JP4858239B2 - Air conditioning method for multi-stage plant cultivation equipment - Google Patents

Air conditioning method for multi-stage plant cultivation equipment Download PDF

Info

Publication number
JP4858239B2
JP4858239B2 JP2007055678A JP2007055678A JP4858239B2 JP 4858239 B2 JP4858239 B2 JP 4858239B2 JP 2007055678 A JP2007055678 A JP 2007055678A JP 2007055678 A JP2007055678 A JP 2007055678A JP 4858239 B2 JP4858239 B2 JP 4858239B2
Authority
JP
Japan
Prior art keywords
air
cultivation
closed structure
air conditioner
plant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007055678A
Other languages
Japanese (ja)
Other versions
JP2008212078A (en
Inventor
順也 布施
和 土屋
Original Assignee
Mkvドリーム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mkvドリーム株式会社 filed Critical Mkvドリーム株式会社
Priority to JP2007055678A priority Critical patent/JP4858239B2/en
Publication of JP2008212078A publication Critical patent/JP2008212078A/en
Application granted granted Critical
Publication of JP4858239B2 publication Critical patent/JP4858239B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/25Greenhouse technology, e.g. cooling systems therefor

Description

本発明は、人工照明装置や空調装置を装備した外部環境の影響を受けない安定した閉鎖空間内で、植物を効率よく栽培することができる多段式植物栽培装置における空調方法に関するものである。   The present invention relates to an air conditioning method in a multi-stage plant cultivation apparatus that can efficiently grow plants in a stable closed space that is not affected by an external environment equipped with an artificial lighting device or an air conditioning apparatus.

閉鎖空間内に多段式の植物栽培棚を設置し、人工照明装置や空調装置を装備した多段式植物栽培装置としては、特許文献1で提案されているような育苗装置がある。この育苗装置は、図1および図2を参照して説明すると、断熱性壁面で囲まれた遮光性の閉鎖型構造物1を有し、この閉鎖型構造物1の内部には、前面が開放している箱形の育成モジュール2、3、4、5が配置されている。育成モジュールの内部は複数の育苗棚6を上下方向に多段に配置することによって上下の育苗棚間に育苗空間が形成されており、各育苗棚6には植物生育用培地を入れる複数のセルトレイ7を載置するとともに各セルトレイ7に潅水する潅水装置(図示せず)が設けられている。各育苗棚6の裏面には人工照明装置8を設けて、その下方のセルトレイに光を照射するようになっている。さらに、閉鎖型構造物1の内部には、閉鎖型構造物内の空気を調温調湿する空調装置9、10、11、12が設置され、育成モジュールの各育苗棚6の背面壁にはファン13が取り付けられている。
かような構成とすることによって、空調装置9〜12により調温調湿された空気が育成モジュール2〜5開放前面からファン13により吸引されて育成モジュール2〜5背面壁後方へ排出され、再び空調装置9〜12へ送風される図2の矢印で示したような循環流が閉鎖型構造物1内で形成され、閉鎖型構造物1の内部空間を植物の生育に最適な温度湿度環境に保つことができる。なお、特許文献1は、かような装置を育苗装置と称しているが、育苗のみならず、植物体全般の栽培にも使用することができるものである。
As a multi-stage plant cultivation apparatus in which a multi-stage plant cultivation shelf is installed in a closed space and equipped with an artificial lighting device and an air conditioner, there is a seedling raising apparatus as proposed in Patent Document 1. 1 and 2, this seedling raising apparatus has a light-shielding closed structure 1 surrounded by a heat-insulating wall surface, and a front surface is opened inside the closed structure 1. Box-shaped growing modules 2, 3, 4, 5 are arranged. Inside the breeding module, a plurality of seedling racks 6 are arranged in multiple stages in the vertical direction to form a seedling space between the upper and lower seedling racks, and each seedling rack 6 has a plurality of cell trays 7 into which a plant growth medium is placed. And an irrigation device (not shown) for irrigating each cell tray 7. An artificial lighting device 8 is provided on the rear surface of each seedling shelf 6 so that the cell tray below it is irradiated with light. Furthermore, inside the closed structure 1, air conditioners 9, 10, 11, and 12 for adjusting the temperature of the air in the closed structure are installed, and on the rear wall of each seedling shelf 6 of the growing module, A fan 13 is attached.
By setting it as such a structure, the air temperature-controlled and humidity-controlled by the air conditioners 9-12 is attracted | sucked by the fan 13 from the growth module 2-5 open front surface, and is discharged | emitted to the rear wall of the growth module 2-5 back. A circulating flow as shown by the arrows in FIG. 2 blown to the air conditioners 9 to 12 is formed in the closed structure 1, and the internal space of the closed structure 1 is brought to a temperature and humidity environment optimal for plant growth. Can keep. In addition, although patent document 1 calls such an apparatus as a seedling raising apparatus, it can be used not only for raising seedlings but also for cultivation of the whole plant body.

上述したような閉鎖空間内での多段式植物栽培装置においては、人工照明装置を点灯したり消灯することで、植物生育に必要とされる明期(植物が光合成を行う時間)と暗期(植物が呼吸を行う時間)を作り出している。明期には、照明装置からの発熱を除熱する必要があるため、空調装置の冷房運転が行われている。
また、冷房運転時の除湿効果によって、閉鎖空間内の湿度上昇も効果的に防止することができる。しかしながら、長期の冷房運転により空調装置内部のフィン部分に結露水が付着し、カビの発生や冷房能力の低下の原因となりやすい。冷房運転時の結露を除去するために、冷房運転を一時的に停止して送風運転のみを行わせたり、時々暖房運転に切り替えて、空調装置内部のフィン部分の結露を乾燥させることも行われる。
In the multistage plant cultivation apparatus in the closed space as described above, the artificial lighting device is turned on and off, so that the light period (the time during which the plant performs photosynthesis) and the dark period (the time during which the plant performs photosynthesis) and the dark period ( The plant is breathing). In the light period, since it is necessary to remove heat generated from the lighting device, the cooling operation of the air conditioner is performed.
Further, due to the dehumidifying effect during the cooling operation, it is possible to effectively prevent an increase in humidity in the enclosed space. However, due to long-term cooling operation, condensed water adheres to the fins inside the air conditioner, which tends to cause mold and decrease cooling capacity. In order to remove condensation during cooling operation, the cooling operation is temporarily stopped and only the air blowing operation is performed, or sometimes the heating operation is switched to dry the condensation in the fin portion inside the air conditioner. .

