JP2011031232A - Method of manufacturing lithium hydroxide - Google Patents

Method of manufacturing lithium hydroxide Download PDF

Info

Publication number
JP2011031232A
JP2011031232A JP2009193627A JP2009193627A JP2011031232A JP 2011031232 A JP2011031232 A JP 2011031232A JP 2009193627 A JP2009193627 A JP 2009193627A JP 2009193627 A JP2009193627 A JP 2009193627A JP 2011031232 A JP2011031232 A JP 2011031232A
Authority
JP
Japan
Prior art keywords
lithium
lithium hydroxide
chamber
acid
cathode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009193627A
Other languages
Japanese (ja)
Inventor
Isao Kuribayashi
功 栗林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KEE KK
Kee KK
Original Assignee
KEE KK
Kee KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KEE KK, Kee KK filed Critical KEE KK
Priority to JP2009193627A priority Critical patent/JP2011031232A/en
Publication of JP2011031232A publication Critical patent/JP2011031232A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To solve problems that a manufacturing method high in economic efficiency and effective to assure stably lithium hydroxide which cannot be stored for a long period and is produced overseas, as needed from a lithium source in which a domestic stockpile is possible, has been expected. <P>SOLUTION: An electrodialyzer is used. In the electrodialyzer, cation exchange membranes and anion exchange membranes are alternately arranged between an anode and a cathode, following an anode chamber zoned by the anode and the cation membrane one or more groups consisting of an acid chamber, a salt chamber, an alkali chamber, and a water electrolysis chamber are arranged, and the water electrolysis chamber constituted by the anion membrane of the most cathode side is zoned by the cathode instead of the cation membrane as a cathode chamber. A method of manufacturing lithium hydroxide includes supplying an aqueous solution of lithium salt to the salt chamber, taking out an acid from the acid chamber, and taking out a lithium hydroxide solution from the alkali chamber. Further, a method of manufacturing high-pure lithium hydroxide, which gives a purification process reducing minute quantities of impurities mixed, is provided. Lithium hydroxide can be manufactured cleanly, simply and easily as needed from lithium salts and lithium carbonate which can be stockpiled in Japan. The method of manufacturing lithium hydroxide which is high in convenience and general versatility is provided. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、水酸化リチウムの製造方法に関する。The present invention relates to a method for producing lithium hydroxide.

従来の水酸化リチウムの製造方法は、炭酸リチウム水溶液に水酸化カルシウムを添加し水酸化リチウムを得るのが一般的である。しかもリチウム源としての鉱石あるいは潅水が採取される海外のサイトでの製造が一般的である。大量に副生する炭酸カルシウムの公害対策も近年、現地で問題になってきている。水酸化リチウムは、保管時に空気中の二酸化炭素を吸収し炭酸リチウムに一部変質し、保存中に固化しあるいは塊状になり粉体取り扱い作業に支障を来たすために長期保存が利かずに必要量を必要時に製造する必要があった。遠路輸送しなければならず原材料としての国内安定確保の観点からも近年の需要拡大に伴いリスクも増大して来ている。水酸化リチウムが貯蔵性に乏しい故、原材料としての水酸化リチウムの国内備蓄が困難であった。In the conventional method for producing lithium hydroxide, it is common to obtain calcium hydroxide by adding calcium hydroxide to a lithium carbonate aqueous solution. In addition, production at overseas sites where ore or irrigation as a lithium source is collected is common. In recent years, pollution control of calcium carbonate, which is a by-product in large quantities, has also become a problem locally. Lithium hydroxide absorbs carbon dioxide in the air during storage, partially transforms into lithium carbonate, solidifies during storage, or becomes a lump and interferes with powder handling work, so it is necessary for long-term storage. Needed to be manufactured when needed. From the viewpoint of ensuring domestic stability as a raw material that must be transported by long-distance transportation, the risk has increased with the recent increase in demand. Since lithium hydroxide has poor storage properties, domestic storage of lithium hydroxide as a raw material has been difficult.

近年、水酸化リチウムは、リチウムイオン二次電池用正極活物質を製造するリチウム源としてまた化学的手法で高純度化され高純度炭酸リチウムとしてSAWフィルター材料のニオブ酸リチウム、タンタル酸等の電子機器向け原材料として使用されている。
更なる緻密な材料設計のために水酸化リチウムに含まれる不純物低減が要望されている。
In recent years, lithium hydroxide has been refined as a lithium source for producing a positive electrode active material for lithium ion secondary batteries and by a chemical method, and as high purity lithium carbonate, electronic equipment such as lithium niobate and tantalate as SAW filter materials It is used as a raw material.
Reduction of impurities contained in lithium hydroxide is desired for further precise material design.

