JP6750716B2 - Lithium fluorosulfonate, non-aqueous electrolyte, and non-aqueous electrolyte secondary battery - Google Patents

Lithium fluorosulfonate, non-aqueous electrolyte, and non-aqueous electrolyte secondary battery Download PDF

Info

Publication number
JP6750716B2
JP6750716B2 JP2019129014A JP2019129014A JP6750716B2 JP 6750716 B2 JP6750716 B2 JP 6750716B2 JP 2019129014 A JP2019129014 A JP 2019129014A JP 2019129014 A JP2019129014 A JP 2019129014A JP 6750716 B2 JP6750716 B2 JP 6750716B2
Authority
JP
Japan
Prior art keywords
aqueous electrolyte
less
lithium
mass
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019129014A
Other languages
Japanese (ja)
Other versions
JP2019204791A (en
Inventor
川上 大輔
大輔 川上
浩之 徳田
浩之 徳田
竹原 雅裕
雅裕 竹原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=47432267&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP6750716(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Publication of JP2019204791A publication Critical patent/JP2019204791A/en
Application granted granted Critical
Publication of JP6750716B2 publication Critical patent/JP6750716B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、特定量のカルボン酸が含まれるフルオロスルホン酸リチウム、特定量のハロゲン元素が含まれるフルオロスルホン酸リチウム、特定量の硫酸イオン分が含まれるフルオロスルホン酸リチウム、これらフルオロスルホン酸リチウムを含有する非水系電解液、及び非水系電解液二次電池に関する。 The present invention provides lithium fluorosulfonate containing a specific amount of carboxylic acid, lithium fluorosulfonate containing a specific amount of halogen element, lithium fluorosulfonate containing a specific amount of sulfate ion, and lithium fluorosulfonate. The present invention relates to a contained non-aqueous electrolyte solution and a non-aqueous electrolyte secondary battery.

携帯電話、ノートパソコン等のいわゆる民生用の電源から自動車用等の駆動用車載電源や定置用大型電源等の広範な用途にリチウム二次電池等の非水系電解液二次電池が実用化されつつある。しかしながら、近年の非水系電解液二次電池に対する高性能化の要求はますます高くなっており、電池特性、例えば高容量、高出力、高温保存特性、サイクル特性等を高い水準で達成することが求められている。 Non-aqueous electrolyte secondary batteries such as lithium secondary batteries are being put to practical use for a wide range of applications from so-called consumer power sources such as mobile phones and laptop computers to in-vehicle power sources for automobiles and large-scale stationary power sources. is there. However, in recent years, the demand for higher performance of non-aqueous electrolyte secondary batteries has become higher and higher, and it is possible to achieve battery characteristics such as high capacity, high output, high temperature storage characteristics, and cycle characteristics at a high level. It has been demanded.

特に電気自動車用電源としてリチウム二次電池を使用する場合、電気自動車は発進、加速時に大きなエネルギーを要し、また、減速時に発生する大きなエネルギーを効率よく回生させなければならないため、リチウム二次電池には、高い出力特性、入力特性が要求される。また、電気自動車は屋外で使用されるため、寒冷時期においても電気自動車が速やかに発進、加速できるためには、リチウム二次電池には、特に、−30℃のような低温における高い入出力特性(電池内部インピーダンスが低いこと)が要求される。加えて、高温環境下で繰り返し充放電させた場合においてもその容量の劣化が少なく、電池内部インピーダンスの増加が少ない必要がある。 In particular, when a lithium secondary battery is used as a power source for an electric vehicle, the electric vehicle requires a large amount of energy when starting and accelerating, and a large amount of energy generated when decelerating must be efficiently regenerated. Requires high output characteristics and high input characteristics. Further, since the electric vehicle is used outdoors, the lithium secondary battery has high input/output characteristics especially at a low temperature such as −30° C. so that the electric vehicle can quickly start and accelerate even in the cold season. (Low battery internal impedance) is required. In addition, even when repeatedly charged and discharged in a high temperature environment, it is necessary for the capacity to be less deteriorated and the internal impedance of the battery to be less increased.

また、電気自動車用途のみならず、各種バックアップ用途や、電力供給の負荷平準化用途、自然エネルギー発電の出力安定化用途等の定置用大型電源としてリチウム二次電池を使用する際には、単電池が大型化されるだけでなく、多数の単電池が直並列接続される。このため、個々の単電池の放電特性のばらつきや、単電池間における温度のばらつき、個々の単電池の容量や充電状態のばらつきといった各種の非一様性に起因する信頼性や安全性の問題が生じやすい。電池設計や管理が不適切であると、上記のような組電池を構成する単電池の一部だけが高い充電状態のまま保持されたり、あるいは電池内部の温度が上昇して高温状態に陥るというような問題を生じる。
即ち、現在の非水系電解液二次電池には、初期の容量と入出力特性が高く、電池内部インピーダンスが低いこと、高温保存試験やサイクル試験といった耐久試験後の容量維持率が高いこと、耐久試験後でも入出力性能とインピーダンス特性に優れること、といった項目が、極めて高いレベルで要求される。
When using a lithium secondary battery as a large stationary power source for various backup applications, load leveling of power supply, output stabilization of natural energy generation, etc. Not only is the size increased, but many cells are connected in series and parallel. Therefore, problems of reliability and safety caused by various non-uniformities such as variations in discharge characteristics of individual cells, variations in temperature between cells, and variations in capacity and state of charge of individual cells. Is likely to occur. If the battery design and management are improper, only some of the cells that make up the battery pack as described above will be kept in a high charged state, or the temperature inside the battery will rise and fall into a high temperature state. Causes such problems.
That is, current non-aqueous electrolyte secondary batteries have high initial capacity and input/output characteristics, low battery internal impedance, high capacity retention rate after endurance tests such as high temperature storage tests and cycle tests, and durability. Items such as excellent input/output performance and impedance characteristics even after the test are required at an extremely high level.

これまで、非水系電解液二次電池の入出力特性、インピーダンス特性、高温サイクル特性、高温保存特性を改善するための手段として、正極や負極の活物質や、非水系電解液を始めとする様々な電池の構成要素について、数多くの技術が検討されている。例えば特許文献1には、LiFSOを電解質とすると、60℃充放電サイクル評価時の放電容量が高い電池が得られることが記載されている。特許文献1によると、電解質にLiClOを用いた場合、正極活物質の貴な電位によりLiClOが分解し活性酸素が生成し、この活性酸素が溶媒を攻撃して溶媒の分解反応を促進させる。また、電解質にCFSOLi、LiBFおよびLiPFを用いた場合は、正極活物質の貴な電位により電解質の分解が進行してフッ素が生成し、このフッ素が溶媒を攻撃して溶媒の分解反応を促進させると記載されている。 Until now, various means such as positive and negative electrode active materials and non-aqueous electrolytes have been used as means for improving the input/output characteristics, impedance characteristics, high temperature cycle characteristics and high temperature storage characteristics of non-aqueous electrolyte secondary batteries. Many technologies have been investigated for various battery components. For example, Patent Document 1 describes that when LiFSO 3 is used as the electrolyte, a battery having a high discharge capacity at the time of 60° C. charge/discharge cycle evaluation is obtained. According to Patent Document 1, when using the LiClO 4, LiClO 4 is decomposed to active oxygen by noble potential generated by the cathode active material, to promote the decomposition reaction of the solvent the active oxygen to attack the solvent in the electrolyte .. When CF 3 SO 3 Li, LiBF 4 and LiPF 6 are used for the electrolyte, decomposition of the electrolyte proceeds due to the noble potential of the positive electrode active material to generate fluorine, and this fluorine attacks the solvent to cause the solvent. It is described that it accelerates the decomposition reaction of.

特開平7−296849号公報JP-A-7-296849

本発明の課題は、初期の電池特性と耐久性に優れた非水系電解液二次電池をもたらすことができる非水系電解液用の添加剤ならびに非水系電解液を提供することにあり、また、この非水系電解液を用いた非水系電解液二次電池を提供することにある。 An object of the present invention is to provide an additive for a non-aqueous electrolyte solution and a non-aqueous electrolyte solution that can bring about a non-aqueous electrolyte secondary battery having excellent initial battery characteristics and durability. It is intended to provide a non-aqueous electrolyte secondary battery using this non-aqueous electrolyte solution.

即ち、本発明は、下記フルオロスルホン酸リチウム、非水系電解液、及び非水系電解液二次電池に関する。
<1> カルボン酸の含有量が、フルオロスルホン酸リチウムの全量に対して、2.5×10−2mol/kg以下であるフルオロスルホン酸リチウム。
<2> フルオロスルホン酸リチウムを含有し、かつカルボン酸イオンの含有量が、1.0×10−7mol/L以上4.0×10−3mol/L以下である、非水系電解液。
<3> ハロゲン元素の含有量が1.5×10−3mol/kg以下であるフルオロスルホン酸リチウム。
<4> フルオロスルホン酸リチウムを含有し、かつ非水系電解液中のフッ化物イオンを除いたハロゲン化物イオンの含有量が、1.0×10−7mol/L以上1.0×10−3mol/L以下である非水系電解液。
<5> 硫酸イオン分のモル含有量が、フルオロスルホン酸リチウムの重量に対して、2.5×10−1mol/kg以下であるフルオロスルホン酸リチウム。
<6> フルオロスルホン酸リチウムを含有し、かつ非水系電解液中の硫酸イオンの含有量が、1.0×10−7mol/L以上1.0×10−2mol/L以下である非水系電解液。
<7> リチウムイオンを吸蔵放出可能な負極、並びに正極を備えた非水系電解液電池に用いられる非水系電解液において、前記<1>、<3>または<5>に記載のフルオロスルホン酸リチウムを含有する非水系電解液。
<8> リチウムイオンを吸蔵放出可能な負極及び正極を備えた非水系電解液電池に用いられる非水系電解液であって、
該非水系電解液は、フルオロスルホン酸リチウム、フルオロスルホン酸リチウム以外のリチウム塩、及び非水系溶媒を含有し、
該非水系電解液中のフルオロスルホン酸リチウムのモル含有量が、0.0005mol/L以上0.5mol/L以下であり、かつ、該非水系電解液中の硫酸イオン分のモル含有量が1.0×10−7mol/L以上1.0×10−2mol/L以下である非水系電解液。
<9> フルオロスルホン酸リチウム以外のリチウム塩が、LiPF及びLiBFの少なくとも一方である前記<7>または<8>に記載の非水系電解液。
<10> 非水系電解液が、フッ素原子を有する環状カーボネートを含有する前記<7>〜<9>の何れか1項に記載の非水系電解液。
<11> 前記フッ素原子を有する環状カーボネートが、非水系電解液中に0.001質量%以上85質量%以下含有されている前記<10>に記載の非水系電解液。
<12> 炭素−炭素不飽和結合を有する環状カーボネートを含有する前記<7>〜<11>の何れか1項に記載の非水系電解液。
<13> 前記炭素−炭素不飽和結合を有する環状カーボネートが、非水系電解液中に0.001質量%以上10質量%以下含有されている前記<12>に記載の非水系電解液。<14> 環状スルホン酸エステルを含有する前記<7>〜<13>の何れか1項に記載の非水系電解液。
<15> 前記環状スルホン酸エステルの非水系電解液中における含有量が0.001質
量%以上10質量%以下である前記<14>に記載の非水系電解液。
<16> シアノ基を有する化合物を含有する前記<7>〜<15>のいずれか1項に記載の非水系電解液。
<17> 前記シアノ基を有する化合物の非水系電解液中における含有量が0.001質量%以上10質量%以下である前記<16>に記載の非水系電解液。
<18> ジイソシアネート化合物を含有する前記<7>〜<17>の何れか1項に記載の非水系電解液。
<19> 前記ジイソシアネート化合物の非水系電解液中における含有量が0.001質量%以上5質量%以下である前記<18>に記載の非水系電解液。
<20> リチウムオキサラート塩類を含有する前記<7>〜<19>の何れか1項に記載の非水系電解液。
<21> リチウムイオンを吸蔵・放出可能な負極及び正極、並びに前記<7>〜<20>のいずれか1項に記載の非水系電解液を含む非水系電解液二次電池。
<22> 前記負極は、集電体上に負極活物質層を有し、前記負極活物質層は、ケイ素の単体金属、合金及び化合物、並びにスズの単体金属、合金及び化合物のうちの少なくとも1種を含有する負極活物質を含む前記<21>に記載の非水系電解液二次電池。
<23> 前記負極は、集電体上に負極活物質層を有し、前記負極活物質層は、炭素質材料を含有する負極活物質を含む前記<21>に記載の非水系電解液二次電池。
<24> 前記負極は、集電体上に負極活物質層を有し、前記負極活物質層は、リチウムチタン複合酸化物を含有する負極活物質を含む前記<21>に記載の非水系電解液二次電池。
<25> 前記正極は、集電体上に正極活物質層を有し、前記正極活物質層は、リチウム・コバルト複合酸化物、リチウム・コバルト・ニッケル複合酸化物、リチウム・マンガン複合酸化物、リチウム・コバルト・マンガン複合酸化物、リチウム・ニッケル複合酸化物、リチウム・コバルト・ニッケル複合酸化物、リチウム・ニッケル・マンガン複合酸化物、及びリチウム・ニッケル・コバルト・マンガン複合酸化物、からなる群より選ばれた少なくとも一種を含有する前記<21>〜<24>のいずれか1項に記載の非水系電解液二次電池。
<26> 前記正極は、集電体上に正極活物質層を有し、前記正極活物質層は、LixMPO(Mは周期表の第4周期の第4族〜第11族の遷移金属からなる群より選ばれた少なくとも一種の元素、xは0<x<1.2)を含有する前記<21>〜<24>のいずれか1項に記載の非水系電解液二次電池。
That is, the present invention relates to the following lithium fluorosulfonate, non-aqueous electrolyte solution, and non-aqueous electrolyte secondary battery.
<1> Lithium fluorosulfonate in which the content of carboxylic acid is 2.5×10 −2 mol/kg or less based on the total amount of lithium fluorosulfonate.
<2> A non-aqueous electrolytic solution containing lithium fluorosulfonate and having a carboxylate ion content of 1.0×10 −7 mol/L or more and 4.0×10 −3 mol/L or less.
<3> Lithium fluorosulfonate having a halogen element content of 1.5×10 −3 mol/kg or less.
<4> The content of halide ions containing lithium fluorosulfonate and excluding fluoride ions in the non-aqueous electrolyte solution is 1.0×10 −7 mol/L or more and 1.0×10 −3. A non-aqueous electrolyte solution having a mol/L or less.
<5> Lithium fluorosulfonate having a molar content of sulfate ion of 2.5×10 −1 mol/kg or less based on the weight of lithium fluorosulfonate.
<6> Non-aqueous electrolyte containing lithium fluorosulfonate and having a sulfate ion content of 1.0×10 −7 mol/L or more and 1.0×10 −2 mol/L or less. Aqueous electrolyte.
<7> The lithium fluorosulfonate according to <1>, <3>, or <5>, which is a non-aqueous electrolyte solution used for a non-aqueous electrolyte battery including a negative electrode capable of inserting and extracting lithium ions, and a positive electrode. A non-aqueous electrolyte solution containing.
<8> A non-aqueous electrolyte solution used in a non-aqueous electrolyte battery including a negative electrode capable of inserting and extracting lithium ions and a positive electrode,
The non-aqueous electrolyte contains lithium fluorosulfonate, a lithium salt other than lithium fluorosulfonate, and a non-aqueous solvent,
The molar content of lithium fluorosulfonate in the non-aqueous electrolytic solution is 0.0005 mol/L or more and 0.5 mol/L or less, and the molar content of the sulfate ion component in the non-aqueous electrolytic solution is 1.0. A nonaqueous electrolytic solution having a concentration of not less than ×10 −7 mol/L and not more than 1.0×10 −2 mol/L.
<9> The non-aqueous electrolyte solution according to <7> or <8>, wherein the lithium salt other than lithium fluorosulfonate is at least one of LiPF 6 and LiBF 4 .
<10> The non-aqueous electrolyte solution according to any one of <7> to <9>, wherein the non-aqueous electrolyte solution contains a cyclic carbonate having a fluorine atom.
<11> The nonaqueous electrolyte solution according to <10>, wherein the cyclic carbonate having a fluorine atom is contained in the nonaqueous electrolyte solution in an amount of 0.001% by mass to 85% by mass.
<12> The non-aqueous electrolyte solution according to any one of <7> to <11>, which contains a cyclic carbonate having a carbon-carbon unsaturated bond.
<13> The non-aqueous electrolyte solution according to <12>, wherein the cyclic carbonate having a carbon-carbon unsaturated bond is contained in the non-aqueous electrolyte solution in an amount of 0.001% by mass or more and 10% by mass or less. <14> The non-aqueous electrolyte solution according to any one of <7> to <13>, which contains a cyclic sulfonic acid ester.
<15> The non-aqueous electrolyte solution according to <14>, wherein the content of the cyclic sulfonate ester in the non-aqueous electrolyte solution is 0.001% by mass or more and 10% by mass or less.
<16> The non-aqueous electrolyte solution according to any one of <7> to <15>, which contains a compound having a cyano group.
<17> The non-aqueous electrolyte solution according to <16>, wherein the content of the compound having a cyano group in the non-aqueous electrolyte solution is 0.001% by mass or more and 10% by mass or less.
<18> The non-aqueous electrolyte solution according to any one of <7> to <17>, which contains a diisocyanate compound.
<19> The non-aqueous electrolyte solution according to <18>, wherein the content of the diisocyanate compound in the non-aqueous electrolyte solution is 0.001% by mass or more and 5% by mass or less.
<20> The non-aqueous electrolyte solution according to any one of <7> to <19>, which contains lithium oxalate salts.
<21> A non-aqueous electrolyte secondary battery containing the negative electrode and the positive electrode capable of inserting and extracting lithium ions, and the non-aqueous electrolyte according to any one of <7> to <20>.
<22> The negative electrode has a negative electrode active material layer on a current collector, and the negative electrode active material layer is at least one of a simple substance metal of silicon, an alloy and a compound, and a simple substance metal of tin, an alloy and a compound. The non-aqueous electrolyte secondary battery according to <21>, which contains a negative electrode active material containing a seed.
<23> The negative electrode has a negative electrode active material layer on a current collector, and the negative electrode active material layer includes the negative electrode active material containing a carbonaceous material. Next battery.
<24> The non-aqueous electrolysis according to <21>, wherein the negative electrode has a negative electrode active material layer on a current collector, and the negative electrode active material layer contains a negative electrode active material containing a lithium titanium composite oxide. Liquid secondary battery.
<25> The positive electrode has a positive electrode active material layer on a current collector, and the positive electrode active material layer includes a lithium-cobalt composite oxide, a lithium-cobalt-nickel composite oxide, a lithium-manganese composite oxide, From the group consisting of lithium-cobalt-manganese composite oxide, lithium-nickel composite oxide, lithium-cobalt-nickel composite oxide, lithium-nickel-manganese composite oxide, and lithium-nickel-cobalt-manganese composite oxide. The non-aqueous electrolyte secondary battery according to any one of <21> to <24>, containing at least one selected.
<26> The positive electrode has a positive electrode active material layer on a current collector, and the positive electrode active material layer includes LixMPO 4 (M is a transition metal of Group 4 to Group 11 of the 4th period of the periodic table). The non-aqueous electrolyte secondary battery according to any one of <21> to <24>, wherein at least one element selected from the group consisting of x and 0<x<1.2) is included.

以下、本発明の実施の形態について詳細に説明するが、本発明はこれらに限定されるものではなく、任意に変形して実施することができる。 Hereinafter, embodiments of the present invention will be described in detail, but the present invention is not limited to these, and can be arbitrarily modified and implemented.

<フルオロスルホン酸リチウム>
フルオロスルホン酸リチウムを電池等に用いた場合により高い性能を示す為に、純度は高いことが好ましい。
その中でも、例えばカルボン酸リチウムを用いて製造した場合、電池内で容易に酸化されるカルボン酸イオンが電解液中に溶解しないように除去されていることが電池特性を制御する上で望ましい。これは、水に溶かした際のカルボン酸イオン量を測定することで確認が出来る。
<Lithium fluorosulfonate>
The purity is preferably high in order to exhibit higher performance when lithium fluorosulfonate is used in a battery or the like.
Among them, for example, when manufactured using lithium carboxylate, it is desirable to control the battery characteristics so that the carboxylate ions that are easily oxidized in the battery are removed so as not to dissolve in the electrolytic solution. This can be confirmed by measuring the amount of carboxylate ion when dissolved in water.

また、電池内で容易に酸化されるハロゲン化物イオン、電池内に混入する微量の水で容易にハロゲン化物イオンを生成する化学種、又は、電池内の反応によってハロゲン化物イオンを生成する可能性のある、ハロゲン元素を有する化合物が電解液中に溶解しないように除去されていることが電池特性を制御する上で望ましい。これは、水に溶かした際のハロゲン化物イオン量を測定することで確認が出来る。一方、極微量のハロゲン化物塩を混
入させると電池の性能が向上することも知られている。
In addition, a halide ion that is easily oxidized in the battery, a chemical species that easily generates a halide ion with a small amount of water mixed in the battery, or a possibility that a halide ion may be generated by a reaction in the battery In order to control the battery characteristics, it is desirable that a certain compound containing a halogen element is removed so as not to be dissolved in the electrolytic solution. This can be confirmed by measuring the amount of halide ions when dissolved in water. On the other hand, it is also known that the performance of a battery is improved by mixing an extremely small amount of a halide salt.

また、本発明は、特定量の硫酸イオン分を含有するフルオロスルホン酸リチウムに関する。硫酸イオンは、例えば、上記ハロゲン化リチウムを用いてフルオロスルホン酸リチウムを製造する際に副生することがある。硫酸イオンは、硫酸リチウム、硫酸水素リチウム、硫酸のいずれの形態で含有していてもよい。本発明のフルオロスルホン酸リチウムは、硫酸イオン分のモル含有量が、フルオロスルホン酸リチウムの重量に対して下限値として、1.0×10−5mol/kg以上であり、好ましくは5.0×10−5mol/kg以上、より好ましくは1.0×10−4mol/kg以上である。また、フルオロスルホン酸リチウム中に含有する硫酸イオン分のモル含有量が、上限値として、2.5×10−1mol/kg以下であり、好ましくは2.0×10−1mol/kg以下、より好ましくは1.5×10−1mol/kg以下である。硫酸イオン分のモル含有量が上記範囲内にあることにより、電解液に加えた際の電池内での硫酸イオン分の効果が十分に発現し、また、副反応による抵抗の増加を抑制する。 The present invention also relates to lithium fluorosulfonate containing a specific amount of sulfate ion. Sulfate ions may be by-produced, for example, when producing lithium fluorosulfonate using the above lithium halide. The sulfate ion may be contained in any form of lithium sulfate, lithium hydrogen sulfate and sulfuric acid. In the lithium fluorosulfonate of the present invention, the molar content of the sulfate ion component is 1.0×10 −5 mol/kg or more as the lower limit value with respect to the weight of lithium fluorosulfonate, and preferably 5.0. The amount is ×10 −5 mol/kg or more, more preferably 1.0×10 −4 mol/kg or more. Further, the molar content of the sulfate ion component contained in the lithium fluorosulfonate is 2.5×10 −1 mol/kg or less, preferably 2.0×10 −1 mol/kg or less, as the upper limit value. , And more preferably 1.5×10 −1 mol/kg or less. When the molar content of the sulfate ion component is within the above range, the effect of the sulfate ion component in the battery when added to the electrolytic solution is sufficiently exhibited, and the increase in resistance due to side reaction is suppressed.

また、フルオロスルホン酸リチウムを電解液中に含有する場合、非水系電解液中の硫酸イオンの含有量は、上限値としては、1.0×10−2mol/L以下であり、好ましくは8.0×10−3mol/L以下、より好ましくは5.0×10−3mol/L以下、更に好ましくは1.0×10−3mol/L以下、最も好ましくは5.0×10−4mol/L以下である。一方で、下限値としては、1.0×10−7mol/L以上であり、好ましくは5.0×10−7mol/L以上、より好ましくは8.0×10−7mol/L以上である。硫酸イオンのモル濃度が上記範囲内であると、耐久性がより発現し易くなる。また、上記値は、添加量から算出される値及び電解液を分析して、電解液中に含まれる含有量から適宜算出される値のうち少なくとも一方である。 Further, when lithium fluorosulfonate is contained in the electrolytic solution, the content of sulfate ion in the non-aqueous electrolytic solution has an upper limit value of 1.0×10 −2 mol/L or less, preferably 8 0.0×10 −3 mol/L or less, more preferably 5.0×10 −3 mol/L or less, still more preferably 1.0×10 −3 mol/L or less, most preferably 5.0×10 −. It is 4 mol/L or less. On the other hand, the lower limit value is 1.0×10 −7 mol/L or more, preferably 5.0×10 −7 mol/L or more, and more preferably 8.0×10 −7 mol/L or more. Is. When the molar concentration of sulfate ions is within the above range, durability is more likely to be exhibited. The above value is at least one of the value calculated from the added amount and the value appropriately calculated from the content contained in the electrolytic solution by analyzing the electrolytic solution.

本発明のフルオロスルホン酸リチウムの合成及び入手の方法は、特に制限されず、いかなる方法を用いて合成されたものであっても、又は入手されたものであっても使用することができる。
ここで、フルオロスルホン酸リチウムの合成方法としては、例えば、フッ化リチウムやリチウムフッ化ケイ素化合物と三酸化硫黄やフルオロスルホン酸を反応させてフルオロスルホン酸リチウムを得る方法や、フルオロスルホン酸とリチウムを反応させてフルオロスルホン酸リチウムを得る方法、フルオロスルホン酸のアンモニウム塩とリチウムとを反応させてフルオロスルホン酸リチウムを得る方法、フルオロスルホン酸とカルボン酸リチウムとを反応させて、塩交換することによりフルオロスルホン酸リチウムを得る方法、フルオロスルホン酸とハロゲン化リチウムとを反応させて塩交換することによりフルオロスルホン酸リチウムを得る方法、クロロスルホン酸等の他のハロスルホン酸のように、容易にフッ素に置換される官能基を持つ置換スルホン酸リチウムをフッ素、フッ酸、フッ化カリウム等のフッ化物塩酸性フッ化カリウム等の酸性フッ化物塩、非金属無機フッ化物や有機フッ素化剤等でフッ素置換して得る方法、等が挙げられる。
The method for synthesizing and obtaining the lithium fluorosulfonate of the present invention is not particularly limited, and any one synthesized or obtained can be used.
Here, as the method for synthesizing lithium fluorosulfonate, for example, a method for obtaining lithium fluorosulfonate by reacting lithium trifluoride or a lithium silicon fluoride compound with sulfur trioxide or fluorosulfonic acid, or fluorosulfonic acid and lithium To obtain lithium fluorosulfonic acid, to obtain lithium fluorosulfonic acid by reacting ammonium salt of fluorosulfonic acid with lithium, and to perform salt exchange by reacting fluorosulfonic acid with lithium carboxylate To obtain lithium fluorosulfonate, a method to obtain lithium fluorosulfonate by reacting fluorosulfonic acid with lithium halide and performing salt exchange, and other halosulfonic acids such as chlorosulfonic acid, fluorine Fluorine, hydrofluoric acid, potassium fluoride, and other acidic fluoride salts such as hydrochloric acid potassium fluoride, and non-metal inorganic fluorides and organic fluorinating agents And the like.

これらの反応において、溶媒使用の有無は特に限定はされないが、用いられる場合は、反応試剤に合わせて、各種有機溶媒や水以外の無機溶媒から選ぶ事が出来る。この際、残存しにくく、残存した場合でも影響が小さい溶媒を用いることが好ましく、有機溶媒では炭酸エステル等の非プロトン性溶媒、無機溶媒では無水フッ酸などをあげることが出来る。 In these reactions, whether or not a solvent is used is not particularly limited, but when used, it can be selected from various organic solvents and inorganic solvents other than water depending on the reaction reagent. At this time, it is preferable to use a solvent that is hard to remain and has a small influence even when it remains, and examples of the organic solvent include aprotic solvents such as carbonic acid ester, and examples of the inorganic solvent include hydrofluoric acid anhydride.

<1.非水系電解液>
本発明の非水系電解液は、少なくとも、フルオロスルホン酸リチウム、フルオロスルホン酸リチウム以外のリチウム塩、及びこれらを溶解する非水系溶媒を含有するものである。
<1−1.フルオロスルホン酸リチウム>
本発明の非水系電解液に用いるフルオロスルホン酸リチウムは、前項に記載されたフルオロスルホン酸リチウムを用いることができる。
<1. Non-aqueous electrolyte>
The non-aqueous electrolyte solution of the present invention contains at least lithium fluorosulfonate, a lithium salt other than lithium fluorosulfonate, and a non-aqueous solvent that dissolves these.
<1-1. Lithium fluorosulfonate>
As the lithium fluorosulfonate used in the non-aqueous electrolyte solution of the present invention, the lithium fluorosulfonate described in the preceding section can be used.

本発明の非水系電解液においては、非水系電解液中のフルオロスルホン酸リチウムのモル含有量が、下限値として、0.0005mol/L以上であり、0.01mol/L以上であることが好ましく、0.02mol/L以上であることがより好ましい。また、上限値として、0.5mol/L以下であり、0.45mol/L以下であることが好ましく、0.4mol/L以下であることがより好ましい。フルオロスルホン酸リチウムの濃度の範囲としては、0.0005mol/L以上0.5mol/L以下であり、0.01mol/L以上0.5mol/L以下が好ましく、0.01mol/L以上0.45mol/L以下がより好ましく、0.01mol/L以上0.40mol/L以下が特に好ましい。フルオロスルホン酸リチウムのモル濃度が上記範囲内であると、電池内部インピーダンスが低くなり、入出力特性や耐久性に優れる。 In the non-aqueous electrolytic solution of the present invention, the molar content of lithium fluorosulfonate in the non-aqueous electrolytic solution is, as a lower limit value, 0.0005 mol/L or more, and preferably 0.01 mol/L or more. , 0.02 mol/L or more is more preferable. The upper limit value is 0.5 mol/L or less, preferably 0.45 mol/L or less, and more preferably 0.4 mol/L or less. The concentration range of lithium fluorosulfonate is 0.0005 mol/L or more and 0.5 mol/L or less, preferably 0.01 mol/L or more and 0.5 mol/L or less, and 0.01 mol/L or more and 0.45 mol /L or less is more preferable, and 0.01 mol/L or more and 0.40 mol/L or less is particularly preferable. When the molar concentration of lithium fluorosulfonate is within the above range, the internal impedance of the battery becomes low, and the input/output characteristics and durability are excellent.

また、上記値は、添加量から算出される値及び電解液を分析して、電解液中に含まれる含有量から適宜算出される値のうち少なくとも一方である。
また、本発明の非水系電解液においては、非水系電解液中のフルオロスルホン酸リチウムの対アニオン種FSO のモル含有量が、下限値としては、0.0005mol/L以上であることが好ましく、0.01mol/L以上であることがより好ましく、0.02mol/L以上であることが特に好ましい。また、上限値としては、0.5mol/L以下であることが好ましく、0.45mol/L以下であることがより好ましく、0.4mol/L以下であることが特に好ましい。対アニオン種FSO の濃度が上記範囲内であると、電池内部インピーダンスが低くなり入出力特性や耐久性がより発現し易くなる。対アニオン種FSO の濃度の範囲としては、0.0005mol/L以上0.5mol/L以下が好ましく、0.01mol/L以上0.5mol/L以下が好ましく、0.01mol/L以上0.45mol/L以下が更に好ましく、0.01mol/L以上0.40mol/L以下が特に好ましい。また、上記値は、添加量から算出される値及び電解液を分析して、電解液中に含まれる含有量から適宜算出される値のうち少なくとも一方である。
なお、非水系電解液中の、対アニオン種FSO のモル含有量は、例えば、非水系電解液を調製するにあたって使用したフルオロスルホン酸リチウムの量によって決定することができる。
The above value is at least one of the value calculated from the added amount and the value appropriately calculated from the content contained in the electrolytic solution by analyzing the electrolytic solution.
Further, in the non-aqueous electrolyte solution of the present invention, the molar content of the counter anion species FSO 3 of lithium fluorosulfonate in the non-aqueous electrolyte solution is 0.0005 mol/L or more as the lower limit value. It is preferably 0.01 mol/L or more, more preferably 0.02 mol/L or more. The upper limit value is preferably 0.5 mol/L or less, more preferably 0.45 mol/L or less, and particularly preferably 0.4 mol/L or less. When the concentration of the counter anion species FSO 3 is within the above range, the internal impedance of the battery becomes low and the input/output characteristics and durability are more likely to be exhibited. The range of the concentration of the counter anion species FSO 3 is preferably 0.0005 mol/L or more and 0.5 mol/L or less, preferably 0.01 mol/L or more and 0.5 mol/L or less, and 0.01 mol/L or more 0 It is more preferably 0.45 mol/L or less, particularly preferably 0.01 mol/L or more and 0.40 mol/L or less. The above value is at least one of the value calculated from the added amount and the value appropriately calculated from the content contained in the electrolytic solution by analyzing the electrolytic solution.
The molar content of the counter anion species FSO 3 − in the non-aqueous electrolyte solution can be determined, for example, by the amount of lithium fluorosulfonate used in preparing the non-aqueous electrolyte solution.

<1−2.フルオロスルホン酸リチウム以外のリチウム塩>
本発明における非水系電解液は、特定量の硫酸イオン分を含有するフルオロ硫酸リチウムを含有するが、さらにその他のリチウム塩を1種以上含有することが好ましい。
その他のリチウム塩としては、この用途に用いることが知られているものであれば、特に制限はなく、具体的には以下のものが挙げられる。
<1-2. Lithium salts other than lithium fluorosulfonate>
The non-aqueous electrolyte in the present invention contains lithium fluorosulfate containing a specific amount of sulfate ion, and preferably further contains one or more other lithium salts.
The other lithium salt is not particularly limited as long as it is known to be used for this purpose, and specific examples include the following.

例えば、LiPF、LiBF、LiClO、LiAlF、LiSbF、LiTaF、LiWF等の無機リチウム塩;
LiPOF、LiPO等のLiPF以外のフルオロリン酸リチウム塩類;
LiWOF等のタングステン酸リチウム塩類;
HCOLi、CHCOLi、CHFCOLi、CHFCOLi、CFCOLi、CFCHCOLi、CFCFCOLi、CFCFCFCOLi、CFCFCFCFCOLi等のカルボン酸リチウム塩類;
CHSOLi、CHFSOLi、CHFSOLi、CFSOLi、CFCFSOLi、CFCFCFSOLi、CFCFCFCFSOLi等のスルホン酸リチウム塩類;
For example, LiPF 6, LiBF 4, LiClO 4, LiAlF 4, LiSbF 6, inorganic lithium salts LiTaF 6, LiWF 7 and the like;
LiPO 3 F, LiPO 2 F 2 and other lithium fluorophosphate salts other than LiPF 6 ;
Lithium tungstate salts such as LiWOF 5 ;
HCO 2 Li, CH 3 CO 2 Li, CH 2 FCO 2 Li, CHF 2 CO 2 Li, CF 3 CO 2 Li, CF 3 CH 2 CO 2 Li, CF 3 CF 2 CO 2 Li, CF 3 CF 2 CF 2 Carboxylic acid lithium salts such as CO 2 Li and CF 3 CF 2 CF 2 CF 2 CO 2 Li;
CH 3 SO 3 Li, CH 2 FSO 3 Li, CHF 2 SO 3 Li, CF 3 SO 3 Li, CF 3 CF 2 SO 3 Li, CF 3 CF 2 CF 2 SO 3 Li, CF 3 CF 2 CF 2 CF 2 Lithium sulfonates such as SO 3 Li;

LiN(FCO、LiN(FCO)(FSO)、LiN(FSO、LiN(FSO)(CFSO)、LiN(CFSO、LiN(CSO、リチウム環状1,2−パーフルオロエタンジスルホニルイミド、リチウム環状1,3−パーフルオロプロパンジスルホニルイミド、LiN(CFSO)(CSO)等のリチウムイミド塩類;
LiC(FSO、LiC(CFSO、LiC(CSO等のリチウムメチド塩類;
LiN (FCO 2) 2, LiN (FCO) (FSO 2), LiN (FSO 2) 2, LiN (FSO 2) (CF 3 SO 2), LiN (CF 3 SO 2) 2, LiN (C 2 F 5 SO 2 ) 2 , lithium cyclic 1,2-perfluoroethanedisulfonylimide, lithium cyclic 1,3-perfluoropropanedisulfonylimide, lithium imide such as LiN(CF 3 SO 2 ) (C 4 F 9 SO 2 ). salts;
LiC(FSO 2 ) 3 , LiC(CF 3 SO 2 ) 3 , LiC(C 2 F 5 SO 2 ) 3 and other lithium methide salts;

リチウムジフルオロオキサラトボレート、リチウムビス(オキサラト)ボレート、リチウムテトラフルオロオキサラトフォスフェート、リチウムジフルオロビス(オキサラト)フォスフェート、リチウムトリス(オキサラト)フォスフェート等のリチウムオキサラート塩類;
その他、LiPF(CF、LiPF(C、LiPF(CFSO、LiPF(CSO、LiBFCF、LiBF、LiBF、LiBF(CF、LiBF(C、LiBF(CFSO、LiBF(CSO等の含フッ素有機リチウム塩類;等が挙げられる。
Lithium oxalate salts such as lithium difluorooxalatoborate, lithium bis(oxalato)borate, lithium tetrafluorooxalatophosphate, lithium difluorobis(oxalato)phosphate, lithium tris(oxalato)phosphate;
Other, LiPF 4 (CF 3) 2 , LiPF 4 (C 2 F 5) 2, LiPF 4 (CF 3 SO 2) 2, LiPF 4 (C 2 F 5 SO 2) 2, LiBF 3 CF 3, LiBF 3 C 2 F 5, LiBF 3 C 3 F 7, LiBF 2 (CF 3) 2, LiBF 2 (C 2 F 5) 2, LiBF 2 (CF 3 SO 2) 2, LiBF 2 (C 2 F 5 SO 2) 2 Fluorine-containing organic lithium salts such as;

以上のなかでも、LiPF、LiBF、LiSbF、LiTaF、LiPO、CFSOLi、LiN(FSO、LiN(FSO)(CFSO)、LiN(CFSO、LiN(CSO、リチウム環状1,2−パーフルオロエタンジスルホニルイミド、リチウム環状1,3−パーフルオロプロパンジスルホニルイミド、LiC(FSO、LiC(CFSO、LiC(CSO、リチウムビスオキサラトボレート、リチウムジフルオロオキサラトボレート、リチウムテトラフルオロオキサラトホスフェート、リチウムジフルオロビスオキサラトフォスフェート、LiBFCF、LiBF、LiPF(CF、LiPF(C等が好ましい。さらに、これらの中でも、LiPF、LiBFが好ましく、LiPFが最も好ましい。 Among the above, LiPF 6, LiBF 4, LiSbF 6, LiTaF 6, LiPO 2 F 2, CF 3 SO 3 Li, LiN (FSO 2) 2, LiN (FSO 2) (CF 3 SO 2), LiN (CF 3 SO 2 ) 2 , LiN(C 2 F 5 SO 2 ) 2 , lithium cyclic 1,2-perfluoroethanedisulfonylimide, lithium cyclic 1,3-perfluoropropanedisulfonylimide, LiC(FSO 2 ) 3 , LiC (CF 3 SO 2) 3 , LiC (C 2 F 5 SO 2) 3, lithium Bisuo Kisara oxalatoborate, lithium difluoro oxalatoborate, lithium tetrafluoro-oxa Lato phosphate, lithium difluoro bis oxa Lato phosphate, LiBF 3 CF 3, LiBF 3 C 2 F 5 , LiPF 3 (CF 3) 3, LiPF 3 (C 2 F 5) 3 and the like are preferable. Further, among these, LiPF 6 and LiBF 4 are preferable, and LiPF 6 is most preferable.

本発明の非水系電解液においては、非水系電解液中のフルオロスルホン酸リチウム以外のリチウム塩の対アニオン種(例えば、フルオロスルホン酸リチウム以外のリチウム塩がLiPFの場合のPF )のモル含有量が、下限値としては、0.5mol/L以上であることが好ましく、0.6mol/L以上であることがより好ましく、0.7mol/L以上であることが特に好ましい。また、上限値としては、3.0mol/L以下であることが好ましく、2.0mol/L以下であることがより好ましく、1.5mol/L以下であることが特に好ましい。フルオロスルホン酸リチウム以外のリチウム塩の対アニオン種の濃度範囲としては、0.5mol/L以上3.0mol/L以下であることが好ましく、0.5mol/L以上2.0mol/L以下であることがより好ましく、0.5mol/L以上1.5mol/L以下であることが更に好ましい。フルオロスルホン酸リチウム以外のリチウム塩の対アニオン種の濃度が上記範囲内であると、非水系電解液中の総イオン含有量が存在量と電解液の粘性が適度なバランスとなるため、イオン伝導度が低下することなく電池内部インピーダンスが低くなり、入出力特性の効果発現し易くなる。 In the non-aqueous electrolyte solution of the present invention, the counter anion species of the lithium salt other than fluoro lithium sulfonate nonaqueous electrolytic solution (e.g., PF 6 when lithium salts other than lithium fluorosulfonic acid is LiPF 6 -) of The lower limit of the molar content is preferably 0.5 mol/L or more, more preferably 0.6 mol/L or more, and particularly preferably 0.7 mol/L or more. Further, the upper limit value is preferably 3.0 mol/L or less, more preferably 2.0 mol/L or less, and particularly preferably 1.5 mol/L or less. The concentration range of the counter anion species of the lithium salt other than lithium fluorosulfonate is preferably 0.5 mol/L or more and 3.0 mol/L or less, and 0.5 mol/L or more and 2.0 mol/L or less. It is more preferably 0.5 mol/L or more and 1.5 mol/L or less. When the concentration of the counter anion species of the lithium salt other than lithium fluorosulfonate is within the above range, the total ion content in the non-aqueous electrolyte solution has a proper balance between the existing amount and the viscosity of the electrolyte solution, and thus the ionic conduction The internal impedance of the battery is lowered without lowering the temperature, and the effect of the input/output characteristics is easily exhibited.

本発明において、非水系電解液中の、フルオロスルホン酸リチウム以外のリチウム塩中のリチウムのモル含有量[フルオロスルホン酸リチウム以外のリチウム塩]に対するフルオロスルホン酸リチウムのモル含有量[フルオロスルホン酸リチウム]の比([フルオロスルホン酸リチウム]/[フルオロスルホン酸リチウム以外のリチウム塩])は、0.001以上1.2以下であることが好ましい。 In the present invention, the molar content of lithium fluorosulphonate relative to the molar content of lithium in the lithium salt other than lithium fluorosulphonate [lithium salt other than lithium fluorosulphonate] in the non-aqueous electrolyte [lithium fluorosulphonate ] ([Lithium fluorosulfonate]/[lithium salt other than lithium fluorosulfonate]) is preferably 0.001 or more and 1.2 or less.

[フルオロスルホン酸リチウム]/[フルオロスルホン酸リチウム以外のリチウム塩]の比率が上記範囲内であると、フルオロスルホン酸塩の特徴である入出力特性や耐久性が発現し易くなる。本発明の効果をより顕著に発揮するためには、[フルオロスルホン酸リチウム]/[フルオロスルホン酸リチウム以外のリチウム塩]は、好ましくは0.01以上、より好ましくは0.02以上であり、また、好ましくは1.1以下、より好ましくは1.0以下、更に好ましくは0.7以下である。そして、[フルオロスルホン酸リチウム]/[フルオロスルホン酸リチウム以外のリチウム塩]の範囲としては、0.001以上1.2以下が好ましく、0.01以上1.1以下がより好ましく、0.01以上1.0以下が更に好ましく、0.01以上0.7以下が特に好ましい。 When the ratio of [lithium fluorosulfonate]/[lithium salt other than lithium fluorosulfonate] is within the above range, the input/output characteristics and durability characteristic of the fluorosulfonate are easily exhibited. In order to exert the effect of the present invention more remarkably, [lithium fluorosulfonate]/[lithium salt other than lithium fluorosulfonate] is preferably 0.01 or more, more preferably 0.02 or more, Further, it is preferably 1.1 or less, more preferably 1.0 or less, and further preferably 0.7 or less. The range of [lithium fluorosulfonate]/[lithium salt other than lithium fluorosulfonate] is preferably 0.001 or more and 1.2 or less, more preferably 0.01 or more and 1.1 or less, and 0.01 It is more preferably 1.0 or more and 1.0 or less, and particularly preferably 0.01 or more and 0.7 or less.

また、これらに加えて、出力特性やハイレート充放電特性、高温保存特性、サイクル特性等を向上させる効果がある点から、上記のLiPF以外のフルオロリン酸リチウム塩類、リチウムイミド塩類、リチウムオキサラート塩類、の中から選ばれるリチウム塩を含有させると好ましい場合がある。これらリチウム塩としては、具体的には、LiPO、LiBF、LiN(CFSO、LiN(FSO、リチウムジフルオロオキサラトボレート、リチウムビスオキサラトボレート、リチウムジフルオロビスオキサラトフォスフェート、リチウムテトラフルオロビスオキサラートフォスフェートの中から選ばれるリチウム塩が好ましい。 In addition to these, from the viewpoint of improving output characteristics, high rate charge/discharge characteristics, high temperature storage characteristics, cycle characteristics, etc., lithium fluorophosphate salts other than LiPF 6 described above, lithium imide salts, lithium oxalates. It may be preferable to include a lithium salt selected from salts. Specific examples of these lithium salts include LiPO 2 F 2 , LiBF 4 , LiN(CF 3 SO 2 ) 2 , LiN(FSO 2 ) 2 , lithium difluorooxalatoborate, lithium bisoxalatoborate, and lithium difluorobisbis. A lithium salt selected from oxalatophosphate and lithium tetrafluorobisoxalate phosphate is preferable.

本発明においては、LiPO、LiBF、LiN(CFSO、LiN(FSO、リチウムジフルオロオキサラトボレート、リチウムビスオキサラトボレート、リチウムジフルオロビスオキサラトフォスフェート、リチウムテトラフルオロビスオキサラートフォスフェートの中から選ばれるリチウム塩の含有量は、本発明の効果を著しく損なわない限り任意であるが、下限値としては、0.0005mol/L以上であることが好ましく、0.001mol/L以上であることがより好ましく、0.01mol/L以上であることが特に好ましい。また、上限値としては、0.5mol/L以下であることが好ましく、0.45mol/L以下であることがより好ましく、0.4mol/L以下であることが特に好ましい。 In the present invention, LiPO 2 F 2 , LiBF 4 , LiN(CF 3 SO 2 ) 2 , LiN(FSO 2 ) 2 , lithium difluorooxalatoborate, lithium bisoxalatoborate, lithium difluorobisoxalatophosphate, lithium. The content of the lithium salt selected from the tetrafluorobisoxalate phosphate is arbitrary as long as the effect of the present invention is not significantly impaired, but the lower limit is preferably 0.0005 mol/L or more, It is more preferably 0.001 mol/L or more, and particularly preferably 0.01 mol/L or more. The upper limit value is preferably 0.5 mol/L or less, more preferably 0.45 mol/L or less, and particularly preferably 0.4 mol/L or less.

このなかで、LiPOを電解液中に含有させる場合の電解液の調製は、別途公知の手法で合成したLiPOを、LiPFを含む電解液に添加する方法や活物質や極板等の電池構成要素中に水を共存させておき、LiPFを含む電解液を用いて電池を組み立てる際に系中でLiPOを発生させる方法が挙げられ、本発明においてはいずれの手法を用いてもよい。
上記の非水系電解液、および非水系電解液電池中におけるLiPOの含有量を測定する手法としては、特に制限がなく、公知の手法であれば任意に用いることができるが、具体的にはイオンクロマトグラフィーや、F核磁気共鳴分光法(以下、NMRと省略する場合がある)等が挙げられる。
Among this, the preparation of the electrolyte solution in the case of incorporating the LiPO 2 F 2 in the electrolyte solution, the LiPO 2 F 2 which is separately synthesized by a known method, Ya methods and active material to be added to the electrolytic solution containing LiPF 6 There is a method in which water is allowed to coexist in a battery constituent element such as an electrode plate, and LiPO 2 F 2 is generated in the system when a battery is assembled using an electrolyte solution containing LiPF 6, and in the present invention, You may use the method of.
The method for measuring the content of LiPO 2 F 2 in the non-aqueous electrolyte solution and the non-aqueous electrolyte solution battery is not particularly limited, and any known method can be used, Examples include ion chromatography and F nuclear magnetic resonance spectroscopy (hereinafter, sometimes abbreviated as NMR).