一方、暗期には、照明装置からの発熱が無くなり、閉鎖空間内の発熱物はファンなどのごくわずかとなるため、明期に比べて冷房負荷が小さくなり、空調装置の冷房運転が停止したり、あるいは冷房運転と停止とが繰り返し行われることになる。その結果、空調装置の冷房運転時の副次的作用である除湿が効果的に行われなくなって、閉鎖空間内の湿度が上昇しやすくなるため、空調装置内部の結露によってカビの発生がみられることがある。また、閉鎖空間内の湿度の上昇は、植物の徒長を招くという問題も生じる。   On the other hand, in the dark period, there is no heat generated from the lighting device, and the heat generated in the enclosed space is negligible, such as fans, so the cooling load is smaller than in the light period and the cooling operation of the air conditioner stops. Or, the cooling operation and the stop are repeatedly performed. As a result, dehumidification, which is a secondary action during the cooling operation of the air conditioner, is not performed effectively, and the humidity in the enclosed space is likely to increase. Sometimes. In addition, the increase in humidity in the enclosed space also causes a problem that it leads to plant heads.

また、明期であっても、照明装置の光量を少なくしたり、空の棚段があるため一部の照明装置しか使用していない場合がある。さらには、外気温が著しく低下した結果、閉鎖空間内の温度も低下する場合もある。これらの場合にも、閉鎖空間内の冷房負荷は明期に比べて低下するため、空調装置の冷房運転が停止したり、あるいは冷房運転と停止の繰り返しが行われ、その結果、暗期と同様に閉鎖空間内の湿度が上昇しやすくなり、空調装置内部の結露によってカビの発生がみられたり、植物の徒長を招くことがある。   Even in the light period, there are cases where only a part of the lighting device is used because the light amount of the lighting device is reduced or there is an empty shelf. Furthermore, as a result of a significant decrease in the outside air temperature, the temperature in the enclosed space may also decrease. In these cases, the cooling load in the enclosed space is lower than that in the light period, so the cooling operation of the air conditioner is stopped or the cooling operation and the stop are repeated, and as a result, the same as in the dark period. In addition, the humidity in the enclosed space is likely to rise, and dew condensation inside the air conditioner may cause mold generation or lead to plant heads.

照明装置を消灯している暗期や、外気温の低下などによって空調装置の冷房運転が停止し、閉鎖空間内の湿度が上昇する問題を解決するために、空調装置とは別に、電熱ヒーター等の加温装置を設置して、閉鎖空間内を補助的に加温することによって、冷房負荷を高め、空調装置の冷房運転の頻度を高めることも行われている。しかしながらこの場合、空調装置の他に加温装置が必要となるため、装置構成が煩雑になるだけでなく、加温装置の設置場所によっては閉鎖空間内部に加温ムラが生じるといった問題がある。   In order to solve the problem that the cooling operation of the air conditioner stops and the humidity in the enclosed space rises due to the dark period when the lighting device is turned off or due to a decrease in the outside air temperature, etc. In order to increase the cooling load and to increase the frequency of the cooling operation of the air conditioner, auxiliary heating of the closed space is installed. However, in this case, since a heating device is required in addition to the air conditioning device, not only the device configuration becomes complicated, but there is a problem that heating unevenness occurs in the closed space depending on the installation location of the heating device.

特開2002−291349号公報JP 2002-291349 A

閉鎖型構造物の内部空間を調温調湿するための空調方法としては、1台の業務用大型空調装置を使用して明期と暗期の空調を行う場合もあるが、空調装置が故障した際には植物の育成が停止してしまうという根本的な問題が生じる。
そのため、比較的小型の家庭用空調装置を複数台設置した図1に示したような空調方法が提案されている。複数台の小型空調装置を使用する場合に必要とされる空調装置全体の冷房能力は、明期中に点灯する照明器具全体の発熱を除熱できる冷房負荷により決定される。
しかしながら、複数台(図1では4台)の空調装置を使用する場合にも、各空調装置の冷房運転と暖房運転の切り替えと目標温度の指示は、制御装置から一括して行われているのが実情である。
There is a case where air conditioning in the light period and dark period is performed using one commercial large-scale air conditioner as a method of air conditioning to regulate the humidity of the internal space of a closed structure, but the air conditioner fails. When this happens, there is a fundamental problem that plant growth stops.
Therefore, an air conditioning method as shown in FIG. 1 in which a plurality of relatively small household air conditioners are installed has been proposed. The cooling capacity of the entire air conditioner required when using a plurality of small air conditioners is determined by the cooling load that can remove the heat generated by the entire lighting fixture that is lit during the light period.
However, even when a plurality of air conditioners (four in FIG. 1) are used, the switching between the cooling operation and the heating operation of each air conditioner and the instruction of the target temperature are performed collectively from the control device. Is the actual situation.

そこで本発明は、閉鎖型構造物内に人工照明装置と複数台の空調装置とを備えた多段式植物栽培装置において、個々の空調装置の運転を独立してきめ細かく制御することによって、明期と暗期を通じて閉鎖型構造物の内部空間の湿度の上昇を抑制し、空調装置内部のカビ発生を抑制ことができる空調方法を提供することを目的としてなされたものである。   Therefore, the present invention is a multistage plant cultivation apparatus provided with an artificial lighting device and a plurality of air conditioners in a closed structure, and by controlling the operation of each air conditioner independently and finely, The object of the present invention is to provide an air-conditioning method that can suppress an increase in the humidity of the internal space of the closed structure throughout the dark period and suppress the occurrence of mold inside the air-conditioning apparatus.

