09-09
JP2021188752A JP2021188752A (en) 2021-12-13

Family

ID=72333491

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020090779A Active JP6751827B1 (en) 2020-05-25 2020-05-25 Fungal growth suppression method

Country Status (1)

Country Link
JP (1) JP6751827B1 (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63156965A (en) * 1986-12-19 1988-06-30 Matsushita Seiko Co Ltd Mold generation preventing device
JP3570260B2 (en) * 1998-11-16 2004-09-29 ダイキン工業株式会社 Air conditioner
JP3823715B2 (en) * 2000-10-24 2006-09-20 ダイキン工業株式会社 Indoor environment determination method, indoor environment determination device, and air conditioner
JP4548979B2 (en) * 2001-06-27 2010-09-22 東芝キヤリア株式会社 Air conditioner
JP2003185223A (en) * 2001-12-19 2003-07-03 Daikin Ind Ltd Air conditioner and mold growing condition estimating device
JP4858239B2 (en) * 2007-03-06 2012-01-18 Mkvドリーム株式会社 Air conditioning method for multi-stage plant cultivation equipment
CN108844198B (en) * 2018-03-30 2020-11-10 四川长虹空调有限公司 Control method of air conditioner operation mode and air conditioner

Also Published As

Publication number Publication date
JP2021188752A (en) 2021-12-13

Similar Documents

Publication Publication Date Title
US10681879B2 (en) System, apparatus and method for growing marijuana
US20170027112A1 (en) Modular indoor farm
US20140115958A1 (en) Self-sustaining artificially controllable environment within a storage container or other enclosed space
US10342191B2 (en) Method and apparatus for regeneration, acclimatization, and conditioning of plant propagules
US10434208B1 (en) Integrated disinfection system
RU2572762C1 (en) Method and system for prevention and treatment of pests with use of smoke from power supply unit on biomass in confined space
US11076535B2 (en) Systems and methods for indoor plant cultivation, storage, and pest control
TWI536904B (en) Greenhouse apparatus for monitoring and controlling growth factors of plant factory and the method thereof
JP2017205072A (en) Plant cultivation apparatus
WO2012072273A1 (en) Plant growing unit
JP6751827B1 (en) Fungal growth suppression method
JP4789390B2 (en) Method and apparatus for sterilizing production facilities
EP3570661B1 (en) Procedure for the cultivation of mushrooms
JPS6360905A (en) Growth promoting adjuvant water for cultivating plant such as field crop or the like
CN109699329A (en) A kind of method of nitrogen dioxide processing strawberry production seedling
CN209884826U (en) Ozone disinfection equipment
TWI805304B (en) Methods for Reducing Microbial Populations in Agricultural Facilities
JP2637590B2 (en) Disease control method and equipment for greenhouse horticulture
JP2005214593A (en) Freshness keeping device and cooling humidifier
JP2005323545A (en) Plant storage/acclimation device
EP3598896A1 (en) Electrolyzed water composition
CN113498704A (en) Environmental parameter regulation and control system and circulation agricultural health system
JP2003102268A (en) Method for sterilizing interior of chamber for culturing mushroom by ozone gas
RU2073412C1 (en) Method for storage and sanation of seed and food potatoes
IT202000014584A1 (en) PROCEDURE FOR SANITIZING FRUIT AND VEGETABLE PRODUCTS USING OZONE

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200525

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20200525

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20200616

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200721

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200722

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200814

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200817

R150 Certificate of patent or registration of utility model

Ref document number: 6751827

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250