<1−3.非水系溶媒>
本発明において、フルオロスルホン酸リチウム、フルオロスルホン酸リチウム以外のリチウム塩を溶解する為の非水系溶媒の代表的な具体例を以下に列挙する。本発明においては、これらの非水系溶媒は単独或いは複数の溶媒を任意の割合で混合した混合液として使用されるが、本発明の効果を著しく損なわない限りこれらの例示に限定されない。
<1-3. Non-aqueous solvent>
In the present invention, typical examples of non-aqueous solvents for dissolving lithium fluorosulfonate and lithium salts other than lithium fluorosulfonate are listed below. In the present invention, these non-aqueous solvents are used alone or as a mixed solution in which a plurality of solvents are mixed at an arbitrary ratio, but are not limited to these examples as long as the effects of the present invention are not significantly impaired.

<飽和環状カーボネート>
本発明において非水系溶媒として用いることができる飽和環状カーボネートとしては、炭素数2〜4のアルキレン基を有するものが挙げられる。
具体的には、炭素数2〜4の飽和環状カーボネートとしては、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート等が挙げられる。中でも、エチレンカー
ボネートとプロピレンカーボネートがリチウムイオン解離度の向上に由来する電池特性向上の点から特に好ましい。
飽和環状カーボネートは、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併有してもよい。
<Saturated cyclic carbonate>
Examples of the saturated cyclic carbonate that can be used as the non-aqueous solvent in the present invention include those having an alkylene group having 2 to 4 carbon atoms.
Specifically, examples of the saturated cyclic carbonate having 2 to 4 carbon atoms include ethylene carbonate, propylene carbonate, butylene carbonate and the like. Among them, ethylene carbonate and propylene carbonate are particularly preferable from the viewpoint of improving the battery characteristics resulting from the improvement in the degree of lithium ion dissociation.
As the saturated cyclic carbonate, one kind may be used alone, and two kinds or more may be used in optional combination and ratio.

飽和環状カーボネートの配合量は、特に制限されず、本発明の効果を著しく損なわない限り任意であるが、1種を単独で用いる場合の配合量の下限は、非水系溶媒100体積%中、3体積%以上、より好ましくは5体積%以上である。この範囲とすることで、非水系電解液の誘電率の低下に由来する電気伝導率の低下を回避し、非水系電解液二次電池の大電流放電特性、負極に対する安定性、サイクル特性を良好な範囲としやすくなる。また上限は、90体積%以下、より好ましくは85体積%以下、さらに好ましくは80体積%以下である。この範囲とすることで、非水系電解液の粘度を適切な範囲とし、イオン伝導度の低下を抑制し、ひいては非水系電解液二次電池の負荷特性を良好な範囲としやすくなる。 The amount of the saturated cyclic carbonate is not particularly limited and is arbitrary as long as the effect of the present invention is not significantly impaired, but the lower limit of the amount of the compound when one kind is used alone is 3% in 100% by volume of the non-aqueous solvent. It is at least volume%, more preferably at least 5 volume%. By setting this range, it is possible to avoid a decrease in electrical conductivity due to a decrease in the dielectric constant of the non-aqueous electrolyte, and to improve the large-current discharge characteristics of the non-aqueous electrolyte secondary battery, the stability against the negative electrode, and the cycle characteristics. It becomes easy to set the range. The upper limit is 90% by volume or less, more preferably 85% by volume or less, and further preferably 80% by volume or less. Within this range, the viscosity of the non-aqueous electrolyte solution can be set to an appropriate range, the decrease in ionic conductivity can be suppressed, and the load characteristics of the non-aqueous electrolyte secondary battery can be easily set to a good range.

また、飽和環状カーボネートを2種類以上の任意の組み合わせで用いることもできる。好ましい組合せの一つは、エチレンカーボネートとプロピレンカーボネートとの組み合わせである。この場合のエチレンカーボネートとプロピレンカーボネートの体積比は、99:1〜40:60が好ましく、特に好ましくは95:5〜50:50である。更に、非水系溶媒全体に占めるプロピレンカーボネートの量は、1体積%以上、好ましくは2体積%以上、より好ましくは3体積%以上、また上限は、通常20体積%以下、好ましくは8体積%以下、より好ましくは5体積%以下である。この範囲でプロピレンカーボネートを含有すると、エチレンカーボネートとジアルキルカーボネート類との組み合わせの特性を維持したまま、更に低温特性が優れるので好ましい。 Further, the saturated cyclic carbonate can be used in an arbitrary combination of two or more kinds. One of the preferred combinations is a combination of ethylene carbonate and propylene carbonate. In this case, the volume ratio of ethylene carbonate and propylene carbonate is preferably 99:1 to 40:60, and particularly preferably 95:5 to 50:50. Further, the amount of propylene carbonate in the whole non-aqueous solvent is 1% by volume or more, preferably 2% by volume or more, more preferably 3% by volume or more, and the upper limit is usually 20% by volume or less, preferably 8% by volume or less. , And more preferably 5% by volume or less. It is preferable to contain propylene carbonate within this range because the low-temperature characteristics are further excellent while maintaining the characteristics of the combination of ethylene carbonate and dialkyl carbonates.

<鎖状カーボネート>
本発明において非水系溶媒として用いることができる鎖状カーボネートとしては、炭素数3〜7のものが挙げられる。
具体的には、炭素数3〜7の鎖状カーボネートとしては、ジメチルカーボネート、ジエチルカーボネート、ジ−n−プロピルカーボネート、ジイソプロピルカーボネート、n−プロピルイソプロピルカーボネート、エチルメチルカーボネート、メチル−n−プロピルカーボネート、n−ブチルメチルカーボネート、イソブチルメチルカーボネート、t−ブチルメチルカーボネート、エチル−n−プロピルカーボネート、n−ブチルエチルカーボネート、イソブチルエチルカーボネート、t−ブチルエチルカーボネート等が挙げられる。
<Chain carbonate>
Examples of chain carbonates that can be used as the non-aqueous solvent in the present invention include those having 3 to 7 carbon atoms.
Specifically, as the chain carbonate having 3 to 7 carbon atoms, dimethyl carbonate, diethyl carbonate, di-n-propyl carbonate, diisopropyl carbonate, n-propyl isopropyl carbonate, ethyl methyl carbonate, methyl-n-propyl carbonate, Examples thereof include n-butyl methyl carbonate, isobutyl methyl carbonate, t-butyl methyl carbonate, ethyl-n-propyl carbonate, n-butyl ethyl carbonate, isobutyl ethyl carbonate, t-butyl ethyl carbonate.

中でも、ジメチルカーボネート、ジエチルカーボネート、ジ−n−プロピルカーボネート、ジイソプロピルカーボネート、n−プロピルイソプロピルカーボネート、エチルメチルカーボネート、メチル−n−プロピルカーボネートが好ましく、特に好ましくはジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネートである。
また、フッ素原子を有する鎖状カーボネート類(以下、「フッ素化鎖状カーボネート」と略記する場合がある)も好適に用いることができる。フッ素化鎖状カーボネートが有するフッ素原子の数は、1以上であれば特に制限されないが、通常6以下であり、好ましくは4以下である。フッ素化鎖状カーボネートが複数のフッ素原子を有する場合、それらは互いに同一の炭素に結合していてもよく、異なる炭素に結合していてもよい。フッ素化鎖状カーボネートとしては、フッ素化ジメチルカーボネート誘導体、フッ素化エチルメチルカーボネート誘導体、フッ素化ジエチルカーボネート誘導体等が挙げられる。
Among them, dimethyl carbonate, diethyl carbonate, di-n-propyl carbonate, diisopropyl carbonate, n-propyl isopropyl carbonate, ethyl methyl carbonate and methyl-n-propyl carbonate are preferable, and dimethyl carbonate, diethyl carbonate and ethyl methyl carbonate are particularly preferable. is there.
Further, chain carbonates having a fluorine atom (hereinafter sometimes abbreviated as “fluorinated chain carbonate”) can also be preferably used. The number of fluorine atoms contained in the fluorinated chain carbonate is not particularly limited as long as it is 1 or more, but is usually 6 or less, and preferably 4 or less. When the fluorinated chain carbonate has a plurality of fluorine atoms, they may be bonded to the same carbon or different carbons. Examples of the fluorinated chain carbonate include a fluorinated dimethyl carbonate derivative, a fluorinated ethylmethyl carbonate derivative, a fluorinated diethyl carbonate derivative and the like.

フッ素化ジメチルカーボネート誘導体としては、フルオロメチルメチルカーボネート、ジフルオロメチルメチルカーボネート、トリフルオロメチルメチルカーボネート、ビス(
フルオロメチル)カーボネート、ビス(ジフルオロ)メチルカーボネート、ビス(トリフルオロメチル)カーボネート等が挙げられる。
フッ素化エチルメチルカーボネート誘導体としては、2−フルオロエチルメチルカーボネート、エチルフルオロメチルカーボネート、2,2−ジフルオロエチルメチルカーボネート、2−フルオロエチルフルオロメチルカーボネート、エチルジフルオロメチルカーボネート、2,2,2−トリフルオロエチルメチルカーボネート、2,2−ジフルオロエチルフルオロメチルカーボネート、2−フルオロエチルジフルオロメチルカーボネート、エチルトリフルオロメチルカーボネート等が挙げられる。
Examples of the fluorinated dimethyl carbonate derivative include fluoromethyl methyl carbonate, difluoromethyl methyl carbonate, trifluoromethyl methyl carbonate, bis(
Examples thereof include fluoromethyl)carbonate, bis(difluoro)methyl carbonate, bis(trifluoromethyl)carbonate and the like.
Examples of the fluorinated ethyl methyl carbonate derivative include 2-fluoroethyl methyl carbonate, ethyl fluoromethyl carbonate, 2,2-difluoroethyl methyl carbonate, 2-fluoroethyl fluoromethyl carbonate, ethyl difluoromethyl carbonate, 2,2,2-tri Examples thereof include fluoroethyl methyl carbonate, 2,2-difluoroethyl fluoromethyl carbonate, 2-fluoroethyl difluoromethyl carbonate and ethyl trifluoromethyl carbonate.

フッ素化ジエチルカーボネート誘導体としては、エチル−(2−フルオロエチル)カーボネート、エチル−(2,2−ジフルオロエチル)カーボネート、ビス(2−フルオロエチル)カーボネート、エチル−(2,2,2−トリフルオロエチル)カーボネート、2,2−ジフルオロエチル−2’−フルオロエチルカーボネート、ビス(2,2−ジフルオロエチル)カーボネート、2,2,2−トリフルオロエチル−2’−フルオロエチルカーボネート、2,2,2−トリフルオロエチル−2’,2’−ジフルオロエチルカーボネート、ビス(2,2,2−トリフルオロエチル)カーボネート等が挙げられる。 Examples of the fluorinated diethyl carbonate derivative include ethyl-(2-fluoroethyl)carbonate, ethyl-(2,2-difluoroethyl)carbonate, bis(2-fluoroethyl)carbonate, ethyl-(2,2,2-trifluoro). Ethyl) carbonate, 2,2-difluoroethyl-2'-fluoroethyl carbonate, bis(2,2-difluoroethyl) carbonate, 2,2,2-trifluoroethyl-2'-fluoroethyl carbonate, 2,2,2. 2-trifluoroethyl-2',2'-difluoroethyl carbonate, bis(2,2,2-trifluoroethyl) carbonate and the like can be mentioned.

鎖状カーボネートは、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
鎖状カーボネートは、非水系溶媒100体積%中、15体積%以上であることが好ましい。15体積%以上とすることにより、非水系電解液の粘度を適切な範囲とし、イオン伝導度の低下を抑制し、ひいては非水系電解液二次電池の大電流放電特性を良好な範囲としやすくなる。また、鎖状カーボネートは、非水系溶媒100体積%中、90体積%以下であることが好ましい。90体積%以下とすることにより、非水系電解液の誘電率の低下に由来する電気伝導率の低下を回避し、非水系電解液二次電池の大電流放電特性を良好な範囲としやすくなる。鎖状カーボネートの配合量は、より好ましくは20体積%以上、さらに好ましくは25体積%以上であり、また、より好ましくは85体積%以下、さらに好ましくは80体積%以下である。
As the chain carbonate, one kind may be used alone, and two kinds or more may be used in optional combination and ratio.
The chain carbonate is preferably 15% by volume or more in 100% by volume of the non-aqueous solvent. By adjusting the content to 15% by volume or more, the viscosity of the non-aqueous electrolyte solution can be adjusted to an appropriate range, the decrease in ionic conductivity can be suppressed, and the large-current discharge characteristics of the non-aqueous electrolyte secondary battery can be easily adjusted to a good range. .. The chain carbonate content is preferably 90% by volume or less in 100% by volume of the non-aqueous solvent. By setting the content to 90% by volume or less, it is possible to avoid a decrease in electric conductivity due to a decrease in dielectric constant of the non-aqueous electrolyte solution, and it is easy to set the large current discharge characteristics of the non-aqueous electrolyte secondary battery in a good range. The content of the chain carbonate is more preferably 20% by volume or more, further preferably 25% by volume or more, more preferably 85% by volume or less, further preferably 80% by volume or less.

さらに、特定の鎖状カーボネートに対して、エチレンカーボネートを特定の配合量で組み合わせることにより、電池性能を著しく向上させることができる。
例えば、特定の鎖状カーボネートとしてジメチルカーボネートとエチルメチルカーボネートを選択した場合、エチレンカーボネートの配合量が15体積%以上、40体積%以下、ジメチルカーボネートの配合量が20体積%以上、50体積%以下、エチルメチルカーボネートの配合量が20体積%以上、50体積%以下であることが好ましい。このような配合量を選択することで、電解質の低温析出温度を低下させながら、非水系電解液の粘度も低下させてイオン伝導度を向上させ、低温でも高出力を得ることができる。特に好ましくは、エチレンカーボネートの配合量が25体積%以上、35体積%以下、ジメチルカーボネートの配合量が30体積%以上、40体積%以下、エチルメチルカーボネートの配合量が30体積%以上、40体積%以下である。
Furthermore, the battery performance can be significantly improved by combining ethylene carbonate with a specific chain carbonate in a specific blending amount.
For example, when dimethyl carbonate and ethyl methyl carbonate are selected as the specific chain carbonates, the blending amount of ethylene carbonate is 15 vol% or more and 40 vol% or less, and the blending amount of dimethyl carbonate is 20 vol% or more and 50 vol% or less. It is preferable that the blending amount of ethyl methyl carbonate is 20% by volume or more and 50% by volume or less. By selecting such a blending amount, it is possible to lower the low temperature deposition temperature of the electrolyte, reduce the viscosity of the non-aqueous electrolyte solution, improve the ionic conductivity, and obtain a high output even at a low temperature. Particularly preferably, the blending amount of ethylene carbonate is 25 vol% or more and 35 vol% or less, the blending amount of dimethyl carbonate is 30 vol% or more and 40 vol% or less, and the blending amount of ethyl methyl carbonate is 30 vol% or more, 40 vol% or less. % Or less.

<フッ素原子を有する環状カーボネート>
本発明において非水系溶媒として用いることができるフッ素原子を有する環状カーボネート(以下、「フッ素化環状カーボネート」と略記する場合がある)としては、フッ素原子を有する環状カーボネートであれば、特に制限はない。
フッ素化環状カーボネートとしては、炭素原子数2〜6のアルキレン基を有する環状カーボネートの誘導体が挙げられ、例えばエチレンカーボネート誘導体である。エチレンカーボネート誘導体としては、例えば、エチレンカーボネート又はアルキル基(例えば、炭素原子数1〜4個のアルキル基)で置換されたエチレンカーボネートのフッ素化物が挙げられ、中でもフッ素原子が1〜8個のものが好ましい。
<Cyclic carbonate having a fluorine atom>
The cyclic carbonate having a fluorine atom that can be used as the non-aqueous solvent in the present invention (hereinafter sometimes abbreviated as “fluorinated cyclic carbonate”) is not particularly limited as long as it is a cyclic carbonate having a fluorine atom. ..
Examples of the fluorinated cyclic carbonate include derivatives of cyclic carbonates having an alkylene group having 2 to 6 carbon atoms, such as ethylene carbonate derivatives. Examples of the ethylene carbonate derivative include ethylene carbonate or a fluorinated product of ethylene carbonate substituted with an alkyl group (for example, an alkyl group having 1 to 4 carbon atoms), and among them, those having 1 to 8 fluorine atoms. Is preferred.

具体的には、モノフルオロエチレンカーボネート、4,4−ジフルオロエチレンカーボネート、4,5−ジフルオロエチレンカーボネート、4−フルオロ−4−メチルエチレンカーボネート、4,5−ジフルオロ−4−メチルエチレンカーボネート、4−フルオロ−5−メチルエチレンカーボネート、4,4−ジフルオロ−5−メチルエチレンカーボネート、4−(フルオロメチル)−エチレンカーボネート、4−(ジフルオロメチル)−エチレンカーボネート、4−(トリフルオロメチル)−エチレンカーボネート、4−(フルオロメチル)−4−フルオロエチレンカーボネート、4−(フルオロメチル)−5−フルオロエチレンカーボネート、4−フルオロ−4,5−ジメチルエチレンカーボネート、4,5−ジフルオロ−4,5−ジメチルエチレンカーボネート、4,4−ジフルオロ−5,5−ジメチルエチレンカーボネート等が挙げられる。 Specifically, monofluoroethylene carbonate, 4,4-difluoroethylene carbonate, 4,5-difluoroethylene carbonate, 4-fluoro-4-methylethylene carbonate, 4,5-difluoro-4-methylethylene carbonate, 4- Fluoro-5-methylethylene carbonate, 4,4-difluoro-5-methylethylene carbonate, 4-(fluoromethyl)-ethylene carbonate, 4-(difluoromethyl)-ethylene carbonate, 4-(trifluoromethyl)-ethylene carbonate , 4-(fluoromethyl)-4-fluoroethylene carbonate, 4-(fluoromethyl)-5-fluoroethylene carbonate, 4-fluoro-4,5-dimethylethylene carbonate, 4,5-difluoro-4,5-dimethyl Examples thereof include ethylene carbonate and 4,4-difluoro-5,5-dimethylethylene carbonate.

中でも、モノフルオロエチレンカーボネート、4,4−ジフルオロエチレンカーボネート、4,5−ジフルオロエチレンカーボネート及び4,5−ジフルオロ−4,5−ジメチルエチレンカーボネートよりなる群から選ばれる少なくとも1種が、高イオン伝導性を与え、かつ好適に界面保護被膜を形成する点でより好ましい。
フッ素化環状カーボネートは、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併有してもよい。フッ素化環状カーボネートの配合量は、特に制限されず、本発明の効果を著しく損なわない限り任意であるが、非水系電解液100質量%中、好ましくは0.001質量%以上であり、より好ましくは0.01質量%以上、さらに好ましくは0.1質量%以上であり、また、好ましくは85質量%以下であり、より好ましくは80質量%以下、さらに好ましくは75質量%以下である。そして、フッ素化環状カーボネートの濃度の範囲としては、0.001質量%以上85質量%以下が好ましく、0.01質量%以上80質量%以下がより好ましく、0.1質量%以上75質量%以下がさらに好ましい。
Among them, at least one selected from the group consisting of monofluoroethylene carbonate, 4,5-difluoroethylene carbonate, 4,5-difluoroethylene carbonate and 4,5-difluoro-4,5-dimethylethylene carbonate has high ionic conductivity. It is more preferable in terms of imparting properties and suitably forming an interface protective film.
The fluorinated cyclic carbonate may be used alone or in combination of two or more in any combination and ratio. The blending amount of the fluorinated cyclic carbonate is not particularly limited and is arbitrary as long as the effect of the present invention is not significantly impaired, but in 100 mass% of the non-aqueous electrolyte solution, preferably 0.001 mass% or more, and more preferably Is 0.01% by mass or more, more preferably 0.1% by mass or more, preferably 85% by mass or less, more preferably 80% by mass or less, further preferably 75% by mass or less. And as a range of the density|concentration of a fluorinated cyclic carbonate, 0.001 mass% or more and 85 mass% or less are preferable, 0.01 mass% or more and 80 mass% or less are more preferable, 0.1 mass% or more and 75 mass% or less Is more preferable.

尚、フッ素化環状カーボネートは、該非水系電解液の主たる溶媒として用いても、副たる溶媒として用いてもよい。主たる溶媒として用いる場合のフッ素化環状カーボネートの配合量は、非水系電解液100質量%中、好ましくは8質量%以上であり、より好ましくは10質量%以上であり、更にこのましくは12質量%以上であり、好ましくは85質量%以下であり、より好ましくは80質量%以下であり、さらに好ましくは75質量%以下である。この範囲であれば、非水系電解液二次電池が十分なサイクル特性向上効果を発現しやすく、放電容量維持率が低下することを回避しやすい。また、副たる溶媒として用いる場合のフッ素化環状カーボネートの配合量は、非水系電解液100質量%中、好ましくは0.001質量%以上であり、より好ましくは0.01質量%以上であり、更にこのましくは0.1質量%以上であり、好ましくは8質量%以下であり、より好ましくは6質量%以下であり、さらに好ましくは5質量%以下である。この範囲であれば、非水系電解液二次電池が十分な出力特性を発現しやすい。 The fluorinated cyclic carbonate may be used as a main solvent or a sub solvent of the non-aqueous electrolyte solution. The blending amount of the fluorinated cyclic carbonate when used as the main solvent is preferably 8% by mass or more, more preferably 10% by mass or more, and further preferably 12% by mass in 100% by mass of the non-aqueous electrolyte solution. % Or more, preferably 85% by mass or less, more preferably 80% by mass or less, and further preferably 75% by mass or less. Within this range, it is easy for the non-aqueous electrolyte secondary battery to exhibit a sufficient effect of improving cycle characteristics, and it is easy to avoid a decrease in discharge capacity retention rate. The amount of the fluorinated cyclic carbonate when used as a secondary solvent is preferably 0.001% by mass or more, more preferably 0.01% by mass or more, in 100% by mass of the non-aqueous electrolyte solution. Further preferably, it is 0.1% by mass or more, preferably 8% by mass or less, more preferably 6% by mass or less, and further preferably 5% by mass or less. Within this range, the non-aqueous electrolyte secondary battery is likely to exhibit sufficient output characteristics.

<鎖状カルボン酸エステル>
本発明において非水系溶媒として用いることができる鎖状カルボン酸エステルとしては、その構造式中の全炭素数が3〜7のものが挙げられる。
具体的には、酢酸メチル、酢酸エチル、酢酸−n−プロピル、酢酸イソプロピル、酢酸−n−ブチル、酢酸イソブチル、酢酸−t−ブチル、プロピオン酸メチル、プロピオン酸エチル、プロピオン酸−n−プロピル、プロピオン酸イソプロピル、プロピオン酸−n−ブチル、プロピオン酸イソブチル、プロピオン酸−t−ブチル、酪酸メチル、酪酸エチル、酪酸−n−プロピル、酪酸イソプロピル、イソ酪酸メチル、イソ酪酸エチル、イソ酪酸−n−プロピル、イソ酪酸イソプロピル等が挙げられる。
<Chain carboxylic acid ester>
Examples of the chain carboxylic acid ester that can be used as the non-aqueous solvent in the present invention include those having a total carbon number of 3 to 7 in the structural formula.
Specifically, methyl acetate, ethyl acetate, n-propyl acetate, isopropyl acetate, n-butyl acetate, isobutyl acetate, t-butyl acetate, methyl propionate, ethyl propionate, n-propyl propionate, Isopropyl propionate, n-butyl propionate, isobutyl propionate, t-butyl propionate, methyl butyrate, ethyl butyrate, n-propyl butyrate, isopropyl butyrate, methyl isobutyrate, ethyl isobutyrate, isobutyric acid-n- Examples include propyl and isopropyl isobutyrate.

中でも、酢酸メチル、酢酸エチル、酢酸−n−プロピル、酢酸−n−ブチル、プロピオ
ン酸メチル、プロピオン酸エチル、プロピオン酸−n−プロピル、プロピオン酸イソプロピル、酪酸メチル、酪酸エチル等が、粘度低下によるイオン伝導度の向上の点から好ましい。
鎖状カルボン酸エステルは、非水系溶媒100体積%中、5体積%以上であることが好ましい。5体積%以上とすることにより、非水系電解液の電気伝導率を改善し、非水系電解液二次電池の大電流放電特性を向上させやすくなる。また、鎖状カルボン酸エステルは、非水系溶媒100体積%中、80体積%以下であることが好ましい。80体積%以下とすることにより、負極抵抗の増大を抑制し、非水系電解液二次電池の大電流放電特性、サイクル特性を良好な範囲としやすくなる。鎖状カルボン酸エステルの配合量は、より好ましくは8体積%以上であり、また、より好ましくは70体積%以下である。
Among them, methyl acetate, ethyl acetate, acetic acid-n-propyl, acetic acid-n-butyl, methyl propionate, ethyl propionate, propionic acid-n-propyl, isopropyl propionate, methyl butyrate, ethyl butyrate, etc. It is preferable from the viewpoint of improving ionic conductivity.
The chain carboxylic acid ester content is preferably 5% by volume or more in 100% by volume of the non-aqueous solvent. When the content is 5% by volume or more, the electric conductivity of the non-aqueous electrolyte solution is improved, and the large current discharge characteristics of the non-aqueous electrolyte secondary battery are easily improved. Further, the chain carboxylic acid ester is preferably 80% by volume or less in 100% by volume of the non-aqueous solvent. When the content is 80% by volume or less, the increase in negative electrode resistance is suppressed, and the large current discharge characteristics and cycle characteristics of the non-aqueous electrolyte secondary battery are likely to be in good ranges. The content of the chain carboxylic acid ester is more preferably 8% by volume or more, and further preferably 70% by volume or less.

<環状カルボン酸エステル>
本発明において非水系溶媒として用いることができる環状カルボン酸エステルとしては、その構造式中の全炭素原子数が3〜12のものが挙げられる。
具体的には、ガンマブチロラクトン、ガンマバレロラクトン、ガンマカプロラクトン、イプシロンカプロラクトン等が挙げられる。中でも、ガンマブチロラクトンがリチウムイオン解離度の向上に由来する電池特性向上の点から特に好ましい。
<Cyclic carboxylic acid ester>
Examples of the cyclic carboxylic acid ester that can be used as the non-aqueous solvent in the present invention include those having a total carbon atom number of 3 to 12 in the structural formula.
Specific examples include gamma butyrolactone, gamma valerolactone, gamma caprolactone, and epsilon caprolactone. Among them, gamma-butyrolactone is particularly preferable from the viewpoint of improving the battery characteristics resulting from the improvement in the degree of lithium ion dissociation.

環状カルボン酸エステルは、非水系溶媒100体積%中、好ましくは3体積%以上である。3体積%以上とすることにより、非水系電解液の電気伝導率を改善し、非水系電解液二次電池の大電流放電特性を向上させやすくなる。また、環状カルボン酸エステルは、好ましくは60体積%以下である。60体積%以下とすることにより、非水系電解液の粘度を適切な範囲とし、電気伝導率の低下を回避し、負極抵抗の増大を抑制し、非水系電解液二次電池の大電流放電特性を良好な範囲としやすくなる。環状カルボン酸エステルの配合量は、より好ましくは5体積%以上であり、また、より好ましくは50体積%以下である。 The cyclic carboxylic acid ester is preferably 3% by volume or more in 100% by volume of the non-aqueous solvent. When the content is 3% by volume or more, the electric conductivity of the non-aqueous electrolyte solution is improved, and the large current discharge characteristics of the non-aqueous electrolyte secondary battery are easily improved. The cyclic carboxylic acid ester content is preferably 60% by volume or less. By adjusting the content to 60% by volume or less, the viscosity of the non-aqueous electrolyte solution is set in an appropriate range, the decrease in electric conductivity is avoided, the increase in negative electrode resistance is suppressed, and the large current discharge characteristics of the non-aqueous electrolyte secondary battery are suppressed. Can be easily set to a good range. The content of the cyclic carboxylic acid ester is more preferably 5% by volume or more, and further preferably 50% by volume or less.

<エーテル系化合物>
本発明において非水系溶媒として用いることができるエーテル系化合物としては、炭素数3〜10の鎖状エーテル、及び炭素数3〜6の環状エーテルが挙げられる。
炭素数3〜10の鎖状エーテルとしては、ジエチルエーテル、ジ(2−フルオロエチル)エーテル、ジ(2,2−ジフルオロエチル)エーテル、ジ(2,2,2−トリフルオロエチル)エーテル、エチル(2−フルオロエチル)エーテル、エチル(2,2,2−トリフルオロエチル)エーテル、エチル(1,1,2,2−テトラフルオロエチル)エーテル、(2−フルオロエチル)(2,2,2−トリフルオロエチル)エーテル、(2−フルオロエチル)(1,1,2,2−テトラフルオロエチル)エーテル、(2,2,2−トリフルオロエチル)(1,1,2,2−テトラフルオロエチル)エーテル、エチル−n−プロピルエーテル、エチル(3−フルオロ−n−プロピル)エーテル、エチル(3,3,3−トリフルオロ−n−プロピル)エーテル、エチル(2,2,3,3−テトラフルオロ−n−プロピル)エーテル、エチル(2,2,3,3,3−ペンタフルオロ−n−プロピル)エーテル、2−フルオロエチル−n−プロピルエーテル、(2−フルオロエチル)(3−フルオロ−n−プロピル)エーテル、(2−フルオロエチル)(3,3,3−トリフルオロ−n−プロピル)エーテル、(2−フルオロエチル)(2,2,3,3−テトラフルオロ−n−プロピル)エーテル、(2−フルオロエチル)(2,2,3,3,3−ペンタフルオロ−n−プロピル)エーテル、2,2,2−トリフルオロエチル−n−プロピルエーテル、(2,2,2−トリフルオロエチル)(3−フルオロ−n−プロピル)エーテル、(2,2,2−トリフルオロエチル)(3,3,3−トリフルオロ−n−プロピル)エーテル、(2,2,2−トリフルオロエチル)(2,2,3,3−テトラフルオロ−n−プロピル)エーテル、(2,2,2−トリフルオロエチル)(2,2,3,3,3−ペンタフルオロ−n−プロピル)エーテル、1,1,2,2−テトラフルオロエチル−n−プロ
ピルエーテル、(1,1,2,2−テトラフルオロエチル)(3−フルオロ−n−プロピル)エーテル、(1,1,2,2−テトラフルオロエチル)(3,3,3−トリフルオロ−n−プロピル)エーテル、(1,1,2,2−テトラフルオロエチル)(2,2,3,3−テトラフルオロ−n−プロピル)エーテル、(1,1,2,2−テトラフルオロエチル)(2,2,3,3,3−ペンタフルオロ−n−プロピル)エーテル、ジ−n−プロピルエーテル、(n−プロピル)(3−フルオロ−n−プロピル)エーテル、(n−プロピル)(3,3,3−トリフルオロ−n−プロピル)エーテル、(n−プロピル)(2,2,3,3−テトラフルオロ−n−プロピル)エーテル、(n−プロピル)(2,2,3,3,3−ペンタフルオロ−n−プロピル)エーテル、ジ(3−フルオロ−n−プロピル)エーテル、(3−フルオロ−n−プロピル)(3,3,3−トリフルオロ−n−プロピル)エーテル、(3−フルオロ−n−プロピル)(2,2,3,3−テトラフルオロ−n−プロピル)エーテル、(3−フルオロ−n−プロピル)(2,2,3,3,3−ペンタフルオロ−n−プロピル)エーテル、ジ(3,3,3−トリフルオロ−n−プロピル)エーテル、(3,3,3−トリフルオロ−n−プロピル)(2,2,3,3−テトラフルオロ−n−プロピル)エーテル、(3,3,3−トリフルオロ−n−プロピル)(2,2,3,3,3−ペンタフルオロ−n−プロピル)エーテル、ジ(2,2,3,3−テトラフルオロ−n−プロピル)エーテル、(2,2,3,3−テトラフルオロ−n−プロピル)(2,2,3,3,3−ペンタフルオロ−n−プロピル)エーテル、ジ(2,2,3,3,3−ペンタフルオロ−n−プロピル)エーテル、ジ−n−ブチルエーテル、ジメトキシメタン、メトキシエトキシメタン、メトキシ(2−フルオロエトキシ)メタン、メトキシ(2,2,2−トリフルオロエトキシ)メタンメトキシ(1,1,2,2−テトラフルオロエトキシ)メタン、ジエトキシメタン、エトキシ(2−フルオロエトキシ)メタン、エトキシ(2,2,2−トリフルオロエトキシ)メタン、エトキシ(1,1,2,2−テトラフルオロエトキシ)メタン、ジ(2−フルオロエトキシ)メタン、(2−フルオロエトキシ)(2,2,2−トリフルオロエトキシ)メタン、(2−フルオロエトキシ)(1,1,2,2−テトラフルオロエトキシ)メタンジ(2,2,2−トリフルオロエトキシ)メタン、(2,2,2−トリフルオロエトキシ)(1,1,2,2−テトラフルオロエトキシ)メタン、ジ(1,1,2,2−テトラフルオロエトキシ)メタン、ジメトキシエタン、メトキシエトキシエタン、メトキシ(2−フルオロエトキシ)エタン、メトキシ(2,2,2−トリフルオロエトキシ)エタン、メトキシ(1,1,2,2−テトラフルオロエトキシ)エタン、ジエトキシエタン、エトキシ(2−フルオロエトキシ)エタン、エトキシ(2,2,2−トリフルオロエトキシ)エタン、エトキシ(1,1,2,2−テトラフルオロエトキシ)エタン、ジ(2−フルオロエトキシ)エタン、(2−フルオロエトキシ)(2,2,2−トリフルオロエトキシ)エタン、(2−フルオロエトキシ)(1,1,2,2−テトラフルオロエトキシ)エタン、ジ(2,2,2−トリフルオロエトキシ)エタン、(2,2,2−トリフルオロエトキシ)(1,1,2,2−テトラフルオロエトキシ)エタン、ジ(1,1,2,2−テトラフルオロエトキシ)エタン、エチレングリコールジ−n−プロピルエーテル、エチレングリコールジ−n−ブチルエーテル、ジエチレングリコールジメチルエーテル等が挙げられる。
<Ether compound>
Examples of ether compounds that can be used as the non-aqueous solvent in the present invention include chain ethers having 3 to 10 carbon atoms and cyclic ethers having 3 to 6 carbon atoms.
As the chain ether having 3 to 10 carbon atoms, diethyl ether, di(2-fluoroethyl)ether, di(2,2-difluoroethyl)ether, di(2,2,2-trifluoroethyl)ether, ethyl (2-Fluoroethyl) ether, ethyl (2,2,2-trifluoroethyl) ether, ethyl (1,1,2,2-tetrafluoroethyl) ether, (2-fluoroethyl) (2,2,2 -Trifluoroethyl)ether, (2-fluoroethyl)(1,1,2,2-tetrafluoroethyl)ether, (2,2,2-trifluoroethyl)(1,1,2,2-tetrafluoro Ethyl) ether, ethyl-n-propyl ether, ethyl (3-fluoro-n-propyl) ether, ethyl (3,3,3-trifluoro-n-propyl) ether, ethyl (2,2,3,3-). Tetrafluoro-n-propyl) ether, ethyl (2,2,3,3,3-pentafluoro-n-propyl) ether, 2-fluoroethyl-n-propyl ether, (2-fluoroethyl) (3-fluoro -N-propyl)ether, (2-fluoroethyl)(3,3,3-trifluoro-n-propyl)ether, (2-fluoroethyl)(2,2,3,3-tetrafluoro-n-propyl) ) Ether, (2-fluoroethyl)(2,2,3,3,3-pentafluoro-n-propyl)ether, 2,2,2-trifluoroethyl-n-propyl ether, (2,2,2 -Trifluoroethyl)(3-fluoro-n-propyl)ether, (2,2,2-trifluoroethyl)(3,3,3-trifluoro-n-propyl)ether, (2,2,2- Trifluoroethyl) (2,2,3,3-tetrafluoro-n-propyl) ether, (2,2,2-trifluoroethyl) (2,2,3,3,3-pentafluoro-n-propyl) ) Ether, 1,1,2,2-tetrafluoroethyl-n-propyl ether, (1,1,2,2-tetrafluoroethyl)(3-fluoro-n-propyl)ether, (1,1,2) ,2-Tetrafluoroethyl)(3,3,3-trifluoro-n-propyl)ether, (1,1,2,2-tetrafluoroethyl)(2,2,3,3-tetrafluoro-n- Propyl) ether, (1,1,2,2-tetrafluoroethyl) (2,2,3,3,3-pentafluoro-n-propyl) ether, di-n-propyl Ether, (n-propyl)(3-fluoro-n-propyl)ether, (n-propyl)(3,3,3-trifluoro-n-propyl)ether, (n-propyl)(2,2,3 ,3-tetrafluoro-n-propyl)ether, (n-propyl)(2,2,3,3,3-pentafluoro-n-propyl)ether, di(3-fluoro-n-propyl)ether, ( 3-fluoro-n-propyl)(3,3,3-trifluoro-n-propyl)ether, (3-fluoro-n-propyl)(2,2,3,3-tetrafluoro-n-propyl)ether , (3-fluoro-n-propyl)(2,2,3,3,3-pentafluoro-n-propyl)ether, di(3,3,3-trifluoro-n-propyl)ether, (3,3 3,3-trifluoro-n-propyl)(2,2,3,3-tetrafluoro-n-propyl)ether, (3,3,3-trifluoro-n-propyl)(2,2,3, 3,3-pentafluoro-n-propyl)ether, di(2,2,3,3-tetrafluoro-n-propyl)ether, (2,2,3,3-tetrafluoro-n-propyl)(2 , 2,3,3,3-Pentafluoro-n-propyl) ether, di(2,2,3,3,3-pentafluoro-n-propyl) ether, di-n-butyl ether, dimethoxymethane, methoxyethoxy Methane, methoxy(2-fluoroethoxy)methane, methoxy(2,2,2-trifluoroethoxy)methane methoxy(1,1,2,2-tetrafluoroethoxy)methane, diethoxymethane, ethoxy(2-fluoroethoxy) ) Methane, ethoxy(2,2,2-trifluoroethoxy)methane, ethoxy(1,1,2,2-tetrafluoroethoxy)methane, di(2-fluoroethoxy)methane, (2-fluoroethoxy)(2 ,2,2-Trifluoroethoxy)methane, (2-fluoroethoxy)(1,1,2,2-tetrafluoroethoxy)methanedi(2,2,2-trifluoroethoxy)methane, (2,2,2 -Trifluoroethoxy)(1,1,2,2-tetrafluoroethoxy)methane, di(1,1,2,2-tetrafluoroethoxy)methane, dimethoxyethane, methoxyethoxyethane, methoxy(2-fluoroethoxy) Ethane, methoxy(2,2,2-trifluoroethoxy)ethane, methoxy(1,1,2,2-tetrafluoroeth) Xy)ethane, diethoxyethane, ethoxy(2-fluoroethoxy)ethane, ethoxy(2,2,2-trifluoroethoxy)ethane, ethoxy(1,1,2,2-tetrafluoroethoxy)ethane, di(2 -Fluoroethoxy)ethane, (2-fluoroethoxy)(2,2,2-trifluoroethoxy)ethane, (2-fluoroethoxy)(1,1,2,2-tetrafluoroethoxy)ethane, di(2,2 2,2-trifluoroethoxy)ethane, (2,2,2-trifluoroethoxy)(1,1,2,2-tetrafluoroethoxy)ethane, di(1,1,2,2-tetrafluoroethoxy) Examples thereof include ethane, ethylene glycol di-n-propyl ether, ethylene glycol di-n-butyl ether, and diethylene glycol dimethyl ether.

炭素数3〜6の環状エーテルとしては、テトラヒドロフラン、2−メチルテトラヒドロフラン、3−メチルテトラヒドロフラン、1,3−ジオキサン、2−メチル−1,3−ジオキサン、4−メチル−1,3−ジオキサン、1,4−ジオキサン等、及びこれらのフッ素化化合物が挙げられる。
中でも、ジメトキシメタン、ジエトキシメタン、エトキシメトキシメタン、エチレングリコールジ−n−プロピルエーテル、エチレングリコールジ−n−ブチルエーテル、ジエチレングリコールジメチルエーテルが、リチウムイオンへの溶媒和能力が高く、イオン解離性を向上させる点で好ましく、特に好ましくは、粘性が低く、高いイオン伝導度を与えることから、ジメトキシメタン、ジエトキシメタン、エトキシメトキシメタンである。
As the cyclic ether having 3 to 6 carbon atoms, tetrahydrofuran, 2-methyltetrahydrofuran, 3-methyltetrahydrofuran, 1,3-dioxane, 2-methyl-1,3-dioxane, 4-methyl-1,3-dioxane, 1 , 4-dioxane and the like, and fluorinated compounds thereof.
Among them, dimethoxymethane, diethoxymethane, ethoxymethoxymethane, ethylene glycol di-n-propyl ether, ethylene glycol di-n-butyl ether, and diethylene glycol dimethyl ether have high solvation ability to lithium ions and improve ionic dissociation. From the viewpoint, it is preferable to use dimethoxymethane, diethoxymethane and ethoxymethoxymethane since they have low viscosity and high ionic conductivity.

エーテル系化合物の配合量は、通常、非水系溶媒100体積%中、好ましくは3体積%以上、より好ましくは4体積%以上、さらに好ましくは5体積%以上、また、好ましくは70体積%以下、より好ましくは65体積%以下、さらに好ましくは60体積%以下である。この範囲であれば、鎖状エーテルのリチウムイオン解離度の向上と粘度低下に由来するイオン伝導度の向上効果を確保しやすく、負極活物質が炭素質材料の場合、鎖状エーテルがリチウムイオンと共に共挿入されて容量が低下するといった事態を回避しやすい。 The blending amount of the ether compound is usually preferably 3% by volume or more, more preferably 4% by volume or more, further preferably 5% by volume or more, and preferably 70% by volume or less in 100% by volume of the non-aqueous solvent. It is more preferably 65% by volume or less, and further preferably 60% by volume or less. Within this range, it is easy to ensure the effect of improving the ionic conductivity resulting from the decrease in the degree of lithium ion dissociation of the chain ether and the decrease in viscosity, and when the negative electrode active material is a carbonaceous material, the chain ether together with the lithium ion It is easy to avoid the situation where capacity is reduced due to co-insertion.

<スルホン系化合物>
本発明において非水系溶媒として用いることができるスルホン系化合物としては、炭素数3〜6の環状スルホン、及び炭素数2〜6の鎖状スルホンが挙げられる。1分子中のスルホニル基の数は、1又は2であることが好ましい。
環状スルホンとしては、モノスルホン化合物であるトリメチレンスルホン類、テトラメチレンスルホン類、ヘキサメチレンスルホン類;ジスルホン化合物であるトリメチレンジスルホン類、テトラメチレンジスルホン類、ヘキサメチレンジスルホン類等が挙げられる。中でも誘電率と粘性の観点から、テトラメチレンスルホン類、テトラメチレンジスルホン類、ヘキサメチレンスルホン類、ヘキサメチレンジスルホン類がより好ましく、テトラメチレンスルホン類(スルホラン類)が特に好ましい。
<Sulfone compounds>
Examples of the sulfone compounds that can be used as the non-aqueous solvent in the present invention include cyclic sulfones having 3 to 6 carbon atoms and chain sulfones having 2 to 6 carbon atoms. The number of sulfonyl groups in one molecule is preferably 1 or 2.
Examples of the cyclic sulfone include trimethylene sulfone, tetramethylene sulfone and hexamethylene sulfone which are monosulfone compounds; trimethylenedisulfone, tetramethylenedisulfone and hexamethylenedisulfone which are disulfone compounds. Among them, from the viewpoint of dielectric constant and viscosity, tetramethylene sulfones, tetramethylene disulfones, hexamethylene sulfones, and hexamethylene disulfones are more preferable, and tetramethylene sulfones (sulfolanes) are particularly preferable.

スルホラン類としては、スルホラン及びスルホラン誘導体のうち少なくとも一方(以下、スルホランも含めて「スルホラン類」と略記する場合がある)が好ましい。スルホラン誘導体としては、スルホラン環を構成する炭素原子上に結合した水素原子の1以上がフッ素原子やアルキル基で置換されたものが好ましい。
中でも、2−メチルスルホラン、3−メチルスルホラン、2−フルオロスルホラン、3−フルオロスルホラン、2,2−ジフルオロスルホラン、2,3−ジフルオロスルホラン、2,4−ジフルオロスルホラン、2,5−ジフルオロスルホラン、3,4−ジフルオロスルホラン、2−フルオロ−3−メチルスルホラン、2−フルオロ−2−メチルスルホラン、3−フルオロ−3−メチルスルホラン、3−フルオロ−2−メチルスルホラン、4−フルオロ−3−メチルスルホラン、4−フルオロ−2−メチルスルホラン、5−フルオロ−3−メチルスルホラン、5−フルオロ−2−メチルスルホラン、2−フルオロメチルスルホラン、3−フルオロメチルスルホラン、2−ジフルオロメチルスルホラン、3−ジフルオロメチルスルホラン、2−トリフルオロメチルスルホラン、3−トリフルオロメチルスルホラン、2−フルオロ−3−(トリフルオロメチル)スルホラン、3−フルオロ−3−(トリフルオロメチル)スルホラン、4−フルオロ−3−(トリフルオロメチル)スルホラン、5−フルオロ−3−(トリフルオロメチル)スルホラン等がイオン伝導度が高く入出力が高い点で好ましい。
As the sulfolane, at least one of sulfolane and a sulfolane derivative (hereinafter sometimes abbreviated as “sulfolane” including sulfolane) is preferable. The sulfolane derivative is preferably a sulfolane derivative in which one or more hydrogen atoms bonded to carbon atoms constituting the sulfolane ring are substituted with a fluorine atom or an alkyl group.
Among them, 2-methylsulfolane, 3-methylsulfolane, 2-fluorosulfolane, 3-fluorosulfolane, 2,2-difluorosulfolane, 2,3-difluorosulfolane, 2,4-difluorosulfolane, 2,5-difluorosulfolane, 3,4-difluorosulfolane, 2-fluoro-3-methylsulfolane, 2-fluoro-2-methylsulfolane, 3-fluoro-3-methylsulfolane, 3-fluoro-2-methylsulfolane, 4-fluoro-3-methyl Sulfolane, 4-fluoro-2-methylsulfolane, 5-fluoro-3-methylsulfolane, 5-fluoro-2-methylsulfolane, 2-fluoromethylsulfolane, 3-fluoromethylsulfolane, 2-difluoromethylsulfolane, 3-difluoro Methylsulfolane, 2-trifluoromethylsulfolane, 3-trifluoromethylsulfolane, 2-fluoro-3-(trifluoromethyl)sulfolane, 3-fluoro-3-(trifluoromethyl)sulfolane, 4-fluoro-3-( Trifluoromethyl)sulfolane, 5-fluoro-3-(trifluoromethyl)sulfolane and the like are preferable because of high ionic conductivity and high input/output.

また、鎖状スルホンとしては、ジメチルスルホン、エチルメチルスルホン、ジエチルスルホン、n−プロピルメチルスルホン、n−プロピルエチルスルホン、ジ−n−プロピルスルホン、イソプロピルメチルスルホン、イソプロピルエチルスルホン、ジイソプロピルスルホン、n−ブチルメチルスルホン、n−ブチルエチルスルホン、t−ブチルメチルスルホン、t−ブチルエチルスルホン、モノフルオロメチルメチルスルホン、ジフルオロメチルメチルスルホン、トリフルオロメチルメチルスルホン、モノフルオロエチルメチルスルホン、ジフルオロエチルメチルスルホン、トリフルオロエチルメチルスルホン、ペンタフルオロエチルメチルスルホン、エチルモノフルオロメチルスルホン、エチルジフルオロメチルスルホン、エチルトリフルオロメチルスルホン、パーフルオロエチルメチルスルホン、エチルトリフルオロエチルスルホン、エチルペンタフルオロエチルスルホン、ジ(トリフルオロエチル)スルホン、パーフルオロジエチルスルホン、フルオロメチル−n−プロピルスルホン、ジフルオロメチル−n−プロピルスルホン、トリフルオロメチル−n−プロピルスルホン、フルオロメチルイソプロピルスルホン、ジフルオロメチルイソプロピルスルホン、トリフルオロメチルイソプロピルスルホン、トリフルオロエチル−n−プロ
ピルスルホン、トリフルオロエチルイソプロピルスルホン、ペンタフルオロエチル−n−プロピルスルホン、ペンタフルオロエチルイソプロピルスルホン、トリフルオロエチル−n−ブチルスルホン、トリフルオロエチル−t−ブチルスルホン、ペンタフルオロエチル−n−ブチルスルホン、ペンタフルオロエチル−t−ブチルスルホン等が挙げられる。
As the chain sulfone, dimethyl sulfone, ethyl methyl sulfone, diethyl sulfone, n-propyl methyl sulfone, n-propyl ethyl sulfone, di-n-propyl sulfone, isopropyl methyl sulfone, isopropyl ethyl sulfone, diisopropyl sulfone, n- Butyl methyl sulfone, n-butyl ethyl sulfone, t-butyl methyl sulfone, t-butyl ethyl sulfone, monofluoromethyl methyl sulfone, difluoromethyl methyl sulfone, trifluoromethyl methyl sulfone, monofluoroethyl methyl sulfone, difluoroethyl methyl sulfone, Trifluoroethyl methyl sulfone, pentafluoroethyl methyl sulfone, ethyl monofluoromethyl sulfone, ethyl difluoromethyl sulfone, ethyl trifluoromethyl sulfone, perfluoroethyl methyl sulfone, ethyl trifluoroethyl sulfone, ethyl pentafluoroethyl sulfone, di(tri Fluoroethyl) sulfone, perfluorodiethyl sulfone, fluoromethyl-n-propyl sulfone, difluoromethyl-n-propyl sulfone, trifluoromethyl-n-propyl sulfone, fluoromethyl isopropyl sulfone, difluoromethyl isopropyl sulfone, trifluoromethyl isopropyl sulfone , Trifluoroethyl-n-propyl sulfone, trifluoroethyl isopropyl sulfone, pentafluoroethyl-n-propyl sulfone, pentafluoroethyl isopropyl sulfone, trifluoroethyl-n-butyl sulfone, trifluoroethyl-t-butyl sulfone, penta Examples thereof include fluoroethyl-n-butyl sulfone and pentafluoroethyl-t-butyl sulfone.

