JP2009269810A - Method for producing high-purity lithium hydroxide - Google Patents

Method for producing high-purity lithium hydroxide Download PDF

Info

Publication number
JP2009269810A
JP2009269810A JP2008145094A JP2008145094A JP2009269810A JP 2009269810 A JP2009269810 A JP 2009269810A JP 2008145094 A JP2008145094 A JP 2008145094A JP 2008145094 A JP2008145094 A JP 2008145094A JP 2009269810 A JP2009269810 A JP 2009269810A
Authority
JP
Japan
Prior art keywords
lithium
hydrochloric acid
lithium hydroxide
aqueous solution
lithium chloride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008145094A
Other languages
Japanese (ja)
Inventor
Isao Kuribayashi
功 栗林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KEE KK
Kee KK
Original Assignee
KEE KK
Kee KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KEE KK, Kee KK filed Critical KEE KK
Priority to JP2008145094A priority Critical patent/JP2009269810A/en
Publication of JP2009269810A publication Critical patent/JP2009269810A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method by which lithium hydroxide which cannot be stored for quite a while and is incapable of domestic stockpile can be produced as needed. <P>SOLUTION: Aqueous lithium chloride solutions are obtained from lithium carbonate, a lithium-bearing ore and a used lithium-ion secondary battery each capable of stockpiling with hydrochloric acid, or an aqueous lithium chloride solution is prepared using powder of lithium chloride separated from lithium-containing brine by adsorption with an inorganic adsorbent, and each of the aqueous lithium chloride solutions is subjected to bipolar membrane electrodialysis to simultaneously produce hydrochloric acid and an aqueous lithium hydroxide solution. The hydrochloric acid is reacted with a stored lithium source so as to repeatedly obtain lithium chloride. The aqueous lithium hydroxide solution is passed through a purification step where the impurities are diminished or removed and high-purity lithium hydroxide monohydrate is obtained. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

発明の詳細な説明Detailed Description of the Invention

産業上の利用分野Industrial application fields

本発明は、リチウムイオン二次電池正極材用原料、セラミックス材料用原料、高純度のリチウム化合物用原料として有用な高純度水酸化リチウムの製造法に関する。The present invention relates to a method for producing high purity lithium hydroxide useful as a raw material for a lithium ion secondary battery positive electrode material, a raw material for a ceramic material, and a raw material for a high purity lithium compound.

近年、水酸化リチウムは、リチウムイオン二次電池用正極活物質及び電解質としてのLiPFを製造するリチウム源として、またSAWフィルター材料としてのニオブ酸リチウム、タンタル酸リチウム等の電子機器向け原材料として使用されている。
また緻密な材料設計のために水酸化リチウムに含まれる不純物を更に低減することが要望されている。
従来の水酸化リチウムの製造法は、潅水に含まれる塩化リチウムから炭酸リチウムにして取り出し、水酸化カルシウムを添加して水酸化リチウムにするのが一般的である。不純物を低減するために水の沸騰温度近くで水酸化リチウムを析出させて分離し、水酸化ナトリウムと水酸化リチウムの熱水に対する溶解度差を利用してナトリウム分を低減する工夫がされてきたが限界があり、カルシウム、ナトリウム、塩素イオン、硫酸イオンが水酸化リチウム・1水和物中に数十ppm含まれており、用途によって不純物を低減するために更に精製する必要があった。
しかもリチウム源としての鉱石あるいは潅水が採取される海外のサイトでの製造が一般的である。遠路輸送しなければならず原材料としての国内安定確保の観点からも近年の需要拡大とともにリスクも増大して来ている。
水酸化リチウムは、保管時に空気中の二酸化炭素を吸収し炭酸リチウムに一部変質しやすく、また3から6ヶ月の保存、保管期間を経過すると固化しあるいは塊状になり粉体取り扱い作業に支障を来たすために長期保管が利かずに必要量を使用必要時に製造し、供給する必要があった。貯蔵性に乏しい故、原材料として、海外で生産されている水酸化リチウムを国内に備蓄することが困難であった。
海外からの輸入に頼る現状では、物流上、安定した物量確保の観点から難があった。急増する需要に応じ、国内使用顧客先への納入の自由度を確保できてしかも迅速に効率的に製造できる技術の開発が要請されてきた。
In recent years, lithium hydroxide has been used as a lithium source for producing a positive electrode active material for lithium ion secondary batteries and LiPF 6 as an electrolyte, and as a raw material for electronic devices such as lithium niobate and lithium tantalate as SAW filter materials. Has been.
Further, it is desired to further reduce impurities contained in lithium hydroxide for precise material design.
In a conventional method for producing lithium hydroxide, lithium carbonate contained in irrigation is taken out as lithium carbonate, and calcium hydroxide is generally added to make lithium hydroxide. In order to reduce impurities, lithium hydroxide is deposited and separated near the boiling temperature of water, and the device has been devised to reduce the sodium content by utilizing the difference in solubility between sodium hydroxide and lithium hydroxide in hot water. There is a limit, and calcium, sodium, chloride ions, and sulfate ions are contained in lithium hydroxide monohydrate by several tens of ppm, and it is necessary to further refine the impurities in order to reduce impurities.
In addition, production at overseas sites where ore or irrigation as a lithium source is collected is common. From the standpoint of ensuring domestic stability as a raw material that must be transported over long distances, the risk has increased with the recent increase in demand.
Lithium hydroxide absorbs carbon dioxide in the air during storage and is easily transformed into lithium carbonate. It also solidifies or becomes a lump after 3 to 6 months of storage and storage, which hinders powder handling operations. Therefore, it was necessary to manufacture and supply the necessary amount at the time of use without using long-term storage. Because of its poor storage properties, it was difficult to stockpile lithium hydroxide produced overseas as a raw material in Japan.
In the current situation of relying on imports from overseas, there was a difficulty in terms of securing a stable quantity in terms of logistics. In response to the rapidly increasing demand, there has been a demand for the development of a technology that can secure the degree of freedom of delivery to domestic customers and that can be manufactured quickly and efficiently.

発明が解決しようとする課題Problems to be solved by the invention

長期保存しても変質がほとんどなく、リチウム源として備蓄可能な炭酸リチウム、塩化リチウム、リチウム含有鉱石に注目し、また使用済みのリチウムイオン二次電池を備蓄されたリチウム資源として捉えてこれらを出発原料にして国内に必要とされる予測水酸化リチウム数量に見合うように随時水酸化リチウムを製造することが出来る簡便な製造法を提供することにある。Focusing on lithium carbonate, lithium chloride, and lithium-containing ore that can be stored as a lithium source with little deterioration even after long-term storage, and used lithium-ion secondary batteries as stored lithium resources. It is an object of the present invention to provide a simple production method capable of producing lithium hydroxide at any time so as to meet the predicted quantity of lithium hydroxide required as a raw material in Japan.

課題を解決するための手段Means for solving the problem

本発明者は、上記課題について種々検討した結果、塩化リチウムに着目し、塩化リチウムを水に溶解した塩化リチウム水溶液をバイポーラ膜電気透析により水酸化リチウム水溶液を得る一方同時に製造される塩酸を繰り返し使用できることを見出し、本発明を完成させるに至った。すなわち(1)大量に国内備蓄しうる炭酸リチウムを出発原料にして塩酸と反応させて塩化リチウム水溶液を得てバイポーラ膜電気透析にかける。(2)大量に国内備蓄しうるところの潅水以外のリチウム資源であり備蓄可能なリチウム含有鉱石から塩酸処理により塩化リチウム水溶液を得てバイポーラ膜電気透析にかける。(3)使用済みリチウム二次電池の資源回収にあたりリチウム塩の電解質、正極活物質のリチウム遷移金属複合酸化物から塩酸処理により塩化リチウム水溶液を得てバイポーラ膜電気透析にかける。
(4)潅水から選択的に吸着分離された塩化リチウムの粉末を備蓄しておいて随時、塩化リチウム水溶液にしてバイポーラ膜電気透析にかける。こうして塩酸を得て繰り返して使用する一方当該水酸化リチウム水溶液に精製工程を加えて不純物を除去ないし低減することを特徴とする高純度水酸化リチウムの製造法である。
As a result of various studies on the above problems, the present inventor has paid attention to lithium chloride, and obtained lithium hydroxide aqueous solution by bipolar membrane electrodialysis using lithium chloride aqueous solution obtained by dissolving lithium chloride in water, while repeatedly using hydrochloric acid produced simultaneously. The present inventors have found that the present invention can be accomplished and have completed the present invention. (1) Lithium carbonate that can be stored in a large amount in Japan is used as a starting material and reacted with hydrochloric acid to obtain a lithium chloride aqueous solution, which is then subjected to bipolar membrane electrodialysis. (2) A lithium chloride aqueous solution is obtained by hydrochloric acid treatment from lithium-containing ore that is a lithium resource other than irrigation that can be stored in large quantities in Japan and is subjected to bipolar membrane electrodialysis. (3) When recovering the resources of the used lithium secondary battery, an aqueous lithium chloride solution is obtained from the lithium salt electrolyte and the lithium transition metal composite oxide of the positive electrode active material by hydrochloric acid treatment and subjected to bipolar membrane electrodialysis.
(4) A lithium chloride powder selectively adsorbed and separated from the irrigation is stored and, as needed, made into a lithium chloride aqueous solution and subjected to bipolar membrane electrodialysis. In this way, hydrochloric acid is obtained and used repeatedly, while a purification process is added to the aqueous lithium hydroxide solution to remove or reduce impurities, thereby producing a high purity lithium hydroxide.