すなわち本発明は、断熱性壁面で囲まれた遮光性の閉鎖型構造物の内部に前面が開放している箱形の育成モジュールを配置し、前記育成モジュールの内部には複数の植物栽培棚を上下方向に多段に配置することによって上下の栽培棚間に植物育成空間を形成し、前記各栽培棚には植物生育用培地を入れる複数のセルトレイを載置するとともに各セルトレイに潅水する潅水装置を設け、各栽培棚裏面にはその下方のセルトレイに光を照射する人工照明装置を設け、前記閉鎖型構造物の内部に閉鎖型構造物内の空気を調温調湿する複数台の空調装置を設置し、前記育成モジュールの各栽培棚の背面壁にファンを取り付けてなる多段式植物栽培装置における空調方法であって、前記閉鎖型構造物の内部の冷房負荷が低下した際に、前記複数台の空調装置のうちの1台で暖房運転を行い、残りの空調装置で冷房運転を行うことを特徴とするものである。
上述した本発明においては、前記暖房運転を行う1台の空調装置を、複数台の空調装置において順次切り替えていくことが望ましい。
That is, the present invention arranges a box-shaped growth module whose front is open inside a light-shielding closed structure surrounded by a heat insulating wall surface, and a plurality of plant cultivation shelves are arranged inside the growth module. A plant growing space is formed between upper and lower cultivation shelves by arranging in multiple stages in the vertical direction, and each cell tray is provided with a irrigation device for placing a plurality of cell trays for storing plant growth medium and irrigating each cell tray. Provided on the back of each cultivation shelf is an artificial lighting device that irradiates light to the cell tray below it, and a plurality of air conditioners that regulate the temperature of the air in the closed structure inside the closed structure It is an air conditioning method in a multi-stage plant cultivation apparatus that is installed and has a fan attached to the rear wall of each cultivation shelf of the cultivation module, and when the cooling load inside the closed structure is reduced, the plurality of units Air conditioning Perform heating operation in one of the location, it is characterized in performing the cooling operation in the rest of the air conditioner.
In the present invention described above, it is desirable to sequentially switch one air conditioner that performs the heating operation in a plurality of air conditioners.

本発明によれば、人工照明装置のすべてを点灯する植物生育の明期においては、複数の空調装置のすべてを冷房運転することにより、照明装置からの発熱を効果的に除熱することができるとともに、閉鎖空間内の湿度の上昇も抑制することができる。一方、照明装置のすべてを消灯する植物生育の暗期や、照明装置の一部のみ点灯させた場合や、外気温が著しく低下して閉鎖型構造物内部空間内の温度が低下した場合など、閉鎖空間内の冷房負荷が低下したときには、複数台の空調装置の1台のみを暖房運転し、残りの空調装置を冷房運転することによって、閉鎖空間内の冷房負荷の低下を防いで安定的に冷房運転を継続することができる。その結果、冷房運転時の除湿効果によって、閉鎖空間内の湿度の上昇を効果的に抑制でき、これによって、閉鎖空間内の結露やカビの発生、さらには植物の徒長を防止することができる。
また、冷房負荷低下時に、1台の空調装置で暖房運転を行うことで、専用の加温装置を設置する必要が無くなり、装置構成も単純化できる。
According to the present invention, in the light period of plant growth in which all of the artificial lighting devices are turned on, the heat generated from the lighting devices can be effectively removed by performing cooling operation of all of the plurality of air conditioning devices. In addition, an increase in humidity in the closed space can be suppressed. On the other hand, the dark period of plant growth that turns off all of the lighting devices, when only a part of the lighting device is turned on, or when the outside air temperature drops significantly and the temperature in the internal space of the closed structure decreases, When the cooling load in the closed space decreases, only one of the plurality of air conditioners is heated and the remaining air conditioners are cooled, thereby stably preventing the cooling load in the closed space from decreasing. The cooling operation can be continued. As a result, the dehumidifying effect during the cooling operation can effectively suppress an increase in humidity in the closed space, thereby preventing condensation and mold in the closed space, and further preventing the plant from growing.
Further, when the cooling load is reduced, the heating operation is performed with one air conditioner, so that it is not necessary to install a dedicated heating device, and the device configuration can be simplified.

さらに、暗期時間帯は通常1日8〜12時間程度とされるが、たとえば数時間毎に暖房運転を行う空調装置を順次入れ替えるように動作させることにより、1日の暗期時間帯中に複数台の空調装置のいずれかで順番に暖房運転を行うことができる。この暖房運転時に、空調装置内に生じた結露を蒸発、乾燥することができ、すべての空調装置において結露とカビの発生を効果的に防止することができる。   Furthermore, the dark period is usually about 8 to 12 hours per day. For example, by operating the air conditioner that performs heating operation every several hours in order, the dark period can be changed during the dark period of the day. Heating operation can be performed in turn in any of a plurality of air conditioners. During this heating operation, the condensation generated in the air conditioner can be evaporated and dried, and condensation and mold can be effectively prevented in all the air conditioners.

図1および図2を参照して、本発明で使用する多段式植物栽培装置の好ましい実施形態を説明する。
本発明で使用する多段式植物栽培装置は、断熱性壁面で囲まれた遮光性の閉鎖型構造物1の内部空間に、箱形の複数個(図示の例では4個)の育成モジュール2、3、4、5を配列してなる。代表的な閉鎖型構造物は、鉄筋、スレート板および断熱材を組み合わせた箱形の六面体が挙げられる。構造物の外形は特に箱形に限られるものではなく、蒲鉾形、半円筒形、半球形などであってもよい。
閉鎖型構造物1の内部空間の大きさは、その内部に配置する育成モジュールの個数に応じて適宜の寸法とすればよい。図1に図示した例では、2個の育苗モジュール2、3をそれらの開放前面が同方向を向くように配列して1列とし、2個の育苗モジュール4、5もそれらの開放前面が同方向を向くように配列して1列とし、開放前面が互いに対向するように二つの列を閉鎖型構造物1の内部空間に配置している。また、これら二つの列の間に、一人または複数の作業者が作業できる程度の作業空間を設ける。閉鎖型構造物1の内部空間の面積利用率、空間利用率を高めるために、作業空間はできるだけ小さく、狭くするのが好ましい。閉鎖型構造物1の内部に育成モジュール2〜5を配置する際には、閉鎖型構造物の壁面と育成モジュールの背面壁との間に、5〜30cm程度の幅の空隙を設けて、育成モジュールを通過して育成モジュール背面に排出された空気の通路を形成する。
With reference to FIG. 1 and FIG. 2, preferable embodiment of the multistage plant cultivation apparatus used by this invention is described.
The multistage plant cultivation apparatus used in the present invention has a plurality of box-shaped (four in the illustrated example) growth modules 2 in the inner space of the light-shielding closed structure 1 surrounded by a heat insulating wall surface, 3, 4, and 5 are arranged. A typical closed structure includes a box-shaped hexahedron in which a reinforcing bar, a slate plate, and a heat insulating material are combined. The outer shape of the structure is not particularly limited to a box shape, and may be a bowl shape, a semi-cylindrical shape, a hemispherical shape, or the like.
The size of the internal space of the closed structure 1 may be set to an appropriate size according to the number of growing modules arranged inside the closed structure 1. In the example shown in FIG. 1, two seedling modules 2 and 3 are arranged in a row so that their open front faces in the same direction, and the two seedling modules 4 and 5 also have the same open front. The rows are arranged in the direction so as to form one row, and two rows are arranged in the internal space of the closed structure 1 so that the open front faces each other. In addition, a work space that allows one or more workers to work is provided between these two rows. In order to increase the area utilization factor and the space utilization factor of the internal space of the closed structure 1, it is preferable to make the work space as small and narrow as possible. When arranging the growth modules 2 to 5 inside the closed structure 1, a gap with a width of about 5 to 30 cm is provided between the wall surface of the closed structure and the rear wall of the growth module, and the growth is performed. A passage for the air passing through the module and exhausted to the back of the growing module is formed.