中でも、ジメチルスルホン、エチルメチルスルホン、ジエチルスルホン、n−プロピルメチルスルホン、イソプロピルメチルスルホン、n−ブチルメチルスルホン、t−ブチルメチルスルホン、モノフルオロメチルメチルスルホン、ジフルオロメチルメチルスルホン、トリフルオロメチルメチルスルホン、モノフルオロエチルメチルスルホン、ジフルオロエチルメチルスルホン、トリフルオロエチルメチルスルホン、ペンタフルオロエチルメチルスルホン、エチルモノフルオロメチルスルホン、エチルジフルオロメチルスルホン、エチルトリフルオロメチルスルホン、エチルトリフルオロエチルスルホン、エチルペンタフルオロエチルスルホン、トリフルオロメチル−n−プロピルスルホン、トリフルオロメチルイソプロピルスルホン、トリフルオロエチル−n−ブチルスルホン、トリフルオロエチル−t−ブチルスルホン、トリフルオロメチル−n−ブチルスルホン、トリフルオロメチル−t−ブチルスルホン等がイオン伝導度が高く入出力が高い点で好ましい。 Among them, dimethyl sulfone, ethyl methyl sulfone, diethyl sulfone, n-propyl methyl sulfone, isopropyl methyl sulfone, n-butyl methyl sulfone, t-butyl methyl sulfone, monofluoromethyl methyl sulfone, difluoromethyl methyl sulfone, trifluoromethyl methyl sulfone. , Monofluoroethyl methyl sulfone, difluoroethyl methyl sulfone, trifluoroethyl methyl sulfone, pentafluoroethyl methyl sulfone, ethyl monofluoromethyl sulfone, ethyl difluoromethyl sulfone, ethyl trifluoromethyl sulfone, ethyl trifluoroethyl sulfone, ethyl pentafluoro Ethyl sulfone, trifluoromethyl-n-propyl sulfone, trifluoromethyl isopropyl sulfone, trifluoroethyl-n-butyl sulfone, trifluoroethyl-t-butyl sulfone, trifluoromethyl-n-butyl sulfone, trifluoromethyl-t -Butyl sulfone and the like are preferable because of high ionic conductivity and high input/output.

スルホン系化合物は、非水系溶媒100体積%中、好ましくは0.3体積%以上であり、また、80体積%以下である。この範囲であれば、サイクル特性や保存特性等の耐久性の向上効果が得られやすく、また、非水系電解液の粘度を適切な範囲とし、電気伝導率の低下を回避することができ、非水系電解液二次電池の充放電を高電流密度で行う場合に、充放電容量維持率が低下するといった事態を回避しやすい。スルホン系化合物の配合量は、より好ましくは0.5体積%以上、さらに好ましくは1体積%以上であり、また、より好ましくは75体積%以下、さらに好ましくは70体積%以下である。 The sulfone compound is preferably 0.3% by volume or more and 80% by volume or less in 100% by volume of the non-aqueous solvent. Within this range, the effect of improving durability such as cycle characteristics and storage characteristics can be easily obtained, and the viscosity of the non-aqueous electrolyte solution can be set in an appropriate range to prevent a decrease in electric conductivity. When charging/discharging the aqueous electrolyte secondary battery at a high current density, it is easy to avoid a situation in which the charge/discharge capacity retention rate decreases. The content of the sulfone compound is more preferably 0.5% by volume or more, further preferably 1% by volume or more, more preferably 75% by volume or less, and further preferably 70% by volume or less.

<1−4.助剤>
本発明においては、非水系溶媒中に以下に挙げる助剤を含有させることができるが、本発明の効果を著しく損なわない限り特にこれらの例示に限定されない。
<炭素−炭素不飽和結合を有する環状カーボネート>
本発明の非水系電解液において、非水系電解液電池の負極表面に皮膜を形成し、電池の長寿命化を達成するために、炭素−炭素不飽和結合を有する環状カーボネート(以下、「不飽和環状カーボネート」と略記する場合がある)を用いることができる。
<1-4. Auxiliary>
In the present invention, the following auxiliaries can be contained in the non-aqueous solvent, but they are not particularly limited to these as long as the effects of the present invention are not significantly impaired.
<Cyclic carbonate having a carbon-carbon unsaturated bond>
In the non-aqueous electrolytic solution of the present invention, a film is formed on the negative electrode surface of the non-aqueous electrolytic solution battery, and in order to achieve a long service life of the battery, a cyclic carbonate having a carbon-carbon unsaturated bond (hereinafter, referred to as "unsaturated Abbreviated as “cyclic carbonate”).

炭素−炭素不飽和結合を有する環状カーボネートとしては、炭素−炭素二重結合を有する環状カーボネートであれば、特に制限はなく、任意の炭素−炭素不飽和結合を有するカーボネートを用いることができる。なお、芳香環を有する置換基を有する環状カーボネートも、炭素−炭素不飽和結合を有する環状カーボネートに包含されることとする。
不飽和環状カーボネートとしては、ビニレンカーボネート類、芳香環又は炭素−炭素不飽和結合を有する置換基で置換されたエチレンカーボネート類、フェニルカーボネート類、ビニルカーボネート類、アリルカーボネート類等が挙げられる。
The cyclic carbonate having a carbon-carbon unsaturated bond is not particularly limited as long as it is a cyclic carbonate having a carbon-carbon double bond, and any carbonate having a carbon-carbon unsaturated bond can be used. The cyclic carbonate having a substituent having an aromatic ring is also included in the cyclic carbonate having a carbon-carbon unsaturated bond.
Examples of unsaturated cyclic carbonates include vinylene carbonates, ethylene carbonates substituted with a substituent having an aromatic ring or a carbon-carbon unsaturated bond, phenyl carbonates, vinyl carbonates, allyl carbonates and the like.

ビニレンカーボネート類としては、ビニレンカーボネート、メチルビニレンカーボネート、4,5−ジメチルビニレンカーボネート、フェニルビニレンカーボネート、4,5−ジフェニルビニレンカーボネート、ビニルビニレンカーボネート、アリルビニレンカーボネート等が挙げられる。
芳香環又は炭素−炭素不飽和結合を有する置換基で置換されたエチレンカーボネート類の具体例としては、ビニルエチレンカーボネート、4,5−ジビニルエチレンカーボネート、フェニルエチレンカーボネート、4,5−ジフェニルエチレンカーボネート、エチニルエチレンカーボネート、4,5−ジエチニルエチレンカーボネート等が挙げられる。
Examples of the vinylene carbonates include vinylene carbonate, methylvinylene carbonate, 4,5-dimethylvinylene carbonate, phenylvinylene carbonate, 4,5-diphenylvinylene carbonate, vinylvinylene carbonate and allylvinylene carbonate.
Specific examples of the ethylene carbonate substituted with a substituent having an aromatic ring or a carbon-carbon unsaturated bond include vinyl ethylene carbonate, 4,5-divinyl ethylene carbonate, phenyl ethylene carbonate, 4,5-diphenyl ethylene carbonate, Examples thereof include ethynyl ethylene carbonate and 4,5-diethynyl ethylene carbonate.

中でも、ビニレンカーボネート類、芳香環又は炭素−炭素不飽和結合を有する置換基で置換されたエチレンカーボネートが好ましく、特に、ビニレンカーボネート、4,5−ジフェニルビニレンカーボネート、4,5−ジメチルビニレンカーボネート、ビニルエチレンカーボネート、エチニルエチレンカーボネートが、安定な界面保護被膜を形成するので、より好適に用いられる。 Among them, vinylene carbonates, ethylene rings substituted with a substituent having an aromatic ring or a carbon-carbon unsaturated bond are preferable, and particularly vinylene carbonate, 4,5-diphenylvinylene carbonate, 4,5-dimethylvinylene carbonate, vinyl. Ethylene carbonate and ethynyl ethylene carbonate are more preferably used because they form a stable interface protective film.

不飽和環状カーボネートの分子量は、特に制限されず、本発明の効果を著しく損なわない限り任意である。分子量は、好ましくは、50以上、250以下である。この範囲であれば、非水系電解液に対する不飽和環状カーボネートの溶解性を確保しやすく、本発明の効果が十分に発現されやすい。不飽和環状カーボネートの分子量は、より好ましくは80以上であり、また、より好ましくは150以下である。不飽和環状カーボネートの製造方法は、特に制限されず、公知の方法を任意に選択して製造することが可能である。 The molecular weight of the unsaturated cyclic carbonate is not particularly limited and is arbitrary as long as the effects of the present invention are not significantly impaired. The molecular weight is preferably 50 or more and 250 or less. Within this range, the solubility of the unsaturated cyclic carbonate in the non-aqueous electrolyte solution can be easily ensured, and the effects of the present invention can be sufficiently exhibited. The molecular weight of the unsaturated cyclic carbonate is more preferably 80 or more, and more preferably 150 or less. The method for producing the unsaturated cyclic carbonate is not particularly limited, and a known method can be arbitrarily selected and produced.

不飽和環状カーボネートは、1種を単独で用いても、2種以上を任意の組み合わせ及び比率で併有してもよい。また、不飽和環状カーボネートの配合量は、特に制限されず、本発明の効果を著しく損なわない限り任意である。不飽和環状カーボネートは、非水系電解液100質量%中、好ましくは0.001質量%以上であり、より好ましくは0.01質量%以上、さらに好ましくは0.1質量%以上であり、特に好ましくは0.2質量%以上であり、また、好ましくは10質量%以下であり、より好ましくは8質量%以下、さらに好ましくは5質量%以下である。そして、不飽和環状カーボネートの濃度の範囲としては、0.001質量%以上10質量%以下が好ましく、0.001質量%以上8質量%以下がより好ましく、0.001質量%以上5質量%以下がさらに好ましい。
上記範囲内であれば、非水系電解液二次電池が十分なサイクル特性向上効果を発現しやすく、また、高温保存特性が低下し、ガス発生量が多くなり、放電容量維持率が低下するといった事態を回避しやすい。
The unsaturated cyclic carbonates may be used alone or in combination of two or more in any combination and ratio. The amount of the unsaturated cyclic carbonate compounded is not particularly limited and is arbitrary as long as the effects of the present invention are not significantly impaired. The unsaturated cyclic carbonate is preferably 0.001% by mass or more, more preferably 0.01% by mass or more, still more preferably 0.1% by mass or more, particularly preferably 100% by mass in the non-aqueous electrolyte solution. Is 0.2% by mass or more, preferably 10% by mass or less, more preferably 8% by mass or less, and further preferably 5% by mass or less. And as a range of the density|concentration of unsaturated cyclic carbonate, 0.001 mass% or more and 10 mass% or less are preferable, 0.001 mass% or more and 8 mass% or less are more preferable, 0.001 mass% or more and 5 mass% or less Is more preferable.
Within the above range, the non-aqueous electrolyte secondary battery is likely to exhibit a sufficient cycle characteristic improving effect, and the high temperature storage characteristic is deteriorated, the gas generation amount is increased, and the discharge capacity maintenance ratio is decreased. It is easy to avoid the situation.

<フッ素化不飽和環状カーボネート>
フッ素化環状カーボネートとして、不飽和結合とフッ素原子とを有する環状カーボネート(以下、「フッ素化不飽和環状カーボネート」と略記する場合がある)を用いることも好ましい。フッ素化不飽和環状カーボネートは、特に制限されない。中でもフッ素原子が1個又は2個のものが好ましい。
フッ素化不飽和環状カーボネートとしては、ビニレンカーボネート誘導体、芳香環又は炭素−炭素不飽和結合を有する置換基で置換されたエチレンカーボネート誘導体等が挙げられる。
ビニレンカーボネート誘導体としては、4−フルオロビニレンカーボネート、4−フルオロ−5−メチルビニレンカーボネート、4−フルオロ−5−フェニルビニレンカーボネート、4,5−ジフルオロエチレンカーボネート等が挙げられる。
<Fluorinated unsaturated cyclic carbonate>
As the fluorinated cyclic carbonate, it is also preferable to use a cyclic carbonate having an unsaturated bond and a fluorine atom (hereinafter sometimes abbreviated as “fluorinated unsaturated cyclic carbonate”). The fluorinated unsaturated cyclic carbonate is not particularly limited. Of these, one having one or two fluorine atoms is preferable.
Examples of the fluorinated unsaturated cyclic carbonate include a vinylene carbonate derivative, an ethylene carbonate derivative substituted with a substituent having an aromatic ring or a carbon-carbon unsaturated bond, and the like.
Examples of the vinylene carbonate derivative include 4-fluorovinylene carbonate, 4-fluoro-5-methylvinylene carbonate, 4-fluoro-5-phenylvinylene carbonate, and 4,5-difluoroethylene carbonate.

芳香環又は炭素−炭素不飽和結合を有する置換基で置換されたエチレンカーボネート誘導体としては、4−フルオロ−4−ビニルエチレンカーボネート、4−フルオロ−5−ビニルエチレンカーボネート、4,4−ジフルオロ−4−ビニルエチレンカーボネート、4,5−ジフルオロ−4−ビニルエチレンカーボネート、4−フルオロ−4,5−ジビニルエチレンカーボネート、4,5−ジフルオロ−4,5−ジビニルエチレンカーボネート、4−フルオロ−4−フェニルエチレンカーボネート、4−フルオロ−5−フェニルエチレンカーボネート、4,4−ジフルオロ−5−フェニルエチレンカーボネート、4,5−ジフルオロ−4−フェニルエチレンカーボネート等が挙げられる。 Examples of the ethylene carbonate derivative substituted with a substituent having an aromatic ring or a carbon-carbon unsaturated bond include 4-fluoro-4-vinylethylene carbonate, 4-fluoro-5-vinylethylene carbonate and 4,4-difluoro-4. -Vinylethylene carbonate, 4,5-difluoro-4-vinylethylene carbonate, 4-fluoro-4,5-divinylethylene carbonate, 4,5-difluoro-4,5-divinylethylene carbonate, 4-fluoro-4-phenyl Examples thereof include ethylene carbonate, 4-fluoro-5-phenylethylene carbonate, 4,4-difluoro-5-phenylethylene carbonate and 4,5-difluoro-4-phenylethylene carbonate.

フッ素化不飽和環状カーボネートの分子量は、特に制限されず、本発明の効果を著しく損なわない限り任意である。分子量は、好ましくは、50以上であり、また、250以下である。この範囲であれば、非水系電解液に対するフッ素化環状カーボネートの溶解性を
確保しやすく、本発明の効果が発現されやすい。フッ素化不飽和環状カーボネートの製造方法は、特に制限されず、公知の方法を任意に選択して製造することが可能である。分子量は、より好ましくは80以上であり、また、より好ましくは150以下である。
The molecular weight of the fluorinated unsaturated cyclic carbonate is not particularly limited and is arbitrary as long as the effects of the present invention are not significantly impaired. The molecular weight is preferably 50 or more and 250 or less. Within this range, the solubility of the fluorinated cyclic carbonate in the non-aqueous electrolyte solution can be easily secured, and the effect of the present invention can be easily exhibited. The method for producing the fluorinated unsaturated cyclic carbonate is not particularly limited, and a known method can be arbitrarily selected and produced. The molecular weight is more preferably 80 or more, and more preferably 150 or less.

フッ素化不飽和環状カーボネートは、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併有してもよい。また、フッ素化不飽和環状カーボネートの配合量は、特に制限されず、本発明の効果を著しく損なわない限り任意である。フッ素化不飽和環状カーボネートは、非水系電解液100質量%中、好ましくは、0.01質量%以上であり、また、5質量%以下である。この範囲であれば、非水系電解液二次電池が十分なサイクル特性向上効果を発現しやすく、また、高温保存特性が低下し、ガス発生量が多くなり、放電容量維持率が低下するといった事態を回避しやすい。フッ素化不飽和環状カーボネートの配合量は、より好ましくは0.1質量%以上、さらに好ましくは0.2質量%以上であり、また、より好ましくは4質量%以下、さらに好ましくは3質量%以下である。 As the fluorinated unsaturated cyclic carbonate, one kind may be used alone, and two kinds or more may be used in optional combination and ratio. The blending amount of the fluorinated unsaturated cyclic carbonate is not particularly limited and is arbitrary as long as the effect of the present invention is not significantly impaired. The fluorinated unsaturated cyclic carbonate is preferably 0.01% by mass or more and 5% by mass or less in 100% by mass of the non-aqueous electrolyte solution. In this range, the non-aqueous electrolyte secondary battery is likely to exhibit a sufficient effect of improving cycle characteristics, the high temperature storage characteristics are deteriorated, the gas generation amount is increased, and the discharge capacity maintenance ratio is decreased. Easy to avoid. The content of the fluorinated unsaturated cyclic carbonate is more preferably 0.1% by mass or more, further preferably 0.2% by mass or more, more preferably 4% by mass or less, further preferably 3% by mass or less. Is.

<環状スルホン酸エステル化合物>
本発明の非水系電解液において、用いることができる環状スルホン酸エステル化合物としては、特にその種類は限定されないが、一般式(1)で表される化合物が挙げられる。
<Cyclic sulfonate compound>
The cyclic sulfonic acid ester compound that can be used in the non-aqueous electrolyte solution of the present invention is not particularly limited in type, and examples thereof include compounds represented by the general formula (1).

(式中、RおよびRは各々独立して、炭素原子、水素原子、窒素原子、酸素原子、硫黄原子、リン原子およびハロゲン原子からなる群から選ばれる少なくとも一種の原子で構成された有機基を表し、RとRは互いに−O−SO−とともに不飽和結合を含んでいてもよい。)
およびRは、好ましくは炭素原子、水素原子、酸素原子、硫黄原子からなる原子で構成された有機基であることが好ましく、中でも炭素数1〜3の炭化水素基、−O−SO−を有する有機基であることが好ましい。
(In the formula, R 5 and R 6 are each independently an organic atom composed of at least one atom selected from the group consisting of carbon atom, hydrogen atom, nitrogen atom, oxygen atom, sulfur atom, phosphorus atom and halogen atom. Represents a group, and R 5 and R 6 may contain an unsaturated bond together with —O—SO 2 —.
R 5 and R 6 are preferably organic groups composed of carbon atoms, hydrogen atoms, oxygen atoms, and sulfur atoms, and among them, hydrocarbon groups having 1 to 3 carbon atoms, —O—SO. It is preferably an organic group having 2- .

環状スルホン酸エステル化合物の分子量は、特に制限されず、本発明の効果を著しく損なわない限り任意である。分子量は、好ましくは、100以上であり、また、250以下である。この範囲であれば、非水系電解液に対する環状スルホン酸エステル化合物の溶解性を確保しやすく、本発明の効果が発現されやすい。環状スルホン酸エステル化合物の製造方法は、特に制限されず、公知の方法を任意に選択して製造することが可能である。 The molecular weight of the cyclic sulfonic acid ester compound is not particularly limited and is arbitrary as long as the effects of the present invention are not significantly impaired. The molecular weight is preferably 100 or more and 250 or less. Within this range, the solubility of the cyclic sulfonate compound in the non-aqueous electrolyte solution can be easily ensured, and the effect of the present invention can be easily exhibited. The method for producing the cyclic sulfonate compound is not particularly limited, and a known method can be arbitrarily selected and produced.

一般式(1)で表される化合物の具体例としては、例えば、
1,3−プロパンスルトン、1−フルオロ−1,3−プロパンスルトン、2−フルオロ−1,3−プロパンスルトン、3−フルオロ−1,3−プロパンスルトン、1−メチル−1,3−プロパンスルトン、2−メチル−1,3−プロパンスルトン、3−メチル−1,3−プロパンスルトン1−プロペン−1,3−スルトン、2−プロペン−1,3−スルトン、1−フルオロ−1−プロペン−1,3−スルトン、2−フルオロ−1−プロペン−1,3−スルトン、3−フルオロ−1−プロペン−1,3−スルトン、1−フルオロ−2−プロペン−1,3−スルトン、2−フルオロ−2−プロペン−1,3−スルトン、3−フルオロ−2−プロペン−1,3−スルトン、1−メチル−1−プロペン−1,3−スルトン
、2−メチル−1−プロペン−1,3−スルトン、3−メチル−1−プロペン−1,3−スルトン、1−メチル−2−プロペン−1,3−スルトン、2−メチル−2−プロペン−1,3−スルトン、3−メチル−2−プロペン−1,3−スルトン、
Specific examples of the compound represented by the general formula (1) include, for example,
1,3-propane sultone, 1-fluoro-1,3-propane sultone, 2-fluoro-1,3-propane sultone, 3-fluoro-1,3-propane sultone, 1-methyl-1,3-propane sultone , 2-methyl-1,3-propane sultone, 3-methyl-1,3-propane sultone 1-propene-1,3-sultone, 2-propene-1,3-sultone, 1-fluoro-1-propene- 1,3-sultone, 2-fluoro-1-propene-1,3-sultone, 3-fluoro-1-propene-1,3-sultone, 1-fluoro-2-propene-1,3-sultone, 2- Fluoro-2-propene-1,3-sultone, 3-fluoro-2-propene-1,3-sultone, 1-methyl-1-propene-1,3-sultone, 2-methyl-1-propene-1, 3-sultone, 3-methyl-1-propene-1,3-sultone, 1-methyl-2-propene-1,3-sultone, 2-methyl-2-propene-1,3-sultone, 3-methyl- 2-propene-1,3-sultone,

1,4−ブタンスルトン、1−フルオロ−1,4−ブタンスルトン、2−フルオロ−1,4−ブタンスルトン、3−フルオロ−1,4−ブタンスルトン、4−フルオロ−1,4−ブタンスルトン、1−メチル−1,4−ブタンスルトン、2−メチル−1,4−ブタンスルトン、3−メチル−1,4−ブタンスルトン、4−メチル−1,4−ブタンスルトン、1−ブテン−1,4−スルトン、2−ブテン−1,4−スルトン、3−ブテン−1,4−スルトン、1−フルオロ−1−ブテン−1,4−スルトン、2−フルオロ−1−ブテン−1,4−スルトン、3−フルオロ−1−ブテン−1,4−スルトン、4−フルオロ−1−ブテン−1,4−スルトン、1−フルオロ−2−ブテン−1,4−スルトン、2−フルオロ−2−ブテン−1,4−スルトン、3−フルオロ−2−ブテン−1,4−スルトン、4−フルオロ−2−ブテン−1,4−スルトン、1−フルオロ−3−ブテン−1,4−スルトン、2−フルオロ−3−ブテン−1,4−スルトン、 1,4-butanesultone, 1-fluoro-1,4-butanesultone, 2-fluoro-1,4-butanesultone, 3-fluoro-1,4-butanesultone, 4-fluoro-1,4-butanesultone, 1-methyl- 1,4-butanesultone, 2-methyl-1,4-butanesultone, 3-methyl-1,4-butanesultone, 4-methyl-1,4-butanesultone, 1-butene-1,4-sultone, 2-butene- 1,4-Sultone, 3-butene-1,4-sultone, 1-fluoro-1-butene-1,4-sultone, 2-fluoro-1-butene-1,4-sultone, 3-fluoro-1- Butene-1,4-sultone, 4-fluoro-1-butene-1,4-sultone, 1-fluoro-2-butene-1,4-sultone, 2-fluoro-2-butene-1,4-sultone, 3-fluoro-2-butene-1,4-sultone, 4-fluoro-2-butene-1,4-sultone, 1-fluoro-3-butene-1,4-sultone, 2-fluoro-3-butene- 1,4-sultone,

3−フルオロ−3−ブテン−1,4−スルトン、4−フルオロ−3−ブテン−1,4−スルトン、1−メチル−1−ブテン−1,4−スルトン、2−メチル−1−ブテン−1,4−スルトン、3−メチル−1−ブテン−1,4−スルトン、4−メチル−1−ブテン−1,4−スルトン、1−メチル−2−ブテン−1,4−スルトン、2−メチル−2−ブテン−1,4−スルトン、3−メチル−2−ブテン−1,4−スルトン、4−メチル−2−ブテン−1,4−スルトン、1−メチル−3−ブテン−1,4−スルトン、2−メチル−3−ブテン−1,4−スルトン、3−メチル−3−ブテン−1,4−スルトン、4−メチル−3−ブテン−1,4−スルトン、1,5−ペンタンスルトン、1−フルオロ−1,5−ペンタンスルトン、2−フルオロ−1,5−ペンタンスルトン、3−フルオロ−1,5−ペンタンスルトン、4−フルオロ−1,5−ペンタンスルトン、5−フルオロ−1,5−ペンタンスルトン、1−メチル−1,5−ペンタンスルトン、2−メチル−1,5−ペンタンスルトン、 3-fluoro-3-butene-1,4-sultone, 4-fluoro-3-butene-1,4-sultone, 1-methyl-1-butene-1,4-sultone, 2-methyl-1-butene- 1,4-sultone, 3-methyl-1-butene-1,4-sultone, 4-methyl-1-butene-1,4-sultone, 1-methyl-2-butene-1,4-sultone, 2- Methyl-2-butene-1,4-sultone, 3-methyl-2-butene-1,4-sultone, 4-methyl-2-butene-1,4-sultone, 1-methyl-3-butene-1, 4-sultone, 2-methyl-3-butene-1,4-sultone, 3-methyl-3-butene-1,4-sultone, 4-methyl-3-butene-1,4-sultone, 1,5- Pentane sultone, 1-fluoro-1,5-pentane sultone, 2-fluoro-1,5-pentane sultone, 3-fluoro-1,5-pentane sultone, 4-fluoro-1,5-pentane sultone, 5-fluoro -1,5-pentanesultone, 1-methyl-1,5-pentanesultone, 2-methyl-1,5-pentanesultone,

3−メチル−1,5−ペンタンスルトン、4−メチル−1,5−ペンタンスルトン、5−メチル−1,5−ペンタンスルトン、1−ペンテン−1,5−スルトン、2−ペンテン−1,5−スルトン、3−ペンテン−1,5−スルトン、4−ペンテン−1,5−スルトン、1−フルオロ−1−ペンテン−1,5−スルトン、2−フルオロ−1−ペンテン−1,5−スルトン、3−フルオロ−1−ペンテン−1,5−スルトン、4−フルオロ−1−ペンテン−1,5−スルトン、5−フルオロ−1−ペンテン−1,5−スルトン、1−フルオロ−2−ペンテン−1,5−スルトン、2−フルオロ−2−ペンテン−1,5−スルトン、3−フルオロ−2−ペンテン−1,5−スルトン、4−フルオロ−2−ペンテン−1,5−スルトン、5−フルオロ−2−ペンテン−1,5−スルトン、1−フルオロ−3−ペンテン−1,5−スルトン、2−フルオロ−3−ペンテン−1,5−スルトン、3−フルオロ−3−ペンテン−1,5−スルトン、4−フルオロ−3−ペンテン−1,5−スルトン、5−フルオロ−3−ペンテン−1,5−スルトン、 3-methyl-1,5-pentanesultone, 4-methyl-1,5-pentanesultone, 5-methyl-1,5-pentanesultone, 1-pentene-1,5-sultone, 2-pentene-1,5 -Sultone, 3-pentene-1,5-sultone, 4-pentene-1,5-sultone, 1-fluoro-1-pentene-1,5-sultone, 2-fluoro-1-pentene-1,5-sultone , 3-fluoro-1-pentene-1,5-sultone, 4-fluoro-1-pentene-1,5-sultone, 5-fluoro-1-pentene-1,5-sultone, 1-fluoro-2-pentene -1,5-sultone, 2-fluoro-2-pentene-1,5-sultone, 3-fluoro-2-pentene-1,5-sultone, 4-fluoro-2-pentene-1,5-sultone, 5 -Fluoro-2-pentene-1,5-sultone, 1-Fluoro-3-pentene-1,5-sultone, 2-Fluoro-3-pentene-1,5-sultone, 3-Fluoro-3-pentene-1 , 5-sultone, 4-fluoro-3-pentene-1,5-sultone, 5-fluoro-3-pentene-1,5-sultone,

1−フルオロ−4−ペンテン−1,5−スルトン、2−フルオロ−4−ペンテン−1,5−スルトン、3−フルオロ−4−ペンテン−1,5−スルトン、4−フルオロ−4−ペンテン−1,5−スルトン、5−フルオロ−4−ペンテン−1,5−スルトン、1−メチル−1−ペンテン−1,5−スルトン、2−メチル−1−ペンテン−1,5−スルトン、3−メチル−1−ペンテン−1,5−スルトン、4−メチル−1−ペンテン−1,5−スルトン、5−メチル−1−ペンテン−1,5−スルトン、1−メチル−2−ペンテン−1,5−スルトン、2−メチル−2−ペンテン−1,5−スルトン、3−メチル−2−ペンテン−1,5−スルトン、4−メチル−2−ペンテン−1,5−スルトン、5−メチル−
2−ペンテン−1,5−スルトン、1−メチル−3−ペンテン−1,5−スルトン、2−メチル−3−ペンテン−1,5−スルトン、3−メチル−3−ペンテン−1,5−スルトン、4−メチル−3−ペンテン−1,5−スルトン、5−メチル−3−ペンテン−1,5−スルトン、1−メチル−4−ペンテン−1,5−スルトン、2−メチル−4−ペンテン−1,5−スルトン、
1-fluoro-4-pentene-1,5-sultone, 2-fluoro-4-pentene-1,5-sultone, 3-fluoro-4-pentene-1,5-sultone, 4-fluoro-4-pentene- 1,5-Sultone, 5-Fluoro-4-pentene-1,5-sultone, 1-Methyl-1-pentene-1,5-sultone, 2-Methyl-1-pentene-1,5-sultone, 3- Methyl-1-pentene-1,5-sultone, 4-methyl-1-pentene-1,5-sultone, 5-methyl-1-pentene-1,5-sultone, 1-methyl-2-pentene-1, 5-sultone, 2-methyl-2-pentene-1,5-sultone, 3-methyl-2-pentene-1,5-sultone, 4-methyl-2-pentene-1,5-sultone, 5-methyl-
2-pentene-1,5-sultone, 1-methyl-3-pentene-1,5-sultone, 2-methyl-3-pentene-1,5-sultone, 3-methyl-3-pentene-1,5- Sultone, 4-methyl-3-pentene-1,5-sultone, 5-methyl-3-pentene-1,5-sultone, 1-methyl-4-pentene-1,5-sultone, 2-methyl-4- Pentene-1,5-sultone,

3−メチル−4−ペンテン−1,5−スルトン、4−メチル−4−ペンテン−1,5−スルトン、5−メチル−4−ペンテン−1,5−スルトンなどのスルトン化合物;
メチレンスルフェート、エチレンスルフェート、プロピレンスルフェートなどのスルフェート化合物;
メチレンメタンジスルホネート、エチレンメタンジスルホネートなどのジスルホネート化合物;
1,2,3−オキサチアゾリジン−2,2−ジオキシド、3−メチル−1,2,3−オキサチアゾリジン−2,2−ジオキシド、3H−1,2,3−オキサチアゾール−2,2−ジオキシド、
Sultone compounds such as 3-methyl-4-pentene-1,5-sultone, 4-methyl-4-pentene-1,5-sultone, 5-methyl-4-pentene-1,5-sultone;
Sulfate compounds such as methylene sulphate, ethylene sulphate, propylene sulphate;
Disulfonate compounds such as methylene methane disulfonate and ethylene methane disulfonate;
1,2,3-oxathiazolidine-2,2-dioxide, 3-methyl-1,2,3-oxathiazolidine-2,2-dioxide, 3H-1,2,3-oxathiazole-2,2-dioxide ,

5H−1,2,3−オキサチアゾール−2,2−ジオキシド、1,2,4−オキサチアゾリジン−2,2−ジオキシド、4−メチル−1,2,4−オキサチアゾリジン−2,2−ジオキシド、3H−1,2,4−オキサチアゾール−2,2−ジオキシド、5H−1,2,4−オキサチアゾール−2,2−ジオキシド、1,2,5−オキサチアゾリジン−2,2−ジオキシド、5−メチル−1,2,5−オキサチアゾリジン−2,2−ジオキシド、3H−1,2,5−オキサチアゾール−2,2−ジオキシド、5H−1,2,5−オキサチアゾール−2,2−ジオキシド、1,2,3−オキサチアジナン−2,2−ジオキシド、3−メチル−1,2,3−オキサチアジナン−2,2−ジオキシド、 5H-1,2,3-oxathiazole-2,2-dioxide, 1,2,4-oxathiazolidine-2,2-dioxide, 4-methyl-1,2,4-oxathiazolidine-2,2-dioxide 3H-1,2,4-oxathiazole-2,2-dioxide, 5H-1,2,4-oxathiazole-2,2-dioxide, 1,2,5-oxathiazolidine-2,2-dioxide, 5-methyl-1,2,5-oxathiazolidine-2,2-dioxide, 3H-1,2,5-oxathiazole-2,2-dioxide, 5H-1,2,5-oxathiazole-2,2 -Dioxide, 1,2,3-oxathiazinane-2,2-dioxide, 3-methyl-1,2,3-oxathiazinane-2,2-dioxide,

5,6−ジヒドロ−1,2,3−オキサチアジン−2,2−ジオキシド、1,2,4−オキサチアジナン−2,2−ジオキシド、4−メチル−1,2,4−オキサチアジナン−2,2−ジオキシド、5,6−ジヒドロ−1,2,4−オキサチアジン−2,2−ジオキシド、3,6−ジヒドロ−1,2,4−オキサチアジン−2,2−ジオキシド、3,4−ジヒドロ−1,2,4−オキサチアジン−2,2−ジオキシド、1,2,5−オキサチアジナン−2,2−ジオキシド、5−メチル−1,2,5−オキサチアジナン−2,2−ジオキシド、5,6−ジヒドロ−1,2,5−オキサチアジン−2,2−ジオキシド、3,6−ジヒドロ−1,2,5−オキサチアジン−2,2−ジオキシド、3,4−ジヒドロ−1,2,5−オキサチアジン−2,2−ジオキシド、1,2,6−オキサチアジナン−2,2−ジオキシド、6−メチル−1,2,6−オキサチアジナン−2,2−ジオキシド、5,6−ジヒドロ−1,2,6−オキサチアジン−2,2−ジオキシド、3,4−ジヒドロ−1,2,6−オキサチアジン−2,2−ジオキシド、5,6−ジヒドロ−1,2,6−オキサチアジン−2,2−ジオキシドなどの含窒素化合物; 5,6-dihydro-1,2,3-oxathiazine-2,2-dioxide, 1,2,4-oxathiazinane-2,2-dioxide, 4-methyl-1,2,4-oxathiazinane-2,2- Dioxide, 5,6-dihydro-1,2,4-oxathiazine-2,2-dioxide, 3,6-dihydro-1,2,4-oxathiazine-2,2-dioxide, 3,4-dihydro-1, 2,4-oxathiazine-2,2-dioxide, 1,2,5-oxathiazinane-2,2-dioxide, 5-methyl-1,2,5-oxathiazinane-2,2-dioxide, 5,6-dihydro- 1,2,5-oxathiazine-2,2-dioxide, 3,6-dihydro-1,2,5-oxathiazine-2,2-dioxide, 3,4-dihydro-1,2,5-oxathiazine-2, 2-dioxide, 1,2,6-oxathiazinane-2,2-dioxide, 6-methyl-1,2,6-oxathiazinane-2,2-dioxide, 5,6-dihydro-1,2,6-oxathiazine- Nitrogen-containing compounds such as 2,2-dioxide, 3,4-dihydro-1,2,6-oxathiazine-2,2-dioxide and 5,6-dihydro-1,2,6-oxathiazine-2,2-dioxide ;

1,2,3−オキサチアホスラン−2,2−ジオキシド、3−メチル−1,2,3−オキサチアホスラン−2,2−ジオキシド、3−メチル−1,2,3−オキサチアホスラン−2,2,3−トリオキシド、3−メトキシ−1,2,3−オキサチアホスラン−2,2,3−トリオキシド、1,2,4−オキサチアホスラン−2,2−ジオキシド、4−メチル−1,2,4−オキサチアホスラン−2,2−ジオキシド、4−メチル−1,2,4−オキサチアホスラン−2,2,4−トリオキシド、4−メトキシ−1,2,4−オキサチアホスラン−2,2,4−トリオキシド、1,2,5−オキサチアホスラン−2,2−ジオキシド、5−メチル−1,2,5−オキサチアホスラン−2,2−ジオキシド、5−メチル−1,2,5−オキサチアホスラン−2,2,5−トリオキシド、5−メトキシ−1,2,5−オキサチアホスラン−2,2,5−トリオキシド、1,2,3−オキサチアホスフィナン−2,2−ジオキシド、3−メチル−1,2,3−オキサチアホスフィナン−
2,2−ジオキシド、3−メチル−1,2,3−オキサチアホスフィナン−2,2,3−トリオキシド、3−メトキシ−1,2,3−オキサチアホスフィナン−2,2,3−トリオキシド、
1,2,3-oxathiaphoslane-2,2-dioxide, 3-methyl-1,2,3-oxathiaphoslane-2,2-dioxide, 3-methyl-1,2,3-oxathi Aphoslane-2,2,3-trioxide, 3-methoxy-1,2,3-oxathiaphoslane-2,2,3-trioxide, 1,2,4-oxathiaphoslane-2,2-dioxide , 4-methyl-1,2,4-oxathiaphoslane-2,2-dioxide, 4-methyl-1,2,4-oxathiaphoslane-2,2,4-trioxide, 4-methoxy-1 ,2,4-oxathiaphoslane-2,2,4-trioxide, 1,2,5-oxathiaphoslane-2,2-dioxide, 5-methyl-1,2,5-oxathiaphoslane- 2,2-dioxide, 5-methyl-1,2,5-oxathiaphoslane-2,2,5-trioxide, 5-methoxy-1,2,5-oxathiaphoslane-2,2,5- Trioxide, 1,2,3-oxathiaphosphinan-2,2-dioxide, 3-methyl-1,2,3-oxathiaphosphinan-
2,2-dioxide, 3-methyl-1,2,3-oxathiaphosphinane-2,2,3-trioxide, 3-methoxy-1,2,3-oxathiaphosphinane-2,2,3- Trioxide,

1,2,4−オキサチアホスフィナン−2,2−ジオキシド、4−メチル−1,2,4−オキサチアホスフィナン−2,2−ジオキシド、4−メチル−1,2,4−オキサチアホスフィナン−2,2,3−トリオキシド、4−メチル−1,5,2,4−ジオキサチアホスフィナン−2,4−ジオキシド、4−メトキシ−1,5,2,4−ジオキサチアホスフィナン−2,4−ジオキシド、3−メトキシ−1,2,4−オキサチアホスフィナン−2,2,3−トリオキシド、1,2,5−オキサチアホスフィナン−2,2−ジオキシド、5−メチル−1,2,5−オキサチアホスフィナン−2,2−ジオキシド、5−メチル−1,2,5−オキサチアホスフィナン−2,2,3−トリオキシド、5−メトキシ−1,2,5−オキサチアホスフィナン−2,2,3−トリオキシド、1,2,6−オキサチアホスフィナン−2,2−ジオキシド、6−メチル−1,2,6−オキサチアホスフィナン−2,2−ジオキシド、6−メチル−1,2,6−オキサチアホスフィナン−2,2,3−トリオキシド、6−メトキシ−1,2,6−オキサチアホスフィナン−2,2,3−トリオキシドどの含リン化合物; 1,2,4-oxathiaphosphinane-2,2-dioxide, 4-methyl-1,2,4-oxathiaphosphinane-2,2-dioxide, 4-methyl-1,2,4-oxathia Phosphinane-2,2,3-trioxide, 4-methyl-1,5,2,4-dioxathiaphosphinane-2,4-dioxide, 4-methoxy-1,5,2,4-dioxathia Phosphinane-2,4-dioxide, 3-methoxy-1,2,4-oxathiaphosphinane-2,2,3-trioxide, 1,2,5-oxathiaphosphinane-2,2-dioxide, 5 -Methyl-1,2,5-oxathiaphosphinan-2,2-dioxide, 5-methyl-1,2,5-oxathiaphosphinan-2,2,3-trioxide, 5-methoxy-1,2 ,5-oxathiaphosphinane-2,2,3-trioxide, 1,2,6-oxathiaphosphinane-2,2-dioxide, 6-methyl-1,2,6-oxathiaphosphinane-2, 2-dioxide, 6-methyl-1,2,6-oxathiaphosphinane-2,2,3-trioxide, 6-methoxy-1,2,6-oxathiaphosphinane-2,2,3-trioxide, etc. Phosphorus-containing compound;

これらのうち、
1,3−プロパンスルトン、1−フルオロ−1,3−プロパンスルトン、2−フルオロ−1,3−プロパンスルトン、3−フルオロ−1,3−プロパンスルトン、1−プロペン−1,3−スルトン、1−フルオロ−1−プロペン−1,3−スルトン、2−フルオロ−1−プロペン−1,3−スルトン、3−フルオロ−1−プロペン−1,3−スルトン、1,4−ブタンスルトン、メチレンメタンジスルホネート、エチレンメタンジスルホネートが保存特性向上の点から好ましく、1,3−プロパンスルトン、1−フルオロ−1,3−プロパンスルトン、2−フルオロ−1,3−プロパンスルトン、3−フルオロ−1,3−プロパンスルトン、1−プロペン−1,3−スルトンがより好ましい。
Of these,
1,3-propane sultone, 1-fluoro-1,3-propane sultone, 2-fluoro-1,3-propane sultone, 3-fluoro-1,3-propane sultone, 1-propene-1,3-sultone, 1-fluoro-1-propene-1,3-sultone, 2-fluoro-1-propene-1,3-sultone, 3-fluoro-1-propene-1,3-sultone, 1,4-butanesultone, methylenemethane Disulfonate and ethylene methane disulfonate are preferable from the viewpoint of improving storage characteristics, and 1,3-propane sultone, 1-fluoro-1,3-propane sultone, 2-fluoro-1,3-propane sultone, and 3-fluoro-1. , 3-propane sultone and 1-propene-1,3-sultone are more preferable.

環状スルホン酸エステル化合物は、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併有してもよい。本発明の非水系電解液全体に対する環状スルホン酸エステル化合物の配合量に制限は無く、本発明の効果を著しく損なわない限り任意であるが、本発明の非水系電解液に対して、通常0.001質量%以上、好ましくは0.1質量%以上、より好ましくは0.3質量%以上、また、通常10質量%以下、好ましくは5質量%以下、より好ましくは3質量%以下の濃度で含有させる。上記範囲を満たした場合は、出力特性、負荷特性、低温特性、サイクル特性、高温保存特性等の効果がより向上する。 The cyclic sulfonate compound may be used alone or in combination of two or more in any combination and ratio. There is no limitation on the amount of the cyclic sulfonic acid ester compound to be added to the entire non-aqueous electrolyte solution of the present invention, and any amount may be used as long as the effects of the present invention are not significantly impaired. 001 mass% or more, preferably 0.1 mass% or more, more preferably 0.3 mass% or more, and usually 10 mass% or less, preferably 5 mass% or less, more preferably 3 mass% or less Let When the above range is satisfied, the effects such as output characteristics, load characteristics, low temperature characteristics, cycle characteristics, and high temperature storage characteristics are further improved.

<シアノ基を有する化合物>
本発明の非水系電解液において、用いることができるシアノ基を有する化合物としては、分子内にシアノ基を有している化合物であれば特にその種類は限定されないが、一般式(2)で表される化合物が挙げられる。
<Compound having a cyano group>
In the non-aqueous electrolyte solution of the present invention, the compound having a cyano group that can be used is not particularly limited as long as it is a compound having a cyano group in the molecule, and is represented by the general formula (2). The compound to be mentioned is mentioned.

(式中、Tは、炭素原子、水素原子、窒素原子、酸素原子、硫黄原子、リン原子およびハロゲン原子からなる群から選ばれる原子で構成された有機基を表し、Uは置換基を有して
もよい炭素数1から10のV価の有機基である。Vは1以上の整数であり、Vが2以上の場合は、Tは互いに同一であっても異なっていてもよい。)
シアノ基を有する化合物の分子量は、特に制限されず、本発明の効果を著しく損なわない限り任意である。分子量は、好ましくは、50以上であり、より好ましくは80以上、さらに好ましくは100以上であり、また、200以下である。この範囲であれば、非水系電解液に対するシアノ基を有する化合物の溶解性を確保しやすく、本発明の効果が発現されやすい。シアノ基を有する化合物の製造方法は、特に制限されず、公知の方法を任意に選択して製造することが可能である。
(In the formula, T represents an organic group composed of an atom selected from the group consisting of a carbon atom, a hydrogen atom, a nitrogen atom, an oxygen atom, a sulfur atom, a phosphorus atom and a halogen atom, and U has a substituent. It may be a V-valent organic group having 1 to 10 carbon atoms. V is an integer of 1 or more, and when V is 2 or more, Ts may be the same or different from each other.)
The molecular weight of the compound having a cyano group is not particularly limited and is arbitrary as long as the effects of the present invention are not significantly impaired. The molecular weight is preferably 50 or more, more preferably 80 or more, still more preferably 100 or more, and 200 or less. Within this range, the solubility of the compound having a cyano group in the non-aqueous electrolyte solution can be easily ensured and the effect of the present invention can be easily exhibited. The method for producing the compound having a cyano group is not particularly limited, and a known method can be arbitrarily selected and produced.