以下、本発明を具体的に説明する。
すなわち、本発明は、塩化リチウムを出発物質とし、長期保存の出来ない、すなわち、備蓄の出来ない水酸化リチウムを得る方法に関する。水酸化リチウムを必要とする際に、随時、塩化リチウムを水に溶解した塩化リチウム水溶液をバイポーラ膜電気透析により目的の水酸化リチウム水溶液を得る一方同時に製造される塩酸を繰り返し使用できることを見出し、省資源的な本発明を完成させるに至った。すなわち(1)大量に国内備蓄しうる炭酸リチウムを塩酸と反応させて塩化リチウム水溶液を得て、陽極と陰極との間にバイポーラ膜、陰イオン交換膜及び腸イオン交換膜を使用して塩室、酸室およびアルカリ室を形成させ、塩室に塩化リチウムの水溶液を供給して酸室から塩酸をアルカリ室から水酸化リチウム水溶液をそれぞれ取り出すことのできるバイポーラ膜電気透析により塩酸を得る一方、当該水酸化リチウム水溶液を精製工程により、不純物を除去ないし低減することを特徴とする高純度水酸化リチウムの製造法である。水酸化リチウム水溶液を得る一方同時に製造される塩酸を炭酸リチウムとの反応に繰り返して使用する方法、(2)潅水以外のリチウム資源であり大量に国内備蓄しうるところのリチウム含有鉱石から塩酸処理により塩化リチウム水溶液を得てバイポーラ膜電気透析により水酸化リチウム水溶液を得る一方同時に製造される塩酸を繰り返して使用する方法、(3)使用済みリチウム二次電池の資源回収にあたりリチウム塩の電解質、正極活物質のリチウム遷移金属複合酸化物から塩酸処理により塩化リチウム水溶液を得てバイポーラ膜電気透析により水酸化リチウム水溶液を得る一方同時に製造される塩酸を繰り返して使用する方法、(4)潅水から選択的に吸着分離された塩化リチウムの粉末を備蓄しておいて随時、塩化リチウム水溶液にしてバイポーラ膜電気透析により水酸化リチウム水溶液を得る一方同時に製造される塩酸を繰り返して使用する方法である。
The present invention will be specifically described below.
That is, the present invention relates to a method for obtaining lithium hydroxide that cannot be stored for a long period of time, that is, cannot be stored, using lithium chloride as a starting material. When lithium hydroxide is required, it is found that lithium chloride aqueous solution in which lithium chloride is dissolved in water is used to obtain the desired lithium hydroxide aqueous solution by bipolar membrane electrodialysis, while simultaneously produced hydrochloric acid can be used repeatedly. The present invention has been completed as a resource. (1) Lithium carbonate that can be stored in large quantities in Japan is reacted with hydrochloric acid to obtain a lithium chloride aqueous solution, and a bipolar membrane, an anion exchange membrane and an intestinal ion exchange membrane are used between the anode and the cathode. In addition, an acid chamber and an alkali chamber are formed, and an aqueous solution of lithium chloride is supplied to the salt chamber to obtain hydrochloric acid by bipolar membrane electrodialysis that can take out hydrochloric acid from the acid chamber and an aqueous lithium hydroxide solution from the alkaline chamber, respectively, A method for producing high-purity lithium hydroxide, wherein impurities are removed or reduced by a purification step of a lithium hydroxide aqueous solution. A method of repeatedly using hydrochloric acid produced at the same time for reaction with lithium carbonate while obtaining an aqueous lithium hydroxide solution. (2) Lithium-containing ore which is a lithium resource other than irrigation and can be stored in large quantities by hydrochloric acid treatment. A method in which an aqueous lithium chloride solution is obtained and a lithium hydroxide aqueous solution is obtained by bipolar membrane electrodialysis, while hydrochloric acid produced at the same time is repeatedly used. (3) Lithium salt electrolyte, positive electrode activity for resource recovery of used lithium secondary batteries A method of using lithium chloride aqueous solution by treatment with hydrochloric acid from lithium transition metal composite oxide of the substance and obtaining lithium hydroxide aqueous solution by bipolar membrane electrodialysis while repeatedly using hydrochloric acid produced simultaneously (4) Selectively from irrigation Store the adsorbed and separated lithium chloride powder as needed in an aqueous lithium chloride solution. It is to use repeatedly hydrochloric acid while being produced at the same time obtain a lithium hydroxide aqueous solution by bipolar membrane electrodialysis Te.

本発明の水酸化リチウムを得るには、耐アルカリ性の材質と耐酸性の材質から構成された腐食による不純物混入のない電気透析装置を用いて陽極と陰極との間にバイポーラ膜、陰イオン交換膜及び陽イオン交換膜を使用して塩室、酸室およびアルカリ室を形成させ、塩室に塩化リチウムの水溶液を供給して酸室から塩酸をアルカリ室から水酸化リチウム水溶液をそれぞれ取り出し、当該水酸化リチウム水溶液に精製工程を付加して不純物を除去ないし低減する。In order to obtain the lithium hydroxide of the present invention, a bipolar membrane and an anion exchange membrane are used between an anode and a cathode using an electrodialyzer composed of an alkali-resistant material and an acid-resistant material and not contaminated by corrosion. And forming a salt chamber, an acid chamber and an alkali chamber using a cation exchange membrane, supplying an aqueous solution of lithium chloride to the salt chamber, taking out hydrochloric acid from the acid chamber and removing the lithium hydroxide aqueous solution from the alkali chamber, respectively. A purification process is added to the lithium oxide aqueous solution to remove or reduce impurities.

例えば、精製工程としてカルシウム、マグネシウム等のアルカリ土類、微量の金属イオンを吸着除去するキレート剤としては、イミノジ酢酸型、アミノリン酸型のキレート樹脂を使用することが出来る。カラム内での空間速度(SV)は、通常、2から10hr−1の範囲で精製操作を行う。またナトリウム塩で出荷されることが多いので酸処理、水洗、9−11%高純度水酸化リチウム濃度の水溶液でリチウム塩に転換しておく。特に限定されないが、アンバーライトIRC748(オルガノ社製)、アンバーライトIRC747(オルガノ社製)のリチウム塩が使用される。For example, iminodiacetic acid type or aminophosphate type chelating resins can be used as the chelating agent for adsorbing and removing alkaline earths such as calcium and magnesium and trace amounts of metal ions in the purification step. The space velocity (SV) in the column is usually 2 to 10 hr −1 in the purification operation. Further, since it is often shipped as a sodium salt, it is converted to a lithium salt with an acid treatment, water washing, and an aqueous solution of 9-11% high-purity lithium hydroxide concentration. Although not particularly limited, lithium salts of Amberlite IRC748 (manufactured by Organo) and Amberlite IRC747 (manufactured by Organo) are used.

リチウム以外のナトリウム、カリウム等の一価のアルカリイオンの低減ないし除去と二価のアルカリ土類のカルシウム、マグネシウムの完全吸着除去する陽イオン交換樹脂としてスチレン・ジビニルベンゼンとの架橋ポリマーのスルホン酸基を官能基とする強酸性陽イオン交換樹脂とカルボン酸基を官能基とするアクリル酸やメタクリル酸とジビニルベンゼンの共重合体を母体とする弱酸性陽イオン交換樹脂を用いることができる。不純物量に応じて水素イオンを放出するR−H型とLiカチオンを放出するR−Li型のいずれでも使用できる。Reduction or removal of monovalent alkali ions other than lithium, such as sodium and potassium, and sulfonic acid groups of cross-linked polymers with styrene / divinylbenzene as cation exchange resins for complete adsorption and removal of divalent alkaline earth calcium and magnesium A weakly acidic cation exchange resin having a functional group as a base and a weakly acidic cation exchange resin based on a copolymer of acrylic acid or methacrylic acid and divinylbenzene having a carboxylic acid group as a functional group can be used. Either the RH type that releases hydrogen ions or the R-Li type that releases Li cations according to the amount of impurities can be used.

塩素イオン、硫酸イオン、炭酸水素イオン等の陰イオンを吸着し、低減ないし除去する陰イオン交換樹脂としてスチレンとジビニルベンゼンとのコポリマーにクロロメチル化して、トリメチルアミンやジメチルアミンやジメチルエタノールアミンを使ってアミノ化したものを使用する。Chloromethylated copolymer of styrene and divinylbenzene as anion exchange resin that adsorbs and reduces or removes anions such as chloride ion, sulfate ion and hydrogen carbonate ion, and then uses trimethylamine, dimethylamine and dimethylethanolamine. Use aminated product.

本発明の精製工程ではかかるキレート剤、陽イオン交換樹脂、陰イオン交換樹脂を用いて水酸化リチウムの水への溶解度の上限近くの濃度まで濃縮してから処理することもできる。
また必要であれば水酸化リチウムを析出させた残液を再度、かかる精製処理を行い、濃縮されて存在する不純物を除去してから熱水中での析出・脱水乾燥することで最終的に水酸化リチウムの収率を高めることが出来る。
In the purification step of the present invention, the chelating agent, cation exchange resin, or anion exchange resin can be used after concentration to a concentration close to the upper limit of the solubility of lithium hydroxide in water.
In addition, if necessary, the residual liquid in which lithium hydroxide is precipitated is again subjected to such purification treatment, concentrated impurities are removed, and then the precipitate is dehydrated and dehydrated and dried in hot water. The yield of lithium oxide can be increased.