閉鎖型構造物1には、内部空間の空気を調温調湿し、設定条件に調温調湿した空気を循環させる機能を備えた複数台の空調装置を装備する。空調装置の室内機9、10、11、12は各育成モジュールの背面後方の閉鎖型構造物1の側壁内面上部に取り付け、屋外機(図示せず)は閉鎖型構造物1の外に設置する。   The closed structure 1 is equipped with a plurality of air conditioners having a function of adjusting the temperature of the air in the internal space and circulating the adjusted air under the set conditions. The indoor units 9, 10, 11, and 12 of the air conditioner are attached to the upper part of the inner surface of the side wall of the closed structure 1 behind the rear of each breeding module, and the outdoor unit (not shown) is installed outside the closed structure 1. .

閉鎖型構造物1の内部空間に配置される育苗モジュール2は、図3および図4に示したように、側面と背面に側面壁2aと背面壁2bを設け、前面は開放されている箱形の外形を有し、内部は複数の栽培棚6を上下方向に一定間隔で多段に配置されてなり、これにより栽培空間の面積利用効率を高めている。個々の育成モジュール2の高さは、作業者が作業できる程度の高さである200cm程度とし、栽培棚6の幅は、数十から数百個のセル(小鉢)を格子状に配列させた樹脂製のセルトレイ7を複数枚並べて載置できるとともに、各棚の温度・湿度を一定に調節できる幅、例えば100cm〜200cm程度とし、栽培棚6の奥行きは50cm〜100cmとするのが好ましい。   As shown in FIGS. 3 and 4, the seedling raising module 2 disposed in the internal space of the closed structure 1 is provided with a side wall 2a and a back wall 2b on the side and the back, and a box shape in which the front is opened. The inside has a plurality of cultivation shelves 6 arranged in multiple stages at regular intervals in the vertical direction, thereby increasing the area utilization efficiency of the cultivation space. The height of each growing module 2 is about 200 cm, which is a height at which an operator can work, and the width of the cultivation shelf 6 is a tens to hundreds of cells (small bowls) arranged in a grid. It is preferable that a plurality of resin cell trays 7 can be placed side by side and the temperature and humidity of each shelf can be adjusted to be constant, for example, about 100 cm to 200 cm, and the depth of the cultivation shelf 6 is 50 cm to 100 cm.

育成モジュール2内に多段(図3の実施例では4段)に配置する複数の栽培棚6はほぼ水平とし、各栽培棚6の間に植物栽培空間が形成される。隣り合う栽培棚の間隔を小さくして棚数を増やすことで、空間利用率を高めることができるが、栽培棚間の間隔が小さすぎるとセルトレイ7の出し入れなどの作業性が悪くなり、植物の最大長を確保できないなどの欠点があるので、最低30cm程度とするのが好ましい。栽培棚6は、金属板、金属網、金属棒などによって形成することができる。   A plurality of cultivation shelves 6 arranged in multiple stages (four stages in the embodiment of FIG. 3) in the growing module 2 are substantially horizontal, and a plant cultivation space is formed between the cultivation shelves 6. The space utilization rate can be increased by reducing the interval between adjacent cultivation shelves and increasing the number of shelves. However, if the interval between the cultivation shelves is too small, workability such as taking in and out of the cell tray 7 deteriorates, Since there is a drawback that the maximum length cannot be secured, it is preferable that the length is at least about 30 cm. The cultivation shelf 6 can be formed of a metal plate, a metal net, a metal bar, or the like.

各栽培棚6には、自動による底面潅水装置あるいは手動による灌水装置(図示せず)が設られ、複数のセルトレイ7が載置される。さらに、各栽培棚6の裏面には、人工照明装置8が取り付けられ、すぐ下の栽培棚のセルトレイで生育する植物に光を照射する。最上段の栽培棚は、育苗モジュールの頂壁2c裏面に取り付けた人工照明装置8により照射がなされる。   Each cultivation shelf 6 is provided with an automatic bottom irrigation device or a manual irrigation device (not shown), and a plurality of cell trays 7 are placed thereon. Further, an artificial lighting device 8 is attached to the rear surface of each cultivation shelf 6 to irradiate light on plants growing on the cell tray of the cultivation shelf immediately below. The uppermost cultivation shelf is irradiated by the artificial lighting device 8 attached to the back surface of the top wall 2c of the seedling module.

人工照明装置8の光源としては蛍光灯が好ましく、蛍光灯の燭光、長さなどは、一個の栽培棚6の幅、長さ、栽培棚6相互の間隔などに応じて適宜選ぶことができる。例えば、幅120cm×長さ60cmの栽培棚で、栽培棚相互の間隔が35cmの場合には、長さが120cmの45Wの蛍光灯を4〜8本、各栽培棚裏面に平行に設置すればよい。   The light source of the artificial lighting device 8 is preferably a fluorescent lamp, and the candle light, length, etc. of the fluorescent lamp can be appropriately selected according to the width and length of one cultivation shelf 6 and the interval between the cultivation shelves 6. For example, if the cultivation shelf has a width of 120 cm and a length of 60 cm and the interval between the cultivation shelves is 35 cm, 4 to 8 fluorescent lamps with a length of 120 cm and 45 W are installed in parallel to the back of each cultivation shelf. Good.