一般式(2)で表される化合物の具体例としては、例えば、
アセトニトリル、プロピオニトリル、ブチロニトリル、イソブチロニトリル、バレロニトリル、イソバレロニトリル、ラウロニトリル、2−メチルブチロニトリル、2,2−ジメチルブチロニトリル、ヘキサンニトリル、シクロペンタンカルボニトリル、シクロヘキサンカルボニトリル、アクリロニトリル、メタクリロニトリル、クロトノニトリル、3−メチルクロトノニトリル、2−メチル−2−ブテン二トリル、2−ペンテンニトリル、2−メチル−2−ペンテンニトリル、3−メチル−2−ペンテンニトリル、2−ヘキセンニトリル、フルオロアセトニトリル、ジフルオロアセトニトリル、トリフルオロアセトニトリル、2−フルオロプロピオニトリル、3−フルオロプロピオニトリル、2,2−ジフルオロプロピオニトリル、2,3−ジフルオロプロピオニトリル、3,3−ジフルオロプロピオニトリル、2,2,3−トリフルオロプロピオニトリル、3,3,3−トリフルオロプロピオニトリル、3,3′−オキシジプロピオニトリル、3,3′−チオジプロピオニトリル、1,2,3−プロパントリカルボニトリル、1,3,5−ペンタントリカルボニトリル、ペンタフルオロプロピオニトリル等のシアノ基を1つ有する化合物;
Specific examples of the compound represented by the general formula (2) include, for example,
Acetonitrile, propionitrile, butyronitrile, isobutyronitrile, valeronitrile, isovaleronitrile, lauronitrile, 2-methylbutyronitrile, 2,2-dimethylbutyronitrile, hexanenitrile, cyclopentanecarbonitrile, cyclohexanecarbonitrile , Acrylonitrile, methacrylonitrile, crotononitrile, 3-methylcrotononitrile, 2-methyl-2-butenenitrile, 2-pentenenitrile, 2-methyl-2-pentenenitrile, 3-methyl-2-pentenenitrile , 2-hexenenitrile, fluoroacetonitrile, difluoroacetonitrile, trifluoroacetonitrile, 2-fluoropropionitrile, 3-fluoropropionitrile, 2,2-difluoropropionitrile, 2,3-difluoropropionitrile, 3, 3-difluoropropionitrile, 2,2,3-trifluoropropionitrile, 3,3,3-trifluoropropionitrile, 3,3'-oxydipropionitrile, 3,3'-thiodipropionitrile, 1 Compounds having one cyano group, such as 2,2,3-propanetricarbonitrile, 1,3,5-pentanetricarbonitrile and pentafluoropropionitrile;

マロノニトリル、スクシノニトリル、グルタロニトリル、アジポニトリル、ピメロニトリル、スベロニトリル、アゼラニトリル、セバコニトリル、ウンデカンジニトリル、ドデカンジニトリル、メチルマロノニトリル、エチルマロノニトリル、i−プロピルマロノニトリル、t−ブチルマロノニトリル、メチルスクシノニトリル、2,2−ジメチルスクシノニトリル、2,3−ジメチルスクシノニトリル、トリメチルスクシノニトリル、テトラメチルスクシノニトリル、3,3′−(エチレンジオキシ)ジプロピオニトリル、3,3’−(エチレンジチオ)ジプロピオニトリル等のシアノ基を2つ有する化合物;
1,2,3−トリス(2−シアノエトキシ)プロパン、トリス(2−シアノエチル)アミン等のシアノ基を3つ有する化合物;
Malononitrile, succinonitrile, glutaronitrile, adiponitrile, pimelonitrile, suberonitrile, azelanitrile, sebaconitrile, undecanedinitrile, dodecanedinitrile, methylmalononitrile, ethylmalononitrile, i-propylmalononitrile, t-butylmalononitrile, methylsuccinonitrile. Cinonitrile, 2,2-dimethylsuccinonitrile, 2,3-dimethylsuccinonitrile, trimethylsuccinonitrile, tetramethylsuccinonitrile, 3,3′-(ethylenedioxy)dipropionitrile, 3,3′ A compound having two cyano groups such as -(ethylenedithio)dipropionitrile;
Compounds having three cyano groups such as 1,2,3-tris(2-cyanoethoxy)propane and tris(2-cyanoethyl)amine;

メチルシアネート、エチルシアネート、プロピルシアネート、ブチルシアネート、ペンチルシアネート、ヘキシルシアネート、ヘプチルシアネートなどのシアネート化合物;
メチルチオシアネート、エチルチオシアネート、プロピルチオシアネート、ブチルチオシアネート、ペンチルチオシアネート、ヘキシルチオシアネート、ヘプチルチオシアネート、メタンスルホニルシアニド、エタンスルホニルシアニド、プロパンスルホニルシアニド、ブタンスルホニルシアニド、ペンタンスルホニルシアニド、ヘキサンスルホニルシアニド、ヘプタンスルホニルシアニド、メチルスルフロシアニダート、エチルスルフロシアニダート、プロピルスルフロシアニダート、ブチルスルフロシアニダート、ペンチルスルフロシアニダート、ヘキシルスルフロシアニダート、ヘプチルスルフロシアニダートなどの含硫黄化合物;
Cyanate compounds such as methyl cyanate, ethyl cyanate, propyl cyanate, butyl cyanate, pentyl cyanate, hexyl cyanate and heptyl cyanate;
Methyl thiocyanate, ethyl thiocyanate, propyl thiocyanate, butyl thiocyanate, pentyl thiocyanate, hexyl thiocyanate, heptyl thiocyanate, methanesulfonyl cyanide, ethanesulfonylcyanide, propanesulfonylcyanide, butanesulfonylcyanide, pentanesulfonylcyanide, hexanesulfonylcyanide , Heptanesulfonyl cyanide, methylsulfurocyanidate, ethylsulfurocyanidate, propylsulfurocyanidate, butylsulfurocyanidate, pentylsulfurocyanidate, hexylsulfurocyanidate, heptylsulfur Sulfur-containing compounds such as furocyanidates;

シアノジメチルホスフィン、シアノジメチルホスフィンオキシド、シアノメチルホスフィン酸メチル、シアノメチル亜ホスフィン酸メチル、ジメチルホスフィン酸シアニド、ジメチル亜ホスフィン酸シアニド、シアノホスホン酸ジメチル、シアノ亜ホスホン酸ジメチル、メチルホスホン酸シアノメチル、メチル亜ホスホン酸シアノメチル、リン酸シアノジメチル、亜リン酸シアノジメチルなどの含リン化合物;
等が挙げられる。
Cyanodimethylphosphine, cyanodimethylphosphine oxide, methyl cyanomethylphosphinate, methyl cyanomethylphosphinate, cyanide dimethylphosphinic acid, cyanide dimethylphosphinate, dimethyl cyanophosphonate, dimethylcyanophosphonate, cyanomethyl methylphosphonate, methylphosphonate Phosphorus-containing compounds such as cyanomethyl phosphate, cyanodimethyl phosphate, and cyanodimethyl phosphite;
Etc.

これらのうち、
アセトニトリル、プロピオニトリル、ブチロニトリル、i−ブチロニトリル、バレロニトリル、i−バレロニトリル、ラウロニトリル、クロトノニトリル、3‐メチルクロトノニトリル、マロノニトリル、スクシノニトリル、グルタロニトリル、アジポニトリル、ピメロニトリル、スベロニトリル、アゼラニトリル、セバコニトリル、ウンデカンジニトリル、ドデカンジニトリルが保存特性向上の点から好ましく、マロノニトリル、スクシノニトリル、グルタロニトリル、アジポニトリル、ピメロニトリル、スベロニトリル、アゼラニトリル、セバコニトリル、ウンデカンジニトリル、ドデカンジニトリル等のシアノ基を2つ有する化合物がより好ましい。
Of these,
Acetonitrile, propionitrile, butyronitrile, i-butyronitrile, valeronitrile, i-valeronitrile, lauronitrile, crotononitrile, 3-methylcrotononitrile, malononitrile, succinonitrile, glutaronitrile, adiponitrile, pimelonitrile, suberonitrile, Azelanitrile, sebaconitrile, undecanedinitrile, dodecanedinitrile are preferable from the viewpoint of improving storage characteristics, and cyano such as malononitrile, succinonitrile, glutaronitrile, adiponitrile, pimelonitrile, suberonitrile, azelanitrile, sebaconitrile, undecanedinitrile, dodecanedinitrile. A compound having two groups is more preferable.

シアノ基を有する化合物は、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併有してもよい。本発明の非水系電解液全体に対するシアノ基を有する化合物の配合量に制限は無く、本発明の効果を著しく損なわない限り任意であるが、本発明の非水系電解液に対して、通常0.001質量%以上、好ましくは0.1質量%以上、より好ましくは0.3質量%以上、また、通常10質量%以下、好ましくは5質量%以下、より好ましくは3質量%以下の濃度で含有させる。上記範囲を満たした場合は、出力特性、負荷特性、低温特性、サイクル特性、高温保存特性等の効果がより向上する。 As the compound having a cyano group, one type may be used alone, or two or more types may be used together in any combination and ratio. The compounding amount of the cyano group-containing compound with respect to the whole non-aqueous electrolyte solution of the present invention is not limited and may be any amount as long as the effect of the present invention is not significantly impaired. 001 mass% or more, preferably 0.1 mass% or more, more preferably 0.3 mass% or more, and usually 10 mass% or less, preferably 5 mass% or less, more preferably 3 mass% or less Let When the above range is satisfied, the effects such as output characteristics, load characteristics, low temperature characteristics, cycle characteristics, and high temperature storage characteristics are further improved.

<ジイソシアネート化合物>
本発明の非水系電解液において、用いることができるジイソシアネート化合物は、分子内にイソシアナト基を2つ有する化合物であれば特に制限はないが、下記一般式(3)で表されるものが好ましい。
<Diisocyanate compound>
The diisocyanate compound that can be used in the non-aqueous electrolyte solution of the present invention is not particularly limited as long as it is a compound having two isocyanato groups in the molecule, but a compound represented by the following general formula (3) is preferable.

(式中、Xはフッ素で置換されていてもよい炭素数1〜16の炭化水素基である)
上記一般式(3)において、Xはフッ素で置換されていてもよい炭素数1〜16の炭化水素基である。Xの炭素数は好ましくは2以上、より好ましくは3以上、特に好ましくは4以上であり、また好ましくは14以下、より好ましくは12以下、特に好ましくは10以下、最も好ましくは8以下である。またXの種類については炭化水素基である限り特に限定されない。脂肪族鎖状アルキレン基、脂肪族環状アルキレン基及び芳香環含有炭化水素基のいずれであってもよいが、好ましくは脂肪族鎖状アルキレン基又は脂肪族環状アルキレン基である。
(In the formula, X is a hydrocarbon group having 1 to 16 carbon atoms which may be substituted with fluorine)
In the above general formula (3), X is a hydrocarbon group having 1 to 16 carbon atoms which may be substituted with fluorine. The carbon number of X is preferably 2 or more, more preferably 3 or more, particularly preferably 4 or more, and preferably 14 or less, more preferably 12 or less, particularly preferably 10 or less, most preferably 8 or less. The type of X is not particularly limited as long as it is a hydrocarbon group. It may be any of an aliphatic chain alkylene group, an aliphatic cyclic alkylene group and an aromatic ring-containing hydrocarbon group, but an aliphatic chain alkylene group or an aliphatic cyclic alkylene group is preferable.

本発明におけるジイソシアネートの具体例を挙げると、
エチレンジイソシアネート、トリメチレンジイソシアネート、テトラメチレンジイソシアネート、ペンタメチレンジイソシアネート、ヘキサメチレンジイソシアネート、ヘプタメチレンジイソシアネート、オクタメチレンジイソシアネート、デカメチレンジイソシアネート、ドデカメチレンジイソシアネート、テトラデカメチレンジイソシアネート、等の直鎖ポリメチレンジイソシアネート類;
1−メチルヘキサメチレンジイソシアネート、2−メチルヘキサメチレンジイソシアネート、3−メチルヘキサメチレンジイソシアネート、1,1−ジメチルヘキサメチレンジイソシアネート、1,2−ジメチルヘキサメチレンジイソシアネート、1,3−ジメチルヘキサメチレンジイソシアネート、1,4−ジメチルヘキサメチレンジイソシアネート、1,5−ジメチルヘキサメチレンジイソシアネート、1,6−ジメチルヘキサメチレンジイ
ソシアネート、1,2,3−トリメチルヘキサメチレンジイソシアネート、等の分岐アルキレンジイソシアネート類;
Specific examples of the diisocyanate in the present invention,
Linear polymethylene diisocyanates such as ethylene diisocyanate, trimethylene diisocyanate, tetramethylene diisocyanate, pentamethylene diisocyanate, hexamethylene diisocyanate, heptamethylene diisocyanate, octamethylene diisocyanate, decamethylene diisocyanate, dodecamethylene diisocyanate, tetradecamethylene diisocyanate, etc.;
1-methylhexamethylene diisocyanate, 2-methylhexamethylene diisocyanate, 3-methylhexamethylene diisocyanate, 1,1-dimethylhexamethylene diisocyanate, 1,2-dimethylhexamethylene diisocyanate, 1,3-dimethylhexamethylene diisocyanate, 1, Branched alkylene diisocyanates such as 4-dimethylhexamethylene diisocyanate, 1,5-dimethylhexamethylene diisocyanate, 1,6-dimethylhexamethylene diisocyanate, 1,2,3-trimethylhexamethylene diisocyanate;

1,4−ジイソシアナト−2−ブテン、1,5−ジイソシアナト−2−ペンテン、1,5−ジイソシアナト−3−ペンテン、1,6−ジイソシアナト−2−ヘキセン、1,6−ジイソシアナト−3−ヘキセン、1,8−ジイソシアナト−2−オクテン、1,8−ジイソシアナト−3−オクテン、1,8−ジイソシアナト−4−オクテン、等のジイソシアナトアルケン類;
1,3−ジイソシアナト−2−フルオロプロパン、1,3−ジイソシアナト−2,2−ジフルオロプロパン、1,4−ジイソシアナト−2−フルオロブタン、1,4−ジイソシアナト−2,2−ジフルオロブタン、1,4−ジイソシアナト−2,3−ジフルオロブタン、1,6−ジイソシアナト−2−フルオロヘキサン、1,6−ジイソシアナト−3−フルオロヘキサン、1,6−ジイソシアナト−2,2−ジフルオロヘキサン、1,6−ジイソシアナト−2,3−ジフルオロヘキサン、1,6−ジイソシアナト−2,4−ジフルオロヘキサン、1,6−ジイソシアナト−2,5−ジフルオロヘキサン、1,6−ジイソシアナト−3,3−ジフルオロヘキサン、1,6−ジイソシアナト−3,4−ジフルオロヘキサン、1,8−ジイソシアナト−2−フルオロオクタン、1,8−ジイソシアナト−3−フルオロオクタン、1,8−ジイソシアナト−4−フルオロオクタン、1,8−ジイソシアナト−2,2−ジフルオロオクタン、1,8−ジイソシアナト−2,3−ジフルオロオクタン、1,8−ジイソシアナト−2,4−ジフルオロオクタン、1,8−ジイソシアナト−2,5−ジフルオロオクタン、1,8−ジイソシアナト−2,6−ジフルオロオクタン、1,8−ジイソシアナト−2,7−ジフルオロオクタン、等のフッ素置換ジイソシアナトアルカン類;
1,4-diisocyanato-2-butene, 1,5-diisocyanato-2-pentene, 1,5-diisocyanato-3-pentene, 1,6-diisocyanato-2-hexene, 1,6-diisocyanato-3-hexene, Diisocyanatoalkenes such as 1,8-diisocyanato-2-octene, 1,8-diisocyanato-3-octene, 1,8-diisocyanato-4-octene, and the like;
1,3-diisocyanato-2-fluoropropane, 1,3-diisocyanato-2,2-difluoropropane, 1,4-diisocyanato-2-fluorobutane, 1,4-diisocyanato-2,2-difluorobutane, 1, 4-diisocyanato-2,3-difluorobutane, 1,6-diisocyanato-2-fluorohexane, 1,6-diisocyanato-3-fluorohexane, 1,6-diisocyanato-2,2-difluorohexane, 1,6- Diisocyanato-2,3-difluorohexane, 1,6-diisocyanato-2,4-difluorohexane, 1,6-diisocyanato-2,5-difluorohexane, 1,6-diisocyanato-3,3-difluorohexane, 1, 6-diisocyanato-3,4-difluorohexane, 1,8-diisocyanato-2-fluorooctane, 1,8-diisocyanato-3-fluorooctane, 1,8-diisocyanato-4-fluorooctane, 1,8-diisocyanato- 2,2-Difluorooctane, 1,8-Diisocyanato-2,3-difluorooctane, 1,8-Diisocyanato-2,4-difluorooctane, 1,8-Diisocyanato-2,5-difluorooctane, 1,8- Fluorine-substituted diisocyanatoalkanes such as diisocyanato-2,6-difluorooctane and 1,8-diisocyanato-2,7-difluorooctane;

1,2−ジイソシアナトシクロペンタン、1,3−ジイソシアナトシクロペンタン、1,2−ジイソシアナトシクロヘキサン、1,3−ジイソシアナトシクロヘキサン、1,4−ジイソシアナトシクロヘキサン、1,2−ビス(イソシアナトメチル)シクロヘキサン、1,3−ビス(イソシアナトメチル)シクロヘキサン、1,4−ビス(イソシアナトメチル)シクロヘキサン、ジシクロヘキシルメタン−2,2’−ジイソシアネート、ジシクロヘキシルメタン−2,4’−ジイソシアネート、ジシクロヘキシルメタン−3,3’−ジイソシアネート、ジシクロヘキシルメタン−4,4’−ジイソシアネート、等のシクロアルカン環含有ジイソシアネート類; 1,2-diisocyanatocyclopentane, 1,3-diisocyanatocyclopentane, 1,2-diisocyanatocyclohexane, 1,3-diisocyanatocyclohexane, 1,4-diisocyanatocyclohexane, 1,2 -Bis(isocyanatomethyl)cyclohexane, 1,3-bis(isocyanatomethyl)cyclohexane, 1,4-bis(isocyanatomethyl)cyclohexane, dicyclohexylmethane-2,2'-diisocyanate, dicyclohexylmethane-2,4'. A cycloalkane ring-containing diisocyanate such as diisocyanate, dicyclohexylmethane-3,3′-diisocyanate, dicyclohexylmethane-4,4′-diisocyanate;

1,2−フェニレンジイソシアネート、1,3−フェニレンジイソシアネート、1,4−フェニレンジイソシアネート、トリレン−2,3−ジイソシアネート、トリレン−2,4−ジイソシアネート、トリレン−2,5−ジイソシアネート、トリレン−2,6−ジイソシアネート、トリレン−3,4−ジイソシアネート、トリレン−3,5−ジイソシアネート、1,2−ビス(イソシアナトメチル)ベンゼン、1,3−ビス(イソシアナトメチル)ベンゼン、1,4−ビス(イソシアナトメチル)ベンゼン、2,4−ジイソシアナトビフェニル、2,6−ジイソシアナトビフェニル、2,2’−ジイソシアナトビフェニル、3,3’−ジイソシアナトビフェニル、4,4’−ジイソシアナト−2−メチルビフェニル、4,4’−ジイソシアナト−3−メチルビフェニル、4,4’−ジイソシアナト−3,3’−ジメチルビフェニル、4,4’−ジイソシアナトジフェニルメタン、4,4’−ジイソシアナト−2−メチルジフェニルメタン、4,4’−ジイソシアナト−3−メチルジフェニルメタン、4,4’−ジイソシアナト−3,3’−ジメチルジフェニルメタン、1,5−ジイソシアナトナフタレン、1,8−ジイソシアナトナフタレン、2,3−ジイソシアナトナフタレン、1,5−ビス(イソシアナトメチル)ナフタレン、1,8−ビス(イソシアナトメチル)ナフタレン、2,3−ビス(イソシアナトメチル)ナフタレン等の芳香環含有ジイソシアネート類;などが挙げられる。 1,2-phenylene diisocyanate, 1,3-phenylene diisocyanate, 1,4-phenylene diisocyanate, tolylene-2,3-diisocyanate, tolylene-2,4-diisocyanate, tolylene-2,5-diisocyanate, tolylene-2,6 -Diisocyanate, tolylene-3,4-diisocyanate, tolylene-3,5-diisocyanate, 1,2-bis(isocyanatomethyl)benzene, 1,3-bis(isocyanatomethyl)benzene, 1,4-bis(isocyanate) Natomethyl)benzene, 2,4-diisocyanatobiphenyl, 2,6-diisocyanatobiphenyl, 2,2'-diisocyanatobiphenyl, 3,3'-diisocyanatobiphenyl, 4,4'-diisocyanato- 2-Methylbiphenyl, 4,4'-diisocyanato-3-methylbiphenyl, 4,4'-diisocyanato-3,3'-dimethylbiphenyl, 4,4'-diisocyanatodiphenylmethane, 4,4'-diisocyanato-2 -Methyldiphenylmethane, 4,4'-diisocyanato-3-methyldiphenylmethane, 4,4'-diisocyanato-3,3'-dimethyldiphenylmethane, 1,5-diisocyanatonaphthalene, 1,8-diisocyanatonaphthalene, 2 ,3-Diisocyanatonaphthalene, 1,5-bis(isocyanatomethyl)naphthalene, 1,8-bis(isocyanatomethyl)naphthalene, 2,3-bis(isocyanatomethyl)naphthalene, etc. ; And the like.

これらの中でも、
エチレンジイソシアネート、トリメチレンジイソシアネート、テトラメチレンジイソシアネート、ペンタメチレンジイソシアネート、ヘキサメチレンジイソシアネート、ヘプタメチレンジイソシアネート、オクタメチレンジイソシアネート、デカメチレンジイソシアネート、ドデカメチレンジイソシアネート、テトラデカメチレンジイソシアネート、等の直鎖ポリメチレンジイソシアネート類;
1−メチルヘキサメチレンジイソシアネート、2−メチルヘキサメチレンジイソシアネート、3−メチルヘキサメチレンジイソシアネート、1,1−ジメチルヘキサメチレンジイソシアネート、1,2−ジメチルヘキサメチレンジイソシアネート、1,3−ジメチルヘキサメチレンジイソシアネート、1,4−ジメチルヘキサメチレンジイソシアネート、1,5−ジメチルヘキサメチレンジイソシアネート、1,6−ジメチルヘキサメチレンジイソシアネート、1,2,3−トリメチルヘキサメチレンジイソシアネート、等の分岐アルキレンジイソシアネート類;
Among these,
Linear polymethylene diisocyanates such as ethylene diisocyanate, trimethylene diisocyanate, tetramethylene diisocyanate, pentamethylene diisocyanate, hexamethylene diisocyanate, heptamethylene diisocyanate, octamethylene diisocyanate, decamethylene diisocyanate, dodecamethylene diisocyanate, tetradecamethylene diisocyanate, etc.;
1-methylhexamethylene diisocyanate, 2-methylhexamethylene diisocyanate, 3-methylhexamethylene diisocyanate, 1,1-dimethylhexamethylene diisocyanate, 1,2-dimethylhexamethylene diisocyanate, 1,3-dimethylhexamethylene diisocyanate, 1, Branched alkylene diisocyanates such as 4-dimethylhexamethylene diisocyanate, 1,5-dimethylhexamethylene diisocyanate, 1,6-dimethylhexamethylene diisocyanate, 1,2,3-trimethylhexamethylene diisocyanate;

1,2−ジイソシアナトシクロペンタン、1,3−ジイソシアナトシクロペンタン、1,2−ジイソシアナトシクロヘキサン、1,3−ジイソシアナトシクロヘキサン、1,4−ジイソシアナトシクロヘキサン、1,2−ビス(イソシアナトメチル)シクロヘキサン、1,3−ビス(イソシアナトメチル)シクロヘキサン、1,4−ビス(イソシアナトメチル)シクロヘキサン、ジシクロヘキシルメタン−2,2’−ジイソシアネート、ジシクロヘキシルメタン−2,4’−ジイソシアネート、ジシクロヘキシルメタン−3,3’−ジイソシアネート、ジシクロヘキシルメタン−4,4’−ジイソシアネート、等のシクロアルカン環含有ジイソシアネート類;
が好ましい。
1,2-diisocyanatocyclopentane, 1,3-diisocyanatocyclopentane, 1,2-diisocyanatocyclohexane, 1,3-diisocyanatocyclohexane, 1,4-diisocyanatocyclohexane, 1,2 -Bis(isocyanatomethyl)cyclohexane, 1,3-bis(isocyanatomethyl)cyclohexane, 1,4-bis(isocyanatomethyl)cyclohexane, dicyclohexylmethane-2,2'-diisocyanate, dicyclohexylmethane-2,4'. A cycloalkane ring-containing diisocyanate such as diisocyanate, dicyclohexylmethane-3,3′-diisocyanate, dicyclohexylmethane-4,4′-diisocyanate;
Is preferred.

さらには、
テトラメチレンジイソシアネート、ペンタメチレンジイソシアネート、ヘキサメチレンジイソシアネート、ヘプタメチレンジイソシアネート、オクタメチレンジイソシアネート、から選ばれる直鎖ポリメチレンジイソシアネート類;
1,2−ジイソシアナトシクロペンタン、1,3−ジイソシアナトシクロペンタン、1,2−ジイソシアナトシクロヘキサン、1,3−ジイソシアナトシクロヘキサン、1,4−ジイソシアナトシクロヘキサン、1,2−ビス(イソシアナトメチル)シクロヘキサン、1,3−ビス(イソシアナトメチル)シクロヘキサン、4−ビス(イソシアナトメチル)シクロヘキサン、ジシクロヘキシルメタン−2,2’−ジイソシアネート、ジシクロヘキシルメタン−2,4’−ジイソシアネート、ジシクロヘキシルメタン−3,3’−ジイソシアネート、ジシクロヘキシルメタン−4,4’−ジイソシアネート、から選ばれるシクロアルカン環含有ジイソシアネート類;
が特に好ましい。
Furthermore,
Linear polymethylene diisocyanates selected from tetramethylene diisocyanate, pentamethylene diisocyanate, hexamethylene diisocyanate, heptamethylene diisocyanate, octamethylene diisocyanate;
1,2-diisocyanatocyclopentane, 1,3-diisocyanatocyclopentane, 1,2-diisocyanatocyclohexane, 1,3-diisocyanatocyclohexane, 1,4-diisocyanatocyclohexane, 1,2 -Bis(isocyanatomethyl)cyclohexane, 1,3-bis(isocyanatomethyl)cyclohexane, 4-bis(isocyanatomethyl)cyclohexane, dicyclohexylmethane-2,2'-diisocyanate, dicyclohexylmethane-2,4'-diisocyanate A cycloalkane ring-containing diisocyanate selected from dicyclohexylmethane-3,3′-diisocyanate and dicyclohexylmethane-4,4′-diisocyanate;
Is particularly preferable.

また上述した本発明におけるジイソシアネートは、1種類を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
本発明の非水系電解液において、用いることができるジイソシアネートの含有量は、該非水系電解液の全体の質量に対して、通常0.001質量%以上、好ましくは0.01質量%以上、より好ましくは0.1質量%以上、さらに好ましくは0.3質量%以上、また、通常5質量%以下、好ましくは4.0質量%以下、より好ましくは3.0質量%以下、さらに好ましくは2質量%以下である。含有量が上記範囲内であると、サイクル、保存等の耐久性を向上でき、本発明の効果を十分に発揮できる。
The above-mentioned diisocyanates in the present invention may be used alone or in any combination of two or more at any ratio.
In the non-aqueous electrolytic solution of the present invention, the content of diisocyanate that can be used is usually 0.001% by mass or more, preferably 0.01% by mass or more, and more preferably based on the total mass of the non-aqueous electrolytic solution. Is 0.1% by mass or more, more preferably 0.3% by mass or more, and usually 5% by mass or less, preferably 4.0% by mass or less, more preferably 3.0% by mass or less, further preferably 2% by mass. % Or less. When the content is within the above range, durability such as cycle and storage can be improved, and the effects of the present invention can be sufficiently exhibited.

<過充電防止剤>
本発明の非水系電解液において、非水系電解液二次電池が過充電等の状態になった際に電池の破裂・発火を効果的に抑制するために、過充電防止剤を用いることができる。
過充電防止剤としては、ビフェニル、アルキルビフェニル、ターフェニル、ターフェニルの部分水素化体、シクロヘキシルベンゼン、t−ブチルベンゼン、t−アミルベンゼン、ジフェニルエーテル、ジベンゾフラン等の芳香族化合物;2−フルオロビフェニル、o−シクロヘキシルフルオロベンゼン、p−シクロヘキシルフルオロベンゼン等の上記芳香族化合物の部分フッ素化物;2,4−ジフルオロアニソール、2,5−ジフルオロアニソール、2,6−ジフルオロアニソール、3,5−ジフルオロアニソール等の含フッ素アニソール化合物等が挙げられる。中でも、ビフェニル、アルキルビフェニル、ターフェニル、ターフェニルの部分水素化体、シクロヘキシルベンゼン、t−ブチルベンゼン、t−アミルベンゼン、ジフェニルエーテル、ジベンゾフラン等の芳香族化合物が好ましい。これらは1種を単独で用いても、2種以上を併用してもよい。2種以上併用する場合は、特に、シクロヘキシルベンゼンとt−ブチルベンゼン又はt−アミルベンゼンとの組み合わせ、ビフェニル、アルキルビフェニル、ターフェニル、ターフェニルの部分水素化体、シクロヘキシルベンゼン、t−ブチルベンゼン、t−アミルベンゼン等の酸素を含有しない芳香族化合物から選ばれる少なくとも1種と、ジフェニルエーテル、ジベンゾフラン等の含酸素芳香族化合物から選ばれる少なくとも1種を併用するのが過充電防止特性と高温保存特性のバランスの点から好ましい。
<Overcharge prevention agent>
In the non-aqueous electrolyte solution of the present invention, an overcharge inhibitor can be used in order to effectively suppress the rupture and ignition of the battery when the non-aqueous electrolyte secondary battery is in a state of overcharge or the like. ..
As the overcharge preventing agent, an aromatic compound such as biphenyl, alkylbiphenyl, terphenyl, a partially hydrogenated terphenyl, cyclohexylbenzene, t-butylbenzene, t-amylbenzene, diphenyl ether, dibenzofuran; 2-fluorobiphenyl, Partial fluorinated compounds of the above aromatic compounds such as o-cyclohexylfluorobenzene and p-cyclohexylfluorobenzene; 2,4-difluoroanisole, 2,5-difluoroanisole, 2,6-difluoroanisole, 3,5-difluoroanisole, etc. And a fluorine-containing anisole compound of Among them, biphenyl, alkylbiphenyl, terphenyl, a partially hydrogenated terphenyl, and aromatic compounds such as cyclohexylbenzene, t-butylbenzene, t-amylbenzene, diphenyl ether, and dibenzofuran are preferable. These may be used alone or in combination of two or more. In the case of using two or more kinds in combination, in particular, a combination of cyclohexylbenzene and t-butylbenzene or t-amylbenzene, biphenyl, alkylbiphenyl, terphenyl, a partially hydrogenated terphenyl, cyclohexylbenzene, t-butylbenzene, It is desirable to use at least one selected from oxygen-free aromatic compounds such as t-amylbenzene and at least one selected from oxygen-containing aromatic compounds such as diphenyl ether and dibenzofuran in combination with overcharge prevention characteristics and high-temperature storage characteristics. Is preferable from the standpoint of balance.

過充電防止剤の配合量は、特に制限されず、本発明の効果を著しく損なわない限り任意である。過充電防止剤は、非水系電解液100質量%中、好ましくは、0.1質量%以上であり、また、5質量%以下である。この範囲でれば、過充電防止剤の効果を十分に発現させやすく、また、高温保存特性等の電池の特性が低下するといった事態も回避しやすい。過充電防止剤は、より好ましくは0.2質量%以上、さらに好ましくは0.3質量%以上、特に好ましくは0.5質量%以上であり、また、より好ましくは3質量%以下、さらに好ましくは2質量%以下である。 The blending amount of the overcharge inhibitor is not particularly limited and is arbitrary as long as the effect of the present invention is not significantly impaired. The overcharge inhibitor is preferably 0.1% by mass or more and 5% by mass or less in 100% by mass of the non-aqueous electrolyte solution. Within this range, the effect of the overcharge preventing agent can be sufficiently exhibited, and a situation in which the characteristics of the battery such as high temperature storage characteristics are deteriorated can be easily avoided. The overcharge inhibitor is more preferably 0.2% by mass or more, further preferably 0.3% by mass or more, particularly preferably 0.5% by mass or more, and more preferably 3% by mass or less, further preferably Is 2% by mass or less.

<その他の助剤>
本発明の非水系電解液には、公知のその他の助剤を用いることができる。その他の助剤としては、エリスリタンカーボネート、スピロ−ビス−ジメチレンカーボネート、メトキシエチル−メチルカーボネート等のカーボネート化合物;無水コハク酸、無水グルタル酸、無水マレイン酸、無水シトラコン酸、無水グルタコン酸、無水イタコン酸、無水ジグリコール酸、シクロヘキサンジカルボン酸無水物、シクロペンタンテトラカルボン酸二無水物及びフェニルコハク酸無水物等のカルボン酸無水物;2,4,8,10−テトラオキサスピロ[5.5]ウンデカン、3,9−ジビニル−2,4,8,10−テトラオキサスピロ[5.5]ウンデカン等のスピロ化合物;エチレンサルファイト、フルオロスルホン酸メチル、フルオロスルホン酸エチル、メタンスルホン酸メチル、メタンスルホン酸エチル、ブスルファン、スルホレン、硫酸エチレン、硫酸ビニレン、ジフェニルスルホン、N,N−ジメチルメタンスルホンアミド、N,N−ジエチルメタンスルホンアミド等の含硫黄化合物;1−メチル−2−ピロリジノン、1−メチル−2−ピペリドン、3−メチル−2−オキサゾリジノン、1,3−ジメチル−2−イミダゾリジノン及びN−メチルスクシンイミド等の含窒素化合物;ヘプタン、オクタン、ノナン、デカン、シクロヘプタン等の炭化水素化合物、フルオロベンゼン、ジフルオロベンゼン、ヘキサフルオロベンゼン、ベンゾトリフルオライド等の含フッ素芳香族化合物;ホウ酸トリス(トリメチルシリル)、ホウ酸トリス(トリメトキシシリル)、リン酸トリス(トリメチルシリル)、リン酸トリス(トリメトキシシリル)、ジメトキシアルミノキシトリメトキシシラン、ジエトキシアルミノキシトリエトキシシラン、ジプロポキシアルミノキシトリエトキシシラン、ジブトキシアルミノキシトリメトキシシラン、ジブトキシアルミノキシトリエトキシシラン、チタンテトラキス(トリメチルシロキシド)、チタンテトラキス(トリエチルシロキシド)等のシラン化合物、が挙げられる。これらは1種を単独で用いても、2種以上を併用してもよい。これらの助剤を添加することにより、高温保存後の容量維持特性やサイクル特性を向上させることができる。
<Other auxiliaries>
Other known auxiliary agents can be used in the non-aqueous electrolyte solution of the present invention. Other auxiliary agents include erythritan carbonate, spiro-bis-dimethylene carbonate, carbonate compounds such as methoxyethyl-methyl carbonate; succinic anhydride, glutaric anhydride, maleic anhydride, citraconic anhydride, glutaconic anhydride, anhydrous. Carboxylic acid anhydrides such as itaconic acid, diglycolic acid anhydride, cyclohexanedicarboxylic acid anhydride, cyclopentanetetracarboxylic acid dianhydride and phenylsuccinic acid anhydride; 2,4,8,10-tetraoxaspiro[5.5 ] Spiro compounds such as undecane, 3,9-divinyl-2,4,8,10-tetraoxaspiro[5.5]undecane; ethylene sulfite, methyl fluorosulfonate, ethyl fluorosulfonate, methyl methanesulfonate, Sulfur-containing compounds such as ethyl methanesulfonate, busulfan, sulfolene, ethylene sulfate, vinylene sulfate, diphenyl sulfone, N,N-dimethylmethanesulfonamide, N,N-diethylmethanesulfonamide; 1-methyl-2-pyrrolidinone, 1 -Nitrogen-containing compounds such as methyl-2-piperidone, 3-methyl-2-oxazolidinone, 1,3-dimethyl-2-imidazolidinone and N-methylsuccinimide; carbonization of heptane, octane, nonane, decane, cycloheptane, etc. Fluorine-containing aromatic compounds such as hydrogen compounds, fluorobenzene, difluorobenzene, hexafluorobenzene, and benzotrifluoride; tris(trimethylsilyl)borate, tris(trimethoxysilyl)borate, tris(trimethylsilyl)phosphate, trisphosphate (Trimethoxysilyl), dimethoxyaluminoxytrimethoxysilane, diethoxyaluminoxytriethoxysilane, dipropoxyaluminoxytriethoxysilane, dibutoxyaluminoxytrimethoxysilane, dibutoxyaluminoxytriethoxysilane, titanium tetrakis (trimethylsiloxy) ), silane compounds such as titanium tetrakis (triethylsiloxide), and the like. These may be used alone or in combination of two or more. By adding these auxiliary agents, it is possible to improve the capacity retention characteristics after high temperature storage and the cycle characteristics.

その他の助剤の配合量は、特に制限されず、本発明の効果を著しく損なわない限り任意である。その他の助剤は、非水系電解液100質量%中、好ましくは、0.01質量%以上であり、また、5質量%以下である。この範囲であれば、その他助剤の効果が十分に発現させやすく、高負荷放電特性等の電池の特性が低下するといった事態も回避しやすい。その他の助剤の配合量は、より好ましくは0.1質量%以上、さらに好ましくは0.2質量%以上であり、また、より好ましくは3質量%以下、さらに好ましくは1質量%以下である。 The amount of the other auxiliary compounded is not particularly limited and is arbitrary as long as the effects of the present invention are not significantly impaired. Other auxiliaries are preferably 0.01% by mass or more and 5% by mass or less in 100% by mass of the non-aqueous electrolyte solution. Within this range, the effects of the other auxiliaries are easily exhibited sufficiently, and it is easy to avoid a situation in which the characteristics of the battery such as the high load discharge characteristics are deteriorated. The amount of the other auxiliary compounded is more preferably 0.1% by mass or more, further preferably 0.2% by mass or more, more preferably 3% by mass or less, and further preferably 1% by mass or less. ..

以上に記載してきた非水系電解液は、本発明に記載の非水系電解液電池の内部に存在するものも含まれる。具体的には、リチウム塩や溶媒、助剤等の非水系電解液の構成要素を別途合成し、実質的に単離されたものから非水系電解液を調整し、下記に記載する方法にて別途組み立てた電池内に注液して得た非水系電解液電池内の非水系電解液である場合や、本発明の非水系電解液の構成要素を個別に電池内に入れておき、電池内にて混合させることにより本発明の非水系電解液と同じ組成を得る場合、更には、本発明の非水系電解液を構成する化合物を該非水系電解液電池内で発生させて、本発明の非水系電解液と同じ組成を得る場合も含まれるものとする。 The non-aqueous electrolyte solution described above also includes those present inside the non-aqueous electrolyte battery described in the present invention. Specifically, by separately synthesizing the components of the non-aqueous electrolytic solution such as a lithium salt, a solvent, and an auxiliary agent, adjusting the non-aqueous electrolytic solution from the substantially isolated one, and using the method described below. Non-aqueous electrolyte solution obtained by injecting into a separately assembled battery If the non-aqueous electrolyte solution in the battery, or if the components of the non-aqueous electrolyte solution of the present invention are put in the battery individually, In the case of obtaining the same composition as the non-aqueous electrolyte solution of the present invention by mixing in, further, by generating a compound constituting the non-aqueous electrolyte solution of the present invention in the non-aqueous electrolyte battery, The case where the same composition as the aqueous electrolytic solution is obtained is also included.

<2.非水系電解液二次電池>
本発明の非水系電解液二次電池は、イオンを吸蔵及び放出し得る負極及び正極と前記の本発明の非水系電解液とを備えるものである。
<2−1.電池構成>
本発明の非水系電解液二次電池は、負極及び非水系電解液以外の構成については、従来公知の非水系電解液二次電池と同様であり、通常は、本発明の非水系電解液が含浸されている多孔膜(セパレータ)を介して正極と負極とが積層され、これらがケース(外装体)に収納された形態を有する。従って、本発明の非水系電解液二次電池の形状は特に制限されるものではなく、円筒型、角形、ラミネート型、コイン型、大型等の何れであってもよい。
<2. Non-aqueous electrolyte secondary battery>
The non-aqueous electrolyte secondary battery of the present invention comprises a negative electrode and a positive electrode capable of inserting and extracting ions, and the non-aqueous electrolyte solution of the present invention.
<2-1. Battery configuration>
The non-aqueous electrolyte secondary battery of the present invention is the same as the conventionally known non-aqueous electrolyte secondary battery for the configuration other than the negative electrode and the non-aqueous electrolyte, and usually the non-aqueous electrolyte of the present invention is The positive electrode and the negative electrode are laminated via an impregnated porous film (separator), and these are housed in a case (exterior body). Therefore, the shape of the non-aqueous electrolyte secondary battery of the present invention is not particularly limited, and may be any of cylindrical type, prismatic type, laminate type, coin type, large size and the like.

<2−2.非水系電解液>
非水系電解液としては、上述の本発明の非水系電解液を用いる。
<2−3.負極>
負極は、集電体上に負極活物質層を有するものであり、以下に負極活物質について述べる。
<2-2. Non-aqueous electrolyte>
As the non-aqueous electrolytic solution, the above-mentioned non-aqueous electrolytic solution of the present invention is used.
<2-3. Negative electrode>
The negative electrode has a negative electrode active material layer on the current collector, and the negative electrode active material will be described below.

負極活物質としては、電気化学的にリチウムイオンを吸蔵・放出可能なものであれば、特に制限はない。その具体例としては、炭素質材料、合金系材料、リチウム含有金属複合酸化物材料等が挙げられる。これらは1種を単独で用いてもよく、また2種以上を任意に組み合わせて併用してもよい。 The negative electrode active material is not particularly limited as long as it can electrochemically store and release lithium ions. Specific examples thereof include carbonaceous materials, alloy-based materials, lithium-containing metal composite oxide materials, and the like. These may be used alone or in any combination of two or more.

<2−3−1.炭素質材料>
負極活物質として用いられる炭素質材料としては、
(1)天然黒鉛、
(2)人造炭素質物質並びに人造黒鉛質物質を400℃から3200℃の範囲で一回以上熱処理した炭素質材料、
(3)負極活物質層が少なくとも2種類以上の異なる結晶性を有する炭素質から成り立ちかつ/又はその異なる結晶性の炭素質が接する界面を有している炭素質材料、
(4)負極活物質層が少なくとも2種類以上の異なる配向性を有する炭素質から成り立ちかつ/又はその異なる配向性の炭素質が接する界面を有している炭素質材料、
から選ばれるものが初期不可逆容量、高電流密度充放電特性のバランスが良く好ましい。
また、(1)〜(4)の炭素質材料は1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
<2-3-1. Carbonaceous material>
As the carbonaceous material used as the negative electrode active material,
(1) Natural graphite,
(2) A carbonaceous material obtained by heat-treating an artificial carbonaceous substance and an artificial graphite substance at least once in the range of 400°C to 3200°C.
(3) A carbonaceous material in which the negative electrode active material layer is made of at least two kinds of carbonaceous materials having different crystallinity and/or has an interface in which the carbonaceous materials having different crystallinity are in contact with each other.
(4) A carbonaceous material in which the negative electrode active material layer is made of at least two kinds of carbonaceous materials having different orientations and/or has an interface where the carbonaceous materials having different orientations are in contact with each other.
A material selected from the following is preferable because it has a good balance of initial irreversible capacity and high current density charge/discharge characteristics.
The carbonaceous materials (1) to (4) may be used alone or in any combination of two or more at any ratio.

上記(2)の人造炭素質物質並びに人造黒鉛質物質の具体的な例としては、天然黒鉛、石炭系コークス、石油系コークス、石炭系ピッチ、石油系ピッチ、あるいはこれらピッチを酸化処理したもの、ニードルコークス、ピッチコークス及びこれらを一部黒鉛化した炭素材、ファーネスブラック、アセチレンブラック、ピッチ系炭素繊維等の有機物の熱分解物、炭化可能な有機物、及びこれらの炭化物、又は炭化可能な有機物をベンゼン、トルエン、キシレン、キノリン、n−へキサン等の低分子有機溶媒に溶解させた溶液及びこれらの炭化物等が挙げられる。 Specific examples of the artificial carbonaceous material and artificial graphite material of the above (2) include natural graphite, coal-based coke, petroleum-based coke, coal-based pitch, petroleum-based pitch, or those obtained by oxidizing these pitches, Needle coke, pitch coke and carbon material partially graphitized thereof, furnace black, acetylene black, thermal decomposition products of organic matter such as pitch-based carbon fiber, carbonizable organic matter, and these carbides, or carbonizable organic matter Examples thereof include solutions dissolved in low molecular weight organic solvents such as benzene, toluene, xylene, quinoline, and n-hexane, and their carbides.

<2−3−2.炭素質負極の構成、物性、調製方法>
炭素質材料についての性質や炭素質材料を含有する負極電極及び電極化手法、集電体、非水系電解液二次電池については、次に示す(1)〜(13)の何れか1項又は複数項を同時に満たしていることが望ましい。
(1)X線パラメータ
炭素質材料の学振法によるX線回折で求めた格子面(002面)のd値(層間距離)が、通常0.335〜0.340nmであり、特に0.335〜0.338nm、とりわけ0.335〜0.337nmであるものが好ましい。また、学振法によるX線回折で求めた結晶子サイズ(Lc)は、通常1.0nm以上、好ましくは1.5nm以上、特に好ましくは2nm以上である。
<2-3-2. Configuration, physical properties, and preparation method of carbonaceous negative electrode>
Regarding the properties of the carbonaceous material, the negative electrode containing the carbonaceous material, the electrode forming method, the current collector, and the non-aqueous electrolyte secondary battery, any one of the following (1) to (13) or It is desirable that multiple items be satisfied at the same time.
(1) X-ray parameter The d value (interlayer distance) of the lattice plane (002 plane) obtained by X-ray diffraction of the carbonaceous material by the Gakushin method is usually 0.335 to 0.340 nm, and particularly 0.335. It is preferably 0.338 nm, especially 0.335 to 0.337 nm. The crystallite size (Lc) determined by X-ray diffraction by Gakushin method is usually 1.0 nm or more, preferably 1.5 nm or more, and particularly preferably 2 nm or more.

(2)体積基準平均粒径
炭素質材料の体積基準平均粒径は、レーザー回折・散乱法により求めた体積基準の平均粒径(メジアン径)が、通常1μm以上であり、3μm以上が好ましく、5μm以上が更に好ましく、7μm以上が特に好ましく、また、通常100μm以下であり、50μm以下が好ましく、40μm以下がより好ましく、30μm以下が更に好ましく、25μm以下が特に好ましい。体積基準平均粒径が上記範囲を下回ると、不可逆容量が増大して、初期の電池容量の損失を招くことになる場合がある。また、上記範囲を上回ると、塗布により電極を作製する際に、不均一な塗面になりやすく、電池製作工程上望ましくない場合がある。
(2) Volume-Based Average Particle Diameter The volume-based average particle diameter of the carbonaceous material is usually 1 μm or more, preferably 3 μm or more, as the volume-based average particle diameter (median diameter) obtained by the laser diffraction/scattering method. It is more preferably 5 μm or more, particularly preferably 7 μm or more, and usually 100 μm or less, preferably 50 μm or less, more preferably 40 μm or less, further preferably 30 μm or less, particularly preferably 25 μm or less. If the volume-based average particle diameter is less than the above range, the irreversible capacity may increase, which may lead to a loss of the initial battery capacity. On the other hand, when the amount exceeds the above range, an uneven coating surface is likely to be formed when an electrode is formed by coating, which may be undesirable in the battery manufacturing process.

体積基準平均粒径の測定は、界面活性剤であるポリオキシエチレン(20)ソルビタンモノラウレートの0.2質量%水溶液(約10mL)に炭素粉末を分散させて、レーザー回折・散乱式粒度分布計(堀場製作所社製LA−700)を用いて行なう。該測定で求められるメジアン径を、本発明の炭素質材料の体積基準平均粒径と定義する。
[菱面体晶率]
本発明で定義される菱面体晶率は、X線広角回折法(XRD)による菱面体晶構造黒鉛層(ABCスタッキング層)と六方晶構造黒鉛層(ABスタッキング層)の割合から次式を用いて求めることができる。
The volume-based average particle size is measured by dispersing carbon powder in a 0.2 mass% aqueous solution (about 10 mL) of polyoxyethylene (20) sorbitan monolaurate, which is a surfactant, and using a laser diffraction/scattering particle size distribution. It is performed using a total (LA-700 manufactured by Horiba Ltd.). The median diameter obtained by the measurement is defined as the volume-based average particle diameter of the carbonaceous material of the present invention.
[Rhombohedral crystal ratio]
For the rhombohedral crystal ratio defined in the present invention, the following formula is used from the ratio of the rhombohedral crystal structure graphite layer (ABC stacking layer) and the hexagonal structure graphite layer (AB stacking layer) by X-ray wide angle diffraction (XRD). Can be asked.

菱面体晶率(%)=XRDのABC(101)ピークの積分強度÷
XRDのAB(101)ピーク積分強度×100
ここで、本発明の黒鉛粒子の菱面体晶率は、通常0%以上、好ましくは0%より大きく、より好ましくは3%以上、更に好ましくは5%以上、特に好ましくは12%以上、また、通常35%以下、好ましくは27%以下、更に好ましくは24%以下、特に好ましくは20%以下の範囲である。ここで、菱面体晶率が0%とは、ABCスタッキング層に由来するXRDピークが全く検出されないことを指す。また0%より大きいとは、ABCスタッキング層に由来するXRDピークが僅かでも検出されていることを指す。
Rhombohedral crystal ratio (%)=integrated intensity of ABC(101) peak of XRD÷
XRD AB(101) peak integrated intensity x 100
Here, the rhombohedral crystal ratio of the graphite particles of the present invention is usually 0% or more, preferably more than 0%, more preferably 3% or more, further preferably 5% or more, particularly preferably 12% or more, and It is usually 35% or less, preferably 27% or less, more preferably 24% or less, particularly preferably 20% or less. Here, the rhombohedral crystal ratio of 0% means that the XRD peak derived from the ABC stacking layer is not detected at all. In addition, “more than 0%” means that even a small amount of XRD peaks derived from the ABC stacking layer is detected.