本発明で得られた水酸化リチウム・1水和物は、炭酸ガスと反応させて高純度炭酸リチウムにも出来るし、脱水して水酸化リチウム無水物としてリチウムイオン二次電池用の正極活物質、電解質としてのLiPFを製造するリチウム源として、またSAWフィルター材料としてのニオブ酸リチウム、タンタル酸リチウム等の電子機器向け原材料として使用される。また高純度化した炭酸リチウムにしておけば、備蓄が可能であり、長期保存後に本発明の炭酸リチウム水溶液の電解を施すならば、精製工程も不要であり、高純度水酸化リチウムを随時得られる。The lithium hydroxide monohydrate obtained in the present invention can be made into high-purity lithium carbonate by reacting with carbon dioxide gas, or dehydrated to obtain lithium hydroxide anhydride as a positive electrode active material for a lithium ion secondary battery It is used as a lithium source for producing LiPF 6 as an electrolyte, and as a raw material for electronic devices such as lithium niobate and lithium tantalate as SAW filter materials. In addition, if it is made highly purified lithium carbonate, it can be stored, and if the lithium carbonate aqueous solution of the present invention is electrolyzed after long-term storage, a purification step is unnecessary, and high purity lithium hydroxide can be obtained at any time. .

本発明に使用する塩化リチウムは、市販の塩化リチウムでも、必要あれば、常法により不純物を低減あるいは除去してから使用可能である。As the lithium chloride used in the present invention, even commercially available lithium chloride can be used after reducing or removing impurities by a conventional method, if necessary.

本発明に使用する塩化リチウムとして大量リチウム資源備蓄の観点から炭酸リチウムを国内に備蓄しておいて随時塩酸を反応させた塩化リチウム水溶液を使用する。As the lithium chloride used in the present invention, an aqueous lithium chloride solution prepared by stocking lithium carbonate in Japan from the viewpoint of stocking a large amount of lithium resources and reacting with hydrochloric acid at any time is used.

本発明に使用する塩化リチウムとしてリチウム含有鉱石から塩酸を利用して抽出して得られる。本発明に使用するリチウム含有鉱石としては、例えば、リチア輝石(スポジュメンとも呼ばれる。代表的な組成としてLiAlSiがあげられる。)、ユークリプタイト(代表的組成、LiAlSiO)、ペタル石(代表的組成、LiAlSi10)、紅雲母(リチア雲母とも呼ばれる。代表的組成、KMgLiAlSi1240)(OH)F4)、チンワルド雲母(代表的組成、K(Li,Fe,Al)(AlSi10)(F、OH)、マナドナイト(代表的組成、H24LiAl14Si53)、トリフィル石(代表的組成、Li(Fe,Mn)PO4でFe分がMn分より多いもの)、リシオフィライト(代表的組成、Li(Fe,Mn)PO4でMn分がFe分より多いもの)、アンブリゴ石(代表的組成、(Li,Na)Al(PO4)(F,OH))、フレモンタイト(ナトロモンブラサイトともナトロアンブリゴナイトとも呼ばれる。代表的組成、(Na,Li)Al(PO)(OH,F)、シックラー石(代表的組成、(Li,Mn,Fe)(PO))等がある。The lithium chloride used in the present invention is obtained by extracting from lithium-containing ore using hydrochloric acid. Examples of the lithium-containing ore used in the present invention include lithia pyroxene (also called spodumene. Typical examples include LiAlSi 2 O 6 ), eucryptite (typical composition, LiAlSiO 4 ), petalite ( Typical composition, LiAlSi 4 O 10 ), red mica (also called Lithia mica. Typical composition, K 4 Mg 4 Li 4 Al 3 Si 12 O 40 ) (OH) 4 F4), chinwald mica (typical composition, K (Li, Fe, Al) 3 (AlSi 3 O 10 ) (F, OH), manadnite (typical composition, H 24 Li 4 Al 14 B 4 Si 6 O 53 ), trifilite (typical composition, Li (Fe , Mn) PO4 with more Fe than Mn), Liciophyllite (typical composition, Li (Fe, Mn) PO4 with Mn content of F More than a minute), ambrigolite (typical composition, (Li, Na) Al (PO4) (F, OH)), Fremontite (also called Natromon bracite or natroambrigonite. Li) Al (PO 4 ) (OH, F), Sickler stone (typical composition, (Li, Mn, Fe) (PO 4 )) and the like.

本発明に使用する塩化リチウムとしては、使用済みのリチウムイオン二次電池からのLiPF6等のリチウム含有電解質、正極活物質に含まれるリチウム遷移金属複合酸化物中のリチウム分に塩酸を反応させて得られる塩化リチウムである。The lithium chloride used in the present invention is obtained by reacting hydrochloric acid with lithium content in a lithium-containing electrolyte such as LiPF6 from a used lithium ion secondary battery and a lithium transition metal composite oxide contained in a positive electrode active material. Lithium chloride.

本発明に使用する塩化リチウムとしては、リチウムを含む潅水をギブサイト(ギブス石)、ボーサイト、ノルストランダイト、バイアーライト等の層状構造を有するAl(OH)のペレットの入ったカラムに通液し、LiCl/Al(OH)3として選択的に吸着し、得られた塩化リチウムである。前記のリチウム含有鉱石から塩酸を利用して抽出して得られる塩化リチウム水溶液に水酸化アルミニウム層状化合物で選択的に吸着させて得た塩化リチウムでも良い。バイポーラ膜電気透析で得られた塩酸は、かかる層状化合物の再生のためにも使用することが出来る。As lithium chloride used in the present invention, lithium-containing irrigation is passed through a column containing a pellet of Al (OH) 3 having a layered structure such as gibbsite (gibbstone), bauxite, norstrandite, bayerite, etc. LiCl / Al (OH) 3 was selectively adsorbed and obtained lithium chloride. Lithium chloride obtained by selectively adsorbing with an aluminum hydroxide layered compound on a lithium chloride aqueous solution obtained by extracting hydrochloric acid from the lithium-containing ore may also be used. Hydrochloric acid obtained by bipolar membrane electrodialysis can also be used for the regeneration of such layered compounds.

本発明に使用できる電気透析装置は、強アルカリ、塩酸に耐えうる材質であれば材料として使用できる。例えばポリプロピレン等のプラスチックスの電槽が使用できる。
装置構成は、陽極と陰極との間に陽極と陰極との間にバイポーラ膜、陰イオン交換膜及び陽イオン交換膜を使用して塩室、酸室およびアルカリ室からなる。塩室に塩化リチウムの水溶液を供給して酸室から塩酸をアルカリ室から水酸化リチウム水溶液をそれぞれ取り出すことのできるようにしたバイポーラ膜電気透析の装置構成である。
The electrodialysis apparatus that can be used in the present invention can be used as a material as long as it can withstand strong alkali and hydrochloric acid. For example, a plastic container such as polypropylene can be used.
The apparatus is composed of a salt chamber, an acid chamber and an alkali chamber using a bipolar membrane, an anion exchange membrane and a cation exchange membrane between the anode and the cathode. This is a bipolar membrane electrodialysis apparatus configuration in which an aqueous solution of lithium chloride is supplied to a salt chamber so that hydrochloric acid can be taken out from the acid chamber and an aqueous lithium hydroxide solution can be taken out from the alkaline chamber.