図3からわかるように、栽培棚6の各段背面壁2bには、複数個のファン13が取り付けられている。ファン13を稼働させることにより、閉鎖型構造物1の内部空間で図2の矢印で示したような空気の循環流を生じさせることができる。すなわち、空調装置の室内機9〜12によって調温調湿された空気は、育成モジュール2〜5の開放前面側より栽培棚6各段の栽培空間内にファン13により吸引され、育成モジュール背面壁2b後方へ排出される。育成モジュール背面後方に排出された空気は、空調装置の室内機9〜12に吸い込まれ、調温調湿されたのち、再び育成モジュール2〜5開放前面側に吹き出される。図1および図2に図示した実施例のように、2列の育成モジュール2、3と4、5をそれらの間に作業空間が形成されるように配列した場合には、この作業空間が空気の循環路としても機能するため、効果的な循環流をもたらすことができる。
循環流が育成モジュール2〜5の各栽培棚6を通過する際に、潅水装置、培土、植物体などから蒸発した水蒸気や人工照明装置8から放出される熱が循環流に同伴され、この循環流を空調装置の室内機9〜12によって調温調湿して絶えず循環させることによって、閉鎖型構造物1の内部空間を植物体生育に最適な温度湿度環境に保つことができる。
As can be seen from FIG. 3, a plurality of fans 13 are attached to each stage back wall 2 b of the cultivation shelf 6. By operating the fan 13, it is possible to generate a circulating air flow as indicated by an arrow in FIG. 2 in the internal space of the closed structure 1. That is, the air whose temperature is controlled by the indoor units 9 to 12 of the air conditioner is sucked by the fan 13 into the cultivation space of each stage of the cultivation shelf 6 from the open front side of the cultivation modules 2 to 5, and the rear wall of the cultivation module 2b is discharged backward. The air discharged to the rear of the rear surface of the growing module is sucked into the indoor units 9 to 12 of the air conditioner, temperature-controlled, and then blown again to the front side of the growing module 2 to 5. When the two rows of growing modules 2, 3, 4, and 5 are arranged so that a working space is formed between them as in the embodiment shown in FIGS. 1 and 2, this working space is air. Since it also functions as a circulation path, an effective circulation flow can be brought about.
When the circulating flow passes through the respective cultivation shelves 6 of the growing modules 2 to 5, water vapor evaporated from the irrigation device, the soil, the plant body, and the heat released from the artificial lighting device 8 are accompanied by the circulating flow. By controlling the temperature of the flow by the indoor units 9 to 12 of the air conditioner and continuously circulating the flow, the internal space of the closed structure 1 can be maintained in a temperature and humidity environment optimal for plant growth.

なお、図1に示したように、閉鎖型構造物には出入口14を設け、作業者や諸装置の出し入れができるようにされている。また、閉鎖型構造物1の内部空間は密閉度が高いため、通常の換気条件とした場合には育成中の植物が光合成で消費する炭酸ガスを人為的に供給する必要があるため、閉鎖型構造物の外部に液化炭酸ガスボンベ15を設置し、閉鎖構造物内部に炭酸ガス濃度センサー(図示せず)を設けてある。   As shown in FIG. 1, the closed structure is provided with an entrance 14 so that an operator and various devices can be taken in and out. Moreover, since the internal space of the closed structure 1 is highly sealed, it is necessary to artificially supply the carbon dioxide that the growing plant consumes in photosynthesis under normal ventilation conditions. A liquefied carbon dioxide cylinder 15 is installed outside the structure, and a carbon dioxide concentration sensor (not shown) is provided inside the closed structure.

上述したことき構造を備えた多段式植物栽培装置における本発明の空調方法の実施例を以下に詳述する。
ただし、本実施例で使用した多段式植物栽培装置は、長辺450cm、短辺360cmの底面床が、高さ240cmの断熱性かつ遮光性壁で囲まれた閉鎖型構造物の内部に、育成モジュールを6台配置した装置を使用した。各育成モジュールの寸法は、高さ180cm、幅128cm、奥行70cmとし、上下方向に4段の栽培棚を設けてある。育成モジュールは3台ずつ連結し、開放前面が互いに対向するように2列に配列した。育成モジュールの背面壁と閉鎖型構造物側壁との間隙は約20cmとした。
An embodiment of the air conditioning method of the present invention in the multi-stage plant cultivation apparatus having the above-described structure will be described in detail below.
However, the multi-stage plant cultivation apparatus used in this example is grown in a closed structure in which a bottom floor having a long side of 450 cm and a short side of 360 cm is surrounded by a heat-insulating and light-shielding wall having a height of 240 cm. A device in which six modules were arranged was used. Each of the growing modules has a height of 180 cm, a width of 128 cm, and a depth of 70 cm, and four cultivation shelves are provided in the vertical direction. Three growth modules were connected to each other and arranged in two rows so that the open front faces each other. The gap between the rear wall of the growth module and the side wall of the closed structure was about 20 cm.

各栽培棚には、植物体をセルトレイ内に培地とともに収納して載置し、自動による底面潅水を行った。各栽培棚裏面には人工照明装置として蛍光灯(HF32型、消費電力45W)6本を設置し、その下方の栽培棚を照射するようにした。また、各栽培棚の背面壁にはファン(DC24V、消費電力6W)4個を設置し、各棚段の栽培空間内の空気を吸引し、育成モジュール背面へ排出するようにした。各栽培棚背面へ排出された空気流は、育成モジュール背面壁と閉鎖型構造物側壁との狭い間隙を上昇して空調装置へ吸い込まれ、調温調湿がなされる。   On each cultivation shelf, the plant body was stored and placed in a cell tray together with the culture medium, and automatic bottom irrigation was performed. On the back of each cultivation shelf, six fluorescent lamps (HF32 type, power consumption 45 W) were installed as artificial lighting devices, and the cultivation shelf underneath was irradiated. Moreover, four fans (DC24V, power consumption 6W) were installed in the back wall of each cultivation shelf, the air in the cultivation space of each shelf step was attracted | sucked, and it was made to discharge | emit to the rear surface of a cultivation module. The airflow discharged to the back of each cultivation shelf rises through a narrow gap between the rear wall of the growing module and the side wall of the closed structure, and is sucked into the air conditioner to adjust the temperature and humidity.