菱面体晶率が大きすぎると、黒鉛粒子の結晶構造中に欠陥が多く含まれているので、Liの挿入量が減少し高容量が得られ難い傾向がある。また、前記欠陥によってサイクル中に電解液が分解するため、サイクル特性が低下する傾向がある。これに対し、菱面体晶率が本発明の範囲内であれば、例えば、黒鉛粒子の結晶構造中に欠陥が少なく電解液との反応性が小さく、サイクル中の電解液の消耗が少なくサイクル特性に優れるので好ましい。 If the rhombohedral crystal ratio is too large, many defects are included in the crystal structure of the graphite particles, so that the amount of inserted Li decreases and it tends to be difficult to obtain a high capacity. In addition, the electrolytic solution is decomposed during the cycle due to the defects, so that cycle characteristics tend to be deteriorated. On the other hand, if the rhombohedral crystal ratio is within the range of the present invention, for example, there are few defects in the crystal structure of the graphite particles, the reactivity with the electrolytic solution is small, the consumption of the electrolytic solution during the cycle is small, and the cycle characteristics are low. It is excellent because it is preferable.

菱面体晶率を求めるためのXRDの測定方法は、以下の通りである。
0.2mmの試料板に黒鉛粉体が配向しないように充填し、X線回折装置(例えば、PANalytical社製 X'Pert Pro MPDでCuKα線にて、出力45kV、40mA)で測定する。得られた回折パターンを使用し解析ソフトJADE5.0を用い、非対称ピアソンVII関数を用いたプロファイルフィッティングにより前記ピーク積分強度をそれぞれ算出し、前記式から菱面体晶率を求める。
The XRD measurement method for obtaining the rhombohedral crystal ratio is as follows.
A 0.2 mm sample plate is filled so that the graphite powder is not oriented, and measurement is performed with an X-ray diffractometer (for example, X'Pert Pro MPD manufactured by PANalytical Co., Ltd., CuKα ray, output 45 kV, 40 mA). Using the obtained diffraction pattern and using the analysis software JADE5.0, the peak integrated intensities are calculated by profile fitting using the asymmetric Pearson VII function, and the rhombohedral crystal ratio is determined from the above formula.

X線回折測定条件は次の通りである。なお、「2θ」は回折角を示す。
・ターゲット:Cu(Kα線)グラファイトモノクロメーター
・スリット :
ソーラースリット 0.04度
発散スリット 0.5度
横発散マスク 15mm
散乱防止スリット 1度
・測定範囲及びステップ角度/計測時間:
(101)面:41度≦2θ≦47.5度 0.3度/60秒
・バックグラウンド補正:42.7から45.5度の間を直線で結び、バックグラウンドとし差し引く。
・菱面体晶構造黒鉛粒子層のピーク:43.4度付近のピークのことを指す。
・六方晶構造黒鉛粒子層のピーク:44.5度付近のピークのことを指す。
The X-ray diffraction measurement conditions are as follows. In addition, "2θ" indicates a diffraction angle.
・Target: Cu (Kα ray) graphite monochromator ・Slit:
Solar slit 0.04 degrees Divergence slit 0.5 degrees Horizontal divergence mask 15mm
Anti-scatter slit 1 degree, measurement range and step angle/measurement time:
(101) plane: 41 degrees ≤ 2θ ≤ 47.5 degrees 0.3 degrees/60 seconds ・Background correction: Connect a line between 42.7 and 45.5 degrees with a straight line and subtract it as the background.
-Rhombohedral graphite particle layer peak: Refers to a peak near 43.4 degrees.
-Peak in hexagonal structure graphite particle layer: Refers to a peak near 44.5 degrees.

上記範囲の菱面体晶率を有する黒鉛粒子を得る方法は、従来の技術を用いて製造する方法を採用することが可能であり、特に限定されないが、黒鉛粒子を500℃以上の温度で熱処理することにより製造することが好ましい。また、衝撃力を主体に粒子の相互作用も含めた圧縮、摩擦、せん断力等の機械的作用を黒鉛粒子に与えることも好ましい。その他、機械的作用の強度、処理時間、繰り返しの有無などを変えることでも、菱面体晶率を調整することが可能である。菱面体晶率を調整するための具体的な装置としては、ケーシング内部に多数のブレードを設置したローターを有し、そのローターが高速回転することによって、内部に導入された炭素材料に対して衝撃圧縮、摩擦、せん断力等の機械的作用を与え、表面処理を行なう装置が好ましい。また、炭素材料を循環させることによって機械的作用を繰り返して与える機構を有するもの、若しくは、循環機構を有しないが装置を複数台連結させ処理する機構を有するものであるのが好ましい。好ましい装置の一例として、(株)奈良機械製作所製のハイブリダイゼーションシステムなどを挙げることができる。
また、前記機械的作用を与えた後に熱処理を加えることがより好ましい。
更に前記機械的作用を与えた後に炭素前駆体と複合化し700℃以上の温度で熱処理を加えることが特に好ましい。
As a method for obtaining graphite particles having a rhombohedral crystal ratio in the above range, a method of manufacturing using a conventional technique can be adopted, and the method is not particularly limited, but the graphite particles are heat-treated at a temperature of 500° C. or higher. It is preferable to manufacture by this. It is also preferable to give mechanical effects such as compression, friction, shearing force, etc. to the graphite particles, including impact force as a main component and particle interaction. In addition, the rhombohedral crystal ratio can be adjusted by changing the strength of mechanical action, the treatment time, the presence or absence of repetition. As a specific device for adjusting the rhombohedral crystal ratio, it has a rotor in which a large number of blades are installed inside the casing, and the rotor rotates at high speed, thereby impacting the carbon material introduced inside. An apparatus for applying a mechanical action such as compression, friction, shearing force, etc. to perform surface treatment is preferable. In addition, it is preferable that the carbon material has a mechanism that repeatedly gives a mechanical action by circulating the carbon material, or a mechanism that does not have a circulation mechanism but has a mechanism for connecting a plurality of devices and processing. An example of a preferable apparatus is a hybridization system manufactured by Nara Machinery Co., Ltd.
Further, it is more preferable to apply heat treatment after applying the mechanical action.
Further, it is particularly preferable that after the mechanical action is applied, the carbon precursor is made into a composite and heat treatment is performed at a temperature of 700° C. or higher.

(3)ラマンR値、ラマン半値幅
炭素質材料のラマンR値は、アルゴンイオンレーザーラマンスペクトル法を用いて測定した値が、通常0.01以上であり、0.03以上が好ましく、0.1以上が更に好ましく、また、通常1.5以下であり、1.2以下が好ましく、1以下が更に好ましく、0.5以下が特に好ましい。
ラマンR値が上記範囲を下回ると、粒子表面の結晶性が高くなり過ぎて、充放電に伴っ
てLiが層間に入るサイトが少なくなる場合がある。すなわち、充電受入性が低下する場合がある。また、集電体に塗布した後、プレスすることによって負極を高密度化した場合に電極板と平行方向に結晶が配向しやすくなり、負荷特性の低下を招く場合がある。一方、上記範囲を上回ると、粒子表面の結晶性が低下し、非水系電解液との反応性が増し、効率の低下やガス発生の増加を招く場合がある。
(3) Raman R value, Raman half-value width The Raman R value of the carbonaceous material is usually 0.01 or more, preferably 0.03 or more, and preferably 0.03 or more, as measured by an argon ion laser Raman spectrum method. One or more is more preferable, and usually 1.5 or less, 1.2 or less is preferable, 1 or less is more preferable, and 0.5 or less is particularly preferable.
If the Raman R value is less than the above range, the crystallinity of the particle surface may become too high, and the number of sites where Li enters between layers may decrease with charge and discharge. That is, charge acceptability may decrease. Further, when the negative electrode is densified by pressing after applying it to the current collector, the crystals are likely to be oriented in the direction parallel to the electrode plate, which may cause deterioration of load characteristics. On the other hand, if it exceeds the above range, the crystallinity of the particle surface may be lowered, the reactivity with the non-aqueous electrolyte may be increased, and the efficiency may be lowered and the gas generation may be increased.

また、炭素質材料の1580cm−1付近のラマン半値幅は特に制限されないが、通常10cm−1以上であり、15cm−1以上が好ましく、また、通常100cm−1以下であり、80cm−1以下が好ましく、60cm−1以下が更に好ましく、40cm−1以下が特に好ましい。
ラマン半値幅が上記範囲を下回ると、粒子表面の結晶性が高くなり過ぎて、充放電に伴ってLiが層間に入るサイトが少なくなる場合がある。すなわち、充電受入性が低下する場合がある。また、集電体に塗布した後、プレスすることによって負極を高密度化した場合に電極板と平行方向に結晶が配向しやすくなり、負荷特性の低下を招く場合がある。一方、上記範囲を上回ると、粒子表面の結晶性が低下し、非水系電解液との反応性が増し、効率の低下やガス発生の増加を招く場合がある。
Further, the Raman half-value width near 1580 cm −1 of the carbonaceous material is not particularly limited, but is usually 10 cm −1 or more, preferably 15 cm −1 or more, and usually 100 cm −1 or less, 80 cm −1 or less. It is preferably 60 cm −1 or less, more preferably 40 cm −1 or less.
When the Raman full width at half maximum is less than the above range, the crystallinity of the particle surface becomes too high, and the number of sites where Li enters the layers may decrease with charge and discharge. That is, charge acceptability may decrease. Further, when the negative electrode is densified by pressing after applying it to the current collector, the crystals are likely to be oriented in the direction parallel to the electrode plate, which may cause deterioration of load characteristics. On the other hand, if it exceeds the above range, the crystallinity of the particle surface may be lowered, the reactivity with the non-aqueous electrolyte may be increased, and the efficiency may be lowered and the gas generation may be increased.

ラマンスペクトルの測定は、ラマン分光器(日本分光社製ラマン分光器)を用いて、試料を測定セル内へ自然落下させて充填し、セル内のサンプル表面にアルゴンイオンレーザー光を照射しながら、セルをレーザー光と垂直な面内で回転させることにより行なう。得られるラマンスペクトルについて、1580cm−1付近のピークPAの強度IAと、1360cm−1付近のピークPBの強度IBとを測定し、その強度比R(R=IB/IA)を算出する。該測定で算出されるラマンR値を、本発明における炭素質材料のラマンR値と定義する。また、得られるラマンスペクトルの1580cm−1付近のピークPAの半値幅を測定し、これを本発明における炭素質材料のラマン半値幅と定義する。 The Raman spectrum is measured by using a Raman spectroscope (Raman spectroscope manufactured by JASCO Corporation) to spontaneously drop and fill the sample into the measurement cell, while irradiating the sample surface in the cell with an argon ion laser beam, It is performed by rotating the cell in a plane perpendicular to the laser beam. The resulting Raman spectrum, the intensity IA of a peak PA around 1580 cm -1, and measuring the intensity IB of the peak PB around 1360 cm -1, and calculates the intensity ratio R (R = IB / IA) . The Raman R value calculated by the measurement is defined as the Raman R value of the carbonaceous material in the present invention. Further, the full width at half maximum of the peak PA around 1580 cm −1 in the obtained Raman spectrum was measured, and this was defined as the Raman half width of the carbonaceous material in the present invention.

また、上記のラマン測定条件は、次の通りである。
・アルゴンイオンレーザー波長 :514.5nm
・試料上のレーザーパワー :15〜25mW
・分解能 :10〜20cm−1
・測定範囲 :1100cm−1〜1730cm−1
・ラマンR値、ラマン半値幅解析:バックグラウンド処理
・スムージング処理 :単純平均、コンボリューション5ポイント
The Raman measurement conditions are as follows.
・Argon ion laser wavelength: 514.5 nm
・Laser power on sample: 15-25mW
・Resolution: 10-20 cm -1
・Measurement range: 1100 cm -1 to 1730 cm -1
・Raman R value, Raman half width analysis: background processing ・smoothing processing: simple average, convolution 5 points

(4)BET比表面積
炭素質材料のBET比表面積は、BET法を用いて測定した比表面積の値が、通常0.1m・g−1以上であり、0.7m・g−1以上が好ましく、1.0m・g−1以上が更に好ましく、1.5m・g−1以上が特に好ましく、また、通常100m・g−1以下であり、25m・g−1以下が好ましく、15m・g−1以下が更に好ましく、10m・g−1以下が特に好ましい。
BET比表面積の値がこの範囲を下回ると、負極材料として用いた場合の充電時にリチウムの受け入れ性が悪くなりやすく、リチウムが電極表面で析出しやすくなり、安定性が低下する可能性がある。一方、この範囲を上回ると、負極材料として用いた時に非水系電解液との反応性が増加し、ガス発生が多くなりやすく、好ましい電池が得られにくい場合がある。
(4) BET Specific Surface Area As for the BET specific surface area of the carbonaceous material, the value of the specific surface area measured by the BET method is usually 0.1 m 2 ·g −1 or more, and 0.7 m 2 ·g −1 or more. Is preferable, 1.0 m 2 ·g −1 or more is more preferable, 1.5 m 2 ·g −1 or more is particularly preferable, and usually 100 m 2 ·g −1 or less and 25 m 2 ·g −1 or less is preferable. It is preferably 15 m 2 ·g −1 or less, more preferably 10 m 2 ·g −1 or less.
When the value of the BET specific surface area is less than this range, the acceptability of lithium during charging when used as a negative electrode material is likely to be poor, lithium is likely to be deposited on the electrode surface, and the stability may be reduced. On the other hand, if it exceeds this range, the reactivity with the non-aqueous electrolyte solution increases when it is used as a negative electrode material, and gas generation tends to increase, and it may be difficult to obtain a preferable battery.

BET法による比表面積の測定は、表面積計(大倉理研製全自動表面積測定装置)を用いて、試料に対して窒素流通下350℃で15分間、予備乾燥を行なった後、大気圧に対する窒素の相対圧の値が0.3となるように正確に調整した窒素ヘリウム混合ガスを用いて、ガス流動法による窒素吸着BET1点法によって行なう。該測定で求められる比表面
積を、本発明における炭素質材料のBET比表面積と定義する。
The specific surface area is measured by the BET method using a surface area meter (Full automatic surface area measuring device manufactured by Okura Riken Co., Ltd.), the sample is pre-dried at 350° C. for 15 minutes under nitrogen flow, and then nitrogen of atmospheric pressure is measured. A nitrogen adsorption BET one-point method by a gas flow method is performed by using a nitrogen-helium mixed gas that is accurately adjusted so that the value of the relative pressure is 0.3. The specific surface area obtained by the measurement is defined as the BET specific surface area of the carbonaceous material in the present invention.

(5)円形度
炭素質材料の球形の程度として円形度を測定した場合、以下の範囲に収まることが好ましい。なお、円形度は、「円形度=(粒子投影形状と同じ面積を持つ相当円の周囲長)/(粒子投影形状の実際の周囲長)」で定義され、円形度が1のときに理論的真球となる。
炭素質材料の粒径が3〜40μmの範囲にある粒子の円形度は1に近いほど望ましく、また、0.1以上が好ましく、中でも0.5以上が好ましく、0.8以上がより好ましく、0.85以上が更に好ましく、0.9以上が特に好ましい。
(5) Circularity When the circularity is measured as the degree of spherical shape of the carbonaceous material, it is preferably within the following range. The circularity is defined as “circularity=(perimeter of equivalent circle having the same area as the particle projection shape)/(actual perimeter of particle projection shape)”, and theoretically when the circularity is 1. It becomes a true sphere.
The circularity of particles having a particle diameter of the carbonaceous material in the range of 3 to 40 μm is preferably closer to 1, and is preferably 0.1 or more, more preferably 0.5 or more, and more preferably 0.8 or more, 0.85 or more is more preferable, and 0.9 or more is particularly preferable.

高電流密度充放電特性は、円形度が大きいほど向上する。従って、円形度が上記範囲を下回ると、負極活物質の充填性が低下し、粒子間の抵抗が増大して、短時間高電流密度充放電特性が低下する場合がある。
円形度の測定は、フロー式粒子像分析装置(シスメックス社製FPIA)を用いて行う。試料約0.2gを、界面活性剤であるポリオキシエチレン(20)ソルビタンモノラウレートの0.2質量%水溶液(約50mL)に分散させ、28kHzの超音波を出力60Wで1分間照射した後、検出範囲を0.6〜400μmに指定し、粒径が3〜40μmの範囲の粒子について測定する。該測定で求められる円形度を、本発明における炭素質材料の円形度と定義する。
The high current density charge/discharge characteristics improve as the circularity increases. Therefore, if the circularity is less than the above range, the filling property of the negative electrode active material may be deteriorated, the resistance between particles may be increased, and the short-time high current density charge/discharge characteristics may be deteriorated.
The circularity is measured using a flow-type particle image analyzer (FPIA manufactured by Sysmex Corporation). About 0.2 g of the sample was dispersed in a 0.2 mass% aqueous solution of polyoxyethylene (20) sorbitan monolaurate (about 50 mL) which is a surfactant, and after irradiating with an ultrasonic wave of 28 kHz at an output of 60 W for 1 minute. The detection range is specified to 0.6 to 400 μm, and the particle size is measured in the range of 3 to 40 μm. The circularity obtained by the measurement is defined as the circularity of the carbonaceous material in the present invention.

円形度を向上させる方法は、特に限定されないが、球形化処理を施して球形にしたものが、電極体にしたときの粒子間空隙の形状が整うので好ましい。球形化処理の例としては、せん断力、圧縮力を与えることによって機械的に球形に近づける方法、複数の微粒子をバインダー若しくは、粒子自身の有する付着力によって造粒する機械的・物理的処理方法等が挙げられる。 The method of improving the circularity is not particularly limited, but a spherical shape obtained by subjecting to a spherical shape is preferable because the shape of interparticle voids is adjusted when the electrode body is formed. Examples of the spheroidizing treatment include a method of mechanically approaching a spherical shape by applying a shearing force or a compressing force, a mechanical/physical treatment method of granulating a plurality of fine particles with a binder or the adhesive force of the particles themselves, etc. Is mentioned.

(6)タップ密度
炭素質材料のタップ密度は、通常0.1g・cm−3以上であり、0.5g・cm−3以上が好ましく、0.7g・cm−3以上が更に好ましく、1g・cm−3以上が特に好ましく、また、2g・cm−3以下が好ましく、1.8g・cm−3以下が更に好ましく、1.6g・cm−3以下が特に好ましい。
(6) Tap Density The tap density of the carbonaceous material is usually 0.1 g·cm −3 or higher, preferably 0.5 g·cm −3 or higher, more preferably 0.7 g·cm −3 or higher, and 1 g· cm −3 or more is particularly preferable, 2 g·cm −3 or less is preferable, 1.8 g·cm −3 or less is further preferable, and 1.6 g·cm −3 or less is particularly preferable.

タップ密度が、上記範囲を下回ると、負極として用いた場合に充填密度が上がり難く、高容量の電池を得ることができない場合がある。また、上記範囲を上回ると、電極中の粒子間の空隙が少なくなり過ぎ、粒子間の導電性が確保され難くなり、好ましい電池特性が得られにくい場合がある。
タップ密度の測定は、目開き300μmの篩を通過させて、20cmのタッピングセルに試料を落下させてセルの上端面まで試料を満たした後、粉体密度測定器(例えば、セイシン企業社製タップデンサー)を用いて、ストローク長10mmのタッピングを1000回行なって、その時の体積と試料の質量からタップ密度を算出する。該測定で算出されるタップ密度を、本発明における炭素質材料のタップ密度として定義する。
When the tap density is less than the above range, the packing density is difficult to increase when used as a negative electrode, and it may not be possible to obtain a high capacity battery. On the other hand, when the amount exceeds the above range, voids between particles in the electrode become too small, it becomes difficult to secure conductivity between particles, and it may be difficult to obtain preferable battery characteristics.
The tap density is measured by passing it through a sieve with an opening of 300 μm, dropping the sample into a tapping cell of 20 cm 3 to fill the sample to the upper end surface of the cell, and then measuring the powder density (for example, manufactured by Seishin Enterprise Co., Ltd.). Tapping is performed 1000 times with a stroke length of 10 mm, and the tap density is calculated from the volume at that time and the mass of the sample. The tap density calculated by the measurement is defined as the tap density of the carbonaceous material in the present invention.

(7)配向比
炭素質材料の配向比は、通常0.005以上であり、0.01以上が好ましく、0.015以上が更に好ましく、また、通常0.67以下である。配向比が、上記範囲を下回ると、高密度充放電特性が低下する場合がある。なお、上記範囲の上限は、炭素質材料の配向比の理論上限値である。
(7) Orientation ratio The orientation ratio of the carbonaceous material is usually 0.005 or more, preferably 0.01 or more, more preferably 0.015 or more, and usually 0.67 or less. If the orientation ratio is less than the above range, the high density charge/discharge characteristics may deteriorate. The upper limit of the above range is the theoretical upper limit of the orientation ratio of the carbonaceous material.

配向比は、試料を加圧成型してからX線回折により測定する。試料0.47gを直径17mmの成型機に充填し58.8MN・m−2で圧縮して得た成型体を、粘土を用いて測
定用試料ホルダーの面と同一面になるようにセットしてX線回折を測定する。得られた炭素の(110)回折と(004)回折のピーク強度から、(110)回折ピーク強度/(004)回折ピーク強度で表わされる比を算出する。該測定で算出される配向比を、本発明における炭素質材料の配向比と定義する。
The orientation ratio is measured by X-ray diffraction after pressing the sample. A molded body obtained by filling 0.47 g of a sample in a molding machine having a diameter of 17 mm and compressing it with 58.8 MN·m −2 was set with clay so as to be flush with the surface of the sample holder for measurement. X-ray diffraction is measured. A ratio represented by (110) diffraction peak intensity/(004) diffraction peak intensity is calculated from the peak intensity of (110) diffraction and (004) diffraction of the obtained carbon. The orientation ratio calculated by the measurement is defined as the orientation ratio of the carbonaceous material in the present invention.

X線回折測定条件は次の通りである。なお、「2θ」は回折角を示す。
・ターゲット:Cu(Kα線)グラファイトモノクロメーター
・スリット :
発散スリット=0.5度
受光スリット=0.15mm
散乱スリット=0.5度
・測定範囲及びステップ角度/計測時間:
(110)面:75度≦2θ≦80度 1度/60秒
(004)面:52度≦2θ≦57度 1度/60秒
The X-ray diffraction measurement conditions are as follows. In addition, "2θ" indicates a diffraction angle.
・Target: Cu (Kα ray) graphite monochromator ・Slit:
Divergence slit = 0.5 degree Light receiving slit = 0.15 mm
Scattering slit = 0.5 degree, measurement range and step angle/measurement time:
(110) plane: 75 degrees ≤ 2θ ≤ 80 degrees 1 degree/60 seconds (004) plane: 52 degrees ≤ 2θ ≤ 57 degrees 1 degree/60 seconds

(8)アスペクト比(粉)
炭素質材料のアスペクト比は、通常1以上、また、通常10以下であり、8以下が好ましく、5以下が更に好ましい。アスペクト比が、上記範囲を上回ると、極板化時にスジ引きや、均一な塗布面が得られず、高電流密度充放電特性が低下する場合がある。なお、上記範囲の下限は、炭素質材料のアスペクト比の理論下限値である。
アスペクト比の測定は、炭素質材料の粒子を走査型電子顕微鏡で拡大観察して行う。厚さ50ミクロン以下の金属の端面に固定した任意の50個の黒鉛粒子を選択し、それぞれについて試料が固定されているステージを回転、傾斜させて、3次元的に観察した時の炭素質材料粒子の最長となる径Aと、それと直交する最短となる径Bを測定し、A/Bの平均値を求める。該測定で求められるアスペクト比(A/B)を、本発明における炭素質材料のアスペクト比と定義する。
(8) Aspect ratio (powder)
The aspect ratio of the carbonaceous material is usually 1 or more, and is usually 10 or less, preferably 8 or less, more preferably 5 or less. If the aspect ratio exceeds the above range, streaks may not occur when a plate is formed, a uniform coated surface may not be obtained, and high current density charge/discharge characteristics may deteriorate. The lower limit of the above range is the theoretical lower limit of the aspect ratio of the carbonaceous material.
The aspect ratio is measured by magnifying and observing particles of the carbonaceous material with a scanning electron microscope. A carbonaceous material when three-dimensional observation is performed by selecting arbitrary 50 graphite particles fixed on the end surface of a metal having a thickness of 50 microns or less and rotating and tilting the stage on which the sample is fixed for each. The longest diameter A of the particle and the shortest diameter B orthogonal to it are measured, and the average value of A/B is obtained. The aspect ratio (A/B) obtained by the measurement is defined as the aspect ratio of the carbonaceous material in the present invention.

(9)電極作製
電極の製造は、本発明の効果を著しく制限しない限り、公知の何れの方法を用いることができる。例えば、負極活物質に、バインダー、溶媒、必要に応じて、増粘剤、導電材、充填材等を加えてスラリーとし、これを集電体に塗布、乾燥した後にプレスすることによって形成することができる。
(9) Production of Electrode For production of the electrode, any known method can be used unless the effect of the present invention is significantly limited. For example, it is formed by adding a binder, a solvent, and, if necessary, a thickener, a conductive material, a filler, etc. to the negative electrode active material to form a slurry, which is applied to a current collector, dried and then pressed. You can

電池の非水系電解液注液工程直前の段階での片面あたりの負極活物質層の厚さは、通常15μm以上であり、20μm以上が好ましく、30μm以上が更に好ましく、また、通常150μm以下であり、120μm以下が好ましく、100μm以下が更に好ましい。負極活物質の厚さが、この範囲を上回ると、非水系電解液が集電体界面付近まで浸透しにくいため、高電流密度充放電特性が低下する場合があるためである。またこの範囲を下回ると、負極活物質に対する集電体の体積比が増加し、電池の容量が減少する場合があるためである。また、負極活物質をロール成形してシート電極としてもよく、圧縮成形によりペレット電極としてもよい。 The thickness of the negative electrode active material layer per one surface immediately before the step of injecting the non-aqueous electrolyte solution of the battery is usually 15 μm or more, preferably 20 μm or more, more preferably 30 μm or more, and usually 150 μm or less. , 120 μm or less is preferable, and 100 μm or less is more preferable. This is because if the thickness of the negative electrode active material exceeds this range, the non-aqueous electrolyte solution is unlikely to penetrate into the vicinity of the interface of the current collector, and the high current density charge/discharge characteristics may deteriorate. Also, if it is less than this range, the volume ratio of the current collector to the negative electrode active material increases, and the capacity of the battery may decrease. Further, the negative electrode active material may be roll-formed into a sheet electrode, or compression-molded into a pellet electrode.

(10)集電体
負極活物質を保持させる集電体としては、公知のものを任意に用いることができる。負極の集電体としては、例えば、銅、ニッケル、ステンレス鋼、ニッケルメッキ鋼等の金属材料が挙げられるが、加工し易さとコストの点から特に銅が好ましい。
また、集電体の形状は、集電体が金属材料の場合は、例えば、金属箔、金属円柱、金属コイル、金属板、金属薄膜、エキスパンドメタル、パンチメタル、発泡メタル等が挙げられる。中でも、好ましくは金属薄膜、より好ましくは銅箔であり、更に好ましくは圧延法による圧延銅箔と、電解法による電解銅箔があり、どちらも集電体として用いることがで
きる。
また、銅箔の厚さが25μmよりも薄い場合、純銅よりも強度の高い銅合金(リン青銅、チタン銅、コルソン合金、Cu−Cr−Zr合金等)を用いることができる。
(10) Current Collector As a current collector for holding the negative electrode active material, any known current collector can be used. Examples of the current collector of the negative electrode include metal materials such as copper, nickel, stainless steel, and nickel-plated steel, and copper is particularly preferable from the viewpoint of workability and cost.
When the current collector is made of a metal material, examples of the shape of the current collector include a metal foil, a metal column, a metal coil, a metal plate, a metal thin film, an expanded metal, a punch metal, and a foam metal. Among them, a metal thin film is preferable, a copper foil is more preferable, and a rolled copper foil by a rolling method and an electrolytic copper foil by an electrolytic method are more preferable, and both can be used as a current collector.
Further, when the thickness of the copper foil is thinner than 25 μm, a copper alloy (phosphor bronze, titanium copper, Corson alloy, Cu—Cr—Zr alloy, etc.) having higher strength than pure copper can be used.

(10−1)集電体の厚さ
集電体の厚さは任意であるが、通常1μm以上であり、3μm以上が好ましく、5μm以上が更に好ましく、また、通常1mm以下であり、100μm以下が好ましく、50μm以下が更に好ましい。金属皮膜の厚さが、1μmより薄くなると、強度が低下するため塗布が困難となる場合がある。また、100μmより厚くなると、捲回等の電極の形を変形させる場合がある。なお、集電体は、メッシュ状でもよい。
(10-1) Thickness of Current Collector Although the thickness of the current collector is arbitrary, it is usually 1 μm or more, preferably 3 μm or more, more preferably 5 μm or more, and usually 1 mm or less and 100 μm or less. Is preferable, and 50 μm or less is more preferable. If the thickness of the metal coating is less than 1 μm, the strength may be reduced and the coating may be difficult. If it is thicker than 100 μm, the shape of the electrode such as winding may be deformed. The current collector may have a mesh shape.

(11)集電体と負極活物質層の厚さの比
集電体と負極活物質層の厚さの比は特には限定されないが、「(非水系電解液注液直前の片面の負極活物質層厚さ)/(集電体の厚さ)」の値が、150以下が好ましく、20以下が更に好ましく、10以下が特に好ましく、また、0.1以上が好ましく、0.4以上が更に好ましく、1以上が特に好ましい。
集電体と負極活物質層の厚さの比が、上記範囲を上回ると、高電流密度充放電時に集電体がジュール熱による発熱を生じる場合がある。また、上記範囲を下回ると、負極活物質に対する集電体の体積比が増加し、電池の容量が減少する場合がある。
(11) Thickness Ratio of Current Collector and Negative Electrode Active Material Layer The thickness ratio of the current collector and the negative electrode active material layer is not particularly limited. The value of (material layer thickness)/(current collector thickness)” is preferably 150 or less, more preferably 20 or less, particularly preferably 10 or less, and preferably 0.1 or more and 0.4 or more. More preferably, 1 or more is particularly preferable.
When the thickness ratio of the current collector and the negative electrode active material layer exceeds the above range, the current collector may generate heat due to Joule heat during high current density charge/discharge. On the other hand, if it is less than the above range, the volume ratio of the current collector to the negative electrode active material increases, and the capacity of the battery may decrease.

(12)電極密度
負極活物質を電極化した際の電極構造は特には限定されないが、集電体上に存在している負極活物質の密度は、1g・cm−3以上が好ましく、1.2g・cm−3以上が更に好ましく、1.3g・cm−3以上が特に好ましく、また、2.2g・cm−3以下が好ましく、2.1g・cm−3以下がより好ましく、2.0g・cm−3以下が更に好ましく、1.9g・cm−3以下が特に好ましい。集電体上に存在している負極活物質の密度が、上記範囲を上回ると、負極活物質粒子が破壊され、初期不可逆容量の増加や、集電体/負極活物質界面付近への非水系電解液の浸透性低下による高電流密度充放電特性悪化を招く場合がある。また、上記範囲を下回ると、負極活物質間の導電性が低下し、電池抵抗が増大し、単位容積当たりの容量が低下する場合がある。
(12) Electrode Density The electrode structure when the negative electrode active material is made into an electrode is not particularly limited, but the density of the negative electrode active material present on the current collector is preferably 1 g·cm −3 or more, and 1. 2 g·cm −3 or more is more preferable, 1.3 g·cm −3 or more is particularly preferable, 2.2 g·cm −3 or less is preferable, 2.1 g·cm −3 or less is more preferable, 2.0 g · cm -3 more preferably less, 1.9 g · cm -3 or less are particularly preferred. If the density of the negative electrode active material present on the current collector exceeds the above range, the negative electrode active material particles are destroyed, the initial irreversible capacity increases, and the non-aqueous system near the current collector/negative electrode active material interface. High current density charge/discharge characteristics may be deteriorated due to a decrease in electrolyte permeability. On the other hand, if it is less than the above range, the conductivity between the negative electrode active materials may be lowered, the battery resistance may be increased, and the capacity per unit volume may be lowered.

(13)バインダー
負極活物質を結着するバインダーとしては、非水系電解液や電極製造時に用いる溶媒に対して安定な材料であれば、特に制限されない。
具体例としては、ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート、ポリメチルメタクリレート、芳香族ポリアミド、セルロース、ニトロセルロース等の樹脂系高分子;SBR(スチレン・ブタジエンゴム)、イソプレンゴム、ブタジエンゴム、フッ素ゴム、NBR(アクリロニトリル・ブタジエンゴム)、エチレン・プロピレンゴム等のゴム状高分子;スチレン・ブタジエン・スチレンブロック共重合体又はその水素添加物;EPDM(エチレン・プロピレン・ジエン三元共重合体)、スチレン・エチレン・ブタジエン・スチレン共重合体、スチレン・イソプレン・スチレンブロック共重合体又はその水素添加物等の熱可塑性エラストマー状高分子;シンジオタクチック−1,2−ポリブタジエン、ポリ酢酸ビニル、エチレン・酢酸ビニル共重合体、プロピレン・α−オレフィン共重合体等の軟質樹脂状高分子;ポリフッ化ビニリデン、ポリテトラフルオロエチレン、フッ素化ポリフッ化ビニリデン、ポリテトラフルオロエチレン・エチレン共重合体等のフッ素系高分子;アルカリ金属イオン(特にリチウムイオン)のイオン伝導性を有する高分子組成物等が挙げられる。これらは、1種を単独で用いても、2種以上を任意の組み合わせ及び比率で併用してもよい。
(13) Binder The binder for binding the negative electrode active material is not particularly limited as long as it is a material that is stable with respect to the non-aqueous electrolyte solution and the solvent used in the production of the electrode.
Specific examples thereof include resin-based polymers such as polyethylene, polypropylene, polyethylene terephthalate, polymethyl methacrylate, aromatic polyamide, cellulose and nitrocellulose; SBR (styrene/butadiene rubber), isoprene rubber, butadiene rubber, fluororubber, NBR( Acrylonitrile/butadiene rubber), rubber-like polymers such as ethylene/propylene rubber; styrene/butadiene/styrene block copolymers or hydrogenated products thereof; EPDM (ethylene/propylene/diene terpolymer), styrene/ethylene/ Thermoplastic elastomer polymer such as butadiene/styrene copolymer, styrene/isoprene/styrene block copolymer or hydrogenated product thereof; syndiotactic-1,2-polybutadiene, polyvinyl acetate, ethylene/vinyl acetate copolymer Polymers, soft resin-like polymers such as propylene/α-olefin copolymers; polyvinylidene fluoride, polytetrafluoroethylene, fluorinated polyvinylidene fluoride, polytetrafluoroethylene/ethylene copolymers and other fluoropolymers; alkali Examples thereof include polymer compositions having ion conductivity of metal ions (particularly lithium ions). These may be used alone or in any combination of two or more at any ratio.

スラリーを形成するための溶媒としては、負極活物質、バインダー、並びに必要に応じ
て使用される増粘剤及び導電材を溶解又は分散することが可能な溶媒であれば、その種類に特に制限はなく、水系溶媒と有機系溶媒のどちらを用いてもよい。
水系溶媒の例としては水、アルコール等が挙げられ、有機系溶媒の例としてはN−メチルピロリドン(NMP)、ジメチルホルムアミド、ジメチルアセトアミド、メチルエチルケトン、シクロヘキサノン、酢酸メチル、アクリル酸メチル、ジエチルトリアミン、N,N−ジメチルアミノプロピルアミン、テトラヒドロフラン(THF)、トルエン、アセトン、ジエチルエーテル、ジメチルアセトアミド、ヘキサメチルホスファルアミド、ジメチルスルフォキシド、ベンゼン、キシレン、キノリン、ピリジン、メチルナフタレン、ヘキサン等が挙げられる。
The solvent for forming the slurry is not particularly limited in its type as long as it is a solvent that can dissolve or disperse the negative electrode active material, the binder, and the thickener and the conductive material used as necessary. Alternatively, either an aqueous solvent or an organic solvent may be used.
Examples of the aqueous solvent include water and alcohol, and examples of the organic solvent include N-methylpyrrolidone (NMP), dimethylformamide, dimethylacetamide, methyl ethyl ketone, cyclohexanone, methyl acetate, methyl acrylate, diethyltriamine, N. , N-dimethylaminopropylamine, tetrahydrofuran (THF), toluene, acetone, diethyl ether, dimethylacetamide, hexamethylphosphamide, dimethylsulfoxide, benzene, xylene, quinoline, pyridine, methylnaphthalene, hexane and the like. ..

特に水系溶媒を用いる場合、増粘剤に併せて分散剤等を含有させ、SBR等のラテックスを用いてスラリー化することが好ましい。なお、これらの溶媒は、1種を単独で用いても、2種以上を任意の組み合わせ及び比率で併用してもよい。
負極活物質に対するバインダーの割合は、0.1質量%以上が好ましく、0.5質量%以上が更に好ましく、0.6質量%以上が特に好ましく、また、20質量%以下が好ましく、15質量%以下がより好ましく、10質量%以下が更に好ましく、8質量%以下が特に好ましい。負極活物質に対するバインダーの割合が、上記範囲を上回ると、バインダー量が電池容量に寄与しないバインダー割合が増加して、電池容量の低下を招く場合がある。また、上記範囲を下回ると、負極電極の強度低下を招く場合がある。
In particular, when an aqueous solvent is used, it is preferable to add a dispersant or the like in addition to the thickener and form a slurry using a latex such as SBR. These solvents may be used alone or in any combination of two or more at any ratio.
The ratio of the binder to the negative electrode active material is preferably 0.1% by mass or more, more preferably 0.5% by mass or more, particularly preferably 0.6% by mass or more, and preferably 20% by mass or less, 15% by mass. The following is more preferable, 10 mass% or less is still more preferable, and 8 mass% or less is particularly preferable. When the ratio of the binder to the negative electrode active material exceeds the above range, the ratio of the binder in which the amount of the binder does not contribute to the battery capacity increases, and the battery capacity may decrease. On the other hand, if it is less than the above range, the strength of the negative electrode may be lowered.

特に、SBRに代表されるゴム状高分子を主要成分に含有する場合には、負極活物質に対するバインダーの割合は、通常0.1質量%以上であり、0.5質量%以上が好ましく、0.6質量%以上が更に好ましく、また、通常5質量%以下であり、3質量%以下が好ましく、2質量%以下が更に好ましい。
また、ポリフッ化ビニリデンに代表されるフッ素系高分子を主要成分に含有する場合には負極活物質に対する割合は、通常1質量%以上であり、2質量%以上が好ましく、3質量%以上が更に好ましく、また、通常15質量%以下であり、10質量%以下が好ましく、8質量%以下が更に好ましい。
In particular, when a rubber-like polymer represented by SBR is contained as a main component, the ratio of the binder to the negative electrode active material is usually 0.1% by mass or more, preferably 0.5% by mass or more, The content is more preferably 0.6% by mass or more, usually 5% by mass or less, preferably 3% by mass or less, and more preferably 2% by mass or less.
When a fluorine-containing polymer represented by polyvinylidene fluoride is contained as a main component, the ratio to the negative electrode active material is usually 1% by mass or more, preferably 2% by mass or more, more preferably 3% by mass or more. It is preferably 15% by mass or less, more preferably 10% by mass or less, still more preferably 8% by mass or less.

増粘剤は、通常、スラリーの粘度を調製するために使用される。増粘剤としては、特に制限はないが、具体的には、カルボキシメチルセルロース、メチルセルロース、ヒドロキシメチルセルロース、エチルセルロース、ポリビニルアルコール、酸化スターチ、リン酸化スターチ、カゼイン及びこれらの塩等が挙げられる。これらは、1種を単独で用いても、2種以上を任意の組み合わせ及び比率で併用してもよい。 Thickeners are commonly used to adjust the viscosity of slurries. The thickener is not particularly limited, and specific examples thereof include carboxymethyl cellulose, methyl cellulose, hydroxymethyl cellulose, ethyl cellulose, polyvinyl alcohol, oxidized starch, phosphorylated starch, casein and salts thereof. These may be used alone or in any combination of two or more at any ratio.

更に増粘剤を用いる場合には、負極活物質に対する増粘剤の割合は、通常0.1質量%以上であり、0.5質量%以上が好ましく、0.6質量%以上が更に好ましく、また、通常5質量%以下であり、3質量%以下が好ましく、2質量%以下が更に好ましい。負極活物質に対する増粘剤の割合が、上記範囲を下回ると、著しく塗布性が低下する場合がある。また、上記範囲を上回ると、負極活物質層に占める負極活物質の割合が低下し、電池の容量が低下する問題や負極活物質間の抵抗が増大する場合がある。 When a thickener is further used, the ratio of the thickener to the negative electrode active material is usually 0.1% by mass or more, preferably 0.5% by mass or more, more preferably 0.6% by mass or more, It is usually 5% by mass or less, preferably 3% by mass or less, more preferably 2% by mass or less. If the ratio of the thickener to the negative electrode active material is less than the above range, the coatability may be significantly reduced. On the other hand, when the amount exceeds the above range, the ratio of the negative electrode active material in the negative electrode active material layer decreases, which may cause a problem of decreasing the battery capacity and increase the resistance between the negative electrode active materials.

<2−3−3.金属化合物系材料、及び金属化合物系材料を用いた負極の構成、物性、調製方法>
負極活物質として用いられる金属化合物系材料としては、リチウムを吸蔵・放出可能であれば、リチウム合金を形成する単体金属若しくは合金、又はそれらの酸化物、炭化物、窒化物、珪化物、硫化物、燐化物等の化合物の何れであっても特に限定はされない。このような金属化合物としては、Ag、Al、Ba、Bi、Cu、Ga、Ge、In、Ni、P、Pb、Sb、Si、Sn、Sr、Zn等の金属を含有する化合物が挙げられる。なかでも、リチウム合金を形成する単体金属若しくは合金であることが好ましく、13族又は
14族の金属・半金属元素(すなわち炭素を除く)を含む材料あることがより好ましく、更には、ケイ素(Si)、スズ(Sn)又は鉛(Pb)(以下、これら3種の元素を「特定金属元素」という場合がある)の単体金属若しくはこれら原子を含む合金、又は、それらの金属(特定金属元素)の化合物であることが好ましく、ケイ素の単体金属、合金及び化合物、並びにスズの単体金属、合金及び化合物が特に好ましい。これらは、1種を単独で用いてもよく、また2種以上を任意の組み合わせ及び比率で併用してもよい。
<2-3-3. Composition, physical properties, and preparation method of metal compound-based material, and negative electrode using metal compound-based material>
The metal compound-based material used as the negative electrode active material may be a single metal or an alloy forming a lithium alloy, or an oxide, a carbide, a nitride, a silicide, a sulfide, if capable of inserting and extracting lithium, There is no particular limitation on the compound such as phosphide. Examples of such metal compounds include compounds containing metals such as Ag, Al, Ba, Bi, Cu, Ga, Ge, In, Ni, P, Pb, Sb, Si, Sn, Sr, and Zn. Of these, a simple metal or alloy forming a lithium alloy is preferable, a material containing a metal/metalloid element of group 13 or group 14 (that is, excluding carbon) is more preferable, and further, a silicon (Si ), tin (Sn), or lead (Pb) (hereinafter, these three types of elements may be referred to as “specific metal elements”), elemental metals or alloys containing these atoms, or those metals (specific metal elements) Are preferable, and elemental metals, alloys and compounds of silicon, and elemental metals, alloys and compounds of tin are particularly preferable. These may be used alone or in any combination of two or more at any ratio.

特定金属元素から選ばれる少なくとも1種の原子を有する負極活物質の例としては、何れか1種の特定金属元素の金属単体、2種以上の特定金属元素からなる合金、1種又は2種以上の特定金属元素とその他の1種又は2種以上の金属元素とからなる合金、並びに、1種又は2種以上の特定金属元素を含有する化合物、又は、その化合物の酸化物・炭化物・窒化物・珪化物・硫化物・燐化物等の複合化合物が挙げられる。負極活物質としてこれらの金属単体、合金又は金属化合物を用いることで、電池の高容量化が可能である。 Examples of the negative electrode active material having at least one atom selected from the specific metal elements include a simple substance of any one specific metal element, an alloy composed of two or more specific metal elements, and one or more kinds. Of the above-mentioned specific metal element and one or more other metal elements, and a compound containing one or more specific metal elements, or an oxide/carbide/nitride of the compound -Compound compounds such as silicide, sulfide, and phosphide are included. By using these metal simple substances, alloys or metal compounds as the negative electrode active material, it is possible to increase the capacity of the battery.

また、これらの複合化合物が、金属単体、合金、又は非金属元素等の数種の元素と複雑に結合した化合物も例として挙げることができる。より具体的には、例えばケイ素やスズでは、これらの元素と負極として動作しない金属との合金を用いることができる。また例えばスズでは、スズとケイ素以外で負極として作用する金属と、更に負極として動作しない金属と、非金属元素との組み合わせで5〜6種の元素を含むような複雑な化合物も用いることができる。 Moreover, the compound which these complex compounds combined with several kinds of elements, such as a simple metal, an alloy, or a nonmetallic element, can also be mentioned as an example. More specifically, for example, for silicon or tin, an alloy of these elements and a metal that does not operate as a negative electrode can be used. Further, for example, in the case of tin, a complex compound containing 5 to 6 elements in combination with a metal other than tin and silicon that acts as a negative electrode, a metal that does not work as a negative electrode, and a non-metal element can also be used. ..

これらの負極活物質の中でも、電池にしたときに単位質量当りの容量が大きいことから、何れか1種の特定金属元素の金属単体、2種以上の特定金属元素の合金、特定金属元素の酸化物や炭化物、窒化物等が好ましく、特に、ケイ素及びスズの金属単体、ならびにこれらの合金、酸化物や炭化物、窒化物等が、単位質量当りの容量及び環境負荷の観点から好ましい。 Among these negative electrode active materials, since the capacity per unit mass is large when made into a battery, any one kind of a specific metal element metal simple substance, two or more kinds of specific metal element alloys, and a specific metal element oxidation Materials, carbides, nitrides and the like are preferable, and particularly, simple metals of silicon and tin, and alloys, oxides, carbides, nitrides thereof, etc. are preferable from the viewpoint of capacity per unit mass and environmental load.

また、金属単体又は合金を用いるよりは単位質量当りの容量には劣るものの、サイクル特性に優れることから、ケイ素及びスズのうち少なくとも一方を含有する以下の化合物も好ましい。
・ケイ素及びスズのうち少なくとも一方と酸素との元素比が通常0.5以上であり、好ましくは0.7以上、更に好ましくは0.9以上、また、通常1.5以下であり、好ましくは1.3以下、更に好ましくは1.1以下の「ケイ素及びスズのうち少なくとも一方の酸化物」。
・ケイ素及びスズのうち少なくとも一方と窒素との元素比が通常0.5以上であり、好ましくは0.7以上、更に好ましくは0.9以上、また、通常1.5以下であり、好ましくは1.3以下、更に好ましくは1.1以下の「ケイ素及びスズのうち少なくとも一方の窒化物」。
・ケイ素及びスズのうち少なくとも一方と炭素との元素比が通常0.5以上であり、好ましくは0.7以上、更に好ましくは0.9以上、また、通常1.5以下であり、好ましくは1.3以下、更に好ましくは1.1以下の「ケイ素及びスズのうち少なくとも一方の炭化物」。
なお、上述の負極活物質は、何れか1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
Further, the following compounds containing at least one of silicon and tin are also preferable because they have excellent cycle characteristics, although the capacity per unit mass is inferior to that of using a simple metal or an alloy.
-The element ratio of at least one of silicon and tin to oxygen is usually 0.5 or more, preferably 0.7 or more, more preferably 0.9 or more, and usually 1.5 or less, preferably "Oxide of at least one of silicon and tin" of 1.3 or less, more preferably 1.1 or less.
The element ratio of at least one of silicon and tin to nitrogen is usually 0.5 or more, preferably 0.7 or more, more preferably 0.9 or more, and usually 1.5 or less, preferably "Nitride of at least one of silicon and tin" of 1.3 or less, more preferably 1.1 or less.
-The element ratio of at least one of silicon and tin to carbon is usually 0.5 or more, preferably 0.7 or more, more preferably 0.9 or more, and usually 1.5 or less, preferably "Carbides of at least one of silicon and tin" of 1.3 or less, more preferably 1.1 or less.
Any one of the above-mentioned negative electrode active materials may be used alone, or two or more thereof may be used in any combination and ratio.