本発明に使用する陽イオン交換膜は、一価の陽イオン(リチウム等)を通過しうる膜であり、スルホン酸基、カルボン酸基、ホスホン酸基、硫酸エステル基、リン酸エステル基を少なくとも1種以上有する高分子からなる膜であればよい。
スルホン酸基を有するフッ素系陽イオン交換膜、ペルフルオロカルボン酸基を導入した陽イオン交換膜、四フッ化エチレンとカルボン酸・スルホン酸を官能基とするペルフルオロビニールの共重合体の陽イオン交換膜、ペルフルオロカルボン酸ポリマーとペルフルオロスルホン酸ポリマーの膜を貼りあわせた陽イオン交換膜、ペルフルオロスルホン酸ポリマーとペルフルオロカルボン酸ポリマーとを積層した陽イオン交換膜等がある。補強繊維を付したり、更に一価のカチオンの選択透過性を向上させて陽イオン交換膜を透過するカルシウムとかマグネシウム等の多価イオンの通過を抑制したり、陰イオン例えばOHイオン、塩素イオン、硫酸イオン等の通過を抑制したり排除の目的で添加剤を塗布したり、表層面を密な構造にしたり、他の膜を張り合わせてもよい。ネオセプターCMV、ネオセプターCMB、ネオセプターCMS、ネオセプターCMT、ネオセプターCIMS、ネオセプターCL−25T、ネオセプターCMD、ネオセプターCM−2、ネオセプターCSO(以上、株式会社トクヤマ社製、商品名)、セレミオンCMV、セレミオンCAV、セレミオンCSV(旭硝子社製、商品名)、FKF,FKC,FKL,FKE(フマテック社製、商品名)、ナフィオン324、ナフィオン117、ナフィオン115(デュポン社製、商品名)等がある。
The cation exchange membrane used in the present invention is a membrane that can pass a monovalent cation (such as lithium), and has at least a sulfonic acid group, a carboxylic acid group, a phosphonic acid group, a sulfate ester group, and a phosphate ester group. Any film made of a polymer having one or more kinds may be used.
Fluorine cation exchange membranes with sulfonic acid groups, cation exchange membranes with perfluorocarboxylic acid groups introduced, and cation exchange membranes of perfluorovinyl copolymers with functional groups of ethylene tetrafluoride and carboxylic acid / sulfonic acid Further, there are a cation exchange membrane in which a membrane of a perfluorocarboxylic acid polymer and a perfluorosulfonic acid polymer is bonded, a cation exchange membrane in which a perfluorosulfonic acid polymer and a perfluorocarboxylic acid polymer are laminated, and the like. Attaching reinforcing fibers, further improving the selective permeability of monovalent cations to suppress the passage of multivalent ions such as calcium and magnesium that permeate the cation exchange membrane, and anions such as OH ions and chloride ions In addition, additives may be applied for the purpose of suppressing or eliminating the passage of sulfate ions, the surface layer surface may have a dense structure, or other films may be bonded together. Neoceptor CMV, Neoceptor CMB, Neoceptor CMS, Neoceptor CMT, Neoceptor CIMS, Neoceptor CL-25T, Neoceptor CMD, Neoceptor CM-2, Neoceptor CSO (above, manufactured by Tokuyama Corporation, trade name) ), Selemion CMV, Selemion CAV, Selemion CSV (Asahi Glass Co., Ltd., trade name), FKF, FKC, FKL, FKE (Fumatech Co., Ltd., trade name), Nafion 324, Nafion 117, Nafion 115 (DuPont, trade name) ) Etc.

本発明に使用する陰イオン交換膜は、第4級アンモニウム基の強塩基性基に、第1級アミノ基、第2級アミノ基、第3級アミノ基等の弱塩基性官能基を有する高分子からなる膜であればよい。
ネオセプターACM、ネオセプターAM−1、ネオセプターACS、ネオセプターACLE−5P、ネオセプターAHA、ネオセプターAMH、ネオセプターACS(以上、株式会社トクヤマ社製、商品名)、セレミオンAMV、セレミオンAAV(旭硝子社製、商品名)、FAB,FAA(フマテック社製、商品名)等がある。
The anion exchange membrane used in the present invention has a high basic group having a weak basic functional group such as a primary amino group, a secondary amino group, and a tertiary amino group in a strong basic group of a quaternary ammonium group. Any film made of molecules may be used.
Neoceptor ACM, Neoceptor AM-1, Neoceptor ACS, Neoceptor ACLE-5P, Neoceptor AHA, Neoceptor AMH, Neoceptor ACS (above, Tokuyama Co., Ltd., trade name), Selemion AMV, Selemion AAV ( Asahi Glass Co., Ltd., trade name), FAB, FAA (Fumatech Co., trade name) and the like.

本発明に使用するバイポーラ膜は、陽イオン交換膜と陰イオン交換膜とが張り合わさっている構造を有する複合膜であればよく、特に制限がない。
陽イオン交換膜と陰イオン交換膜との界面を無機化合物で処理し、両膜を接合した膜、イオン交換膜の表面に反対電荷を有するイオン交換樹脂の微粒子と母体ポリマーとの混合物を沈着させた膜等の公知の膜を使用することが出来る。
ネオセプターBP−1(株式会社トクヤマ社製、商品名)、セレミオン(旭硝子社製、商品名)等がある。
The bipolar membrane used in the present invention is not particularly limited as long as it is a composite membrane having a structure in which a cation exchange membrane and an anion exchange membrane are bonded together.
Treating the interface between the cation exchange membrane and the anion exchange membrane with an inorganic compound, depositing a mixture of both membranes, a mixture of ion exchange resin particles with opposite charges and the base polymer on the surface of the ion exchange membrane A known film such as a thick film can be used.
Neoceptor BP-1 (trade name, manufactured by Tokuyama Corporation), Selemion (trade name, manufactured by Asahi Glass Co., Ltd.), and the like.

本発明に使用する陰極は、水素過電が低いものが好ましく、鉄、ニッケル、ステンレスチール、等の金属板、鉄、ステンレスチール等の基材の表面に含硫黄ニッケル、ラネーニッケル系合金、酸化ニッケルが被覆されたもの、金、白金、パラジウム等の1種以上からなるメッキされたものが使用できる。The cathode used in the present invention preferably has a low hydrogen over-electricity, a metal plate of iron, nickel, stainless steel, etc., a surface of the base material such as iron, stainless steel, etc., sulfur-containing nickel, Raney nickel alloy, nickel oxide Can be used, and can be plated with one or more of gold, platinum, palladium and the like.

本発明に使用する陽極にはステンレススチール、チタン、金、白金、パラジウム等の金属板、表面に酸化ルテニウム、無機酸化物、カーボン類の少なくとも1種以上被覆したものが使用できる。As the anode used in the present invention, a metal plate made of stainless steel, titanium, gold, platinum, palladium or the like, and a surface coated with at least one of ruthenium oxide, inorganic oxide, and carbon can be used.

本発明による電気透析の方法としては、酸室およびアルカリ室にそれぞれの室に供給する塩酸と水酸化リチウム水溶液のタンクを設けて、それぞれの液タンクと室との間でそれぞれの液を循環させるのが好ましい。生成してくる塩酸または水酸化リチウム水溶液を抜き出す方法として、稼動の始めは濃度の薄い塩酸及び水酸化リチウム水溶液を仕込んでおいて塩酸および水酸化リチウムを生成させ、所定の濃度になった時に所定量を抜き出してから蒸留水または精製水を補充して初期の薄い濃度にもどすいわゆるバッチ式でも、予め所定濃度の塩酸、水酸化リチウム水溶液を仕込んでおき、通電時に通電電気量に応じて連続的に蒸留水または精製水を添加することにより所定の濃度の塩酸、水酸化リチウム水溶液をオーバーフローさせる連続式でもよい。In the electrodialysis method according to the present invention, the acid chamber and the alkali chamber are provided with tanks of hydrochloric acid and lithium hydroxide aqueous solution to be supplied to the chambers, and the respective liquids are circulated between the liquid tanks and the chambers. Is preferred. As a method of extracting the hydrochloric acid or lithium hydroxide aqueous solution that is generated, at the beginning of operation, hydrochloric acid and lithium hydroxide aqueous solution with low concentrations are charged to produce hydrochloric acid and lithium hydroxide, and when the concentration reaches a predetermined level. Even in the so-called batch method, where a fixed amount is extracted and then replenished with distilled water or purified water to return to the initial thin concentration, a predetermined concentration of hydrochloric acid or lithium hydroxide aqueous solution is charged in advance, and it is continuously applied according to the amount of electricity applied. Alternatively, a continuous system may be used in which distilled water or purified water is added to overflow a hydrochloric acid or lithium hydroxide aqueous solution having a predetermined concentration.

同様に塩化リチウム水溶液も塩室と塩タンクとを塩水溶液循環ラインで結び、塩室から排出された塩水溶液を塩タンクを通して再び塩室に循環しながら脱塩していく方法が採用される。セル電圧を測定し、測定された電圧が予め設定された電圧値を越えた時に塩水溶液循環ラインに新たな塩化リチウム水溶液を塩水溶液供給ラインに通して供給する。Similarly, the salt solution and salt tank are also connected to the salt solution tank through a salt solution circulation line, and the salt solution discharged from the salt chamber is desalted while circulating again through the salt tank to the salt chamber. The cell voltage is measured, and when the measured voltage exceeds a preset voltage value, a new lithium chloride aqueous solution is supplied to the salt solution circulation line through the salt solution supply line.

セル電圧を監視する方法は、従来公知の方法が採用される。セル電圧を検知するには一般的には複数枚隔てた膜と膜との間に2本以上の白金線電極を挿入しておき、通電下に電圧を測定し、前述の電極間のセル積層数で除して算出する方法を採用することができる。陽極室と陰極室に白金線電極を挿入しておきスタック間の電圧を検出し、セル電圧を測定することにより塩化リチウム水溶液の濃度の平均値を得ることが出来るとともにブリスター等の異常発生がいずれかの膜に発生した場合にも検出可能であり好ましい。As a method of monitoring the cell voltage, a conventionally known method is adopted. In order to detect the cell voltage, generally two or more platinum wire electrodes are inserted between two or more separated membranes, the voltage is measured under current flow, and the cell stack between the aforementioned electrodes is measured. A method of calculating by dividing by a number can be employed. By inserting platinum wire electrodes in the anode and cathode chambers, detecting the voltage between the stacks and measuring the cell voltage, the average value of the concentration of the lithium chloride aqueous solution can be obtained, and any abnormalities such as blistering can occur. It is possible to detect even when it occurs in such a film, which is preferable.

セル電圧は通常1〜3ボルトである。予め設定されたセル電圧、例えば、4〜6ボルトを越えた時、塩室の塩化リチウム水溶液の濃度が電気透析には適さない程度まで低下していることを意味する。かかる場合には、塩水溶液循環ラインに新たな塩化リチウム水溶液を供給する。The cell voltage is usually 1 to 3 volts. When exceeding a preset cell voltage, for example, 4 to 6 volts, it means that the concentration of the lithium chloride aqueous solution in the salt chamber is lowered to an extent that is not suitable for electrodialysis. In such a case, a new lithium chloride aqueous solution is supplied to the salt aqueous solution circulation line.