空調装置(定格2.8kWの冷房能力を備えたエアコン)は、各列の育成モジュール上方の閉鎖型構造物側壁面に2台ずつ、合計4台取り付けた。空調装置の能力と設置台数は、閉鎖空間内の冷房負荷によって決定され、冷房負荷は主として照明装置とファンに起因する。本実施例においては、照明装置の冷房負荷は、45W×6(本)×4(段)×6(育成モジュール台数)=約6.5kWであり、ファンの冷房負荷は、6W×4(個)×4(段)×6(育成モジュール台数)=約0.6kWであり、合計約7.1kWとなる。一方、例えば室温20℃の設定で安定的に空調装置の冷房運転が行われるのは、定格の70%程度での動作とされており、4台の空調装置の最大冷房能力は、2.8kW×4(台)×70%=7.84kWとなり、上記した照明装置とファンに起因する最大冷房負荷とほぼ一致している。   A total of four air conditioners (air conditioners having a cooling capacity of 2.8 kW) were attached to the side walls of the closed structure above the growth modules in each row. The capacity and the number of installed air conditioners are determined by the cooling load in the enclosed space, and the cooling load is mainly caused by the lighting device and the fan. In the present embodiment, the cooling load of the lighting device is 45 W × 6 (lines) × 4 (stage) × 6 (number of breeding modules) = about 6.5 kW, and the cooling load of the fan is 6 W × 4 (pieces). ) × 4 (stage) × 6 (number of growing modules) = about 0.6 kW, which is about 7.1 kW in total. On the other hand, for example, stable cooling operation of the air conditioner at a room temperature of 20 ° C. is performed at about 70% of the rating, and the maximum cooling capacity of the four air conditioners is 2.8 kW. × 4 (units) × 70% = 7.84 kW, which is almost equal to the maximum cooling load caused by the lighting device and the fan.

植物の光合成が行われる明期には、照明装置とファンのすべてが稼働するため、空調装置の冷房運転が4台同時に行われる。空調装置の温度設定は、育成する植物によって異なるが、通常は20〜28℃の間である。その際に、植物や培地からの水分蒸発に対する空調装置の冷房運転による除湿効果により、閉鎖空間内の相対湿度は85%以下に維持される。
明期中には空調装置すべての冷房運転が行われるため、空調装置内部の熱交換フィンに結露水が付着する。結露水の多くは配管を通じて屋外へ排出されるが、フィン部分は冷房運転中は常に結露する状態となる。そのため、長期の冷房運転によって空調装置内部が湿潤状態となり、カビ発生によって冷房能力低下の原因となりやすい。そのため、すべての空調装置の冷房運転を時々、一時的に停止して、送風のみの運転、もしくは暖房運転に切り替えることで、フィン部分や周辺の結露を蒸発、乾燥させる。
In the light period when photosynthesis of plants is performed, since all of the lighting device and the fan are operated, the cooling operation of the air conditioner is simultaneously performed. Although the temperature setting of an air conditioner changes with plants to grow, it is normally between 20-28 degreeC. At that time, the relative humidity in the enclosed space is maintained at 85% or less due to the dehumidifying effect by the cooling operation of the air conditioner against the water evaporation from the plants and the culture medium.
During the light period, since the cooling operation of all the air conditioners is performed, condensed water adheres to the heat exchange fins inside the air conditioner. Most of the condensed water is discharged to the outside through the piping, but the fin portion is always in a condensed state during the cooling operation. For this reason, the interior of the air conditioner becomes wet due to long-term cooling operation, and it tends to cause a decrease in cooling capacity due to the occurrence of mold. Therefore, the cooling operation of all the air conditioners is temporarily stopped from time to time, and the operation of only blowing or switching to the heating operation is performed to evaporate and dry the dew condensation on the fin portion and the surrounding area.

植物が呼吸を行う暗期には、照明装置を消灯するため、閉鎖空間内の冷房負荷はファンのみの約0.6kWに低下する。暗期中に発生する植物や培地からの水分蒸発量は、明期のそれに比べて1/2〜1/5程度とみられるが、この状態で4台の空調装置すべてが冷房運転をした場合には、冷房負荷が低いため冷房運転が十分に行われない結果、除湿が十分に行われず、閉鎖空間内の相対湿度が90〜100%となることがある。かような高湿度では、植物の生育が抑制され、室内の機器類の寿命低下や故障の原因となりやすい。   In the dark period when the plant breathes, the lighting device is turned off, so that the cooling load in the closed space is reduced to about 0.6 kW of the fan alone. The amount of water evaporation from the plants and culture medium that occurs during the dark period seems to be about 1/2 to 1/5 that of the light period. If all four air conditioners are in cooling operation in this state, Since the cooling load is low, the cooling operation is not sufficiently performed. As a result, the dehumidification is not sufficiently performed, and the relative humidity in the closed space may be 90 to 100%. At such high humidity, the growth of the plant is suppressed, and it is easy to cause a decrease in the lifetime of the indoor equipment and failure.

そこで本発明においては、4台の空調装置のうちの1台を暖房運転する。これによって、閉鎖空間内の冷房負荷を0.5〜1kW程度上昇させることができ、その結果、残りの3台の空調装置の冷房運転を高めて除湿を十分に行わせることが可能となり、暗期においても閉鎖空間内の相対湿度を85%程度に抑えることができる。   Therefore, in the present invention, one of the four air conditioners is operated for heating. As a result, the cooling load in the enclosed space can be increased by about 0.5 to 1 kW. As a result, it is possible to enhance the cooling operation of the remaining three air conditioners and to perform sufficient dehumidification. Even in the period, the relative humidity in the enclosed space can be suppressed to about 85%.