本発明の非水系電解液二次電池における負極は、公知の何れの方法を用いて製造することが可能である。具体的に、負極の製造方法としては、例えば、上述の負極活物質に結着剤や導電材等を加えたものをそのままロール成型してシート電極とする方法や、圧縮成形してペレット電極とする方法も挙げられるが、通常は負極用の集電体(以下「負極集電体」という場合がある。)上に塗布法、蒸着法、スパッタ法、メッキ法等の手法により、上
述の負極活物質を含有する薄膜層(負極活物質層)を形成する方法が用いられる。この場合、上述の負極活物質に結着剤、増粘剤、導電材、溶媒等を加えてスラリー状とし、これを負極集電体に塗布、乾燥した後にプレスして高密度化することにより、負極集電体上に負極活物質層を形成する。
The negative electrode in the non-aqueous electrolyte secondary battery of the present invention can be manufactured by any known method. Specifically, as a method for producing a negative electrode, for example, a method in which a negative electrode active material to which a binder, a conductive material, or the like is added as described above is roll-formed into a sheet electrode, or compression-molded into a pellet electrode. The above-mentioned negative electrode is usually formed on the current collector for the negative electrode (hereinafter may be referred to as “negative electrode current collector”) by a method such as a coating method, a vapor deposition method, a sputtering method, or a plating method. A method of forming a thin film layer (negative electrode active material layer) containing an active material is used. In this case, a binder, a thickener, a conductive material, a solvent, etc. are added to the above-mentioned negative electrode active material to form a slurry, which is applied to a negative electrode current collector, dried, and then pressed to increase the density. A negative electrode active material layer is formed on the negative electrode current collector.

負極集電体の材質としては、鋼、銅合金、ニッケル、ニッケル合金、ステンレス等が挙げられる。これらのうち、薄膜に加工し易いという点及びコストの点から、銅箔が好ましい。
負極集電体の厚さは、通常1μm以上、好ましくは5μm以上であり、通常100μm以下、好ましくは50μm以下である。負極集電体の厚さが厚過ぎると、電池全体の容量が低下し過ぎることがあり、逆に薄過ぎると取り扱いが困難になることがあるためである。
Examples of the material of the negative electrode current collector include steel, copper alloy, nickel, nickel alloy, stainless steel and the like. Of these, copper foil is preferable from the viewpoint of easy processing into a thin film and cost.
The thickness of the negative electrode current collector is usually 1 μm or more, preferably 5 μm or more, and usually 100 μm or less, preferably 50 μm or less. This is because if the thickness of the negative electrode current collector is too thick, the capacity of the entire battery may decrease too much, and if it is too thin, handling may become difficult.

なお、表面に形成される負極活物質層との結着効果を向上させるため、これら負極集電体の表面は、予め粗面化処理しておくことが好ましい。表面の粗面化方法としては、ブラスト処理、粗面ロールによる圧延、研磨剤粒子を固着した研磨布紙、砥石、エメリバフ、鋼線等を備えたワイヤーブラシ等で集電体表面を研磨する機械的研磨法、電解研磨法、化学研磨法等が挙げられる。 In order to improve the binding effect with the negative electrode active material layer formed on the surface, it is preferable that the surface of these negative electrode current collectors be roughened in advance. As the surface roughening method, blasting, rolling with a rough surface roll, a polishing cloth paper with abrasive particles fixed, a grindstone, an emery buff, a machine for polishing the current collector surface with a wire brush equipped with a steel wire, etc. Polishing method, electrolytic polishing method, chemical polishing method and the like.

また、負極集電体の質量を低減させて電池の質量当たりのエネルギー密度を向上させるために、エキスパンドメタルやパンチングメタルのような穴あきタイプの負極集電体を使用することもできる。このタイプの負極集電体は、その開口率を変更することで、質量も白在に変更可能である。また、このタイプの負極集電体の両面に負極活物質層を形成させた場合、この穴を通してのリベット効果により、負極活物質層の剥離が更に起こり難くなる。しかし、開口率があまりに高くなった場合には、負極活物質層と負極集電体との接触面積が小さくなるため、かえって接着強度は低くなることがある。 Further, in order to reduce the mass of the negative electrode current collector and improve the energy density per mass of the battery, a perforated type negative electrode current collector such as expanded metal or punching metal can be used. The mass of the negative electrode current collector of this type can be changed to white by changing the aperture ratio. Further, when the negative electrode active material layer is formed on both surfaces of this type of negative electrode current collector, the rivet effect through the hole makes the negative electrode active material layer less likely to peel off. However, when the aperture ratio is too high, the contact area between the negative electrode active material layer and the negative electrode current collector becomes small, which may rather reduce the adhesive strength.

負極活物質層を形成するためのスラリーは、通常は負極材に対して結着剤、増粘剤等を加えて作製される。なお、本明細書における「負極材」とは、負極活物質と導電材とを合わせた材料を指すものとする。
負極材中における負極活物質の含有量は、通常70質量%以上、特に75質量%以上、また、通常97質量%以下、特に95質量%以下であることが好ましい。負極活物質の含有量が少な過ぎると、得られる負極を用いた二次電池の容量が不足する傾向があり、多過ぎると相対的に結着剤等の含有量が不足することにより、得られる負極の強度が不足する傾向にあるためである。なお、2以上の負極活物質を併用する場合には、負極活物質の合計量が上記範囲を満たすようにすればよい。
The slurry for forming the negative electrode active material layer is usually prepared by adding a binder, a thickener and the like to the negative electrode material. Note that the “negative electrode material” in this specification refers to a material in which a negative electrode active material and a conductive material are combined.
The content of the negative electrode active material in the negative electrode material is usually 70% by mass or more, particularly 75% by mass or more, and usually 97% by mass or less, particularly preferably 95% by mass or less. When the content of the negative electrode active material is too small, the capacity of the secondary battery using the obtained negative electrode tends to be insufficient, and when the content is too large, the content of the binder or the like is relatively insufficient, which is obtained. This is because the strength of the negative electrode tends to be insufficient. When two or more negative electrode active materials are used in combination, the total amount of the negative electrode active materials may be set within the above range.

負極に用いられる導電材としては、銅やニッケル等の金属材料;黒鉛、カーボンブラック等の炭素材料等が挙げられる。これらは1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。特に、導電材として炭素材料を用いると、炭素材料が活物質としても作用するため好ましい。負極材中における導電材の含有量は、通常3質量%以上、特に5質量%以上、また、通常30質量%以下、特に25質量%以下であることが好ましい。導電材の含有量が少な過ぎると導電性が不足する傾向があり、多過ぎると相対的に負極活物質等の含有量が不足することにより、電池容量や強度が低下する傾向となるためである。なお、2以上の導電材を併用する場合には、導電材の合計量が上記範囲を満たすようにすればよい。 Examples of the conductive material used for the negative electrode include metal materials such as copper and nickel; carbon materials such as graphite and carbon black. These may be used alone or in any combination of two or more at any ratio. In particular, it is preferable to use a carbon material as the conductive material because the carbon material also acts as an active material. The content of the conductive material in the negative electrode material is usually 3% by mass or more, particularly 5% by mass or more, and usually 30% by mass or less, particularly 25% by mass or less. This is because if the content of the conductive material is too small, the conductivity tends to be insufficient, and if the content is too large, the content of the negative electrode active material or the like is relatively insufficient, and thus the battery capacity or strength tends to decrease. .. When two or more conductive materials are used together, the total amount of the conductive materials may be set within the above range.

負極に用いられる結着剤としては、電極製造時に使用する溶媒や電解液に対して安全な材料であれば、任意のものを使用することができる。例えば、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、ポリエチレン、ポリプロピレン、スチレン・ブタジエンゴム
・イソプレンゴム、ブタジエンゴム、エチレン−アクリル酸共重合体、エチレン・メタクリル酸共重合体等が挙げられる。これらは1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。結着剤の含有量は、負極材100質量部に対して通常0.5質量部以上、特に1質量部以上、また、通常10質量部以下、特に8質量部以下であることが好ましい。結着剤の含有量が少な過ぎると得られる負極の強度が不足する傾向があり、多過ぎると相対的に負極活物質等の含有量が不足することにより、電池容量や導電性が不足する傾向となるためである。なお、2以上の結着剤を併用する場合には、結着剤の合計量が上記範囲を満たすようにすればよい。
As the binder used for the negative electrode, any material can be used as long as it is a material that is safe for the solvent and the electrolytic solution used during the production of the electrode. For example, polyvinylidene fluoride, polytetrafluoroethylene, polyethylene, polypropylene, styrene/butadiene rubber/isoprene rubber, butadiene rubber, ethylene-acrylic acid copolymer, ethylene/methacrylic acid copolymer and the like can be mentioned. These may be used alone or in any combination of two or more at any ratio. The content of the binder is usually 0.5 parts by mass or more, particularly 1 part by mass or more, and usually 10 parts by mass or less, particularly 8 parts by mass or less, relative to 100 parts by mass of the negative electrode material. If the content of the binder is too small, the strength of the obtained negative electrode tends to be insufficient, and if the content is too large, the content of the negative electrode active material and the like is relatively insufficient, and the battery capacity and conductivity tend to be insufficient. This is because When two or more binders are used in combination, the total amount of the binders may be set within the above range.

負極に用いられる増粘剤としては、カルボキシメチルセルロース、メチルセルロース、ヒドロキシメチルセルロース、エチルセルロース、ポリビニルアルコール、酸化スターチ、リン酸化スターチ、カゼイン等が挙げられる。これらは1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。増粘剤は必要に応じて使用すればよいが、使用する場合には、負極活物質層中における増粘剤の含有量が通常0.5質量%以上、5質量%以下の範囲で用いることが好ましい。 Examples of the thickener used for the negative electrode include carboxymethyl cellulose, methyl cellulose, hydroxymethyl cellulose, ethyl cellulose, polyvinyl alcohol, oxidized starch, phosphorylated starch and casein. These may be used alone or in any combination of two or more at any ratio. The thickener may be used as necessary, but when used, the content of the thickener in the negative electrode active material layer is usually 0.5% by mass or more and 5% by mass or less. Is preferred.

負極活物質層を形成するためのスラリーは、上記負極活物質に、必要に応じて導電材や結着剤、増粘剤を混合し、水系溶媒又は有機溶媒を分散媒として用いて調製される。水系溶媒としては、通常は水が用いられるが、エタノール等のアルコール類やN−メチルピロリドン等の環状アミド類等の水以外の溶媒を、水に対して30質量%以下程度の割合で併用することもできる。また、有機溶媒としては、通常、N−メチルピロリドン等の環状アミド類、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド等の直鎖状アミド類、アニソール、トルエン、キシレン等の芳香族炭化水素類、ブタノール、シクロヘキサノール等のアルコール類が挙げられ、中でも、N−メチルピロリドン等の環状アミド類、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド等の直鎖状アミド類等が好ましい。なお、これらは何れか1種を単独で使用してもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。 A slurry for forming the negative electrode active material layer is prepared by mixing the negative electrode active material with a conductive material, a binder, and a thickener as necessary, and using an aqueous solvent or an organic solvent as a dispersion medium. .. Water is usually used as the aqueous solvent, but a solvent other than water, such as alcohols such as ethanol and cyclic amides such as N-methylpyrrolidone, is used together in a proportion of about 30% by mass or less with respect to water. You can also As the organic solvent, usually, cyclic amides such as N-methylpyrrolidone, linear amides such as N,N-dimethylformamide and N,N-dimethylacetamide, aromatic carbons such as anisole, toluene and xylene are used. Examples thereof include hydrogens, butanols and alcohols such as cyclohexanol. Among them, cyclic amides such as N-methylpyrrolidone and linear amides such as N,N-dimethylformamide and N,N-dimethylacetamide are preferable. .. Any one of these may be used alone, or two or more of them may be used in any combination and ratio.

スラリーの粘度は、集電体上に塗布することが可能な粘度であれば、特に制限されない。塗布が可能な粘度となるように、スラリーの調製時に溶媒の使用量等を変えて、適宜調製すればよい。
得られたスラリーを上述の負極集電体上に塗布し、乾燥した後、プレスすることにより、負極活物質層が形成される。塗布の手法は特に制限されず、それ自体既知の方法を用いることができる。乾燥の手法も特に制限されず、自然乾燥、加熱乾燥、減圧乾燥等の公知の手法を用いることができる。
The viscosity of the slurry is not particularly limited as long as it can be applied onto the current collector. The amount of the solvent used and the like may be changed at the time of preparing the slurry so that the viscosity can be applied, and the slurry may be appropriately prepared.
The obtained negative electrode current collector is coated with the slurry, dried, and then pressed to form a negative electrode active material layer. The coating method is not particularly limited, and a method known per se can be used. The drying method is not particularly limited, and known methods such as natural drying, heat drying, and vacuum drying can be used.

上記手法により負極活物質を電極化した際の電極構造は特には限定されないが、集電体上に存在している活物質の密度は、1g・cm−3以上が好ましく、1.2g・cm−3以上が更に好ましく、1.3g・cm−3以上が特に好ましく、また、2.2g・cm−3以下が好ましく、2.1g・cm−3以下がより好ましく、2.0g・cm−3以下が更に好ましく、1.9g・cm−3以下が特に好ましい。
集電体上に存在している活物質の密度が、上記範囲を上回ると、活物質粒子が破壊され、初期不可逆容量の増加や、集電体/活物質界面付近への非水系電解液の浸透性低下による高電流密度充放電特性悪化を招く場合がある。また、上記範囲を下回ると、活物質間の導電性が低下し、電池抵抗が増大し、単位容積当たりの容量が低下する場合がある。
The electrode structure when the negative electrode active material is made into an electrode by the above method is not particularly limited, but the density of the active material existing on the current collector is preferably 1 g·cm −3 or more, and 1.2 g·cm. -3 or more is more preferable, 1.3 g·cm −3 or more is particularly preferable, 2.2 g·cm −3 or less is preferable, 2.1 g·cm −3 or less is more preferable, and 2.0 g·cm −. 3 or less is more preferable, and 1.9 g·cm −3 or less is particularly preferable.
If the density of the active material existing on the current collector exceeds the above range, the active material particles are destroyed, the initial irreversible capacity increases, and the non-aqueous electrolyte solution near the current collector/active material interface is removed. In some cases, deterioration of high current density charge/discharge characteristics may be caused due to a decrease in permeability. On the other hand, when the content is less than the above range, the conductivity between the active materials may decrease, the battery resistance may increase, and the capacity per unit volume may decrease.

<2−3−4.リチウム含有金属複合酸化物材料、及びリチウム含有金属複合酸化物材料を用いた負極の構成、物性、調製方法>
負極活物質として用いられるリチウム含有金属複合酸化物材料としては、リチウムを吸蔵・放出可能であれば特に限定はされないが、チタンを含むリチウム含有複合金属酸化物
材料が好ましく、リチウムとチタンの複合酸化物(以下、「リチウムチタン複合酸化物」と略記する)が特に好ましい。すなわち、スピネル構造を有するリチウムチタン複合酸化物を、非水系電解液二次電池用負極活物質に含有させて用いると、出力抵抗が大きく低減するので特に好ましい。
<2-3-4. Lithium-containing metal composite oxide material, and constitution, physical properties, and preparation method of negative electrode using the lithium-containing metal composite oxide material>
The lithium-containing metal composite oxide material used as the negative electrode active material is not particularly limited as long as it can store and release lithium, but a lithium-containing composite metal oxide material containing titanium is preferable, and a lithium-titanium composite oxide is preferable. (Hereinafter, abbreviated as “lithium titanium composite oxide”) is particularly preferable. That is, it is particularly preferable to use the lithium titanium composite oxide having a spinel structure in the negative electrode active material for a non-aqueous electrolyte secondary battery, since the output resistance is greatly reduced.

また、リチウムチタン複合酸化物のリチウムやチタンが、他の金属元素、例えば、Na、K、Co、Al、Fe、Ti、Mg、Cr、Ga、Cu、Zn及びNbからなる群より選ばれる少なくとも1種の元素で置換されているものも好ましい。
上記金属酸化物が、一般式(3)で表されるリチウムチタン複合酸化物であり、一般式(3)中、0.7≦x≦1.5、1.5≦y≦2.3、0≦z≦1.6であることが、リチウムイオンのドープ・脱ドープの際の構造が安定であることから好ましい。
Further, lithium or titanium of the lithium-titanium composite oxide is at least selected from the group consisting of other metal elements, for example, Na, K, Co, Al, Fe, Ti, Mg, Cr, Ga, Cu, Zn and Nb. Those substituted with one kind of element are also preferable.
The metal oxide is a lithium titanium composite oxide represented by the general formula (3), and in the general formula (3), 0.7≦x≦1.5, 1.5≦y≦2.3, It is preferable that 0≦z≦1.6 because the structure during lithium ion doping/dedoping is stable.

LixTiyMzO (3)
[一般式(3)中、Mは、Na、K、Co、Al、Fe、Ti、Mg、Cr、Ga、Cu、Zn及びNbからなる群より選ばれる少なくとも1種の元素を表わす。]
上記の一般式(3)で表される組成の中でも、
(a)1.2≦x≦1.4、1.5≦y≦1.7、z=0
(b)0.9≦x≦1.1、1.9≦y≦2.1、z=0
(c)0.7≦x≦0.9、2.1≦y≦2.3、z=0
の構造が、電池性能のバランスが良好なため特に好ましい。
LixTiyMzO 4 (3)
[In the general formula (3), M represents at least one element selected from the group consisting of Na, K, Co, Al, Fe, Ti, Mg, Cr, Ga, Cu, Zn and Nb. ]
Among the compositions represented by the above general formula (3),
(A) 1.2≦x≦1.4, 1.5≦y≦1.7, z=0
(B) 0.9≦x≦1.1, 1.9≦y≦2.1, z=0
(C) 0.7≦x≦0.9, 2.1≦y≦2.3, z=0
The structure (1) is particularly preferable because it has a good balance of battery performance.

上記化合物の特に好ましい代表的な組成は、(a)ではLi4/3Ti5/3、(b)ではLiTi、(c)ではLi4/5Ti11/5である。また、Z≠0の構造については、例えば、Li4/3Ti4/3Al1/3が好ましいものとして挙げられる。
本発明における負極活物質としてのリチウムチタン複合酸化物は、上記した要件に加えて、更に、下記の(1)〜(13)に示した物性及び形状等の特徴の内、少なくとも1種を満たしていることが好ましく、2種以上を同時に満たすことが特に好ましい。
Particularly preferable typical compositions of the above compounds are Li 4/3 Ti 5/3 O 4 in (a), Li 1 Ti 2 O 4 in (b), and Li 4/5 Ti 11/5 O in (c). It is 4 . Regarding the structure of Z≠0, for example, Li 4/3 Ti 4/3 Al 1/3 O 4 is preferable.
The lithium titanium composite oxide as the negative electrode active material in the present invention satisfies at least one of the following characteristics (1) to (13) such as physical properties and shape, in addition to the above requirements. Is preferable, and it is particularly preferable to satisfy two or more types at the same time.

(1)BET比表面積
負極活物質として用いられるリチウムチタン複合酸化物のBET比表面積は、BET法を用いて測定した比表面積の値が、0.5m・g−1以上が好ましく、0.7m・g−1以上がより好ましく、1.0m・g−1以上が更に好ましく、1.5m・g−1以上が特に好ましく、また、200m・g−1以下が好ましく、100m・g−1以下がより好ましく、50m・g−1以下が更に好ましく、25m・g−1以下が特に好ましい。
(1) BET Specific Surface Area As for the BET specific surface area of the lithium titanium composite oxide used as the negative electrode active material, the value of the specific surface area measured by the BET method is preferably 0.5 m 2 ·g −1 or more, 7 m 2 ·g −1 or more is more preferable, 1.0 m 2 ·g −1 or more is further preferable, 1.5 m 2 ·g −1 or more is particularly preferable, and 200 m 2 ·g −1 or less is preferable, 100 m more preferably 2 · g -1 or less, more preferably 50 m 2 · g -1 or less, particularly preferably 25 m 2 · g -1 or less.

BET比表面積が、上記範囲を下回ると、負極材料として用いた場合の非水系電解液と接する反応面積が減少し、出力抵抗が増加する場合がある。一方、上記範囲を上回ると、チタンを含有する金属酸化物の結晶の表面や端面の部分が増加し、また、これに起因して、結晶の歪も生じるため、不可逆容量が無視できなくなり、好ましい電池が得られにくい場合がある。 If the BET specific surface area is less than the above range, the reaction area in contact with the non-aqueous electrolyte solution used as the negative electrode material may decrease, and the output resistance may increase. On the other hand, when it exceeds the above range, the surface and end face portions of the crystal of the metal oxide containing titanium increase, and due to this, strain of the crystal also occurs, so that the irreversible capacity cannot be ignored, which is preferable. It may be difficult to obtain a battery.

BET法による比表面積の測定は、表面積計(大倉理研製全自動表面積測定装置)を用いて、試料に対して窒素流通下350℃で15分間、予備乾燥を行なった後、大気圧に対する窒素の相対圧の値が0.3となるように正確に調整した窒素ヘリウム混合ガスを用いて、ガス流動法による窒素吸着BET1点法によって行なう。該測定で求められる比表面積を、本発明におけるリチウムチタン複合酸化物のBET比表面積と定義する。 The specific surface area is measured by the BET method using a surface area meter (Okura Riken's fully automatic surface area measuring device), and the sample is pre-dried at 350° C. for 15 minutes under nitrogen flow. A nitrogen adsorption BET one-point method by a gas flow method is performed using a nitrogen-helium mixed gas that is precisely adjusted so that the value of the relative pressure is 0.3. The specific surface area obtained by the measurement is defined as the BET specific surface area of the lithium titanium composite oxide in the present invention.

(2)体積基準平均粒径
リチウムチタン複合酸化物の体積基準平均粒径(一次粒子が凝集して二次粒子を形成している場合には二次粒子径)は、レーザー回折・散乱法により求めた体積基準の平均粒径(メジアン径)で定義される。
リチウムチタン複合酸化物の体積基準平均粒径は、通常0.1μm以上であり、0.5μm以上が好ましく、0.7μm以上が更に好ましく、また、通常50μm以下であり、40μm以下が好ましく、30μm以下が更に好ましく、25μm以下が特に好ましい。
(2) Volume-Based Average Particle Diameter The volume-based average particle diameter (secondary particle diameter when primary particles aggregate to form secondary particles) of the lithium-titanium composite oxide is determined by laser diffraction/scattering method. It is defined by the obtained volume-based average particle diameter (median diameter).
The volume-based average particle diameter of the lithium titanium composite oxide is usually 0.1 μm or more, preferably 0.5 μm or more, more preferably 0.7 μm or more, and usually 50 μm or less, preferably 40 μm or less, 30 μm The following is more preferable, and 25 μm or less is particularly preferable.

体積基準平均粒径の測定は、界面活性剤であるポリオキシエチレン(20)ソルビタンモノラウレートの0.2質量%水溶液(10mL)に炭素粉末を分散させて、レーザー回折・散乱式粒度分布計(堀場製作所社製LA−700)を用いて行なう。該測定で求められるメジアン径を、本発明における炭素質材料の体積基準平均粒径と定義する。
リチウムチタン複合酸化物の体積平均粒径が、上記範囲を下回ると、電極作製時に多量の結着剤が必要となり、結果的に電池容量が低下する場合がある。また、上記範囲を上回ると、電極極板化時に、不均一な塗面になりやすく、電池製作工程上望ましくない場合がある。
The volume-based average particle size is measured by dispersing a carbon powder in a 0.2 mass% aqueous solution (10 mL) of polyoxyethylene (20) sorbitan monolaurate, which is a surfactant, and using a laser diffraction/scattering particle size distribution meter. (LA-700 manufactured by HORIBA, Ltd.) is used. The median diameter obtained by the measurement is defined as the volume-based average particle diameter of the carbonaceous material in the present invention.
If the volume average particle diameter of the lithium-titanium composite oxide is less than the above range, a large amount of binder is required at the time of producing the electrode, and as a result, the battery capacity may decrease. On the other hand, if it exceeds the above range, a non-uniform coating surface is likely to be formed when the electrode plate is formed, which may be undesirable in the battery manufacturing process.

(3)平均一次粒子径
一次粒子が凝集して二次粒子を形成している場合においては、リチウムチタン複合酸化物の平均一次粒子径が、通常0.01μm以上であり、0.05μm以上が好ましく、0.1μm以上が更に好ましく、0.2μm以上が特に好ましく、また、通常2μm以下であり、1.6μm以下が好ましく、1.3μm以下が更に好ましく、1μm以下が特に好ましい。体積基準平均一次粒子径が、上記範囲を上回ると、球状の二次粒子を形成し難く、粉体充填性に悪影響を及ぼしたり、比表面積が大きく低下したりするために、出力特性等の電池性能が低下する可能性が高くなる場合がある。また、上記範囲を下回ると、通常、結晶が未発達になるために充放電の可逆性が劣る等、二次電池の性能を低下させる場合がある。
なお、一次粒子径は、走査型電子顕微鏡(SEM)を用いた観察により測定される。具体的には、粒子が確認できる倍率、例えば10000〜100000倍の倍率の写真で、水平方向の直線に対する一次粒子の左右の境界線による切片の最長の値を、任意の50個の一次粒子について求め、平均値をとることにより求められる。
(3) Average Primary Particle Diameter When primary particles are aggregated to form secondary particles, the average primary particle diameter of the lithium titanium composite oxide is usually 0.01 μm or more, and 0.05 μm or more. It is preferably 0.1 μm or more, more preferably 0.2 μm or more, usually 2 μm or less, preferably 1.6 μm or less, more preferably 1.3 μm or less, particularly preferably 1 μm or less. When the volume-based average primary particle diameter exceeds the above range, it is difficult to form spherical secondary particles, which adversely affects the powder filling property, or the specific surface area is greatly reduced, so that the battery having output characteristics or the like There is a high possibility that performance will decrease. On the other hand, when the amount is less than the above range, the performance of the secondary battery may be deteriorated, such that the crystal is usually undeveloped and the reversibility of charge and discharge is deteriorated.
The primary particle size is measured by observation with a scanning electron microscope (SEM). Specifically, in a photograph at a magnification at which particles can be confirmed, for example, at a magnification of 10,000 to 100,000, the longest value of the intercept by the left and right boundary lines of the primary particles with respect to the horizontal straight line is calculated for any 50 primary particles. It is calculated by taking the average value.

(4)形状
リチウムチタン複合酸化物の粒子の形状は、従来用いられるような、塊状、多面体状、球状、楕円球状、板状、針状、柱状等が用いられるが、中でも一次粒子が凝集して、二次粒子を形成して成り、その二次粒子の形状が球状ないし楕円球状であるものが好ましい。
通常、電気化学素子はその充放電に伴い、電極中の活物質が膨張収縮をするため、そのストレスによる活物質の破壊や導電パス切れ等の劣化がおきやすい。そのため一次粒子のみの単一粒子の活物質であるよりも、一次粒子が凝集して、二次粒子を形成したものである方が膨張収縮のストレスを緩和して、劣化を防ぐためである。
また、板状等軸配向性の粒子であるよりも、球状又は楕円球状の粒子の方が、電極の成形時の配向が少ないため、充放電時の電極の膨張収縮も少なく、また電極を作製する際の導電材との混合においても、均一に混合されやすいため好ましい。
(4) Shape The shape of the particles of the lithium-titanium composite oxide may be lumps, polyhedra, spheres, ellipsoids, plates, needles, pillars, etc., which are conventionally used. Among them, primary particles are aggregated. It is preferable that the secondary particles are formed into secondary particles, and the secondary particles have a spherical shape or an elliptic spherical shape.
Usually, in an electrochemical device, the active material in the electrode expands and contracts as it is charged and discharged, and the stress is likely to cause the active material to be broken or the conductive path to be broken. Therefore, the primary particles are aggregated to form the secondary particles rather than the single-particle active material having only the primary particles, so that the stress of expansion and contraction is alleviated and deterioration is prevented.
Further, spherical or elliptic spherical particles have less orientation during molding of the electrode than particles having plate-like equiaxed orientation, so that expansion/contraction of the electrode during charge/discharge is small, and the electrode is produced. Also in mixing with the conductive material at the time of performing, it is easy to mix uniformly, which is preferable.

(5)タップ密度
リチウムチタン複合酸化物のタップ密度は、0.05g・cm−3以上が好ましく、0.1g・cm−3以上がより好ましく、0.2g・cm−3以上が更に好ましく、0.4g・cm−3以上が特に好ましく、また、2.8g・cm−3以下が好ましく、2.4g・cm−3以下が更に好ましく、2g・cm−3以下が特に好ましい。タップ密度が、上記範囲を下回ると、負極として用いた場合に充填密度が上がり難く、また粒子間の接触面積が減少するため、粒子間の抵抗が増加し、出力抵抗が増加する場合がある。また、上記
範囲を上回ると、電極中の粒子間の空隙が少なくなり過ぎ、非水系電解液の流路が減少することで、出力抵抗が増加する場合がある。
(5) Tap Density Tap density lithium-titanium composite oxide is preferably from 0.05 g · cm -3 or more, 0.1 g · cm -3 or more, and more preferably 0.2 g · cm -3 or more, 0.4 g·cm −3 or more is particularly preferable, 2.8 g·cm −3 or less is preferable, 2.4 g·cm −3 or less is further preferable, and 2 g·cm −3 or less is particularly preferable. When the tap density is less than the above range, the packing density is difficult to increase when used as a negative electrode, and the contact area between particles decreases, so that the resistance between particles may increase and the output resistance may increase. On the other hand, when the amount exceeds the above range, the voids between the particles in the electrode become too small and the flow path of the non-aqueous electrolyte solution decreases, which may increase the output resistance.

タップ密度の測定は、目開き300μmの篩を通過させて、20cmのタッピングセルに試料を落下させてセルの上端面まで試料を満たした後、粉体密度測定器(例えば、セイシン企業社製タップデンサー)を用いて、ストローク長10mmのタッピングを1000回行なって、その時の体積と試料の質量から密度を算出する。該測定で算出されるタップ密度を、本発明におけるリチウムチタン複合酸化物のタップ密度として定義する。 The tap density is measured by passing through a sieve with a mesh opening of 300 μm, dropping the sample into a tapping cell of 20 cm 3 to fill the sample up to the upper end surface of the cell, and then measuring the powder density (for example, manufactured by Seishin Enterprise Co., Ltd.). Tapping is performed 1000 times with a stroke length of 10 mm, and the density is calculated from the volume at that time and the mass of the sample. The tap density calculated by the measurement is defined as the tap density of the lithium titanium composite oxide in the present invention.

(6)円形度
リチウムチタン複合酸化物の球形の程度として、円形度を測定した場合、以下の範囲に収まることが好ましい。円形度は、「円形度=(粒子投影形状と同じ面積を持つ相当円の周囲長)/(粒子投影形状の実際の周囲長)」で定義され、円形度が1のときに理論的真球となる。
リチウムチタン複合酸化物の円形度は、1に近いほど好ましく、通常0.10以上であり、0.80以上が好ましく、0.85以上が更に好ましく、0.90以上が特に好ましい。高電流密度充放電特性は、円形度が大きいほどが向上する。従って、円形度が上記範囲を下回ると、負極活物質の充填性が低下し、粒子間の抵抗が増大して、短時間高電流密度充放電特性が低下する場合がある。
(6) Circularity When the circularity is measured as the spherical degree of the lithium titanium composite oxide, it is preferably within the following range. The circularity is defined as “circularity=(perimeter of equivalent circle having the same area as the particle projection shape)/(actual perimeter of particle projection shape)”, and when the circularity is 1, a theoretical sphere Becomes
The circularity of the lithium titanium composite oxide is preferably as close to 1 as possible, usually 0.10 or higher, preferably 0.80 or higher, more preferably 0.85 or higher, and particularly preferably 0.90 or higher. The higher current density charge/discharge characteristics improve as the circularity increases. Therefore, if the circularity is less than the above range, the filling property of the negative electrode active material may be deteriorated, the resistance between particles may be increased, and the short-time high current density charge/discharge characteristics may be deteriorated.

円形度の測定は、フロー式粒子像分析装置(シスメックス社製FPIA)を用いて行なう。試料約0.2gを、界面活性剤であるポリオキシエチレン(20)ソルビタンモノラウレートの0.2質量%水溶液(約50mL)に分散させ、28kHzの超音波を出力60Wで1分間照射した後、検出範囲を0.6〜400μmに指定し、粒径が3〜40μmの範囲の粒子について測定する。該測定で求められる円形度を、本発明におけるリチウムチタン複合酸化物の円形度と定義する。 The circularity is measured using a flow-type particle image analyzer (FPIA manufactured by Sysmex Corporation). About 0.2 g of the sample was dispersed in a 0.2 mass% aqueous solution (about 50 mL) of polyoxyethylene (20) sorbitan monolaurate as a surfactant, and after irradiating with an ultrasonic wave of 28 kHz at an output of 60 W for 1 minute. The detection range is specified to 0.6 to 400 μm, and the particle size is measured in the range of 3 to 40 μm. The circularity obtained by the measurement is defined as the circularity of the lithium titanium composite oxide in the present invention.

(7)アスペクト比
リチウムチタン複合酸化物のアスペクト比は、通常1以上、また、通常5以下であり、4以下が好ましく、3以下が更に好ましく、2以下が特に好ましい。アスペクト比が、上記範囲を上回ると、極板化時にスジ引きや、均一な塗布面が得られず、短時間高電流密度充放電特性が低下する場合がある。なお、上記範囲の下限は、リチウムチタン複合酸化物のアスペクト比の理論下限値である。
(7) Aspect Ratio The aspect ratio of the lithium titanium composite oxide is usually 1 or more and usually 5 or less, preferably 4 or less, more preferably 3 or less, and particularly preferably 2 or less. If the aspect ratio exceeds the above range, streaking may not occur when a plate is formed, a uniform coated surface may not be obtained, and the high current density charge/discharge characteristics may deteriorate for a short time. The lower limit of the above range is the theoretical lower limit of the aspect ratio of the lithium titanium composite oxide.

アスペクト比の測定は、リチウムチタン複合酸化物の粒子を走査型電子顕微鏡で拡大観察して行なう。厚さ50μm以下の金属の端面に固定した任意の50個の粒子を選択し、それぞれについて試料が固定されているステージを回転、傾斜させて、3次元的に観察した時の粒子の最長となる径Aと、それと直交する最短となる径Bを測定し、A/Bの平均値を求める。該測定で求められるアスペクト比(A/B)を、本発明におけるリチウムチタン複合酸化物のアスペクト比と定義する。 The aspect ratio is measured by magnifying and observing particles of lithium titanium composite oxide with a scanning electron microscope. Select arbitrary 50 particles fixed to the end face of metal having a thickness of 50 μm or less, and rotate and tilt the stage on which the sample is fixed for each, and the particle becomes the longest in three-dimensional observation. The diameter A and the shortest diameter B orthogonal to the diameter A are measured, and the average value of A/B is obtained. The aspect ratio (A/B) obtained by the measurement is defined as the aspect ratio of the lithium titanium composite oxide in the present invention.

(8)負極活物質の製造法
リチウムチタン複合酸化物の製造法としては、本発明の要旨を超えない範囲で特には制限されないが、いくつかの方法が挙げられ、無機化合物の製造法として一般的な方法が用いられる。
例えば、酸化チタン等のチタン原料物質と、必要に応じ他の元素の原料物質とLiOH、LiCO、LiNO等のLi源を均一に混合し、高温で焼成して活物質を得る方法が挙げられる。
(8) Manufacturing Method of Negative Electrode Active Material The manufacturing method of the lithium-titanium composite oxide is not particularly limited as long as it does not exceed the gist of the present invention. Conventional methods are used.
For example, a method of uniformly mixing a titanium source material such as titanium oxide, a source material of another element and a Li source such as LiOH, Li 2 CO 3 or LiNO 3 if necessary, and firing at high temperature to obtain an active material. Is mentioned.

特に球状又は楕円球状の活物質を作成するには種々の方法が考えられる。一例として、
酸化チタン等のチタン原料物質と、必要に応じ他の元素の原料物質を水等の溶媒中に溶解ないし粉砕分散して、攪拌をしながらpHを調節して球状の前駆体を作成回収し、これを必要に応じて乾燥した後、LiOH、LiCO、LiNO等のLi源を加えて高温で焼成して活物質を得る方法が挙げられる。
In particular, various methods can be considered for producing a spherical or elliptic spherical active material. As an example,
Titanium raw materials such as titanium oxide and, if necessary, raw materials of other elements are dissolved or pulverized and dispersed in a solvent such as water, and the pH is adjusted with stirring to prepare and recover a spherical precursor, After drying this as needed, a method of adding an Li source such as LiOH, Li 2 CO 3 , or LiNO 3 and firing at high temperature to obtain an active material can be mentioned.

また、別の例として、酸化チタン等のチタン原料物質と、必要に応じ他の元素の原料物質を水等の溶媒中に溶解ないし粉砕分散して、それをスプレードライヤー等で乾燥成型して球状ないし楕円球状の前駆体とし、これにLiOH、LiCO、LiNO等のLi源を加えて高温で焼成して活物質を得る方法が挙げられる。
更に別の方法として、酸化チタン等のチタン原料物質と、LiOH、LiCO、LiNO等のLi源と、必要に応じ他の元素の原料物質とを水等の溶媒中に溶解ないし粉砕分散して、それをスプレードライヤー等で乾燥成型して球状ないし楕円球状の前駆体とし、これを高温で焼成して活物質を得る方法が挙げられる。
Further, as another example, titanium raw materials such as titanium oxide and, if necessary, raw materials of other elements are dissolved or pulverized and dispersed in a solvent such as water, and dried and molded by a spray dryer or the like to obtain spherical particles. Alternatively, a method of obtaining an active material by using an ellipsoidal precursor as a precursor, adding a Li source such as LiOH, Li 2 CO 3 , or LiNO 3 to the precursor and firing the precursor at a high temperature is mentioned.
As still another method, a titanium raw material such as titanium oxide, a Li source such as LiOH, Li 2 CO 3 , or LiNO 3 and, if necessary, a raw material of another element are dissolved or pulverized in a solvent such as water. A method is available in which the active material is dispersed and dried and molded with a spray dryer or the like to give a spherical or ellipsoidal precursor, which is then baked at a high temperature to obtain an active material.

また、これらの工程中に、Ti以外の元素、例えば、Al、Mn、Ti、V、Cr、Mn、Fe、Co、Li、Ni、Cu、Zn、Mg、Ga、Zr、C、Si、Sn、Agを、チタンを含有する金属酸化物構造中及び/又はチタンを含有する酸化物に接する形で存在していることも可能である。これらの元素を含有することで、電池の作動電圧、容量を制御することが可能となる。 Further, during these steps, elements other than Ti, for example, Al, Mn, Ti, V, Cr, Mn, Fe, Co, Li, Ni, Cu, Zn, Mg, Ga, Zr, C, Si, Sn. , Ag can be present in the titanium-containing metal oxide structure and/or in contact with the titanium-containing oxide. By containing these elements, the operating voltage and capacity of the battery can be controlled.

(9)電極作製
電極の製造は、公知の何れの方法を用いることができる。例えば、負極活物質に、バインダー、溶媒、必要に応じて、増粘剤、導電材、充填材等を加えてスラリーとし、これを集電体に塗布、乾燥した後にプレスすることによって形成することができる。
電池の非水系電解液注液工程直前の段階での片面あたりの負極活物質層の厚さは通常15μm以上、好ましくは20μm以上、より好ましくは30μm以上であり、上限は150μm以下、好ましくは120μm以下、より好ましくは100μm以下が望ましい。
この範囲を上回ると、非水系電解液が集電体界面付近まで浸透しにくいため、高電流密度充放電特性が低下する場合がある。またこの範囲を下回ると、負極活物質に対する集電体の体積比が増加し、電池の容量が減少する場合がある。また、負極活物質をロール成形してシート電極としてもよく、圧縮成形によりペレット電極としてもよい。
(9) Production of Electrode Any known method can be used for production of the electrode. For example, it is formed by adding a binder, a solvent, and, if necessary, a thickener, a conductive material, a filler, etc. to the negative electrode active material to form a slurry, which is applied to a current collector, dried and then pressed. You can
The thickness of the negative electrode active material layer per one surface immediately before the step of injecting the non-aqueous electrolyte solution of the battery is usually 15 μm or more, preferably 20 μm or more, more preferably 30 μm or more, and the upper limit is 150 μm or less, preferably 120 μm. Or less, more preferably 100 μm or less.
When it exceeds this range, the non-aqueous electrolyte solution hardly penetrates to the vicinity of the current collector interface, so that the high current density charge/discharge characteristics may deteriorate. If it is less than this range, the volume ratio of the current collector to the negative electrode active material increases, and the capacity of the battery may decrease. Further, the negative electrode active material may be roll-formed into a sheet electrode, or may be compression-formed into a pellet electrode.

(10)集電体
負極活物質を保持させる集電体としては、公知のものを任意に用いることができる。負極の集電体としては、銅、ニッケル、ステンレス鋼、ニッケルメッキ鋼等の金属材料が挙げられ、中でも加工し易さとコストの点から特に銅が好ましい。
また、集電体の形状は、集電体が金属材料の場合は、例えば金属箔、金属円柱、金属コイル、金属板、金属薄膜、エキスパンドメタル、パンチメタル、発泡メタル等が挙げられる。中でも好ましくは銅(Cu)及びアルミニウム(Al)のうち少なくとも一方を含有する金属箔膜であり、より好ましくは銅箔、アルミニウム箔であり、更に好ましくは圧延法による圧延銅箔と、電解法による電解銅箔があり、どちらも集電体として用いることができる。
(10) Current Collector As a current collector for holding the negative electrode active material, any known current collector can be used. Examples of the current collector for the negative electrode include metal materials such as copper, nickel, stainless steel, and nickel-plated steel. Among them, copper is particularly preferable from the viewpoint of workability and cost.
When the current collector is made of a metal material, examples of the shape of the current collector include a metal foil, a metal column, a metal coil, a metal plate, a metal thin film, an expanded metal, a punch metal, and a foam metal. Among them, a metal foil film containing at least one of copper (Cu) and aluminum (Al) is preferable, a copper foil and an aluminum foil are more preferable, and a rolled copper foil by a rolling method and an electrolytic method are more preferable. There are electrolytic copper foils, both of which can be used as current collectors.

また、銅箔の厚さが25μmよりも薄い場合、純銅よりも強度の高い銅合金(リン青銅、チタン銅、コルソン合金、Cu−Cr−Zr合金等)を用いることができる。またアルミニウム箔は、その比重が軽いことから、集電体として用いた場合に、電池の質量を減少させることが可能となり、好ましく用いることができる。
圧延法により作製した銅箔からなる集電体は、銅結晶が圧延方向に並んでいるため、負極を密に丸めても、鋭角に丸めても割れにくく、小型の円筒状電池に好適に用いることができる。
Further, when the thickness of the copper foil is thinner than 25 μm, a copper alloy (phosphor bronze, titanium copper, Corson alloy, Cu—Cr—Zr alloy, etc.) having higher strength than pure copper can be used. Further, since the aluminum foil has a low specific gravity, it can reduce the mass of the battery when used as a current collector, and can be preferably used.
Since a current collector made of a copper foil produced by a rolling method has copper crystals arranged in the rolling direction, it is hard to crack even if the negative electrode is densely rolled or sharply rounded, and is suitable for a small cylindrical battery. be able to.

電解銅箔は、例えば、銅イオンが溶解された非水系電解液中に金属製のドラムを浸漬し、これを回転させながら電流を流すことにより、ドラムの表面に銅を析出させ、これを剥離して得られるものである。上記の圧延銅箔の表面に、電解法により銅を析出させていてもよい。銅箔の片面又は両面には、粗面化処理や表面処理(例えば、厚さが数nm〜1μm程度までのクロメート処理、Ti等の下地処理等)がなされていてもよい。
また、集電体基板には、更に次のような物性が望まれる。
Electrolytic copper foil is, for example, by immersing a metal drum in a non-aqueous electrolyte solution in which copper ions are dissolved, and by passing an electric current while rotating this, copper is deposited on the surface of the drum and peeled off. It is obtained by doing. Copper may be deposited on the surface of the rolled copper foil by an electrolytic method. One or both surfaces of the copper foil may be roughened or surface-treated (for example, a chromate treatment with a thickness of about several nm to 1 μm, a base treatment with Ti or the like).
Further, the collector substrate is desired to have the following physical properties.

(10−1)平均表面粗さ(Ra)
JISB0601−1994に記載の方法で規定される集電体基板の活物質薄膜形成面の平均表面粗さ(Ra)は、特に制限されないが、通常0.01μm以上であり、0.03μm以上が好ましく、また、通常1.5μm以下であり、1.3μm以下が好ましく、1.0μm以下が更に好ましい。
集電体基板の平均表面粗さ(Ra)が、上記の範囲内であると、良好な充放電サイクル特性が期待できるためである。また、活物質薄膜との界面の面積が大きくなり、負極活物質薄膜との密着性が向上するためである。なお、平均表面粗さ(Ra)の上限値は特に制限されるものではないが、平均表面粗さ(Ra)が1.5μmを超えるものは電池として実用的な厚みの箔としては一般に入手しにくいため、1.5μm以下のものが通常用いられる。
(10-1) Average surface roughness (Ra)
The average surface roughness (Ra) of the active material thin film forming surface of the current collector substrate specified by the method described in JIS B0601-1994 is not particularly limited, but is usually 0.01 μm or more, preferably 0.03 μm or more. Further, it is usually 1.5 μm or less, preferably 1.3 μm or less, and more preferably 1.0 μm or less.
This is because when the average surface roughness (Ra) of the current collector substrate is within the above range, good charge/discharge cycle characteristics can be expected. Also, the area of the interface with the active material thin film is increased, and the adhesion with the negative electrode active material thin film is improved. The upper limit of the average surface roughness (Ra) is not particularly limited, but those having an average surface roughness (Ra) of more than 1.5 μm are generally available as foils of practical thickness for batteries. Since it is difficult, a film having a thickness of 1.5 μm or less is usually used.

(10−2)引張強度
引張強度とは、試験片が破断に至るまでに要した最大引張力を、試験片の断面積で割ったものである。本発明における引張強度は、JISZ2241(金属材料引張試験方法)に記載と同様な装置及び方法で測定される。
集電体基板の引張強度は、特に制限されないが、通常50N・mm−2以上であり、100N・mm−2以上が好ましく、150N・mm−2以上が更に好ましい。引張強度は、値が高いほど好ましいが、工業的入手可能性の観点から、通常1000N・mm−2以下が望ましい。
引張強度が高い集電体基板であれば、充電・放電に伴う活物質薄膜の膨張・収縮による集電体基板の亀裂を抑制することができ、良好なサイクル特性を得ることができる。
(10-2) Tensile Strength Tensile strength is the maximum tensile force required to break the test piece divided by the cross-sectional area of the test piece. The tensile strength in the present invention is measured by an apparatus and method similar to those described in JISZ2241 (Metallic material tensile test method).
The tensile strength of the current collector substrate is not particularly limited, it is generally 50 N · mm -2 or more, preferably 100 N · mm -2 or more, more preferably 150 N · mm -2 or more. The higher the tensile strength is, the more preferable it is, but from the viewpoint of industrial availability, the tensile strength is usually preferably 1000 N·mm −2 or less.
If the current collector substrate has high tensile strength, cracks in the current collector substrate due to expansion/contraction of the active material thin film due to charging/discharging can be suppressed, and good cycle characteristics can be obtained.

(10−3)0.2%耐力
0.2%耐力とは、0.2%の塑性(永久)歪みを与えるに必要な負荷の大きさであり、この大きさの負荷を加えた後に除荷しても0.2%変形していることを意味している。0.2%耐力は、引張強度と同様な装置及び方法で測定される。
集電体基板の0.2%耐力は、特に制限されないが、通常30N・mm−2以上、好ましくは100N・mm−2以上、特に好ましくは150N・mm−2以上である。0.2%耐力は、値が高いほど好ましいが、工業的入手可能性の観点から、通常900N・mm−2以下が望ましい。
0.2%耐力が高い集電体基板であれば、充電・放電に伴う活物質薄膜の膨張・収縮による集電体基板の塑性変形を抑制することができ、良好なサイクル特性を得ることができるためである。
(10-3) 0.2% proof stress 0.2% proof stress is the magnitude of load required to give 0.2% plastic (permanent) strain, and is removed after applying a load of this magnitude. It means that even if loaded, it is deformed by 0.2%. The 0.2% proof stress is measured by the same device and method as the tensile strength.
0.2% proof stress of the current collector substrate is not particularly limited, normally 30 N · mm -2 or more, preferably 100 N · mm -2 or more, particularly preferably 150 N · mm -2 or more. The higher the 0.2% proof stress is, the more preferable it is, but from the viewpoint of industrial availability, it is usually desirable that the yield strength be 900 N·mm −2 or less.
If the current collector substrate has a high 0.2% proof stress, it is possible to suppress plastic deformation of the current collector substrate due to expansion/contraction of the active material thin film due to charging/discharging, and obtain good cycle characteristics. Because you can.