本発明に用いられるバイポーラ膜電気透析の電流密度は、通常1〜50A/dmの範囲であり好ましくは5〜20A/dmの範囲で定電流密度で稼動する。
セル電圧は、電流密度が一定であれば、塩酸、塩化リチウム水溶液、水酸化リチウム水溶液の濃度、各溶液の流速、温度、陽イオン交換膜、陰イオン交換膜、バイポーラ膜の電気抵抗、ブリスター、スケール発生の有無等の要因によって変化する。新たな塩化リチウム水溶液を追加してもセル電圧が低下しない時は、バイポーラ膜中のブリスター発生、またはセル中の膜にスケールが発生したものと考えられるので、即座に電気透析を停止するのがよい。
The current density of the bipolar membrane electrodialysis used in the present invention is usually in the range of 1 to 50 A / dm 2 , preferably 5 to 20 A / dm 2 , and operates at a constant current density.
If the current density is constant, the cell voltage is hydrochloric acid, lithium chloride aqueous solution, lithium hydroxide aqueous solution concentration, flow rate of each solution, temperature, cation exchange membrane, anion exchange membrane, bipolar membrane electrical resistance, blister, It varies depending on factors such as the presence or absence of scale. If the cell voltage does not decrease even when a new lithium chloride aqueous solution is added, it is considered that blistering has occurred in the bipolar membrane or scale has occurred in the membrane in the cell. Good.

発明の効果The invention's effect

本発明によれば塩化リチウム水溶液をバイポーラ膜電気透析することにより水酸化リチウム水溶液と塩酸を同時に製造でき、かつ塩酸をリチウム含有鉱石からの塩化リチウム抽出、リチウムイオン二次電池からリチウム資源として塩化リチウムとして回収するのに繰り返して使用できる。一方の水酸化リチウム水溶液をイオン交換樹脂で不純物を除去、低減することにより高純度のリチウム原料としてリチウムイオン二次電池用正極活物質の焼成に、電解質のLiPF等を製造するのに、また電子機器向けのSAWフィルター材料としてのニオブ酸リチウム、タンタル酸リチウム等の原材料として供給することが出来る。
また、潅水から得た塩化リチウムを塩酸と上記用途に水酸化リチウムを製造することが可能となる。
According to the present invention, lithium hydroxide aqueous solution and hydrochloric acid can be produced simultaneously by bipolar membrane electrodialysis of lithium chloride aqueous solution, and hydrochloric acid is extracted from lithium-containing ore, and lithium chloride is used as a lithium resource from a lithium ion secondary battery. Can be used repeatedly to recover. One lithium hydroxide aqueous solution is removed and reduced with an ion exchange resin to sinter positive electrode active material for lithium ion secondary batteries as a high purity lithium raw material, to produce electrolyte LiPF 6 and the like, and It can be supplied as raw materials such as lithium niobate and lithium tantalate as SAW filter materials for electronic equipment.
In addition, it becomes possible to produce lithium hydroxide for the above-mentioned use with hydrochloric acid obtained from irrigation.

以下実施例、比較例、参考例により本発明を詳しく説明するが、本発明の範囲は、これらの実施例に限定されるものではない。 分析法は、リチウム以外の各元素は、ICP法で測定する。リチウム量(%)については、滴定法でもとめたアルカリ滴定当量からICP法でもとめたリチウム以外のアルカリ、アルカリ土類分を補正し、水酸化リチウム・1水和物として算出し、リチウム理論含有量16.549%を乗じた数値として示す。塩素イオン(Cl)と硫酸根(SO4−−)は、イオンクロマトグラフィー法で測定する。Hereinafter, the present invention will be described in detail with reference to Examples, Comparative Examples, and Reference Examples, but the scope of the present invention is not limited to these Examples. In the analysis method, each element other than lithium is measured by the ICP method. Lithium content (%) is calculated as lithium hydroxide monohydrate by correcting alkali and alkaline earth components other than lithium as determined by ICP method from alkali titration equivalent as determined by titration method. It is shown as a numerical value multiplied by an amount of 16.549%. Chlorine ions (Cl ) and sulfate radicals (SO 4 − − ) are measured by ion chromatography.

工業グレードの炭酸リチウム粉末を希塩酸に溶解し、最後に蒸発乾固する。
これを蒸留水に溶解して塩化リチウム水溶液とする。
1対の陰陽極間に第1のバイポーラ膜、陽イオン交換膜、陰イオン交換膜、第2のバイポーラ膜の順である。第1のバイポーラ膜の陰イオン交換体側と陽イオン交換膜の間に構成される第1の流路をアルカリ室とし水酸化リチウム水溶液を存在させ、陽イオン交換膜と陰イオン交換膜との構成される第2の流路を塩室として塩化リチウム水溶液を存在させて、陰イオン交換膜と第2のバイポーラ膜の陽イオン交換体の間に作られる第3の流路を酸室として塩酸を存在させて、陽極と陰極の間に直流電流を通すバイポーラ膜電気透析装置にかける。
得られた塩酸は、炭酸リチウム粉末を溶解・分解し、塩化リチウムとするのに繰り返して使用される。また得られた水酸化リチウム水溶液は、イオン交換樹脂による不純物を除去する精製工程に付す。水酸化リチウム水溶液をそれぞれ、アンバーライトIRC748のLi変性品カラム、アンバーライトIR120BのLi変性品カラムとアンバーライトIRA410 OHカラムに通液し、精製する。加熱し、沸騰温度付近で水蒸気を除き濃縮し、析出物を分離し、乾燥し、水酸化リチウム・1水和物の粉末として得る。分析結果を表1に示す。
Technical grade lithium carbonate powder is dissolved in dilute hydrochloric acid and finally evaporated to dryness.
This is dissolved in distilled water to obtain a lithium chloride aqueous solution.
The first bipolar membrane, the cation exchange membrane, the anion exchange membrane, and the second bipolar membrane are arranged in this order between the pair of anions and anodes. The first flow path formed between the anion exchanger side of the first bipolar membrane and the cation exchange membrane is used as an alkali chamber, and an aqueous lithium hydroxide solution is present to form a cation exchange membrane and an anion exchange membrane. In the presence of a lithium chloride aqueous solution using the second flow path as a salt chamber, hydrochloric acid is supplied using the third flow path formed between the anion exchange membrane and the cation exchanger of the second bipolar membrane as the acid chamber. Be present in a bipolar membrane electrodialyzer that passes a direct current between the anode and cathode.
The obtained hydrochloric acid is repeatedly used to dissolve and decompose lithium carbonate powder to form lithium chloride. Moreover, the obtained lithium hydroxide aqueous solution is subjected to a purification step for removing impurities caused by the ion exchange resin. The lithium hydroxide aqueous solution is passed through a Limber modified product column of Amberlite IRC748, a Li modified product column of Amberlite IR120B, and an Amberlite IRA410 OH column, respectively, and purified. The mixture is heated and concentrated by removing water vapor at around the boiling temperature, and the precipitate is separated and dried to obtain a lithium hydroxide monohydrate powder. The analysis results are shown in Table 1.

振動ミルで微粉砕されたスポジュメン(リチア輝石)100グラムにカーボン微粉(スパーP)4グラムを乳鉢で混合し、窒素ガス雰囲気中950℃で2時間、焼成する。
この焼成物5グラムに約6Nの塩酸100mlを加えて蒸発乾固し、約12Nの塩酸50mlを再度加えて75℃で30分加熱し、リチウムを塩化リチウムとして抽出する。アンモニア水によるPH調製をしてアルミニウム、鉄分を沈殿させて分離除去する。
IRC748リチウム変性キレート樹脂により微量残存する鉄、アルミニウム、カルシウム、マグネシウム等を除去する。バイポーラ電気透析に必要な量を確保するためにスポジュメン(リチア輝石)を処理して繰り返して得た塩化リチウム水溶液を得る。この塩化リチウム水溶液をバイポーラ膜電気透析装置により水酸化リチウム水溶液と塩酸とを得る。希薄濃度となった塩化リチウム水溶液は、濃縮して再度透析にかけても、新たに調製された塩化リチウム水溶液に混合しても良い。
塩酸は、別途所望の濃度に高めて繰り返してスポジュメン(リチア輝石)の焼成物からのリチウム分の抽出に使用する。
バイポーラ膜電気透析装置により得た水酸化リチウム水溶液をそれぞれ順にアンバーライトIRC748(オルガノ社製)のリチウム変性キレート樹脂、アンバーライトIR120BのLi変性品カラムとアンバーライトIRA410 OHカラムに通液し、精製する。加熱・濃縮し、析出物を分離し、乾燥する。表1に得られた水酸化リチウムの分析結果を表1に示す。
4 grams of carbon fine powder (Spar P) is mixed with 100 grams of spojumen (Lithia pyroxene) finely pulverized by a vibration mill in a mortar and baked at 950 ° C. for 2 hours in a nitrogen gas atmosphere.
About 5 g of this calcined product is added 100 ml of about 6N hydrochloric acid and evaporated to dryness, 50 ml of about 12N hydrochloric acid is added again and heated at 75 ° C. for 30 minutes to extract lithium as lithium chloride. The pH is adjusted with aqueous ammonia to precipitate and remove aluminum and iron.
A trace amount of iron, aluminum, calcium, magnesium, and the like are removed by the IRC748 lithium-modified chelate resin. A lithium chloride aqueous solution obtained by repeatedly treating spodumene (lithia pyroxene) to obtain the necessary amount for bipolar electrodialysis is obtained. This aqueous lithium chloride solution is used to obtain an aqueous lithium hydroxide solution and hydrochloric acid using a bipolar membrane electrodialyzer. The diluted lithium chloride aqueous solution may be concentrated and subjected to dialysis again, or may be mixed with a newly prepared lithium chloride aqueous solution.
Hydrochloric acid is separately increased to a desired concentration and repeatedly used for the extraction of the lithium content from the fired product of spodumene (lithia pyroxene).
The lithium hydroxide aqueous solution obtained by the bipolar membrane electrodialyzer is sequentially passed through a lithium-modified chelate resin of Amberlite IRC748 (manufactured by Organo), a Li-modified product column of Amberlite IR120B and an Amberlite IRA410 OH column for purification. . Heat and concentrate to separate the precipitate and dry. Table 1 shows the analysis results of the lithium hydroxide obtained in Table 1.