1台の空調装置だけ暖房運転させた場合、その1台については、空調装置内部の結露を蒸発、乾燥させることができ、カビ発生等を効果的に防止することができる。しかしながら、残りの3台の空調装置については、冷房運転を続けることによって、内部に結露が生じたままの状態となり、カビ発生等の原因となる。かような状態を発生させないためには、暖房運転を行わせる1台の空調装置を、4台の空調装置について順次切り替えていくことが望ましい。これによって、4台すべての空調装置に暖房運転を行わせる時間を与えることができ、冷房運転時に内部に生じた結露を暖房運転の時間に蒸発、乾燥させることができるため、4台すべての空調装置について内部に結露が生じたままの状態をなくし、カビ発生等を効果的に防止することが可能となる。
具体的に述べるならば、たとえば暗期中の1時間は第1の空調装置で暖房運転を行い、次の1時間のは第2の空調装置で暖房運転を行うようにすれば、4時間の間に4台すべての空調装置で必ず1時間の暖房運転を行うことができ、これによって、すべての空調装置の内部における結露を蒸発、乾燥させることができることになる。
When only one air conditioner is operated for heating, the dew condensation inside the air conditioner can be evaporated and dried for one of them, and mold generation and the like can be effectively prevented. However, the remaining three air conditioners are kept in a state where condensation is caused by continuing the cooling operation, which causes mold and the like. In order to prevent such a situation from occurring, it is desirable to sequentially switch one air conditioner that performs the heating operation to four air conditioners. As a result, it is possible to give time for heating operation to all four air conditioners, and the condensation generated inside during cooling operation can be evaporated and dried during the time of heating operation. It is possible to eliminate the state in which dew condensation has occurred inside the apparatus, and to effectively prevent mold generation and the like.
Specifically, for example, if the heating operation is performed with the first air conditioner for one hour during the dark period and the heating operation is performed with the second air conditioner for the next one hour, the heating operation is performed for four hours. In addition, all four air conditioners can always perform the heating operation for one hour, so that the condensation inside all the air conditioners can be evaporated and dried.

なお、暗期だけでなく明期においても、照明装置の光量を少なくしたり、空の棚段があるため、照明装置の一部しか点灯しない場合がある。この場合、明期であっても閉鎖空間内の冷房負荷が低下するため、空調装置の冷房運転による除湿が適切に行われない可能性がある。また、閉鎖型構造物は断熱壁で遮断されているとはいえ、外気温が著しく低下すると閉鎖型構造物内部の温度も低下することがあり、この場合も閉鎖空間内の冷房負荷が低下するため、空調装置の目標設定温度よりも室温が下がってしまい、空調装置の冷房運転が十分に行われなくなる可能性もある。このように、暗期以外にも、閉鎖空間内の冷房負荷が低下した場合には、補助的な熱源として空調装置の1台のみを暖房運転することによって、冷房負荷の低下を防ぐことができ、残りの空調装置における冷房運転を適切に行わせることが可能となる。   Note that not only in the dark period but also in the light period, there is a case where only a part of the illumination apparatus is lit because the light amount of the illumination apparatus is reduced or there is an empty shelf. In this case, since the cooling load in the closed space is reduced even in the light period, there is a possibility that dehumidification by the cooling operation of the air conditioner may not be performed appropriately. In addition, although the closed type structure is blocked by the heat insulating wall, the temperature inside the closed type structure may decrease when the outside air temperature decreases significantly. In this case, the cooling load in the closed space also decreases. Therefore, the room temperature falls below the target set temperature of the air conditioner, and there is a possibility that the cooling operation of the air conditioner will not be sufficiently performed. In this way, when the cooling load in the enclosed space is reduced in addition to the dark period, the cooling load can be prevented from being lowered by heating only one of the air conditioners as an auxiliary heat source. Thus, it is possible to appropriately perform the cooling operation in the remaining air conditioners.

各空調装置には、制御装置からの制御信号により運転制御される。制御信号は、運転モードと設定温度があり、予め作成された制御プログラムに基づいて、明期と暗期別に各空調装置へ制御信号が送られる。1台の空調装置のみ暖房運転を行う必要がある場合には、制御プログラムが対象とする空調装置を選択し、その1台だけを暖房運転とさせる。なお、制御信号の空調装置への送信は、ケーブルを介して行う場合、赤外線リモコンによる場合、赤外線リモコンの信号を擬似的に作りLEDから送る場合などが採用できる。   Each air conditioner is controlled by a control signal from the control device. The control signal has an operation mode and a set temperature, and the control signal is sent to each air conditioner for each light period and dark period based on a control program created in advance. When it is necessary to perform heating operation for only one air conditioner, an air conditioner targeted by the control program is selected, and only one of them is set for heating operation. The control signal can be transmitted to the air conditioner through a cable, by an infrared remote controller, or by pseudo-creating an infrared remote controller signal from an LED.

空調装置の制御装置には、閉鎖型構造物内の温度をモニターする温度センサーが接続されている。温度センサーの設置場所は、複数個を閉鎖型構造物内の複数カ所に設置し各温度センサーの平均値を求めてもよいが、1個の温度センサーを1カ所に設置する場合には、閉鎖型構造物内の空気流が混合されて均一化され、閉鎖型構造物内の平均的な温度が測定できる設置場所とする必要がある。   A temperature sensor for monitoring the temperature in the closed structure is connected to the control device of the air conditioner. Multiple temperature sensors may be installed at multiple locations in a closed structure, and the average value of each temperature sensor may be calculated. However, if one temperature sensor is installed at one location, it will be closed. It is necessary to provide an installation place where the air flow in the mold structure is mixed and uniformed so that the average temperature in the closed structure can be measured.

本発明で使用する多段式植物栽培装置の好ましい実施形態を示す概略平面図である。It is a schematic plan view which shows preferable embodiment of the multistage type plant cultivation apparatus used by this invention. 図1に示した多段式植物栽培装置の内部空間における空気の流れを示す概略縦断面図である。It is a schematic longitudinal cross-sectional view which shows the flow of the air in the internal space of the multistage plant cultivation apparatus shown in FIG. 図1に示した多段式植物栽培装置に用いる育成モジュールの実施例を示す正面図である。It is a front view which shows the Example of the growth module used for the multistage plant cultivation apparatus shown in FIG. 図3に示した育成モジュールの側面図である。FIG. 4 is a side view of the growing module shown in FIG. 3.