(10−4)集電体の厚さ
集電体の厚さは任意であるが、通常1μm以上であり、3μm以上が好ましく、5μm以上が更に好ましく、また、通常1mm以下であり、100μm以下が好ましく、50μm以下が更に好ましい。
金属皮膜の厚さが、1μmより薄くなると、強度が低下するため塗布が困難となる場合がある。また、100μmより厚くなると、捲回等の電極の形を変形させる場合がある。
なお、金属薄膜は、メッシュ状でもよい。
(10-4) Thickness of Current Collector Although the thickness of the current collector is arbitrary, it is usually 1 μm or more, preferably 3 μm or more, more preferably 5 μm or more, and usually 1 mm or less and 100 μm or less. Is preferable, and 50 μm or less is more preferable.
If the thickness of the metal coating is less than 1 μm, the strength may be reduced and the coating may be difficult. If it is thicker than 100 μm, the shape of the electrode such as winding may be deformed.
The metal thin film may have a mesh shape.

(11)集電体と活物質層の厚さの比
集電体と活物質層の厚さの比は特には限定されないが、「(非水系電解液注液直前の片面の活物質層の厚さ)/(集電体の厚さ)」の値が、通常150以下であり、20以下が好ましく、10以下が更に好ましく、また、通常0.1以上であり、0.4以上が好ましく、1以上が更に好ましい。
集電体と負極活性物質層の厚さの比が、上記範囲を上回ると、高電流密度充放電時に集電体がジュール熱による発熱を生じる場合がある。また、上記範囲を下回ると、負極活物質に対する集電体の体積比が増加し、電池の容量が減少する場合がある。
(11) Ratio of Thickness of Current Collector and Active Material Layer Although the ratio of thickness of the current collector and active material layer is not particularly limited, “(the thickness of the active material layer on one surface immediately before the non-aqueous electrolyte solution injection) The value of (thickness)/(thickness of current collector)” is usually 150 or less, preferably 20 or less, more preferably 10 or less, and usually 0.1 or more, preferably 0.4 or more. 1 or more is more preferable.
If the thickness ratio of the current collector to the negative electrode active material layer exceeds the above range, the current collector may generate heat due to Joule heat during high current density charge/discharge. On the other hand, if it is less than the above range, the volume ratio of the current collector to the negative electrode active material increases, and the capacity of the battery may decrease.

(12)電極密度
負極活物質の電極化した際の電極構造は特には限定されないが、集電体上に存在している活物質の密度は、1g・cm−3以上が好ましく、1.2g・cm−3以上がより好ましく、1.3g・cm−3以上が更に好ましく、1.5g・cm−3以上が特に好ましく、また、3g・cm−3以下が好ましく、2.5g・cm−3以下がより好ましく、2.2g・cm−3以下が更に好ましく、2g・cm−3以下が特に好ましい。
集電体上に存在している活物質の密度が、上記範囲を上回ると、集電体と負極活物質の結着が弱くなり、電極と活物質が乖離する場合がある。また、上記範囲を下回ると、負極活物質間の導電性が低下し、電池抵抗が増大する場合がある。
(12) Electrode Density The electrode structure of the negative electrode active material when formed into an electrode is not particularly limited, but the density of the active material present on the current collector is preferably 1 g·cm −3 or more, and 1.2 g · cm -3 or more, and more preferably 1.3 g · cm -3 or more, particularly preferably 1.5 g · cm -3 or more, preferably 3 g · cm -3 or less, 2.5 g · cm - 3 or less is more preferable, 2.2 g·cm −3 or less is further preferable, and 2 g·cm −3 or less is particularly preferable.
When the density of the active material existing on the current collector exceeds the above range, the binding between the current collector and the negative electrode active material is weakened, and the electrode and the active material may be separated from each other. On the other hand, if it is less than the above range, the conductivity between the negative electrode active materials may be lowered, and the battery resistance may be increased.

(13)バインダー
負極活物質を結着するバインダーとしては、非水系電解液や電極製造時に用いる溶媒に対して安定な材料であれば、特に制限されない。
具体例としては、ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート、ポリメチルメタクリレート、ポリイミド、芳香族ポリアミド、セルロース、ニトロセルロース等の樹脂系高分子;SBR(スチレン・ブタジエンゴム)、イソプレンゴム、ブタジエンゴム、フッ素ゴム、NBR(アクリロニトリル・ブタジエンゴム)、エチレン・プロピレンゴム等のゴム状高分子;スチレン・ブタジエン・スチレンブロック共重合体及びその水素添加物;EPDM(エチレン・プロピレン・ジエン三元共重合体)、スチレン・エチレン・ブタジエン・スチレン共重合体、スチレン・イソプレン・スチレンブロック共重合体及びその水素添加物等の熱可塑性エラストマー状高分子;シンジオタクチック−1,2−ポリブタジエン、ポリ酢酸ビニル、エチレン・酢酸ビニル共重合体、プロピレン・α−オレフィン共重合体等の軟質樹脂状高分子;ポリフッ化ビニリデン、ポリテトラフルオロエチレン、フッ素化ポリフッ化ビニリデン、ポリテトラフルオロエチレン・エチレン共重合体等のフッ素系高分子;アルカリ金属イオン(特にリチウムイオン)のイオン伝導性を有する高分子組成物等が挙げられる。これらは、1種を単独で用いても、2種以上を任意の組み合わせ及び比率で併用してもよい。
(13) Binder The binder for binding the negative electrode active material is not particularly limited as long as it is a material that is stable with respect to the non-aqueous electrolyte solution and the solvent used in the production of the electrode.
Specific examples include resin-based polymers such as polyethylene, polypropylene, polyethylene terephthalate, polymethylmethacrylate, polyimide, aromatic polyamide, cellulose and nitrocellulose; SBR (styrene/butadiene rubber), isoprene rubber, butadiene rubber, fluororubber, Rubber-like polymers such as NBR (acrylonitrile-butadiene rubber) and ethylene-propylene rubber; styrene-butadiene-styrene block copolymers and hydrogenated products thereof; EPDM (ethylene-propylene-diene terpolymer), styrene- Thermoplastic elastomeric polymers such as ethylene/butadiene/styrene copolymers, styrene/isoprene/styrene block copolymers and hydrogenated products thereof; syndiotactic-1,2-polybutadiene, polyvinyl acetate, ethylene/vinyl acetate Soft resin-like polymers such as copolymers and propylene/α-olefin copolymers; fluorinated polymers such as polyvinylidene fluoride, polytetrafluoroethylene, fluorinated polyvinylidene fluoride and polytetrafluoroethylene/ethylene copolymers A polymer composition having ion conductivity of alkali metal ions (particularly lithium ions) and the like. These may be used alone or in any combination of two or more at any ratio.

スラリーを形成するための溶媒としては、負極活物質、バインダー、必要に応じて使用される増粘剤及び導電材を、溶解又は分散することが可能な溶媒であれば、その種類に特に制限はなく、水系溶媒と有機系溶媒のどちらを用いてもよい。
水系溶媒の例としては水、アルコール等が挙げられ、有機系溶媒の例としてはN−メチルピロリドン(NMP)、ジメチルホルムアミド、ジメチルアセトアミド、メチルエチルケトン、シクロヘキサノン、酢酸メチル、アクリル酸メチル、ジエチルトリアミン、N,N−ジメチルアミノプロピルアミン、テトラヒドロフラン(THF)、トルエン、アセトン、ジメチルエーテル、ジメチルアセトアミド、ヘキサメリルホスファルアミド、ジメチルスルフォキシド、ベンゼン、キシレン、キノリン、ピリジン、メチルナフタレン、ヘキサン等が挙げられる。特に水系溶媒を用いる場合、上述の増粘剤に併せて分散剤等を加え、SBR等のラテックスを用いてスラリー化する。なお、これらは、1種を単独で用いても、2種以上を任意の組み合わせ及び比率で併用してもよい。
As the solvent for forming the slurry, the negative electrode active material, the binder, the thickener and the conductive material used as necessary, if the solvent can dissolve or disperse, the type is not particularly limited. Alternatively, either an aqueous solvent or an organic solvent may be used.
Examples of the aqueous solvent include water and alcohol, and examples of the organic solvent include N-methylpyrrolidone (NMP), dimethylformamide, dimethylacetamide, methyl ethyl ketone, cyclohexanone, methyl acetate, methyl acrylate, diethyltriamine, N. , N-dimethylaminopropylamine, tetrahydrofuran (THF), toluene, acetone, dimethyl ether, dimethylacetamide, hexamerylphosphamide, dimethylsulfoxide, benzene, xylene, quinoline, pyridine, methylnaphthalene, hexane and the like. Particularly when an aqueous solvent is used, a dispersant or the like is added to the above-mentioned thickener, and a latex such as SBR is used to form a slurry. These may be used alone or in any combination of two or more in any ratio.

負極活物質に対するバインダーの割合は、通常0.1質量%以上であり、0.5質量%以上が好ましく、0.6質量%以上が更に好ましく、また、通常20質量%以下であり、15質量%以下が好ましく、10質量%以下が更に好ましく、8質量%以下が特に好ましい。
負極活物質に対するバインダーの割合が、上記範囲を上回ると、バインダー量が電池容量に寄与しないバインダー割合が増加して、電池容量が低下する場合がある。また、上記範囲を下回ると、負極電極の強度低下を招き、電池作製工程上好ましくない場合がある。
The ratio of the binder to the negative electrode active material is usually 0.1% by mass or more, preferably 0.5% by mass or more, more preferably 0.6% by mass or more, and usually 20% by mass or less, 15% by mass. % Or less is preferable, 10% by mass or less is more preferable, and 8% by mass or less is particularly preferable.
When the ratio of the binder to the negative electrode active material exceeds the above range, the binder ratio in which the binder amount does not contribute to the battery capacity increases, and the battery capacity may decrease. On the other hand, when the amount is less than the above range, the strength of the negative electrode may be deteriorated, which may not be preferable in the battery manufacturing process.

特に、SBRに代表されるゴム状高分子を主要成分に含有する場合には、活物質に対するバインダーの割合は、通常0.1質量%以上であり、0.5質量%以上が好ましく、0.6質量%以上が更に好ましく、また、通常5質量%以下であり、3質量%以下が好ましく、2質量%以下が更に好ましい。
また、ポリフッ化ビニリデンに代表されるフッ素系高分子を主要成分に含有する場合には活物質に対する割合は、1質量%以上であり、2質量%以上が好ましく、3質量%以上が更に好ましく、通常15質量%以下であり、10質量%以下が好ましく、8質量%以下が更に好ましい。
In particular, when a rubber-like polymer represented by SBR is contained as a main component, the ratio of the binder to the active material is usually 0.1% by mass or more, preferably 0.5% by mass or more, and 0.1% by mass or more. 6 mass% or more is more preferable, it is usually 5 mass% or less, 3 mass% or less is preferable, and 2 mass% or less is more preferable.
Further, when the main component contains a fluoropolymer represented by polyvinylidene fluoride, the ratio to the active material is 1% by mass or more, preferably 2% by mass or more, more preferably 3% by mass or more, It is usually 15% by mass or less, preferably 10% by mass or less, and more preferably 8% by mass or less.

増粘剤は、通常、スラリーの粘度を調製するために使用される。増粘剤としては、特に制限はないが、具体的には、カルボキシメチルセルロース、メチルセルロース、ヒドロキシメチルセルロース、エチルセルロース、ポリビニルアルコール、酸化スターチ、リン酸化スターチ、カゼイン及びこれらの塩等が挙げられる。これらは、1種を単独で用いても、2種以上を任意の組み合わせ及び比率で併用してもよい。 Thickeners are commonly used to adjust the viscosity of slurries. The thickener is not particularly limited, and specific examples thereof include carboxymethyl cellulose, methyl cellulose, hydroxymethyl cellulose, ethyl cellulose, polyvinyl alcohol, oxidized starch, phosphorylated starch, casein and salts thereof. These may be used alone or in any combination of two or more at any ratio.

更に増粘剤を用いる場合には、負極活物質に対する増粘剤の割合は、0.1質量%以上であり、0.5質量%以上が好ましく、0.6質量%以上が更に好ましく、また、通常5質量%以下であり、3質量%以下が好ましく、2質量%以下が更に好ましい。負極活物質に対する増粘剤の割合が、上記範囲を下回ると、著しく塗布性が低下する場合がある。また、上記範囲を上回ると、負極活物質層に占める活物質の割合が低下し、電池の容量が低下する問題や負極活物質間の抵抗が増大する場合がある。 When using a thickener, the ratio of the thickener to the negative electrode active material is 0.1% by mass or more, preferably 0.5% by mass or more, more preferably 0.6% by mass or more, and It is usually 5% by mass or less, preferably 3% by mass or less, more preferably 2% by mass or less. If the ratio of the thickener to the negative electrode active material is less than the above range, the coatability may be significantly reduced. On the other hand, when the amount exceeds the above range, the ratio of the active material in the negative electrode active material layer decreases, which may cause a problem of decreasing the battery capacity and increase the resistance between the negative electrode active materials.

<2−4.正極>
正極は、集電体上に正極活物質層を有するものであり、以下に正極活物質について述べる。
<2−4−1.正極活物質>
以下に正極に使用される正極活物質について説明する。
<2-4. Positive electrode>
The positive electrode has a positive electrode active material layer on a current collector, and the positive electrode active material will be described below.
<2-4-1. Positive electrode active material>
The positive electrode active material used for the positive electrode will be described below.

(1)組成
正極活物質としては、電気化学的にリチウムイオンを吸蔵・放出可能なものであれば特に制限はないが、例えば、リチウムと少なくとも1種の遷移金属を含有する物質が好ましい。具体例としては、リチウム遷移金属複合酸化物、リチウム含有遷移金属リン酸化合物が挙げられる。
(1) Composition The positive electrode active material is not particularly limited as long as it can occlude and release lithium ions electrochemically. For example, a material containing lithium and at least one transition metal is preferable. Specific examples include a lithium transition metal composite oxide and a lithium-containing transition metal phosphate compound.

リチウム遷移金属複合酸化物の遷移金属としてはV、Ti、Cr、Mn、Fe、Co、Ni、Cu等が好ましく、具体例としては、LiCoO等のリチウム・コバルト複合酸化物、LiMnO、LiMn、LiMnO等のリチウム・マンガン複合酸化物、LiNiO等のリチウム・ニッケル複合酸化物、等が挙げられる。また、これらのリチウム遷移金属複合酸化物の主体となる遷移金属原子の一部をAl、Ti、V、Cr、Mn、Fe、Co、Li、Ni、Cu、Zn、Mg、Ga、Zr、Si等の他の金属で置換したもの等が挙げられ、具体例としては、リチウム・コバルト・ニッケル複合酸化物、
リチウム・コバルト・マンガン複合酸化物、リチウム・ニッケル・マンガン複合酸化物、リチウム・ニッケル・コバルト・マンガン複合酸化物等が挙げられる。
The transition metal of the lithium-transition metal composite oxide is preferably V, Ti, Cr, Mn, Fe, Co, Ni, Cu or the like, and specific examples thereof are lithium-cobalt composite oxides such as LiCoO 2 , LiMnO 2 , LiMn. Examples thereof include lithium-manganese composite oxides such as 2 O 4 and Li 2 MnO 4 , lithium-nickel composite oxides such as LiNiO 2 . In addition, some of the transition metal atoms that are the main constituents of these lithium-transition metal composite oxides are Al, Ti, V, Cr, Mn, Fe, Co, Li, Ni, Cu, Zn, Mg, Ga, Zr, Si. Those substituted with other metals such as, and the like, as specific examples, lithium-cobalt-nickel composite oxide,
Examples thereof include lithium/cobalt/manganese composite oxide, lithium/nickel/manganese composite oxide, and lithium/nickel/cobalt/manganese composite oxide.

置換されたものの具体例としては、例えば、Li1+aNi0.5Mn0.5、Li1+aNi0.8Co0.2、Li1+aNi0.85Co0.10Al0.05、Li1+aNi0.33Co0.33Mn0.33、Li1+aNi0.45Co0.45Mn0.1、Li1+aMn1.8Al0.2、Li1+aMn1.5Ni0.5、xLiMnO・(1−x)Li1+aMO(M=遷移金属)等が挙げられる(a=0<a≦3.0)。 Specific examples of the substituted ones are, for example, Li 1+a Ni 0.5 Mn 0.5 O 2 , Li 1+a Ni 0.8 Co 0.2 O 2 , Li 1+a Ni 0.85 Co 0.10 Al 0. 05 O 2 , Li 1+a Ni 0.33 Co 0.33 Mn 0.33 O 2 , Li 1+a Ni 0.45 Co 0.45 Mn 0.1 O 2 , Li 1+a Mn 1.8 Al 0.2 O 4 , Li 1+a Mn 1.5 Ni 0.5 O 4 , xLi 2 MnO 3 . (1-x)Li 1+a MO 2 (M=transition metal) and the like (a=0<a≦3.0).

リチウム含有遷移金属リン酸化合物は、LixMPO(M=周期表の第4周期の4族〜11族の遷移金属からなる群より選ばれた一種の元素、xは0<x<1.2)で表すことができ、上記遷移金属(M)としては、V、Ti、Cr、Mg、Zn、Ca、Cd、Sr、Ba、Co、Ni、Fe、MnおよびCuからなる群より選ばれる少なくとも一種の元素であることが好ましく、Co、Ni、Fe、Mnからなる群より選ばれる少なくとも一種の元素であることがより好ましい。例えば、LiFePO、LiFe(PO、LiFeP等のリン酸鉄類、LiCoPO等のリン酸コバルト類、LiMnPO等のリン酸マンガン類、LiNiPO等のリン酸ニッケル類、これらのリチウム遷移金属リン酸化合物の主体となる遷移金属原子の一部をAl、Ti、V、Cr、Mn、Fe、Co、Li、Ni、Cu、Zn、Mg、Ga、Zr、Nb、Si等の他の金属で置換したもの等が挙げられる。これらの中でも、特にLiMnO、LiMn、LiMnO等のリチウム・マンガン複合酸化物や、LiFePO、LiFe(PO、LiFeP等のリン酸鉄類が、高温・充電状態での金属溶出が起こりにくく、また安価であるために好適に用いられる。 The lithium-containing transition metal phosphate compound is LixMPO 4 (M=one element selected from the group consisting of Group 4 to Group 11 transition metals in the 4th period of the periodic table, x is 0<x<1.2). And the transition metal (M) is at least one selected from the group consisting of V, Ti, Cr, Mg, Zn, Ca, Cd, Sr, Ba, Co, Ni, Fe, Mn and Cu. Is more preferable, and at least one element selected from the group consisting of Co, Ni, Fe, and Mn is more preferable. For example, LiFePO 4, Li 3 Fe 2 (PO 4) 3, LiFeP 2 O 7 , etc. of phosphorus Santetsurui, cobalt phosphate such as LiCoPO 4, manganese phosphate such as LiMnPO 4, phosphoric acids such as LiNiPO 4 Nickel, some of the transition metal atoms that are the main constituents of these lithium transition metal phosphate compounds are Al, Ti, V, Cr, Mn, Fe, Co, Li, Ni, Cu, Zn, Mg, Ga, Zr, Examples include those substituted with other metals such as Nb and Si. Among these, particularly lithium-manganese composite oxides such as LiMnO 2 , LiMn 2 O 4 , and Li 2 MnO 4 , and iron phosphates such as LiFePO 4 , Li 3 Fe 2 (PO 4 ) 3 and LiFeP 2 O 7. However, metal elution at a high temperature and in a charged state does not easily occur, and it is inexpensive, and therefore, it is preferably used.

なお、上述の「LixMPOを基本組成とする」とは、その組成式で表される組成のものだけでなく、結晶構造におけるFe等のサイトの一部を他の元素で置換したものも含むことを意味する。さらに、化学量論組成のものだけでなく、一部の元素が欠損等した非化学量論組成のものも含むことを意味する。置換する他の元素はAl、Ti、V、Cr、Mn、Fe、Co、Li、Ni、Cu、Zn、Mg、Ga、Zr、Si等の元素であることが好ましい。上記他元素置換を行う場合は、0.1mol%以上5mol%以下が好ましく、さらに好ましくは0.2mol%以上2.5mol%以下である。
上記正極活物質は、単独で用いてもよく、2種以上を併用してもよい。
In addition, the above-mentioned "having LixMPO 4 as a basic composition" includes not only a composition represented by the composition formula but also a composition in which a part of the site such as Fe in the crystal structure is replaced with another element. Means that. Further, it is meant to include not only the stoichiometric composition but also the non-stoichiometric composition in which some elements are defective. Other elements to be replaced are preferably elements such as Al, Ti, V, Cr, Mn, Fe, Co, Li, Ni, Cu, Zn, Mg, Ga, Zr and Si. When other element substitution is performed, the content is preferably 0.1 mol% or more and 5 mol% or less, and more preferably 0.2 mol% or more and 2.5 mol% or less.
The positive electrode active material may be used alone or in combination of two or more kinds.

(2)表面被覆
上記の正極活物質の表面に、主体となる正極活物質を構成する物質とは異なる組成の物質(以後、適宜「表面付着物質」という)が付着したものを用いることもできる。表面付着物質の例としては酸化アルミニウム、酸化ケイ素、酸化チタン、酸化ジルコニウム、酸化マグネシウム、酸化カルシウム、酸化ホウ素、酸化アンチモン、酸化ビスマス等の酸化物、硫酸リチウム、硫酸ナトリウム、硫酸カリウム、硫酸マグネシウム、硫酸カルシウム、硫酸アルミニウム等の硫酸塩、炭酸リチウム、炭酸カルシウム、炭酸マグネシウム等の炭酸塩等が挙げられる。
(2) Surface coating It is also possible to use a material having a composition different from that of the constituent material of the positive electrode active material (hereinafter referred to as "surface-adhered material" as appropriate) on the surface of the positive electrode active material. .. Examples of surface-adhering substances include aluminum oxide, silicon oxide, titanium oxide, zirconium oxide, magnesium oxide, calcium oxide, boron oxide, antimony oxide, oxides such as bismuth oxide, lithium sulfate, sodium sulfate, potassium sulfate, magnesium sulfate, Examples thereof include sulfates such as calcium sulfate and aluminum sulfate, carbonates such as lithium carbonate, calcium carbonate and magnesium carbonate.

これら表面付着物質は、例えば、溶媒に溶解又は懸濁させて正極活物質に含浸添加させた後に乾燥する方法、表面付着物質前駆体を溶媒に溶解又は懸濁させて正極活物質に含浸添加させた後に加熱等により反応させる方法、正極活物質前駆体に添加して同時に焼成する方法等により、正極活物質表面に付着させることができる。
正極活物質の表面に付着している表面付着物質の質量は、正極活物質の質量に対して、通常0.1ppm以上であり、1ppm以上が好ましく、10ppm以上が更に好ましく、また、通常20%以下であり、10%以下が好ましく、5%以下が更に好ましい。
表面付着物質により、正極活物質表面での非水系電解液の酸化反応を抑制することができ、電池寿命を向上させることができる。しかし、付着量が上記範囲を下回ると、その効果は十分に発現せず、また上記範囲を上回ると、リチウムイオンの出入りを阻害するために抵抗が増加する場合があるため、上記範囲が好ましい。
These surface-adhering substances are dissolved or suspended in a solvent, impregnated and added to the positive electrode active material and then dried, and the surface-adhering substance precursor is dissolved or suspended in a solvent and impregnated and added to the positive electrode active material. After that, it can be attached to the surface of the positive electrode active material by a method of reacting by heating or the like, a method of adding to the precursor of the positive electrode active material and simultaneously firing.
The mass of the surface-adhering substance adhering to the surface of the positive electrode active material is usually 0.1 ppm or more, preferably 1 ppm or more, more preferably 10 ppm or more, and usually 20% with respect to the mass of the positive electrode active material. It is below, preferably 10% or less, more preferably 5% or less.
The surface-adhering substance can suppress the oxidation reaction of the non-aqueous electrolyte solution on the surface of the positive electrode active material, and can improve the battery life. However, if the adhesion amount is less than the above range, the effect is not sufficiently exhibited, and if it exceeds the above range, the resistance may increase due to the obstruction of the entry and exit of lithium ions, so the above range is preferable.

(3)形状
正極活物質粒子の形状は、従来用いられるような、塊状、多面体状、球状、楕円球状、板状、針状、柱状等が用いられるが、中でも一次粒子が凝集して、二次粒子を形成して成り、その二次粒子の形状が球状又は楕円球状であるものが好ましい。
通常、電気化学素子はその充放電に伴い、電極中の活物質が膨張収縮をするため、そのストレスによる活物質の破壊や導電パス切れ等の劣化がおきやすい。従って、一次粒子のみの単一粒子活物質であるよりも、一次粒子が凝集して、二次粒子を形成したものである方が膨張収縮のストレスを緩和して、劣化を防ぐためである。
また、板状等軸配向性の粒子よりも、球状又は楕円球状の粒子の方が、電極の成形時の配向が少ないため、充放電時の電極の膨張収縮も少なく、また電極を作成する際の導電材との混合においても、均一に混合されやすいため好ましい。
(3) Shape The shape of the positive electrode active material particles may be lumps, polyhedra, spheres, ellipsoids, plates, needles, pillars, etc., which are conventionally used. It is preferable that secondary particles are formed and the shape of the secondary particles is spherical or ellipsoidal.
Usually, in an electrochemical device, the active material in the electrode expands and contracts as it is charged and discharged, and the stress is likely to cause the active material to be broken or the conductive path to be broken. Therefore, the primary particles are aggregated to form the secondary particles, rather than the single particle active material having only the primary particles, because the stress of expansion and contraction is alleviated and deterioration is prevented.
In addition, since spherical or elliptic spherical particles have less orientation during molding of the electrode than plate-like particles having equiaxial orientation, expansion and contraction of the electrode during charging and discharging are less, and when forming the electrode. Also in the case of mixing with the conductive material, it is easy to mix uniformly, which is preferable.

(4)タップ密度
正極活物質のタップ密度は、通常0.4g・cm−3以上であり、0.6g・cm−3以上が好ましく、0.8g・cm−3以上が更に好ましく、1.0g・cm−3以上が特に好ましく、また、通常4.0g・cm−3以下であり、3.8g・cm−3以下が好ましい。
タップ密度の高い金属複合酸化物粉体を用いることにより、高密度の正極活物質層を形成することができる。従って、正極活物質のタップ密度が上記範囲を下回ると、正極活物質層形成時に必要な分散媒量が増加すると共に、導電材や結着剤の必要量が増加し、正極活物質層への正極活物質の充填率が制約され、電池容量が制約される場合がある。また、タップ密度は一般に大きいほど好ましく特に上限はないが、上記範囲を下回ると、正極活物質層内における非水系電解液を媒体としたリチウムイオンの拡散が律速となり、負荷特性が低下しやすくなる場合がある。
(4) Tap Density The tap density of the positive electrode active material is usually 0.4 g·cm −3 or more, preferably 0.6 g·cm −3 or more, more preferably 0.8 g·cm −3 or more, and 1. 0 g · cm -3 or more are particularly preferred, and generally not more than 4.0g · cm -3, 3.8g · cm -3 or less.
By using the metal composite oxide powder having a high tap density, a high density positive electrode active material layer can be formed. Therefore, when the tap density of the positive electrode active material is lower than the above range, the amount of the dispersion medium required at the time of forming the positive electrode active material layer is increased, and the required amount of the conductive material and the binder is increased, so The filling rate of the positive electrode active material may be restricted, and the battery capacity may be restricted. Further, the tap density is generally preferably as large as possible, but there is no particular upper limit, but if it is less than the above range, diffusion of lithium ions in the positive electrode active material layer using the non-aqueous electrolyte as a medium becomes rate-determining, and load characteristics are likely to deteriorate. There are cases.

タップ密度の測定は、目開き300μmの篩を通過させて、20cmのタッピングセルに試料を落下させてセル容積を満たした後、粉体密度測定器(例えば、セイシン企業社製タップデンサー)を用いて、ストローク長10mmのタッピングを1000回行なって、その時の体積と試料の質量から密度を算出する。該測定で算出されるタップ密度を、本発明における正極活物質のタップ密度として定義する。 The tap density is measured by passing through a sieve with a mesh opening of 300 μm, dropping the sample into a tapping cell of 20 cm 3 to fill the cell volume, and then using a powder density measuring instrument (for example, Seiden Enterprise Tap Denser). Using this, tapping with a stroke length of 10 mm is performed 1000 times, and the density is calculated from the volume at that time and the mass of the sample. The tap density calculated by the measurement is defined as the tap density of the positive electrode active material in the present invention.

(5)メジアン径d50
正極活物質の粒子のメジアン径d50(一次粒子が凝集して二次粒子を形成している場合には二次粒子径)は、レーザー回折/散乱式粒度分布測定装置を用いても測定することができる。
メジアン径d50は、通常0.1μm以上であり、0.5μm以上が好ましく、1μm以上が更に好ましく、3μm以上が特に好ましく、また、通常20μm以下であり、18μm以下が好ましく、16μm以下が更に好ましく、15μm以下が特に好ましい。メジアン径d50が、上記範囲を下回ると、高嵩密度品が得られなくなる場合があり、上記範囲を上回ると粒子内のリチウムの拡散に時間がかかるため、電池特性の低下や、電池の正極作成すなわち活物質と導電材やバインダー等を溶媒でスラリー化し、薄膜状に塗布する際に、スジを引く等が生じる場合がある。
(5) Median diameter d50
The median diameter d50 of the particles of the positive electrode active material (the secondary particle diameter when primary particles aggregate to form secondary particles) should also be measured using a laser diffraction/scattering particle size distribution analyzer. You can
The median diameter d50 is usually 0.1 μm or more, preferably 0.5 μm or more, more preferably 1 μm or more, particularly preferably 3 μm or more, and usually 20 μm or less, preferably 18 μm or less, more preferably 16 μm or less. , 15 μm or less is particularly preferable. If the median diameter d50 is less than the above range, it may not be possible to obtain a high bulk density product, and if it exceeds the above range, it takes time to diffuse lithium in the particles, resulting in deterioration of battery characteristics and production of a battery positive electrode. That is, when the active material, the conductive material, the binder and the like are slurried with a solvent and applied as a thin film, streaks may occur.

なお、異なるメジアン径d50をもつ正極活物質を2種類以上、任意の比率で混合することで、正極作成時の充填性を更に向上させることもできる。
メジアン径d50の測定は、0.1質量%ヘキサメタリン酸ナトリウム水溶液を分散媒にして、粒度分布計として堀場製作所社製LA−920用いて、5分間の超音波分散後に測定屈折率1.24に設定して測定する。
By mixing two or more kinds of positive electrode active materials having different median diameters d50 at an arbitrary ratio, it is possible to further improve the filling property at the time of producing the positive electrode.
The median diameter d50 was measured by using a 0.1 mass% sodium hexametaphosphate aqueous solution as a dispersion medium and using a LA-920 manufactured by Horiba, Ltd. as a particle size distribution meter to measure a refractive index of 1.24 after ultrasonic dispersion for 5 minutes. Set and measure.

(6)平均一次粒子径
一次粒子が凝集して二次粒子を形成している場合、正極活物質の平均一次粒子径は、通常0.03μm以上であり、0.05μm以上が好ましく、0.08μm以上がより好ましく、0.1μm以上が特に好ましく、また、通常5μm以下であり、4μm以下が好ましく、3μm以下がより好ましく、2μm以下が特に好ましい。上記範囲を上回ると球状の二次粒子を形成し難く、粉体充填性に悪影響を及ぼしたり、比表面積が大きく低下するために、出力特性等の電池性能が低下する可能性が高くなる場合がある。また、上記範囲を下回ると、通常、結晶が未発達であるために充放電の可逆性が劣る等、二次電池の性能を低下させる場合がある。
なお、平均一次粒子径は、走査型電子顕微鏡(SEM)を用いた観察により測定される。具体的には、10000倍の倍率の写真で、水平方向の直線に対する一次粒子の左右の境界線による切片の最長の値を、任意の50個の一次粒子について求め、平均値をとることにより求められる。
(6) Average Primary Particle Diameter When primary particles are aggregated to form secondary particles, the average primary particle diameter of the positive electrode active material is usually 0.03 μm or more, preferably 0.05 μm or more, and 0.1. 08 μm or more is more preferable, 0.1 μm or more is particularly preferable, and usually 5 μm or less, 4 μm or less is preferable, 3 μm or less is more preferable, and 2 μm or less is particularly preferable. If it exceeds the above range, it is difficult to form spherical secondary particles, and the powder filling property is adversely affected, or the specific surface area is greatly reduced, so that there is a high possibility that the battery performance such as output characteristics is deteriorated. is there. On the other hand, when the amount is less than the above range, the performance of the secondary battery may be deteriorated, such that the reversibility of charge and discharge is usually poor because the crystal is not developed yet.
The average primary particle diameter is measured by observation with a scanning electron microscope (SEM). Specifically, in a photograph at a magnification of 10000, the longest value of the intercept by the left and right boundary lines of the primary particles with respect to the horizontal straight line is obtained for any 50 primary particles, and the average value is obtained. To be

(7)BET比表面積
正極活物質のBET比表面積は、BET法を用いて測定した比表面積の値が、通常0.1m・g−1以上であり、0.2m・g−1以上が好ましく、0.3m・g−1以上が更に好ましく、また、通常50m・g−1以下であり、40m・g−1以下が好ましく、30m・g−1以下が更に好ましい。BET比表面積の値が、上記範囲を下回ると、電池性能が低下しやすくなる。また、上記範囲を上回ると、タップ密度が上がりにくくなり、正極活物質形成時の塗布性が低下する場合がある。
(7) BET Specific Surface Area As for the BET specific surface area of the positive electrode active material, the value of the specific surface area measured by the BET method is usually 0.1 m 2 ·g −1 or more, and 0.2 m 2 ·g −1 or more. Is preferred, 0.3 m 2 ·g −1 or more is more preferred, and usually 50 m 2 ·g −1 or less, 40 m 2 ·g −1 or less is preferred, and 30 m 2 ·g −1 or less is more preferred. If the value of the BET specific surface area is less than the above range, the battery performance tends to deteriorate. On the other hand, when the content exceeds the above range, the tap density becomes difficult to increase, and the coatability at the time of forming the positive electrode active material may decrease.

BET比表面積は、表面積計(大倉理研製全自動表面積測定装置)を用いて測定する。試料に対して窒素流通下150℃で30分間、予備乾燥を行なった後、大気圧に対する窒素の相対圧の値が0.3となるように正確に調整した窒素ヘリウム混合ガスを用いて、ガス流動法による窒素吸着BET1点法によって測定する。該測定で求められる比表面積を、本発明における陽極活物質のBET比表面積と定義する。 The BET specific surface area is measured using a surface area meter (Okura Riken full automatic surface area measuring device). After predrying the sample for 30 minutes at 150° C. under a nitrogen flow, a gas was prepared using a nitrogen-helium mixed gas that was accurately adjusted so that the value of the relative pressure of nitrogen with respect to the atmospheric pressure was 0.3. Nitrogen adsorption by flow method BET One-point method. The specific surface area obtained by the measurement is defined as the BET specific surface area of the anode active material in the present invention.

(8)正極活物質の製造法
正極活物質の製造法としては、本発明の要旨を超えない範囲で特には制限されないが、いくつかの方法が挙げられ、無機化合物の製造法として一般的な方法が用いられる。
特に球状ないし楕円球状の活物質を作製するには種々の方法が考えられるが、例えばその1つとして、遷移金属硝酸塩、硫酸塩等の遷移金属原料物質と、必要に応じ他の元素の原料物質を水等の溶媒中に溶解ないし粉砕分散して、攪拌をしながらpHを調節して球状の前駆体を作製回収し、これを必要に応じて乾燥した後、LiOH、LiCO、LiNO等のLi源を加えて高温で焼成して活物質を得る方法が挙げられる。
(8) Method for Producing Positive Electrode Active Material The method for producing the positive electrode active material is not particularly limited as long as it does not exceed the scope of the present invention, but some methods are mentioned, and are generally used as a method for producing an inorganic compound. A method is used.
Various methods are conceivable in particular for producing a spherical or elliptic spherical active material. For example, one of them is a transition metal raw material such as a transition metal nitrate or sulfate, and if necessary, a raw material of another element. Is dissolved or pulverized and dispersed in a solvent such as water, and the pH is adjusted with stirring to prepare and recover a spherical precursor, which is dried if necessary, and then LiOH, Li 2 CO 3 , LiNO A method of adding an Li source such as 3 and baking at a high temperature to obtain an active material can be mentioned.

また、別の方法の例として、遷移金属硝酸塩、硫酸塩、水酸化物、酸化物等の遷移金属原料物質と、必要に応じ他の元素の原料物質を水等の溶媒中に溶解ないし粉砕分散して、それをスプレードライヤー等で乾燥成型して球状ないし楕円球状の前駆体とし、これにLiOH、LiCO、LiNO等のLi源を加えて高温で焼成して活物質を得る方法が挙げられる。
更に別の方法の例として、遷移金属硝酸塩、硫酸塩、水酸化物、酸化物等の遷移金属原料物質と、LiOH、LiCO、LiNO等のLi源と、必要に応じ他の元素の原料物質とを水等の溶媒中に溶解ないし粉砕分散して、それをスプレードライヤー等で乾燥成型して球状ないし楕円球状の前駆体とし、これを高温で焼成して活物質を得る方法が挙
げられる。
In addition, as an example of another method, transition metal raw materials such as transition metal nitrates, sulfates, hydroxides, and oxides, and, if necessary, raw materials of other elements are dissolved or pulverized and dispersed in a solvent such as water. Then, it is subjected to dry molding with a spray dryer or the like to obtain a spherical or elliptic spherical precursor, and a Li source such as LiOH, Li 2 CO 3 or LiNO 3 is added to the precursor, and the mixture is baked at a high temperature to obtain an active material. Is mentioned.
As an example of still another method, transition metal raw materials such as transition metal nitrates, sulfates, hydroxides, and oxides, a Li source such as LiOH, Li 2 CO 3 , and LiNO 3 , and other elements as necessary. The raw material of is dissolved or pulverized and dispersed in a solvent such as water, and dried and molded with a spray dryer or the like to give a spherical or elliptic spherical precursor, which is then baked at a high temperature to obtain an active material. Can be mentioned.

<2−4−2.電極構造と作製法>
以下に、本発明に使用される正極の構成及びその作製法について説明する。
(1)正極の作製法
正極は、正極活物質粒子と結着剤とを含有する正極活物質層を、集電体上に形成して作製される。正極活物質を用いる正極の製造は、公知の何れの方法で作製することができる。すなわち、正極活物質と結着剤、並びに必要に応じて導電材及び増粘剤等を乾式で混合してシート状にしたものを正極集電体に圧着するか、又はこれらの材料を液体媒体に溶解又は分散させてスラリーとして、これを正極集電体に塗布し、乾燥することにより、正極活物質層を集電体上に形成させることにより正極を得ることができる。
<2-4-2. Electrode structure and fabrication method>
The constitution of the positive electrode used in the present invention and the method for producing the same will be described below.
(1) Method for Producing Positive Electrode A positive electrode is produced by forming a positive electrode active material layer containing positive electrode active material particles and a binder on a current collector. The positive electrode using the positive electrode active material can be manufactured by any known method. That is, a positive electrode active material, a binder, and optionally a conductive material, a thickener, etc. are dry mixed to form a sheet, which is then pressure-bonded to a positive electrode current collector, or these materials are used as a liquid medium. A positive electrode can be obtained by forming a positive electrode active material layer on the current collector by dissolving or dispersing it in a slurry to form a slurry, which is applied to the positive electrode current collector and dried.

正極活物質の正極活物質層中の含有量は、好ましくは80質量%以上、より好ましくは82質量%以上、特に好ましくは84質量%以上である。また上限は、好ましくは99質量%以下、より好ましくは98質量%以下である。正極活物質層中の正極活物質の含有量が低いと電気容量が不十分となる場合がある。逆に含有量が高すぎると正極の強度が不足する場合がある。なお、本発明における正極活物質粉体は1種を単独で用いてもよく、異なる組成又は異なる粉体物性の2種以上を任意の組み合わせ及び比率で併用してもよい。 The content of the positive electrode active material in the positive electrode active material layer is preferably 80% by mass or more, more preferably 82% by mass or more, and particularly preferably 84% by mass or more. The upper limit is preferably 99% by mass or less, more preferably 98% by mass or less. When the content of the positive electrode active material in the positive electrode active material layer is low, the electric capacity may be insufficient. On the other hand, if the content is too high, the strength of the positive electrode may be insufficient. The positive electrode active material powder in the present invention may be used alone, or two or more kinds having different compositions or different powder properties may be used in any combination and ratio.

(2)導電材
導電材としては、公知の導電材を任意に用いることができる。具体例としては、銅、ニッケル等の金属材料;天然黒鉛、人造黒鉛等の黒鉛(グラファイト);アセチレンブラック等のカーボンブラック;ニードルコークス等の無定形炭素等の炭素質材料等が挙げられる。なお、これらは、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
導電材は、正極活物質層中に、通常0.01質量%以上、好ましくは0.1質量%以上、より好ましくは1質量%以上、また、通常50質量%以下、好ましくは30質量%以下、より好ましくは15質量%以下含有するように用いられる。含有量が上記範囲よりも下回ると、導電性が不十分となる場合がある。また、上記範囲よりも上回ると、電池容量が低下する場合がある。
(2) Conductive Material As the conductive material, any known conductive material can be used. Specific examples thereof include metal materials such as copper and nickel; graphite such as natural graphite and artificial graphite; carbon black such as acetylene black; and carbonaceous materials such as amorphous carbon such as needle coke. In addition, these may be used individually by 1 type and may be used together by 2 or more types in arbitrary combinations and ratios.
In the positive electrode active material layer, the conductive material is usually 0.01% by mass or more, preferably 0.1% by mass or more, more preferably 1% by mass or more, and usually 50% by mass or less, preferably 30% by mass or less. , And more preferably 15% by mass or less. If the content is less than the above range, the conductivity may be insufficient. If it exceeds the above range, the battery capacity may decrease.

(3)結着剤
正極活物質層の製造に用いる結着剤は、非水系電解液や電極製造時用いる溶媒に対して安定な材料であれば、特に限定されない。
塗布法の場合は、電極製造時に用いる液体媒体に対して溶解又は分散される材料であればよいが、具体例としては、ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート、ポリメチルメタクリレート、芳香族ポリアミド、セルロース、ニトロセルロース等の樹脂系高分子;SBR(スチレン・ブタジエンゴム)、NBR(アクリロニトリル・ブタジエンゴム)、フッ素ゴム、イソプレンゴム、ブタジエンゴム、エチレン・プロピレンゴム等のゴム状高分子;スチレン・ブタジエン・スチレンブロック共重合体又はその水素添加物、EPDM(エチレン・プロピレン・ジエン三元共重合体)、スチレン・エチレン・ブタジエン・エチレン共重合体、スチレン・イソプレン・スチレンブロック共重合体又はその水素添加物等の熱可塑性エラストマー状高分子;シンジオタクチック−1,2−ポリブタジエン、ポリ酢酸ビニル、エチレン・酢酸ビニル共重合体、プロピレン・α−オレフィン共重合体等の軟質樹脂状高分子;ポリフッ化ビニリデン(PVdF)、ポリテトラフルオロエチレン、フッ素化ポリフッ化ビニリデン、ポリテトラフルオロエチレン・エチレン共重合体等のフッ素系高分子;アルカリ金属イオン(特にリチウムイオン)のイオン伝導性を有する高分子組成物等が挙げられる。なお、これらの物質は、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
(3) Binder The binder used in the production of the positive electrode active material layer is not particularly limited as long as it is a material stable to the non-aqueous electrolyte solution and the solvent used in the production of the electrode.
In the case of the coating method, any material can be used as long as it can be dissolved or dispersed in the liquid medium used for manufacturing the electrode, and specific examples include polyethylene, polypropylene, polyethylene terephthalate, polymethylmethacrylate, aromatic polyamide, cellulose, nitro. Resin-based polymers such as cellulose; rubber-like polymers such as SBR (styrene/butadiene rubber), NBR (acrylonitrile/butadiene rubber), fluororubber, isoprene rubber, butadiene rubber, ethylene/propylene rubber; styrene/butadiene/styrene block Such as copolymers or hydrogenated products thereof, EPDM (ethylene/propylene/diene terpolymer), styrene/ethylene/butadiene/ethylene copolymers, styrene/isoprene/styrene block copolymers or hydrogenated products thereof Thermoplastic elastomer-like polymer; Soft resin-like polymer such as syndiotactic-1,2-polybutadiene, polyvinyl acetate, ethylene/vinyl acetate copolymer, propylene/α-olefin copolymer; polyvinylidene fluoride (PVdF) ), polytetrafluoroethylene, fluorinated polyvinylidene fluoride, polytetrafluoroethylene/ethylene copolymers and other fluorine-based polymers; polymer compositions having ion conductivity of alkali metal ions (particularly lithium ions), and the like. To be These substances may be used alone or in any combination of two or more at any ratio.

正極活物質層中の結着剤の割合は、通常0.1質量%以上であり、1質量%以上が好ましく、3質量%以上が更に好ましく、また、通常50質量%以下であり、30質量%以下が好ましく、10質量%以下が更に好ましく、8質量%以下が特に好ましい。結着剤の割合が、上記範囲を下回ると、正極活物質を十分保持できずに正極の機械的強度が不足し、サイクル特性等の電池性能を悪化させてしまう場合がある。また、上記範囲を上回ると、電池容量や導電性の低下につながる場合がある。 The proportion of the binder in the positive electrode active material layer is usually 0.1% by mass or more, preferably 1% by mass or more, more preferably 3% by mass or more, and usually 50% by mass or less, 30% by mass. % Or less is preferable, 10% by mass or less is more preferable, and 8% by mass or less is particularly preferable. If the proportion of the binder is less than the above range, the positive electrode active material cannot be sufficiently retained and the mechanical strength of the positive electrode is insufficient, which may deteriorate the battery performance such as cycle characteristics. On the other hand, if it exceeds the above range, the battery capacity and conductivity may be lowered.

(4)液体媒体
スラリーを形成するための液体媒体としては、正極活物質、導電材、結着剤、並びに必要に応じて使用される増粘剤を溶解又は分散することが可能な溶媒であれば、その種類に特に制限はなく、水系溶媒と有機系溶媒のどちらを用いてもよい。
水系媒体の例としては、例えば、水、アルコールと水との混合媒等が挙げられる。有機系媒体の例としては、ヘキサン等の脂肪族炭化水素類;ベンゼン、トルエン、キシレン、メチルナフタレン等の芳香族炭化水素類;キノリン、ピリジン等の複素環化合物;アセトン、メチルエチルケトン、シクロヘキサノン等のケトン類;酢酸メチル、アクリル酸メチル等のエステル類;ジエチレントリアミン、N,N−ジメチルアミノプロピルアミン等のアミン類;ジエチルエーテル、テトラヒドロフラン(THF)等のエーテル類;N−メチルピロリドン(NMP)、ジメチルホルムアミド、ジメチルアセトアミド等のアミド類;ヘキサメチルホスファルアミド、ジメチルスルフォキシド等の非プロトン性極性溶媒等を挙げることができる。なお、これらは、1種を単独で用いてもよく、また2種以上を任意の組み合わせ及び比率で併用してもよい。
(4) Liquid Medium The liquid medium for forming the slurry may be a solvent that can dissolve or disperse the positive electrode active material, the conductive material, the binder, and the thickener used as necessary. For example, the kind is not particularly limited, and either an aqueous solvent or an organic solvent may be used.
Examples of the aqueous medium include water, a mixed medium of alcohol and water, and the like. Examples of the organic medium include aliphatic hydrocarbons such as hexane; aromatic hydrocarbons such as benzene, toluene, xylene and methylnaphthalene; heterocyclic compounds such as quinoline and pyridine; ketones such as acetone, methylethylketone and cyclohexanone. Esters such as methyl acetate and methyl acrylate; Amines such as diethylenetriamine and N,N-dimethylaminopropylamine; Ethers such as diethyl ether and tetrahydrofuran (THF); N-methylpyrrolidone (NMP) and dimethylformamide And amides such as dimethylacetamide; aprotic polar solvents such as hexamethylphosphamide, dimethylsulfoxide, and the like. In addition, these may be used individually by 1 type and may be used together by 2 or more types in arbitrary combinations and ratios.

(5)増粘剤
スラリーを形成するための液体媒体として水系媒体を用いる場合、増粘剤と、スチレンブタジエンゴム(SBR)等のラテックスを用いてスラリー化するのが好ましい。増粘剤は、通常、スラリーの粘度を調製するために使用される。
増粘剤としては、本発明の効果を著しく制限しない限り制限はないが、具体的には、カルボキシメチルセルロース、メチルセルロース、ヒドロキシメチルセルロース、エチルセルロース、ポリビニルアルコール、酸化スターチ、リン酸化スターチ、カゼイン及びこれらの塩等が挙げられる。これらは、1種を単独で用いても、2種以上を任意の組み合わせ及び比率で併用してもよい。
(5) Thickener When a water-based medium is used as the liquid medium for forming the slurry, it is preferable to use a thickener and a latex such as styrene-butadiene rubber (SBR) to make a slurry. Thickeners are commonly used to adjust the viscosity of slurries.
The thickener is not limited unless the effects of the present invention are significantly limited, but specifically, carboxymethyl cellulose, methyl cellulose, hydroxymethyl cellulose, ethyl cellulose, polyvinyl alcohol, oxidized starch, phosphorylated starch, casein and salts thereof. Etc. These may be used alone or in any combination of two or more at any ratio.