使用済みのリチウムイオン2次電池(円筒缶型1865)を塩化リチウム水溶液中に浸漬して気泡が発生しなくなるまで放電する。開缶し、アルミニウム箔に塗工された正極活物質粉末をはく離して希塩酸でリチウム分を塩化リチウム水溶液として抽出する。また電解液を希塩酸で流出させて、脱フッ素化処理を行う。これらの塩化リチウム水溶液を一旦、蒸発乾固し、過剰の塩酸を回収する。
乾固物にブチルアルコールを加えて塩化リチウムを抽出し、ブチルアルコールを蒸留除去する一方、得られた塩化リチウムを蒸留水に溶解した後、バイポーラ膜電気透析装置にかけて水酸化リチウム水溶液と塩酸を同時に得る。ここで得られた塩酸は、使用済みのリチウムイオン2次電池に存在するリチウム分を塩化リチウムにして回収するのに繰り返して使用される。
ここで得られた水酸化リチウム水溶液をそれぞれ、アンバーライトIRC748のLi変性品カラム、アンバーライトIR120BのLi変性品カラムとアンバーライトIRA410 OHカラムに通液し、精製する。加熱し、沸騰温度付近で水蒸気を除き濃縮し、析出物を分離し、乾燥する。表1に得られた水酸化リチウム・1水和物の分析結果を表1に示す。
A used lithium ion secondary battery (cylindrical can type 1865) is immersed in an aqueous lithium chloride solution and discharged until no bubbles are generated. The can is opened, the positive electrode active material powder coated on the aluminum foil is peeled off, and the lithium content is extracted with dilute hydrochloric acid as a lithium chloride aqueous solution. Also, the electrolyte is drained with dilute hydrochloric acid to perform defluorination treatment. These lithium chloride aqueous solutions are once evaporated to dryness to recover excess hydrochloric acid.
Butyl alcohol is extracted by adding butyl alcohol to the dried solid, and butyl alcohol is removed by distillation. On the other hand, the obtained lithium chloride is dissolved in distilled water, and then applied to a bipolar membrane electrodialyzer to simultaneously add an aqueous lithium hydroxide solution and hydrochloric acid. obtain. The hydrochloric acid obtained here is repeatedly used to recover the lithium content in the used lithium ion secondary battery as lithium chloride.
The obtained lithium hydroxide aqueous solution is passed through a Limber modified product column of Amberlite IRC748, a Li modified product column of Amberlite IR120B, and an Amberlite IRA410 OH column, respectively, and purified. Heat, concentrate and remove steam near boiling temperature, separate and dry the precipitate. Table 1 shows the analysis results of the lithium hydroxide monohydrate obtained in Table 1.

リチウム塩を含む潅水から選択的に吸着・分離された塩化リチウムの粉末を蒸留水で塩化リチウム水溶液にしてバイポーラ膜電気透析にかけて水酸化リチウム水溶液を得る一方同時に塩酸を得る。
ここで得られた水酸化リチウム水溶液をそれぞれ、アンバーライトIRC748のLi変性品カラム、アンバーライトIR120BのLi変性品カラムとアンバーライトIRA410 OHカラムに通液し、精製する。加熱し、沸騰温度付近で水蒸気を除き濃縮し、析出物を分離し、乾燥する。表1に得られた水酸化リチウム・1水和物の分析結果を表1に示す。
Lithium chloride powder selectively adsorbed and separated from the irrigation water containing lithium salt is made into a lithium chloride aqueous solution with distilled water and subjected to bipolar membrane electrodialysis to obtain a lithium hydroxide aqueous solution while simultaneously obtaining hydrochloric acid.
The obtained lithium hydroxide aqueous solution is passed through a Limber modified product column of Amberlite IRC748, a Li modified product column of Amberlite IR120B, and an Amberlite IRA410 OH column, respectively, and purified. Heat, concentrate and remove steam near boiling temperature, separate and dry the precipitate. Table 1 shows the analysis results of the lithium hydroxide monohydrate obtained in Table 1.

比較例1Comparative Example 1

実施例1で得られた陰極槽(室)の液500ml液を加熱し、濃縮をして、溶液から65℃まで冷却して析出するものを分離し、常温で減圧乾燥したものの分析結果を表1に示す。The 500 ml liquid in the cathode chamber (chamber) obtained in Example 1 was heated, concentrated, cooled to 65 ° C., separated from the deposited one, and the analysis result of the one dried under reduced pressure at room temperature is shown. It is shown in 1.

参考例1Reference example 1

市販の高純度水酸化リチウム・1水和物の分析結果を表1に示す。

Figure 2009269810
Table 1 shows the results of analysis of commercially available high purity lithium hydroxide monohydrate.
Figure 2009269810

Claims (5)

陽極と陰極との間にバイポーラ膜、陰イオン交換膜及び陽イオン交換膜を使用して塩室、酸室およびアルカリ室を形成させ、塩室に塩化リチウムの水溶液を供給して酸室から塩酸をアルカリ室から水酸化リチウム水溶液をそれぞれ取り出すことのできるバイポーラ膜電気透析により塩酸を得る一方当該水酸化リチウム水溶液に精製工程を加えて不純物を除去ないし低減することを特徴とする高純度水酸化リチウムの製造法。A salt chamber, an acid chamber and an alkali chamber are formed using a bipolar membrane, an anion exchange membrane and a cation exchange membrane between the anode and the cathode, and an aqueous solution of lithium chloride is supplied to the salt chamber to supply hydrochloric acid from the acid chamber. High-purity lithium hydroxide characterized in that hydrochloric acid is obtained by bipolar membrane electrodialysis that can respectively remove lithium hydroxide aqueous solution from the alkaline chamber, while impurities are removed or reduced by adding a purification step to the lithium hydroxide aqueous solution Manufacturing method. 炭酸リチウムと塩酸とを反応させて得た塩化リチウムであることを特徴とする請求項1の高純度水酸化リチウムの製造法。The method for producing high-purity lithium hydroxide according to claim 1, which is lithium chloride obtained by reacting lithium carbonate with hydrochloric acid. リチウム含有鉱石から塩酸による抽出により得た塩化リチウムであることを特徴とする請求項1の高純度水酸化リチウムの製造法。The method for producing high-purity lithium hydroxide according to claim 1, which is lithium chloride obtained by extraction with hydrochloric acid from a lithium-containing ore. 使用済みリチウムイオン二次電池からのLiPF6等のリチウム含有電解質及び正極活物質に含まれるリチウム分を塩酸により回収して得た塩化リチウムであることを特徴とする請求項1の高純度水酸化リチウムの製造法。2. The high purity lithium hydroxide according to claim 1, which is lithium chloride obtained by recovering lithium contained in a lithium-containing electrolyte such as LiPF6 from the used lithium ion secondary battery and the positive electrode active material with hydrochloric acid. Manufacturing method. 潅水から選択的に吸着・分離された塩化リチウムであることを特徴とする請求項1の高純度水酸化リチウムの製造法。2. The method for producing high purity lithium hydroxide according to claim 1, wherein the lithium chloride is selectively adsorbed and separated from irrigation.
JP2008145094A 2008-05-07 2008-05-07 Method for producing high-purity lithium hydroxide Pending JP2009269810A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008145094A JP2009269810A (en) 2008-05-07 2008-05-07 Method for producing high-purity lithium hydroxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008145094A JP2009269810A (en) 2008-05-07 2008-05-07 Method for producing high-purity lithium hydroxide

Publications (1)

Publication Number Publication Date
JP2009269810A true JP2009269810A (en) 2009-11-19

Family

ID=41436712

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008145094A Pending JP2009269810A (en) 2008-05-07 2008-05-07 Method for producing high-purity lithium hydroxide

Country Status (1)

Country Link
JP (1) JP2009269810A (en)