符号の説明Explanation of symbols

1:閉鎖型構造物
2〜5:育成モジュール
6:栽培棚
7:セルトレイ
8:人工照明装置
9〜12:空調装置
13:ファン
1: Closed structure 2-5: Growing module 6: Cultivation shelf 7: Cell tray 8: Artificial lighting device 9-12: Air conditioner 13: Fan

Claims (2)

断熱性壁面で囲まれた遮光性の閉鎖型構造物の内部に前面が開放している箱形の育成モジュールを配置し、前記育成モジュールの内部には複数の植物栽培棚を上下方向に多段に配置することによって上下の栽培棚間に植物育成空間を形成し、前記各栽培棚には植物生育用培地を入れる複数のセルトレイを載置するとともに各セルトレイに潅水する潅水装置を設け、各栽培棚裏面にはその下方のセルトレイに光を照射する人工照明装置を設け、前記閉鎖型構造物の内部に閉鎖型構造物内の空気を調温調湿する複数台の空調装置を設置し、前記育成モジュールの各栽培棚の背面壁にファンを取り付けてなる多段式植物栽培装置における空調方法であって、前記閉鎖型構造物の内部の冷房負荷が低下した際に、前記複数の空調装置のうちの1台で暖房運転を行い、残りの空調装置で冷房運転を行うことを特徴とする多段式植物栽培装置における空調方法。   A box-shaped growth module with an open front surface is placed inside a light-shielding closed structure surrounded by a heat insulating wall, and a plurality of plant cultivation shelves are vertically arranged in the inside of the growth module. A plant growth space is formed between the upper and lower cultivation shelves by arranging, and each cultivation shelf is provided with a irrigation device for placing a plurality of cell trays for storing plant growth medium and irrigating each cell tray. The rear surface is provided with an artificial lighting device that irradiates light to the cell tray below it, and a plurality of air conditioners that regulate the temperature of the air in the closed structure are installed inside the closed structure, and the cultivation is performed An air conditioning method in a multi-stage plant cultivation device in which a fan is attached to the back wall of each cultivation shelf of the module, and when the cooling load inside the closed structure is reduced, of the plurality of air conditioning devices Warm with one It performs the operation, the air conditioning method in multistage plant cultivation apparatus which is characterized in that the cooling operation in the rest of the air conditioner. 前記暖房運転を行う1台の空調装置を、複数の空調装置において順次切り替えていくことを特徴とする請求項1に記載の空調方法。   The air conditioning method according to claim 1, wherein one air conditioner that performs the heating operation is sequentially switched in a plurality of air conditioners.
JP2007055678A 2007-03-06 2007-03-06 Air conditioning method for multi-stage plant cultivation equipment Active JP4858239B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007055678A JP4858239B2 (en) 2007-03-06 2007-03-06 Air conditioning method for multi-stage plant cultivation equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007055678A JP4858239B2 (en) 2007-03-06 2007-03-06 Air conditioning method for multi-stage plant cultivation equipment

Publications (2)

Publication Number Publication Date
JP2008212078A JP2008212078A (en) 2008-09-18
JP4858239B2 true JP4858239B2 (en) 2012-01-18

Family

ID=39832903

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007055678A Active JP4858239B2 (en) 2007-03-06 2007-03-06 Air conditioning method for multi-stage plant cultivation equipment

Country Status (1)

Country Link
JP (1) JP4858239B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5917482B2 (en) * 2010-11-25 2016-05-18 シャープ株式会社 LED light source for plant cultivation
JP5450559B2 (en) 2010-11-25 2014-03-26 シャープ株式会社 LED light source for plant cultivation, plant factory and light emitting device
JP6517013B2 (en) * 2014-12-25 2019-05-22 大和ハウス工業株式会社 Air conditioning system and plant factory
JP6676898B2 (en) * 2015-08-24 2020-04-08 三菱ケミカルアグリドリーム株式会社 Cultivation apparatus and cultivation method
JP6056929B1 (en) * 2015-09-17 2017-01-11 三菱樹脂アグリドリーム株式会社 Cultivation apparatus and cultivation method
JP6699425B2 (en) * 2016-07-25 2020-05-27 ダイキン工業株式会社 Air conditioning system
JP6751827B1 (en) * 2020-05-25 2020-09-09 菱機工業株式会社 Fungal growth suppression method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4169387B2 (en) * 1998-04-14 2008-10-22 小糸工業株式会社 Plant growing device
JP3771152B2 (en) * 2001-08-13 2006-04-26 太洋興業株式会社 Multistage seedling raising equipment

Also Published As

Publication number Publication date
JP2008212078A (en) 2008-09-18

Similar Documents

Publication Publication Date Title
JP4858239B2 (en) Air conditioning method for multi-stage plant cultivation equipment
JP6123495B2 (en) Multistage shelf type plant growing device and plant growing system
JP6056929B1 (en) Cultivation apparatus and cultivation method
JPWO2004026023A1 (en) Nursery equipment
KR102128166B1 (en) Plant Cultivation System
JP5035381B2 (en) Cultivation room and its air conditioner
JP3771152B2 (en) Multistage seedling raising equipment
JP4818222B2 (en) Plant growth equipment
JP7382229B2 (en) Cultivation method
JP5952476B2 (en) Plant cultivation equipment
JP6765725B2 (en) Complex cultivation plant
KR101625659B1 (en) Ventilation and temperature/humidity control system of murshiroom house
JP6676898B2 (en) Cultivation apparatus and cultivation method
JP2002291349A (en) Apparatus for raising seedling and method for raising seedling
JP2012217392A (en) Plant cultivation equipment
KR100772473B1 (en) System for culturing seeding
JP2014082979A (en) Plant cultivation apparatus and plant cultivation factory
EP3772897B1 (en) Growing space for vertical farming
JP7295168B2 (en) Cultivation equipment and cultivation method
KR102042922B1 (en) Light convergence storage and driving method thereof
JP7299779B2 (en) Plant Cultivation Apparatus and Plant Cultivation Method in Cultivation Factory
JP3634492B2 (en) Plant seedling high humidity treatment equipment
TW546113B (en) Sprout cultivation device
JP2022133648A (en) Plant factory
JP2017169458A (en) Unit type plant factory

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20090810

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090826

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110929

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111004

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111017

R150 Certificate of patent or registration of utility model

Ref document number: 4858239

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141111

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141111

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141111

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350