更に増粘剤を使用する場合には、活物質に対する増粘剤の割合は、通常0.1質量%以上、好ましくは0.5質量%以上、より好ましくは0.6質量%以上、また、通常5質量%以下、好ましくは3質量%以下、より好ましくは2質量%以下が望ましい。上記範囲を下回ると著しく塗布性が低下する場合があり、また上記範囲を上回ると、正極活物質層に占める活物質の割合が低下し、電池の容量が低下する問題や正極活物質間の抵抗が増大する場合がある。 When a thickener is further used, the ratio of the thickener to the active material is usually 0.1% by mass or more, preferably 0.5% by mass or more, more preferably 0.6% by mass or more, and It is usually 5% by mass or less, preferably 3% by mass or less, more preferably 2% by mass or less. If it is less than the above range, applicability may be significantly reduced, and if it is more than the above range, the proportion of the active material in the positive electrode active material layer is reduced, which causes a problem of reduction in battery capacity and resistance between the positive electrode active materials. May increase.

(6)圧密化
塗布、乾燥によって得られた正極活物質層は、正極活物質の充填密度を上げるために、ハンドプレス、ローラープレス等により圧密化することが好ましい。正極活物質層の密度は、1g・cm−3以上が好ましく、1.5g・cm−3以上が更に好ましく、2g・cm−3以上が特に好ましく、また、4g・cm−3以下が好ましく、3.5g・cm−3以下が更に好ましく、3g・cm−3以下が特に好ましい。
正極活物質層の密度が、上記範囲を上回ると集電体/活物質界面付近への非水系電解液の浸透性が低下し、特に高電流密度での充放電特性が低下する場合がある。また上記範囲を下回ると、活物質間の導電性が低下し、電池抵抗が増大する場合がある。
(6) Consolidation The positive electrode active material layer obtained by coating and drying is preferably consolidated by a hand press, a roller press or the like in order to increase the packing density of the positive electrode active material. The density of the positive electrode active material layer is preferably 1 g·cm −3 or more, more preferably 1.5 g·cm −3 or more, particularly preferably 2 g·cm −3 or more, and preferably 4 g·cm −3 or less, 3.5 g·cm −3 or less is more preferable, and 3 g·cm −3 or less is particularly preferable.
When the density of the positive electrode active material layer exceeds the above range, the permeability of the non-aqueous electrolyte solution near the current collector/active material interface may be reduced, and the charge/discharge characteristics may be reduced particularly at high current density. On the other hand, if it is less than the above range, the conductivity between the active materials may decrease, and the battery resistance may increase.

(7)集電体
正極集電体の材質としては特に制限は無く、公知のものを任意に用いることができる。具体例としては、アルミニウム、ステンレス鋼、ニッケルメッキ、チタン、タンタル等の金属材料;カーボンクロス、カーボンペーパー等の炭素質材料が挙げられる。中でも金属材料、特にアルミニウムが好ましい。
集電体の形状としては、金属材料の場合、金属箔、金属円柱、金属コイル、金属板、金属薄膜、エキスパンドメタル、パンチメタル、発泡メタル等が挙げられ、炭素質材料の場合、炭素板、炭素薄膜、炭素円柱等が挙げられる。これらのうち、金属薄膜が好ましい。なお、薄膜は適宜メッシュ状に形成してもよい。
集電体の厚さは任意であるが、通常1μm以上であり、3μm以上が好ましく、5μm以上が更に好ましく、また、通常1mm以下であり、100μm以下が好ましく、50μm以下が更に好ましい。薄膜が、上記範囲よりも薄いと、集電体として必要な強度が不足する場合がある。また、薄膜が上記範囲よりも厚いと、取り扱い性が損なわれる場合がある。
(7) Current collector The material of the positive electrode current collector is not particularly limited, and any known material can be used. Specific examples thereof include metal materials such as aluminum, stainless steel, nickel plating, titanium and tantalum; and carbonaceous materials such as carbon cloth and carbon paper. Of these, metallic materials, particularly aluminum are preferable.
Examples of the shape of the current collector include a metal foil, a metal cylinder, a metal coil, a metal plate, a metal thin film, an expanded metal, a punch metal, and a foam metal in the case of a metal material, and a carbon plate in the case of a carbonaceous material, Examples thereof include carbon thin films and carbon cylinders. Of these, metal thin films are preferred. The thin film may be appropriately formed in a mesh shape.
Although the thickness of the current collector is arbitrary, it is usually 1 μm or more, preferably 3 μm or more, more preferably 5 μm or more, and usually 1 mm or less, 100 μm or less, preferably 50 μm or less. If the thin film is thinner than the above range, the strength required as a current collector may be insufficient. If the thin film is thicker than the above range, the handling property may be impaired.

集電体と正極活物質層の厚さの比は特には限定されないが、(電解液注液直前の片面の正極活物質層の厚さ)/(集電体の厚さ)の値が20以下であることが好ましく、より好ましくは15以下、最も好ましくは10以下であり、下限は、0.5以上が好ましく、より好ましくは0.8以上、最も好ましくは1以上の範囲である。この範囲を上回ると、高電流密度充放電時に集電体がジュール熱による発熱を生じる場合がある。この範囲を下回ると、正極活物質に対する集電体の体積比が増加し、電池の容量が減少する場合がある。 The ratio of the thickness of the current collector to the thickness of the positive electrode active material layer is not particularly limited, but the value of (thickness of the positive electrode active material layer on one surface immediately before the electrolyte injection)/(thickness of the current collector) is 20. It is preferably the following or less, more preferably 15 or less, most preferably 10 or less, and the lower limit is preferably 0.5 or more, more preferably 0.8 or more, and most preferably 1 or more. If it exceeds this range, the current collector may generate heat due to Joule heat during high current density charging/discharging. Below this range, the volume ratio of the current collector to the positive electrode active material may increase, and the battery capacity may decrease.

<2−5.セパレータ>
正極と負極との間には、短絡を防止するために、通常はセパレータを介在させる。この場合、本発明の非水系電解液は、通常はこのセパレータに含浸させて用いる。
セパレータの材料や形状については特に制限は無く、本発明の効果を著しく損なわない限り、公知のものを任意に採用することができる。中でも、本発明の非水系電解液に対し安定な材料で形成された、樹脂、ガラス繊維、無機物等が用いられ、保液性に優れた多孔性シート又は不織布状の形態の物等を用いるのが好ましい。
<2-5. Separator>
A separator is usually interposed between the positive electrode and the negative electrode to prevent a short circuit. In this case, the non-aqueous electrolytic solution of the present invention is usually used by impregnating this separator.
There is no particular limitation on the material and shape of the separator, and any known material can be used as long as the effects of the present invention are not significantly impaired. Among them, formed of a material stable to the non-aqueous electrolyte of the present invention, a resin, glass fiber, an inorganic substance or the like is used, and a porous sheet or a non-woven fabric-like substance excellent in liquid retention is used. Is preferred.

樹脂、ガラス繊維セパレータの材料としては、例えば、ポリエチレン、ポリプロピレン等のポリオレフィン、ポリテトラフルオロエチレン、ポリエーテルスルホン、ガラスフィルター等を用いることができる。中でも好ましくはガラスフィルター、ポリオレフィンであり、更に好ましくはポリオレフィンである。これらの材料は1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
上記セパレータの厚さは任意であるが、通常1μm以上であり、5μm以上が好ましく、10μm以上が更に好ましく、また、通常50μm以下であり、40μm以下が好ましく、30μm以下が更に好ましい。セパレータが、上記範囲より薄過ぎると、絶縁性や機械的強度が低下する場合がある。また、上記範囲より厚過ぎると、レート特性等の電池性能が低下する場合があるばかりでなく、非水系電解液二次電池全体としてのエネルギー密度が低下する場合がある。
As the material of the resin and the glass fiber separator, for example, polyolefin such as polyethylene and polypropylene, polytetrafluoroethylene, polyether sulfone, and glass filter can be used. Of these, glass filters and polyolefins are preferable, and polyolefins are more preferable. These materials may be used alone or in any combination of two or more in any ratio.
The thickness of the separator is arbitrary, but is usually 1 μm or more, preferably 5 μm or more, more preferably 10 μm or more, and usually 50 μm or less, preferably 40 μm or less, more preferably 30 μm or less. If the separator is too thin than the above range, the insulating property and mechanical strength may decrease. If the thickness is more than the above range, not only the battery performance such as rate characteristics may deteriorate, but also the energy density of the entire non-aqueous electrolyte secondary battery may decrease.

更に、セパレータとして多孔性シートや不織布等の多孔質のものを用いる場合、セパレータの空孔率は任意であるが、通常20%以上であり、35%以上が好ましく、45%以上が更に好ましく、また、通常90%以下であり、85%以下が好ましく、75%以下が更に好ましい。空孔率が、上記範囲より小さ過ぎると、膜抵抗が大きくなってレート特性が悪化する傾向がある。また、上記範囲より大き過ぎると、セパレータの機械的強度が低下し、絶縁性が低下する傾向にある。
また、セパレータの平均孔径も任意であるが、通常0.5μm以下であり、0.2μm以下が好ましく、また、通常0.05μm以上である。平均孔径が、上記範囲を上回ると、短絡が生じ易くなる。また、上記範囲を下回ると、膜抵抗が大きくなりレート特性が低
下する場合がある。
一方、無機物の材料としては、例えば、アルミナや二酸化ケイ素等の酸化物類、窒化アルミや窒化ケイ素等の窒化物類、硫酸バリウムや硫酸カルシウム等の硫酸塩類が用いられ、粒子形状若しくは繊維形状のものが用いられる。
Furthermore, when using a porous material such as a porous sheet or a non-woven fabric as the separator, the porosity of the separator is arbitrary, but is usually 20% or more, preferably 35% or more, more preferably 45% or more, It is usually 90% or less, preferably 85% or less, more preferably 75% or less. If the porosity is smaller than the above range, the film resistance tends to increase and the rate characteristics tend to deteriorate. On the other hand, if it is larger than the above range, the mechanical strength of the separator tends to decrease, and the insulating property tends to decrease.
The average pore size of the separator is also arbitrary, but is usually 0.5 μm or less, preferably 0.2 μm or less, and usually 0.05 μm or more. When the average pore size exceeds the above range, short circuit is likely to occur. On the other hand, if it is less than the above range, the film resistance may increase and the rate characteristics may deteriorate.
On the other hand, as the inorganic material, for example, oxides such as alumina and silicon dioxide, nitrides such as aluminum nitride and silicon nitride, and sulfates such as barium sulfate and calcium sulfate are used. Things are used.

形態としては、不織布、織布、微多孔性フィルム等の薄膜形状のものが用いられる。薄膜形状では、孔径が0.01〜1μm、厚さが5〜50μmのものが好適に用いられる。前記の独立した薄膜形状以外に、樹脂製の結着剤を用いて前記無機物の粒子を含有する複合多孔層を正極及び負極のうち少なくとも一方の表層に形成させてなるセパレータを用いることができる。例えば、正極の両面に90%粒径が1μm未満のアルミナ粒子を、フッ素樹脂を結着剤として多孔層を形成させることが挙げられる。 As the form, a non-woven fabric, a woven fabric, or a thin film-shaped one such as a microporous film is used. In the form of a thin film, one having a pore diameter of 0.01 to 1 μm and a thickness of 5 to 50 μm is preferably used. In addition to the above-mentioned independent thin film shape, a separator formed by forming a composite porous layer containing the particles of the inorganic material on at least one of the positive electrode and the negative electrode using a resin binder can be used. For example, it is possible to form alumina layers having a 90% particle size of less than 1 μm on both surfaces of the positive electrode and to form a porous layer using a fluororesin as a binder.

<2−6.電池設計>
[電極群]
電極群は、前述の正極板と負極板とを前述のセパレータを介してなる積層構造のもの、及び前述の正極板と負極板とを前述のセパレータを介して渦巻き状に捲回した構造のものの何れでもよい。電極群の体積が電池内容積に占める割合(以下、電極群占有率と称する)は、通常40%以上であり、50%以上が好ましく、また、通常90%以下であり、80%以下が好ましい。電極群占有率が、上記範囲を下回ると、電池容量が小さくなる。また、上記範囲を上回ると空隙スペースが少なく、電池が高温になることによって部材が膨張したり電解質の液成分の蒸気圧が高くなったりして内部圧力が上昇し、電池としての充放電繰り返し性能や高温保存等の諸特性を低下させたり、更には、内部圧力を外に逃がすガス放出弁が作動する場合がある。
<2-6. Battery design>
[Electrode group]
The electrode group has a laminated structure including the positive electrode plate and the negative electrode plate with the separator interposed therebetween, and has a structure in which the positive electrode plate and the negative electrode plate are spirally wound with the separator interposed therebetween. Either may be used. The ratio of the volume of the electrode group to the internal volume of the battery (hereinafter referred to as the electrode group occupancy rate) is usually 40% or more, preferably 50% or more, and usually 90% or less, preferably 80% or less. .. When the electrode group occupancy rate is below the above range, the battery capacity becomes small. In addition, if it exceeds the above range, the void space is small, the internal pressure rises because the member expands or the vapor pressure of the liquid component of the electrolyte increases due to the high temperature of the battery, and the repeated charge and discharge performance as a battery In some cases, various characteristics such as high temperature storage may be deteriorated, and further, a gas release valve that releases the internal pressure to the outside may be activated.

[集電構造]
集電構造は特に限定されるものではないが、本発明の非水系電解液による放電特性の向上をより効果的に実現するには、配線部分や接合部分の抵抗を低減する構造にすることが好ましい。この様に内部抵抗を低減させた場合、本発明の非水系電解液を使用した効果は特に良好に発揮される。
電極群が前述の積層構造のものでは、各電極層の金属芯部分を束ねて端子に溶接して形成される構造が好適に用いられる。1枚の電極面積が大きくなる場合には、内部抵抗が大きくなるので、電極内に複数の端子を設けて抵抗を低減することも好適に用いられる。電極群が前述の捲回構造のものでは、正極及び負極にそれぞれ複数のリード構造を設け、端子に束ねることにより、内部抵抗を低くすることができる。
[Current collecting structure]
Although the current collecting structure is not particularly limited, in order to more effectively realize the improvement of the discharge characteristics by the non-aqueous electrolyte solution of the present invention, a structure in which the resistance of the wiring portion or the joint portion is reduced is used. preferable. When the internal resistance is reduced in this way, the effect of using the non-aqueous electrolyte solution of the present invention is particularly well exhibited.
When the electrode group has the above-described laminated structure, a structure formed by bundling the metal core portions of the electrode layers and welding the terminals is preferably used. Since the internal resistance increases when the area of one electrode increases, it is also preferable to provide a plurality of terminals in the electrode to reduce the resistance. When the electrode group has the above-mentioned wound structure, the internal resistance can be lowered by providing a plurality of lead structures for the positive electrode and the negative electrode and bundling them into the terminals.

[外装ケース]
外装ケースの材質は用いられる非水系電解液に対して安定な物質であれば特に限定されるものではない。具体的には、ニッケルめっき鋼板、ステンレス、アルミニウム又はアルミニウム合金、マグネシウム合金等の金属類、又は、樹脂とアルミ箔との積層フィルム(ラミネートフィルム)が用いられる。軽量化の観点から、アルミニウム又はアルミニウム合金の金属、ラミネートフィルムが好適に用いられる。
[Exterior case]
The material of the outer case is not particularly limited as long as it is a substance that is stable with respect to the non-aqueous electrolyte solution used. Specifically, a nickel-plated steel sheet, metals such as stainless steel, aluminum or aluminum alloy, and magnesium alloy, or a laminated film (laminate film) of resin and aluminum foil is used. From the viewpoint of weight reduction, a metal of aluminum or aluminum alloy, or a laminated film is preferably used.

前記金属類を用いる外装ケースでは、レーザー溶接、抵抗溶接、超音波溶接により金属同士を溶着して封止密閉構造とするもの、若しくは、樹脂製ガスケットを介して前記金属類を用いてかしめ構造とするものが挙げられる。前記ラミネートフィルムを用いる外装ケースでは、樹脂層同士を熱融着することにより封止密閉構造とするもの等が挙げられる。シール性を上げるために、前記樹脂層の間にラミネートフィルムに用いられる樹脂と異なる樹脂を介在させてもよい。特に、集電端子を介して樹脂層を熱融着して密閉構造とする場合には、金属と樹脂との接合になるので、介在する樹脂として極性基を有する樹脂や極性基を導入した変成樹脂が好適に用いられる。 In the outer case using the metals, laser welding, resistance welding, ultrasonic welding to weld the metals to each other to form a hermetically sealed structure, or a caulking structure using the metals via a resin gasket. There are things to do. Examples of the outer case using the laminate film include those having a hermetically sealed structure by heat-sealing resin layers. In order to improve the sealing property, a resin different from the resin used for the laminate film may be interposed between the resin layers. In particular, when a resin layer is heat-sealed via a collector terminal to form a hermetically sealed structure, a metal and a resin are joined, so a resin having a polar group as a resin to intervene or a modification in which a polar group is introduced. Resin is preferably used.

[保護素子]
前述の保護素子として、異常発熱や過大電流が流れた時に抵抗が増大するPTC(Positive Temperature Coefficient)、温度ヒューズ、サーミスター、異常発熱時に電池内部圧力や内部温度の急激な上昇により回路に流れる電流を遮断する弁(電流遮断弁)等が挙げられる。前記保護素子は高電流の通常使用で作動しない条件のものを選択することが好ましく、高出力の観点から、保護素子がなくても異常発熱や熱暴走に至らない設計にすることがより好ましい。
[Protective element]
As the above-mentioned protection element, PTC (Positive Temperature Coefficient) whose resistance increases when abnormal heat generation or excessive current flows, thermal fuse, thermistor, current flowing in the circuit due to abrupt increase of battery internal pressure or internal temperature during abnormal heat generation A valve for shutting off (current cutoff valve) and the like can be mentioned. It is preferable to select the protective element under the condition that it does not operate in normal use with high current, and from the viewpoint of high output, it is more preferable to design so as not to cause abnormal heat generation or thermal runaway without the protective element.

[外装体]
本発明の非水系電解液二次電池は、通常、上記の非水系電解液、負極、正極、セパレータ等を外装体内に収納して構成される。この外装体に制限は無く、本発明の効果を著しく損なわない限り公知のものを任意に採用することができる。
具体的に、外装体の材質は任意であるが、通常は、例えばニッケルメッキを施した鉄、ステンレス、アルミニウム又はその合金、ニッケル、チタン等が用いられる。
また、外装体の形状も任意であり、例えば円筒型、角形、ラミネート型、コイン型、大型等の何れであってもよい。
[Exterior body]
The non-aqueous electrolyte secondary battery of the present invention is usually constituted by accommodating the above-mentioned non-aqueous electrolyte, negative electrode, positive electrode, separator and the like in an outer casing. There is no limitation on the outer package, and any known package can be used as long as the effects of the present invention are not significantly impaired.
Specifically, the material of the outer package is arbitrary, but, typically, nickel-plated iron, stainless steel, aluminum or an alloy thereof, nickel, titanium, or the like is used.
Moreover, the shape of the outer package is also arbitrary, and may be, for example, any of a cylindrical type, a rectangular type, a laminated type, a coin type, a large size, and the like.

以下、実施例及び比較例を示して、本発明について具体的に説明するが、本発明はこの実施例に限定されるものではなく、本発明の要旨を逸脱しない限り、任意に変形して実施することができる。
<実施例1〜15、比較例1〜9>
[試験例A]
[硫酸イオン分の測定]
フルオロスルホン酸リチウムに含まれる硫酸イオンをイオンクロマトグラフィーで測定した。測定結果を表1に示す。
[電池の製造]
EXAMPLES Hereinafter, the present invention will be specifically described by showing Examples and Comparative Examples, but the present invention is not limited to these Examples, and is carried out by arbitrarily modifying it without departing from the gist of the present invention. can do.
<Examples 1 to 15, Comparative Examples 1 to 9>
[Test Example A]
[Measurement of sulfate ion content]
Sulfate ion contained in lithium fluorosulfonate was measured by ion chromatography. The measurement results are shown in Table 1.
[Battery manufacturing]

[負極の作製]
炭素質材料98質量部に、増粘剤及びバインダーとして、それぞれ、カルボキシメチルセルロースナトリウムの水性ディスパージョン(カルボキシメチルセルロースナトリウムの濃度1質量%)100質量部及びスチレン−ブタジエンゴムの水性ディスパージョン(スチレン−ブタジエンゴムの濃度50質量%)1質量部を加え、ディスパーザーで混合してスラリー化した。得られたスラリーを厚さ10μmの銅箔に塗布して乾燥し、プレス機で圧延したものを、活物質層のサイズとして幅30mm、長さ40mm、及び幅5mm、長さ9mmの未塗工部を有する形状に切り出し、それぞれ実施及び比較例に用いる負極とした。
[Preparation of negative electrode]
To 98 parts by mass of the carbonaceous material, 100 parts by mass of an aqueous dispersion of sodium carboxymethylcellulose (concentration of sodium carboxymethylcellulose of 1% by mass) and an aqueous dispersion of styrene-butadiene rubber (styrene-butadiene) as a thickener and a binder, respectively. 1 part by mass of rubber (concentration of rubber: 50% by mass) was added and mixed with a disperser to form a slurry. The obtained slurry is applied to a copper foil having a thickness of 10 μm, dried, and rolled with a press to obtain an active material layer having a width of 30 mm, a length of 40 mm, and an uncoated width of 5 mm and a length of 9 mm. It was cut out into a shape having a part, and used as the negative electrodes used in Examples and Comparative Examples, respectively.

[正極の作製]
正極活物質としてコバルト酸リチウムを90質量%と、導電材としてのアセチレンブラック5質量%と、結着剤としてのポリフッ化ビニリデン(PVdF)5質量%とを、N−メチルピロリドン溶媒中で混合して、スラリー化した。得られたスラリーを、厚さ15μmのアルミ箔に塗布して乾燥し、プレス機で圧延したものを、活物質層のサイズとして幅30mm、長さ40mm、及び幅5mm、長さ9mmの未塗工部を有する形状に切り出し、それぞれ実施例及び比較例に用いる正極とした。
[Preparation of positive electrode]
90 mass% of lithium cobalt oxide as a positive electrode active material, 5 mass% of acetylene black as a conductive material, and 5 mass% of polyvinylidene fluoride (PVdF) as a binder were mixed in a N-methylpyrrolidone solvent. And made into a slurry. The obtained slurry was applied to an aluminum foil having a thickness of 15 μm, dried, and rolled with a press to obtain an active material layer having a width of 30 mm, a length of 40 mm, and an uncoated width of 5 mm and a length of 9 mm. It was cut into a shape having a processed portion, and used as positive electrodes used in Examples and Comparative Examples, respectively.

[電解液の製造]
乾燥アルゴン雰囲気下、エチレンカーボネート(EC)とエチルメチルカーボネート(EMC)との混合物(体積比30:70)に乾燥したLiPFを1mol/Lの割合と
なるように溶解して基本電解液を調製した。この基本電解液に、硫酸イオンを含むフルオロスルホン酸リチウムを5質量%含有するように混合した。
[Production of electrolyte]
Under a dry argon atmosphere, dry LiPF 6 was dissolved in a mixture of ethylene carbonate (EC) and ethyl methyl carbonate (EMC) (volume ratio 30:70) at a ratio of 1 mol/L to prepare a basic electrolyte solution. did. This basic electrolytic solution was mixed so as to contain 5% by mass of lithium fluorosulfonate containing sulfate ion.

[リチウム二次電池の製造]
上記の正極、負極、及びポリエチレン製のセパレータを、負極、セパレータ、正極の順に積層して電池要素を作製した。この電池要素をアルミニウム(厚さ40μm)の両面を樹脂層で被覆したラミネートフィルムからなる袋内に正極と負極の端子を突設させながら挿入した後、表に記載の化合物を混合した電解液をそれぞれ袋内に注入し、真空封止を行い、シート状電池を作製し、それぞれ実施例1及び比較例1に用いる電池とした。
[Manufacture of lithium secondary battery]
The positive electrode, the negative electrode, and the polyethylene separator were laminated in this order on the negative electrode, the separator, and the positive electrode to prepare a battery element. This battery element was inserted into a bag made of a laminated film in which both sides of aluminum (thickness 40 μm) were coated with a resin layer while protruding the terminals of the positive electrode and the negative electrode, and then an electrolytic solution containing the compound shown in the table was mixed. Each was injected into a bag and vacuum-sealed to produce a sheet-shaped battery, which was used as a battery used in Example 1 and Comparative Example 1, respectively.

[初期容量評価]
リチウム二次電池を、電極間の密着性を高めるためにガラス板で挟んだ状態で、25℃において0.2Cに相当する定電流で4.1Vまで充電した後、0.2Cの定電流で3.0Vまで放電した。これを2サイクル行って電池を安定させ、3サイクル目は、0.2Cの定電流で4.2Vまで充電後、4.2Vの定電圧で電流値が0.05Cになるまで充電を実施し、0.2Cの定電流で3.0Vまで放電した。その後、4サイクル目に0.2Cの定電流で4.2Vまで充電後、4.2Vの定電圧で電流値が0.05Cになるまで充電を実施し、0.2Cの定電流で3.0Vまで放電して、初期放電容量を求めた。評価結果を表1に示す。尚、1Cとは電池の基準容量を1時間で放電する電流値を表し、2Cとはその2倍の電流値を、また0.2Cとはその1/5の電流値を表す。
[Initial capacity evaluation]
The lithium secondary battery was charged to a constant current of 0.2 C at a constant current of 0.2 C at 25° C. while being sandwiched between glass plates in order to enhance the adhesion between the electrodes. It was discharged to 3.0V. Do this for 2 cycles to stabilize the battery, and in the 3rd cycle, charge to 4.2V with a constant current of 0.2C and then charge to a current value of 0.05C with a constant voltage of 4.2V. , And was discharged to 3.0 V at a constant current of 0.2 C. After that, in the fourth cycle, the battery was charged with a constant current of 0.2C to 4.2V, and then charged with a constant voltage of 4.2V until the current value became 0.05C. The initial discharge capacity was obtained by discharging to 0V. The evaluation results are shown in Table 1. Note that 1C represents a current value at which the reference capacity of the battery is discharged in 1 hour, 2C represents a current value twice that, and 0.2C represents a current value of 1/5 thereof.

[高温保存膨れ評価]
初期放電容量評価試験の終了した電池を、0.2Cの定電流で4.2Vまで充電後、4.2Vの定電圧で電流値が0.05Cになるまで充電した。これを85℃で24時間保存し、電池を冷却させた後、エタノール浴中に浸して体積を測定し、高温保存前後の体積変化から発生したガス量を求めた。評価結果を表1に示す。
[High temperature storage blistering evaluation]
The battery for which the initial discharge capacity evaluation test was completed was charged to a constant current of 0.2 C up to 4.2 V, and then charged to a constant voltage of 4.2 V until the current value reached 0.05 C. This was stored at 85° C. for 24 hours, and after cooling the battery, it was immersed in an ethanol bath to measure the volume, and the amount of gas generated from the volume change before and after high temperature storage was determined. The evaluation results are shown in Table 1.

表1より、同量のフルオロスルホン酸リチウムを含有する電解液を用いた電池においては、フルオロスルホン酸リチウム中に含まれる硫酸イオンの量が少ない方が、初期放電容量が高く、かつ高温保存時のガス発生量が低いことから、電池特性に優れることが分かる。 From Table 1, in the battery using the electrolytic solution containing the same amount of lithium fluorosulfonate, the smaller the amount of sulfate ion contained in lithium fluorosulfonate, the higher the initial discharge capacity and the storage time at high temperature. It can be seen that the battery characteristics are excellent because the gas generation amount of is low.

[試験例B]
[電解液の製造]
乾燥アルゴン雰囲気下、エチレンカーボネート(EC)とエチルメチルカーボネート(EMC)との混合物(体積比30:70)に乾燥したLiPFを1mol/Lの割合となるように溶解して基本電解液を調製した。この基本電解液に、硫酸イオンを含むフルオロスルホン酸リチウムを表2に記載の割合となるように混合した。
[Test Example B]
[Production of electrolyte]
Under a dry argon atmosphere, dry LiPF 6 was dissolved in a mixture of ethylene carbonate (EC) and ethyl methyl carbonate (EMC) (volume ratio 30:70) at a ratio of 1 mol/L to prepare a basic electrolyte solution. did. Lithium fluorosulfonate containing sulfate ions was mixed with this basic electrolyte solution in the proportions shown in Table 2.

[リチウム二次電池の製造]
実施例1及び比較例1と同様の方法にてシート状電池を作製して初期容量評価及び高温保存膨れ評価を行った。評価結果を表2に示す。
[Manufacture of lithium secondary battery]
A sheet-like battery was prepared in the same manner as in Example 1 and Comparative Example 1, and the initial capacity evaluation and the high temperature storage swelling evaluation were performed. The evaluation results are shown in Table 2.

表2より、製造された電解液の硫酸イオンの量が1.00×10−7×mol/L〜1.00×10−2mol/Lの範囲内であれば、初期放電容量が向上し、高温保存時のガス発生量が低下することから、電池特性が向上することが分かる。 From Table 2, when the amount of sulfate ions in the produced electrolytic solution is in the range of 1.00×10 −7 ×mol/L to 1.00×10 −2 mol/L, the initial discharge capacity is improved. It can be seen that the battery characteristics are improved because the amount of gas generated during high temperature storage is reduced.

本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは、当業者にとって明らかである。 Although the present invention has been described in detail and with reference to particular embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention.

本発明の非水系電解液及びこれを用いた非非水系電解液二次電池は、公知の各種の用途に用いることが可能である。具体例としては、例えば、ノートパソコン、ペン入力パソコン、モバイルパソコン、電子ブックプレーヤー、携帯電話、携帯ファックス、携帯コピー、携帯プリンター、ヘッドフォンステレオ、ビデオムービー、液晶テレビ、ハンディークリーナー、ポータブルCD、ミニディスク、トランシーバー、電子手帳、電卓、メモリーカード、携帯テープレコーダー、ラジオ、バックアップ電源、モーター、自動車、バイク、原動機付自転車、自転車、照明器具、玩具、ゲーム機器、時計、電動工具、ストロボ、カメラ、負荷平準化用電源、自然エネルギー貯蔵電源等が挙げられる。 INDUSTRIAL APPLICABILITY The non-aqueous electrolyte solution of the present invention and the non-aqueous electrolyte secondary battery using the same can be used for various known applications. Specific examples include, for example, laptop computers, pen input computers, mobile computers, e-book players, mobile phones, mobile faxes, mobile copy, mobile printers, headphone stereos, video movies, LCD TVs, handy cleaners, portable CDs, mini disks. , Walkie-talkie, electronic organizer, calculator, memory card, portable tape recorder, radio, backup power supply, motor, automobile, motorcycle, motorbike, bicycle, lighting equipment, toys, game equipment, clock, electric tool, strobe, camera, load A power supply for leveling, a natural energy storage power supply, etc. can be mentioned.

Claims (16)

リチウムイオンを吸蔵・放出可能な正極及び負極、並びに非水系電解液が外装ケースに封入された非水系電解液二次電池であって、該非水系電解液は、フルオロスルホン酸リチウム及び硫酸イオンを含有し、非水系電解液中の硫酸イオンの含有量が、1.0×10−7mol/L以上1.0×10−2mol/L以下であり、かつ前記正極は、集電体上に正極活物質層を有し、前記正極活物質層は、リチウム・コバルト複合酸化物、リチウム・コバルト・ニッケル複合酸化物、リチウム・マンガン複合酸化物、リチウム・コバルト・マンガン複合酸化物、リチウム・ニッケル複合酸化物、リチウム・コバルト・ニッケル複合酸化物、リチウム・ニッケル・マンガン複合酸化物、及びリチウム・ニッケル・コバルト・マンガン複合酸化物、からなる群より選ばれた少なくとも一種を含有する、非水系電解液二次電池。 A positive electrode and a negative electrode capable of inserting and extracting lithium ions, and a non-aqueous electrolyte secondary battery in which a non-aqueous electrolyte solution is enclosed in an outer case, the non-aqueous electrolyte solution containing lithium fluorosulfonate and sulfate ions. The content of sulfate ions in the non-aqueous electrolyte solution is 1.0×10 −7 mol/L or more and 1.0×10 −2 mol/L or less, and the positive electrode is on the current collector. It has a positive electrode active material layer, and the positive electrode active material layer is a lithium-cobalt composite oxide, a lithium-cobalt-nickel composite oxide, a lithium-manganese composite oxide, a lithium-cobalt-manganese composite oxide, a lithium-nickel. Non-aqueous electrolysis containing at least one selected from the group consisting of composite oxide, lithium-cobalt-nickel composite oxide, lithium-nickel-manganese composite oxide, and lithium-nickel-cobalt-manganese composite oxide. Liquid secondary battery. 前記正極における正極活物質層中の正極活物質の含有量が80質量%以上である、請求項1に記載の非水系電解液二次電池。 The non-aqueous electrolyte secondary battery according to claim 1, wherein the content of the positive electrode active material in the positive electrode active material layer of the positive electrode is 80% by mass or more. 前記正極における正極活物質層が結着剤を含む、請求項1または2に記載の非水系電解液二次電池。 The non-aqueous electrolyte secondary battery according to claim 1, wherein the positive electrode active material layer in the positive electrode contains a binder. 前記非水系電解液がフルオロスルホン酸リチウム以外のリチウム塩を含有する、請求項1〜3の何れか1項に記載の非水系電解液二次電池。 The non-aqueous electrolyte secondary battery according to claim 1, wherein the non-aqueous electrolyte contains a lithium salt other than lithium fluorosulfonate. 前記フルオロスルホン酸リチウム以外のリチウム塩がLiPF及びLiBFの少なくとも一方である、請求項4に記載の非水系電解液二次電池。 The non-aqueous electrolyte secondary battery according to claim 4, wherein the lithium salt other than lithium fluorosulfonate is at least one of LiPF 6 and LiBF 4 . 前記非水系電解液がフッ素原子を有する環状カーボネートを含有する請求項1〜5の何れか1項に記載の非水系電解液二次電池。 The non-aqueous electrolyte secondary battery according to claim 1, wherein the non-aqueous electrolyte contains a cyclic carbonate having a fluorine atom. 前記フッ素原子を有する環状カーボネートが非水系電解液中に0.001質量%以上85質量%以下含有されている、請求項6に記載の非水系電解液二次電池。 The non-aqueous electrolyte secondary battery according to claim 6, wherein the cyclic carbonate having a fluorine atom is contained in the non-aqueous electrolyte in an amount of 0.001% by mass or more and 85% by mass or less. 前記非水系電解液が炭素−炭素不飽和結合を有する環状カーボネートを含有する、請求項1〜7の何れか1項に記載の非水系電解液二次電池。 The non-aqueous electrolyte secondary battery according to any one of claims 1 to 7, wherein the non-aqueous electrolyte contains a cyclic carbonate having a carbon-carbon unsaturated bond. 前記炭素−炭素不飽和結合を有する環状カーボネートが非水系電解液中に0.001質量%以上10質量%以下含有されている、請求項8に記載の非水系電解液二次電池。 The non-aqueous electrolyte secondary battery according to claim 8, wherein the cyclic carbonate having a carbon-carbon unsaturated bond is contained in the non-aqueous electrolyte in an amount of 0.001% by mass or more and 10% by mass or less. 前記非水系電解液が環状スルホン酸エステルを含有する、請求項1〜9の何れか1項に記載の非水系電解液二次電池。 The non-aqueous electrolyte secondary battery according to claim 1, wherein the non-aqueous electrolyte contains a cyclic sulfonate ester. 前記環状スルホン酸エステルの非水系電解液中における含有量が0.001質量%以上10質量%以下である、請求項10に記載の非水系電解液二次電池。 The non-aqueous electrolyte secondary battery according to claim 10, wherein the content of the cyclic sulfonate ester in the non-aqueous electrolyte is 0.001 mass% or more and 10 mass% or less. 前記非水系電解液がシアノ基を有する化合物を含有する、請求項1〜11の何れか1項に記載の非水系電解液二次電池。 The non-aqueous electrolyte secondary battery according to claim 1, wherein the non-aqueous electrolyte contains a compound having a cyano group. 前記シアノ基を有する化合物の非水系電解液中における含有量が0.001質量%以上10質量%以下である、請求項12に記載の非水系電解液二次電池。 The non-aqueous electrolyte secondary battery according to claim 12, wherein the content of the compound having a cyano group in the non-aqueous electrolyte is 0.001% by mass or more and 10% by mass or less. 前記非水系電解液がジイソシアネート化合物を含有する請求項1〜13の何れか1項に
記載の非水系電解液二次電池。
The non-aqueous electrolyte secondary battery according to any one of claims 1 to 13, wherein the non-aqueous electrolyte solution contains a diisocyanate compound.
前記ジイソシアネート化合物の非水系電解液中における含有量が0.001質量%以上5質量%以下である、請求項14に記載の非水系電解液二次電池。 The non-aqueous electrolyte secondary battery according to claim 14, wherein the content of the diisocyanate compound in the non-aqueous electrolyte solution is 0.001% by mass or more and 5% by mass or less. 前記非水系電解液がリチウムオキサラート塩類を含有する、請求項1〜15の何れか1項に記載の非水系電解液二次電池。 The non-aqueous electrolyte secondary battery according to claim 1, wherein the non-aqueous electrolyte contains a lithium oxalate salt.
JP2019129014A 2011-04-13 2019-07-11 Lithium fluorosulfonate, non-aqueous electrolyte, and non-aqueous electrolyte secondary battery Active JP6750716B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011089341 2011-04-13
JP2011089341 2011-04-13

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2018138133A Division JP6555400B2 (en) 2011-04-13 2018-07-24 Lithium fluorosulfonate, non-aqueous electrolyte, and non-aqueous electrolyte secondary battery

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2020136707A Division JP2020181834A (en) 2011-04-13 2020-08-13 Lithium fluorosulfonate, non-aqueous electrolyte, and non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2019204791A JP2019204791A (en) 2019-11-28
JP6750716B2 true JP6750716B2 (en) 2020-09-02

Family

ID=47432267

Family Applications (6)

Application Number Title Priority Date Filing Date
JP2012092111A Active JP5987431B2 (en) 2011-04-13 2012-04-13 Lithium fluorosulfonate, non-aqueous electrolyte, and non-aqueous electrolyte secondary battery
JP2016023960A Active JP6128242B2 (en) 2011-04-13 2016-02-10 Non-aqueous electrolyte additive
JP2017079873A Active JP6380600B2 (en) 2011-04-13 2017-04-13 Lithium fluorosulfonate, non-aqueous electrolyte, and non-aqueous electrolyte secondary battery
JP2018138133A Active JP6555400B2 (en) 2011-04-13 2018-07-24 Lithium fluorosulfonate, non-aqueous electrolyte, and non-aqueous electrolyte secondary battery
JP2019129014A Active JP6750716B2 (en) 2011-04-13 2019-07-11 Lithium fluorosulfonate, non-aqueous electrolyte, and non-aqueous electrolyte secondary battery
JP2020136707A Pending JP2020181834A (en) 2011-04-13 2020-08-13 Lithium fluorosulfonate, non-aqueous electrolyte, and non-aqueous electrolyte secondary battery

Family Applications Before (4)

Application Number Title Priority Date Filing Date
JP2012092111A Active JP5987431B2 (en) 2011-04-13 2012-04-13 Lithium fluorosulfonate, non-aqueous electrolyte, and non-aqueous electrolyte secondary battery
JP2016023960A Active JP6128242B2 (en) 2011-04-13 2016-02-10 Non-aqueous electrolyte additive
JP2017079873A Active JP6380600B2 (en) 2011-04-13 2017-04-13 Lithium fluorosulfonate, non-aqueous electrolyte, and non-aqueous electrolyte secondary battery
JP2018138133A Active JP6555400B2 (en) 2011-04-13 2018-07-24 Lithium fluorosulfonate, non-aqueous electrolyte, and non-aqueous electrolyte secondary battery

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2020136707A Pending JP2020181834A (en) 2011-04-13 2020-08-13 Lithium fluorosulfonate, non-aqueous electrolyte, and non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (6) JP5987431B2 (en)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102316004B1 (en) 2011-04-11 2021-10-21 미쯔비시 케미컬 주식회사 Method for producing lithium fluorosulfonate, lithium fluorosulfonate, nonaqueous electrolyte solution, and nonaqueous electrolyte secondary battery
JP6035835B2 (en) * 2011-04-19 2016-11-30 三菱化学株式会社 Method for producing lithium fluorosulfonate and lithium fluorosulfonate
WO2014157591A1 (en) * 2013-03-27 2014-10-02 三菱化学株式会社 Nonaqueous electrolyte solution and nonaqueous electrolyte battery using same
WO2014155708A1 (en) * 2013-03-29 2014-10-02 株式会社日立製作所 Positive electrode material for lithium ion secondary batteries, positive electrode for lithium ion secondary batteries, and lithium ion secondary battery
JP6287187B2 (en) * 2013-12-26 2018-03-07 三洋電機株式会社 Nonaqueous electrolyte secondary battery
JP6292996B2 (en) * 2014-06-23 2018-03-14 森田化学工業株式会社 Method for producing lithium fluorosulfate and a solution containing the same
JP6279707B2 (en) * 2015-03-12 2018-02-14 株式会社東芝 Nonaqueous electrolyte battery and battery pack
JP6582605B2 (en) * 2015-06-24 2019-10-02 三洋電機株式会社 Non-aqueous electrolyte secondary battery and manufacturing method thereof
WO2017065145A1 (en) * 2015-10-15 2017-04-20 セントラル硝子株式会社 Electrolyte solution for nonaqueous electrolyte batteries, and nonaqueous electrolyte battery using same
JP6591073B2 (en) * 2017-01-06 2019-10-16 日立化成株式会社 Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2019040796A (en) * 2017-08-28 2019-03-14 トヨタ自動車株式会社 Nonaqueous electrolyte secondary battery
CN111433964B (en) * 2017-12-01 2023-02-17 大金工业株式会社 Electrolyte solution, electrochemical device, lithium ion secondary battery, and assembly
JP7116311B2 (en) * 2017-12-12 2022-08-10 セントラル硝子株式会社 Electrolyte for non-aqueous electrolyte battery and non-aqueous electrolyte battery using the same
WO2019117101A1 (en) * 2017-12-12 2019-06-20 セントラル硝子株式会社 Electrolyte solution for nonaqueous electrolyte batteries and nonaqueous electrolyte battery using same
JP7116312B2 (en) * 2018-11-26 2022-08-10 セントラル硝子株式会社 Electrolyte for non-aqueous electrolyte battery and non-aqueous electrolyte battery using the same
EP3748757A4 (en) * 2018-01-31 2021-03-17 Panasonic Intellectual Property Management Co., Ltd. Non-aqueous electrolyte secondary battery, electrolyte solution and method for producing non-aqueous electrolyte secondary battery
US20220115698A1 (en) 2018-12-28 2022-04-14 Sanyo Electric Co., Ltd. Non-aqueous electrolyte secondary battery and method for manufacturing same
CN113228339A (en) 2018-12-28 2021-08-06 三洋电机株式会社 Nonaqueous electrolyte secondary battery and method for manufacturing same
US20220069339A1 (en) * 2019-01-31 2022-03-03 Panasonic Intellectual Property Management Co., Ltd. Lithium metal secondary battery
JP2020140927A (en) * 2019-03-01 2020-09-03 三菱ケミカル株式会社 Nonaqueous electrolyte solution and energy device arranged by use thereof
EP3982445A4 (en) * 2019-06-04 2022-07-20 Mitsubishi Chemical Corporation Non-aqueous electrolyte and non-aqueous electrolyte battery
JP7290087B2 (en) * 2019-09-10 2023-06-13 トヨタ自動車株式会社 Non-aqueous electrolyte secondary battery
JP7167117B2 (en) * 2020-12-07 2022-11-08 プライムプラネットエナジー&ソリューションズ株式会社 Non-aqueous electrolyte secondary battery

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3415687A (en) * 1966-03-29 1968-12-10 Honeywell Inc Electric current producing cell
JPS55144663A (en) * 1979-04-27 1980-11-11 Sanyo Electric Co Ltd Battery with non-aqueous electrolyte
JPS61252619A (en) * 1985-05-02 1986-11-10 旭硝子株式会社 New electric double-layer capacitor
JPH07296849A (en) * 1994-04-28 1995-11-10 Japan Storage Battery Co Ltd Nonaqueous electrolyte secondary battery
JP3071393B2 (en) * 1996-11-08 2000-07-31 セントラル硝子株式会社 Method for producing electrolyte for lithium battery
US6350546B1 (en) * 1998-01-20 2002-02-26 Wilson Greatbatch Ltd. Sulfate additives for nonaqueous electrolyte rechargeable cells
JP4017386B2 (en) * 2001-12-17 2007-12-05 スリーエム イノベイティブ プロパティズ カンパニー Method for producing fluoroalkylsulfonyl group-containing alkali metal salt in nonaqueous solvent and method for using the same
JP4649113B2 (en) * 2004-01-20 2011-03-09 株式会社東芝 Nonaqueous electrolyte secondary battery
JP5498645B2 (en) * 2006-10-02 2014-05-21 三星エスディアイ株式会社 Lithium secondary battery
JP5433953B2 (en) * 2008-02-07 2014-03-05 株式会社Gsユアサ Nonaqueous electrolyte secondary battery
JP2009269810A (en) * 2008-05-07 2009-11-19 Kee:Kk Method for producing high-purity lithium hydroxide
JP5339869B2 (en) * 2008-11-28 2013-11-13 三洋電機株式会社 Non-aqueous electrolyte for secondary battery and non-aqueous electrolyte secondary battery
JP2010225522A (en) * 2009-03-25 2010-10-07 Sony Corp Electrolyte, and secondary battery
JP5443118B2 (en) * 2009-03-31 2014-03-19 三菱マテリアル株式会社 Method for producing bis (fluorosulfonyl) imide salt, method for producing bis (fluorosulfonyl) imide salt and fluorosulfate, and method for producing bis (fluorosulfonyl) imide / onium salt
KR102316004B1 (en) * 2011-04-11 2021-10-21 미쯔비시 케미컬 주식회사 Method for producing lithium fluorosulfonate, lithium fluorosulfonate, nonaqueous electrolyte solution, and nonaqueous electrolyte secondary battery

Also Published As

Publication number Publication date
JP6380600B2 (en) 2018-08-29
JP6128242B2 (en) 2017-05-17
JP5987431B2 (en) 2016-09-07
JP2018181855A (en) 2018-11-15
JP2012230897A (en) 2012-11-22
JP6555400B2 (en) 2019-08-07
JP2019204791A (en) 2019-11-28
JP2016106369A (en) 2016-06-16
JP2018088386A (en) 2018-06-07
JP2020181834A (en) 2020-11-05

Similar Documents

Publication Publication Date Title
JP6750716B2 (en) Lithium fluorosulfonate, non-aqueous electrolyte, and non-aqueous electrolyte secondary battery
JP6187566B2 (en) Non-aqueous electrolyte and non-aqueous electrolyte secondary battery
JP6485485B2 (en) Non-aqueous electrolyte and non-aqueous electrolyte secondary battery
KR102388003B1 (en) Method for producing lithium fluorosulfonate, lithium fluorosulfonate, nonaqueous electrolyte solution, and nonaqueous electrolyte secondary battery
JP6604014B2 (en) Non-aqueous electrolyte and non-aqueous electrolyte secondary battery
JP5962028B2 (en) Non-aqueous electrolyte and lithium secondary battery using the same
JP2021050136A (en) Non-aqueous electrolyte secondary battery and power storage device
JP6031868B2 (en) Non-aqueous electrolyte and non-aqueous electrolyte battery using the same
JP2014086221A (en) Nonaqueous electrolyte secondary battery
JP2019135730A (en) Nonaqueous electrolytic solution and nonaqueous electrolytic solution secondary battery
JP2021015812A (en) Non-aqueous electrolyte and non-aqueous electrolyte secondary battery
JP6780450B2 (en) Non-aqueous electrolyte and non-aqueous electrolyte secondary batteries
JP6690275B2 (en) Non-aqueous electrolyte and non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190722

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200714

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200727

R151 Written notification of patent or utility model registration

Ref document number: 6750716

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313121

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350