Cited By (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011104798A1 (en) * 2010-02-23 2011-09-01 株式会社日立製作所 Metal recovery method and dialysis device
WO2012058684A2 (en) * 2010-10-29 2012-05-03 Ceramatec, Inc. Device and method for recovery or extraction of lithium
JP2012126583A (en) * 2010-12-13 2012-07-05 Astom:Kk Method for producing lithium hydroxide
KR101181922B1 (en) 2010-12-07 2012-09-11 재단법인 포항산업과학연구원 Manufacturing method of lithium hydroxide and lithium carbonate with high purity from brine
JP5138822B1 (en) * 2012-02-23 2013-02-06 株式会社アストム Method for producing high purity lithium hydroxide
KR101257433B1 (en) 2010-12-07 2013-04-23 재단법인 포항산업과학연구원 Method for manufacturing with high purity aqueous solution of lithium from brine
WO2013153692A1 (en) * 2012-04-13 2013-10-17 旭化成株式会社 Method for collecting lithium
JP5367190B1 (en) * 2013-03-08 2013-12-11 株式会社アストム Method for producing lithium hydroxide
KR101370633B1 (en) * 2012-02-10 2014-03-10 주식회사 포스코 Lithium compound recovering device, method for recovering lithium compound and lithium compound recovering system
KR101405488B1 (en) 2012-01-06 2014-06-13 주식회사 포스코 Method for extracting dissolved substance of brine and system using the same
KR101432793B1 (en) * 2012-01-06 2014-08-22 재단법인 포항산업과학연구원 Preparation method of ultra-pure lithium compound and system using the same
KR101435266B1 (en) 2012-08-14 2014-08-29 주식회사 포스코 Method and device for recovering metal and acid from leachate of electrode material
KR101450857B1 (en) * 2012-01-06 2014-10-15 주식회사 포스코 Method for extracting dissolved substance of lithium bearing solution and system using the same
US8936711B2 (en) 2010-08-12 2015-01-20 Research Institute Of Industrial Science & Technology Method of extracting lithium with high purity from lithium bearing solution by electrolysis
JP2015157753A (en) * 2015-04-07 2015-09-03 シンボル インコーポレイテッド Process for making lithium carbonate from lithium chloride
JP2015171995A (en) * 2010-02-17 2015-10-01 シンボル インコーポレイテッド Process for preparing highly pure lithium carbonate and other highly pure lithium containing compound
JP2015531826A (en) * 2012-08-13 2015-11-05 リード インダストリアル ミネラルズ プロプライエタリー リミテッド Treatment of lithium-containing materials
JP2016500754A (en) * 2012-10-10 2016-01-14 ロックウッド リチウム ゲゼルシャフト ミット ベシュレンクテル ハフツングRockwood Lithium GmbH Method for recovering lithium, nickel, and cobalt by lithium metallurgy from a portion containing lithium transition metal oxide in a used galvanic cell
JP2016500753A (en) * 2012-10-10 2016-01-14 ロックウッド リチウム ゲゼルシャフト ミット ベシュレンクテル ハフツングRockwood Lithium GmbH Method for recovering lithium from wet galvanic cell containing lithium iron phosphate by wet metallurgy
JP2016106369A (en) * 2011-04-13 2016-06-16 三菱化学株式会社 Lithium fluorosulfonate, nonaqueous electrolytic solution, and nonaqueous electrolyte secondary battery
WO2016132491A1 (en) * 2015-02-18 2016-08-25 独立行政法人石油天然ガス・金属鉱物資源機構 Apparatus for producing lithium hydroxide and method for producing lithium hydroxide
KR101674394B1 (en) * 2015-06-30 2016-11-10 재단법인 포항산업과학연구원 Method for manufacturing lithium hydroxide and lithium carbonate
KR101724289B1 (en) * 2015-10-06 2017-04-10 재단법인 포항산업과학연구원 Method for producing lithium hydroxide monohydrate
KR20180046691A (en) * 2016-10-28 2018-05-09 재단법인 포항산업과학연구원 Method of Preparing Lithium Chloride, Method of Preparing Lithium Hydroxide, and Method of Preparing Lithium Carbonate
JP2018522709A (en) * 2015-04-30 2018-08-16 リサーチ インスティチュート オブ インダストリアル サイエンス アンド テクノロジー Method and apparatus for producing lithium hydroxide and lithium carbonate
CN108660476A (en) * 2017-08-10 2018-10-16 青海盐湖工业股份有限公司 A kind of new process of salt lake bittern production high-purity hydrogen lithia
KR101909724B1 (en) * 2016-10-28 2018-12-18 재단법인 포항산업과학연구원 Method of Preparing Lithium Hydroxide, and Method of Preparing Lithium Carbonate
US10167531B2 (en) 2014-03-13 2019-01-01 Reed Advanced Materials Pty Ltd Processing of lithium containing material
WO2019117351A1 (en) * 2017-12-14 2019-06-20 재단법인 포항산업과학연구원 Method for preparing lithium hydroxide and method for preparing lithium carbonate
CN110029354A (en) * 2019-05-08 2019-07-19 蓝星(北京)化工机械有限公司 Utilize the method for lithium chloride Direct Electrolysis preparation LITHIUM BATTERY lithium hydroxide
US10530008B2 (en) 2011-04-11 2020-01-07 Mitsubishi Chemical Corporation Method for producing lithium fluorosulfonate, lithium fluorosulfonate, nonaqueous electrolytic solution, and nonaqueous electrolytic solution secondary battery
CN110904465A (en) * 2019-10-22 2020-03-24 新疆中泰创新技术研究院有限责任公司 Device and method for treating byproduct mirabilite of viscose factory
KR20200090741A (en) * 2019-01-18 2020-07-29 청두 켐피즈 케미컬 인더스트리 컴퍼니 리미티드 Method and system for manufacturing battery grade and high purity grade lithium hydroxide and lithium carbonate from high-purity lithium source
CN111527046A (en) * 2017-12-22 2020-08-11 株式会社Posco Preparation method of lithium phosphate, preparation method of lithium hydroxide and preparation method of lithium carbonate
JP2020193130A (en) * 2019-05-30 2020-12-03 住友金属鉱山株式会社 Method for producing lithium hydroxide
WO2021070235A1 (en) * 2019-10-08 2021-04-15 日揮グローバル株式会社 Lithium recovery method and lithium recovery device
WO2021166479A1 (en) 2020-02-17 2021-08-26 住友金属鉱山株式会社 Lithium hydroxide production method
CN113774234A (en) * 2021-09-30 2021-12-10 太原理工大学 Device and process for producing acid and alkali from salt lake brine through bipolar membrane-electronic control ionic membrane extraction method
US11554965B2 (en) 2016-12-15 2023-01-17 Posco Co., Ltd Method for producing lithium hydroxide from lithium phosphate
CN116272879A (en) * 2023-02-15 2023-06-23 浙江大学衢州研究院 Green efficient preparation method of electronic grade lithium salt
WO2024043228A1 (en) * 2022-08-22 2024-02-29 株式会社アサカ理研 Method for producing lithium hydroxide aqueous solution
EP4216338A4 (en) * 2020-09-22 2024-03-20 Sk Innovation Co Ltd Method for recovering active metal of lithium secondary battery

Cited By (56)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015171995A (en) * 2010-02-17 2015-10-01 シンボル インコーポレイテッド Process for preparing highly pure lithium carbonate and other highly pure lithium containing compound
JP2011195948A (en) * 2010-02-23 2011-10-06 Hitachi Ltd Metal recovery method and dialysis device
WO2011104798A1 (en) * 2010-02-23 2011-09-01 株式会社日立製作所 Metal recovery method and dialysis device
US8992665B2 (en) 2010-02-23 2015-03-31 Hitachi, Ltd. Metal recovery method and dialysis device
US8936711B2 (en) 2010-08-12 2015-01-20 Research Institute Of Industrial Science & Technology Method of extracting lithium with high purity from lithium bearing solution by electrolysis
WO2012058684A2 (en) * 2010-10-29 2012-05-03 Ceramatec, Inc. Device and method for recovery or extraction of lithium
US9222148B2 (en) 2010-10-29 2015-12-29 Ceramatec, Inc. Device and method for recovery or extraction of lithium
WO2012058684A3 (en) * 2010-10-29 2012-07-12 Ceramatec, Inc. Device and method for recovery or extraction of lithium
KR101181922B1 (en) 2010-12-07 2012-09-11 재단법인 포항산업과학연구원 Manufacturing method of lithium hydroxide and lithium carbonate with high purity from brine
KR101257433B1 (en) 2010-12-07 2013-04-23 재단법인 포항산업과학연구원 Method for manufacturing with high purity aqueous solution of lithium from brine
JP2012126583A (en) * 2010-12-13 2012-07-05 Astom:Kk Method for producing lithium hydroxide
US11387484B2 (en) 2011-04-11 2022-07-12 Mitsubishi Chemical Corporation Method for producing lithium fluorosulfonate, lithium fluorosulfonate, nonaqueous electrolytic solution, and nonaqueous electrolytic solution secondary battery
US10530008B2 (en) 2011-04-11 2020-01-07 Mitsubishi Chemical Corporation Method for producing lithium fluorosulfonate, lithium fluorosulfonate, nonaqueous electrolytic solution, and nonaqueous electrolytic solution secondary battery
JP2018088386A (en) * 2011-04-13 2018-06-07 三菱ケミカル株式会社 Lithium fluorosulfonate, nonaqueous electrolytic solution, and nonaqueous electrolyte secondary battery
JP2016106369A (en) * 2011-04-13 2016-06-16 三菱化学株式会社 Lithium fluorosulfonate, nonaqueous electrolytic solution, and nonaqueous electrolyte secondary battery
KR101405488B1 (en) 2012-01-06 2014-06-13 주식회사 포스코 Method for extracting dissolved substance of brine and system using the same
KR101432793B1 (en) * 2012-01-06 2014-08-22 재단법인 포항산업과학연구원 Preparation method of ultra-pure lithium compound and system using the same
KR101450857B1 (en) * 2012-01-06 2014-10-15 주식회사 포스코 Method for extracting dissolved substance of lithium bearing solution and system using the same
KR101370633B1 (en) * 2012-02-10 2014-03-10 주식회사 포스코 Lithium compound recovering device, method for recovering lithium compound and lithium compound recovering system
JP5138822B1 (en) * 2012-02-23 2013-02-06 株式会社アストム Method for producing high purity lithium hydroxide
WO2013153692A1 (en) * 2012-04-13 2013-10-17 旭化成株式会社 Method for collecting lithium
KR101857458B1 (en) * 2012-08-13 2018-05-14 리드 어드밴스드 미네랄즈 피티와이 리미티드 Processing of Lithium Containing Material
JP2015531826A (en) * 2012-08-13 2015-11-05 リード インダストリアル ミネラルズ プロプライエタリー リミテッド Treatment of lithium-containing materials
KR101435266B1 (en) 2012-08-14 2014-08-29 주식회사 포스코 Method and device for recovering metal and acid from leachate of electrode material
JP2016500753A (en) * 2012-10-10 2016-01-14 ロックウッド リチウム ゲゼルシャフト ミット ベシュレンクテル ハフツングRockwood Lithium GmbH Method for recovering lithium from wet galvanic cell containing lithium iron phosphate by wet metallurgy
JP2016500754A (en) * 2012-10-10 2016-01-14 ロックウッド リチウム ゲゼルシャフト ミット ベシュレンクテル ハフツングRockwood Lithium GmbH Method for recovering lithium, nickel, and cobalt by lithium metallurgy from a portion containing lithium transition metal oxide in a used galvanic cell
JP5367190B1 (en) * 2013-03-08 2013-12-11 株式会社アストム Method for producing lithium hydroxide
US10167531B2 (en) 2014-03-13 2019-01-01 Reed Advanced Materials Pty Ltd Processing of lithium containing material
WO2016132491A1 (en) * 2015-02-18 2016-08-25 独立行政法人石油天然ガス・金属鉱物資源機構 Apparatus for producing lithium hydroxide and method for producing lithium hydroxide
JP2015157753A (en) * 2015-04-07 2015-09-03 シンボル インコーポレイテッド Process for making lithium carbonate from lithium chloride
JP2018522709A (en) * 2015-04-30 2018-08-16 リサーチ インスティチュート オブ インダストリアル サイエンス アンド テクノロジー Method and apparatus for producing lithium hydroxide and lithium carbonate
US10759671B2 (en) 2015-04-30 2020-09-01 Research Institute Of Industrial Science & Technology Method for manufacturing lithium hydroxide and lithium carbonate, and device therefor
KR101674394B1 (en) * 2015-06-30 2016-11-10 재단법인 포항산업과학연구원 Method for manufacturing lithium hydroxide and lithium carbonate
KR101724289B1 (en) * 2015-10-06 2017-04-10 재단법인 포항산업과학연구원 Method for producing lithium hydroxide monohydrate
KR20180046691A (en) * 2016-10-28 2018-05-09 재단법인 포항산업과학연구원 Method of Preparing Lithium Chloride, Method of Preparing Lithium Hydroxide, and Method of Preparing Lithium Carbonate
KR101909725B1 (en) * 2016-10-28 2018-10-18 재단법인 포항산업과학연구원 Method of Preparing Lithium Chloride, Method of Preparing Lithium Hydroxide, and Method of Preparing Lithium Carbonate
KR101909724B1 (en) * 2016-10-28 2018-12-18 재단법인 포항산업과학연구원 Method of Preparing Lithium Hydroxide, and Method of Preparing Lithium Carbonate
US11554965B2 (en) 2016-12-15 2023-01-17 Posco Co., Ltd Method for producing lithium hydroxide from lithium phosphate
CN108660476B (en) * 2017-08-10 2019-04-02 青海盐湖工业股份有限公司 A kind of new process of salt lake bittern production high-purity hydrogen lithia
CN108660476A (en) * 2017-08-10 2018-10-16 青海盐湖工业股份有限公司 A kind of new process of salt lake bittern production high-purity hydrogen lithia
WO2019117351A1 (en) * 2017-12-14 2019-06-20 재단법인 포항산업과학연구원 Method for preparing lithium hydroxide and method for preparing lithium carbonate
CN111479778A (en) * 2017-12-14 2020-07-31 浦项产业科学研究院 Method for preparing lithium hydroxide and method for preparing lithium carbonate
US11655150B2 (en) 2017-12-22 2023-05-23 Posco Co., Ltd Preparation method for lithium phosphate, preparation method for lithium hydroxide, and preparation method for lithium carbonate
CN111527046A (en) * 2017-12-22 2020-08-11 株式会社Posco Preparation method of lithium phosphate, preparation method of lithium hydroxide and preparation method of lithium carbonate
KR102190786B1 (en) 2019-01-18 2020-12-14 청두 켐피즈 케미컬 인더스트리 컴퍼니 리미티드 Method and system for producing battery grade and high purity grade lithium hydroxide and lithium carbonate from a high-impure lithium source
KR20200090741A (en) * 2019-01-18 2020-07-29 청두 켐피즈 케미컬 인더스트리 컴퍼니 리미티드 Method and system for manufacturing battery grade and high purity grade lithium hydroxide and lithium carbonate from high-purity lithium source
CN110029354A (en) * 2019-05-08 2019-07-19 蓝星(北京)化工机械有限公司 Utilize the method for lithium chloride Direct Electrolysis preparation LITHIUM BATTERY lithium hydroxide
JP2020193130A (en) * 2019-05-30 2020-12-03 住友金属鉱山株式会社 Method for producing lithium hydroxide
WO2021070235A1 (en) * 2019-10-08 2021-04-15 日揮グローバル株式会社 Lithium recovery method and lithium recovery device
CN110904465A (en) * 2019-10-22 2020-03-24 新疆中泰创新技术研究院有限责任公司 Device and method for treating byproduct mirabilite of viscose factory
WO2021166479A1 (en) 2020-02-17 2021-08-26 住友金属鉱山株式会社 Lithium hydroxide production method
EP4216338A4 (en) * 2020-09-22 2024-03-20 Sk Innovation Co Ltd Method for recovering active metal of lithium secondary battery
CN113774234A (en) * 2021-09-30 2021-12-10 太原理工大学 Device and process for producing acid and alkali from salt lake brine through bipolar membrane-electronic control ionic membrane extraction method
CN113774234B (en) * 2021-09-30 2022-09-02 太原理工大学 Device and process for producing acid and alkali from salt lake brine through bipolar membrane-electronic control ionic membrane extraction method
WO2024043228A1 (en) * 2022-08-22 2024-02-29 株式会社アサカ理研 Method for producing lithium hydroxide aqueous solution
CN116272879A (en) * 2023-02-15 2023-06-23 浙江大学衢州研究院 Green efficient preparation method of electronic grade lithium salt

Similar Documents

Publication Publication Date Title
JP2009269810A (en) Method for producing high-purity lithium hydroxide
JP2009270189A (en) Method of manufacturing high-purity lithium hydroxide
JP2011031232A (en) Method of manufacturing lithium hydroxide
JP7379351B2 (en) Integrated system for lithium extraction and conversion
KR101711854B1 (en) Method for manufacturing lithium hydroxide and lithium carbonate
JP6577982B2 (en) Process for preparing high purity lithium carbonate and other high purity lithium-containing compounds
KR101700684B1 (en) Method and apparatus for manufacturing lithium hydroxide, and lithium carbonate
JP2011032151A (en) Method of converting lithium carbonate to lithium hydroxide
EP2971252B1 (en) Processes for preparing lithium hydroxide
JP2021050133A (en) Method for producing lithium hydroxide monohydrate from brine
CA2731677C (en) Recovery of lithium from aqueous solutions
JP5138822B1 (en) Method for producing high purity lithium hydroxide
CA2945590C (en) Systems and methods for regeneration of aqueous alkaline solution
EP4108633A1 (en) Lithium hydroxide production method
KR101126286B1 (en) Manufacturing method of lithium carbonate with high purity
JP3333960B2 (en) Method for producing hydrochloride and caustic amino acid using water splitting by electrodialysis
KR101674393B1 (en) Method for manufacturing lithium hydroxide and lithium carbonate
JP5367190B1 (en) Method for producing lithium hydroxide
TW201722855A (en) Bipolar electrodialysis methods and systems
AU2012261548B2 (en) Recovery of lithium from aqueous solutions
JP7101995B2 (en) Lithium recovery method
WO2019124941A1 (en) Preparation method for lithium phosphate, preparation method for lithium hydroxide, and preparation method for lithium carbonate
RU2751710C2 (en) Method for producing high-purity lithium hydroxide monohydrate from materials containing lithium carbonate or lithium chloride
WO2022209641A1 (en) Electrodialysis method using bipolar membrane
TWI704011B (en) Brine purification process