特開2001−259647号公報 日本国特許第4065386号公報(特開2003−305475号公報) 特開2007−7655号公報 特許文献1には電気透析により酸と塩基とを同時に製造する方法および装置が開示されているが本発明の装置の構成とは異なっている。またリチウム塩に関する言及もない。
特許文献2及び特許文献3には中性塩から酸とアルカリを生成することは記載されているがリチウム塩に関する言及はなくさらにアルカリの純度のことにはまったく触れられていない。
JP 2001-259647 A Japanese Patent No. 4065386 (Japanese Patent Laid-Open No. 2003-305475) JP 2007-7655 A Patent Document 1 discloses a method and apparatus for simultaneously producing an acid and a base by electrodialysis, but differs from the configuration of the apparatus of the present invention. There is no mention of lithium salts.
Patent Documents 2 and 3 describe that an acid and an alkali are produced from a neutral salt, but there is no mention of a lithium salt, and no mention is made of the purity of the alkali.

近年、日本国内に備蓄しておけるリチウム源から必要時に簡便に水酸化リチウムを製造できる方法が求められている。
長期保存性があり、国内に備蓄可能な炭酸リチウム粉末を原料にして必要時に水酸化リチウムを製造することが出来る製造方法あるいはリチウム資源として注目を浴びてきている使用済みリチウムイオン二次電池から回収したリチウム塩、潅水から選択吸着して得た塩化リチウムから水酸化リチウムを簡便に製造出来る方法が求められている。本発明は、かかる目的を満たす水酸化リチウムの製造方法を提供することにある。
In recent years, there has been a demand for a method capable of easily producing lithium hydroxide when necessary from a lithium source stored in Japan.
Recovered from used lithium-ion secondary batteries, which have been attracting attention as a production method or lithium resource that can produce lithium hydroxide when necessary using lithium carbonate powder that can be stored in Japan as a raw material. Therefore, there is a demand for a method capable of easily producing lithium hydroxide from lithium chloride obtained by selective adsorption from the prepared lithium salt and irrigation. It is an object of the present invention to provide a method for producing lithium hydroxide that satisfies this object.

本発明者は、上記課題について種々検討した結果、大量に国内備蓄されている炭酸リチウムを原料に酸に溶解して得たリチウム塩、長期間保存の利くリチウム含有鉱石から酸により抽出して得たリチウム塩、使用済みリチウムイオン二次電池からリチウム分を回収したリチウム塩あるいは炭酸リチウム、潅水から選択的に吸着・分離された塩化リチウム等の備蓄しておける原料から得たリチウム塩を電気透析装置により水酸化リチウム水溶液と酸水溶液を独立して取り出せることを特徴とする水酸化リチウムの製造方法を見出した。更には微量混在する不純物を低減する精製工程を付与してキレート樹脂により微量のアルカリ土類イオンを低減・除去する方法、ナトリウム、カリウム等の1価の陽イオンを低減するように90−100℃の温度で濃縮・晶析を繰り返す方法、あるいは陽イオン交換樹脂を使用してナトリウム、カリウム等の1価の陽イオンとアルカリ土類イオンを低減・除去する方法、および/又は陰イオン交換樹脂で塩素イオン、硫酸根イオン等のアニオンを低減・除去する製造方法である。As a result of various studies on the above-mentioned problems, the present inventor has obtained a lithium salt obtained by dissolving a large amount of domestically stored lithium carbonate in an acid, extracted from an ore containing lithium that can be stored for a long time with an acid. Electrodialysis of lithium salts obtained from stock materials such as lithium salts collected from used lithium ion batteries, lithium salts recovered from used lithium ion batteries or lithium carbonate, and lithium chloride selectively adsorbed and separated from irrigation The present inventors have found a method for producing lithium hydroxide, characterized in that an aqueous lithium hydroxide solution and an aqueous acid solution can be taken out independently by an apparatus. Furthermore, a method for reducing and removing trace amounts of alkaline earth ions with a chelate resin by providing a purification step for reducing impurities contained in trace amounts, 90-100 ° C. so as to reduce monovalent cations such as sodium and potassium. A method of repeating concentration and crystallization at a temperature of 10 ° C, a method of reducing and removing monovalent cations such as sodium and potassium and alkaline earth ions using a cation exchange resin, and / or an anion exchange resin This is a production method for reducing and removing anions such as chlorine ions and sulfate ion.

本発明によれば国内に長期保存の利くリチウム含有原料を出発物質として国内で必要時に簡便にしかもクリーンに水酸化リチウムを製造できる。リチウム塩を陽極室、酸室、塩室、アルカリ室、水電解室、陰極室に区画した構造にした電気透析装置により水酸化リチウム水溶液と酸を同時に製造でき、かつ酸を繰り返し使用できる。
一方の水酸化リチウム水溶液をイオン交換樹脂で不純物を除去、低減することにより高純度の水酸化リチウムを、さらには炭酸ガスと反応させて高純度炭酸リチウムとしてリチウムイオン二次電池用正極活物質の焼成に、電解質のLiPF等を製造するのに、また電子機器向けのSAWフィルター材料としてのニオブ酸リチウム、タンタル酸リチウム等に供給することが出来る。
According to the present invention, lithium hydroxide can be produced easily and cleanly when necessary in Japan, starting from a lithium-containing raw material that has long-term storage in Japan. A lithium hydroxide aqueous solution and an acid can be simultaneously produced by an electrodialyzer having a structure in which lithium salt is partitioned into an anode chamber, an acid chamber, a salt chamber, an alkali chamber, a water electrolysis chamber, and a cathode chamber, and the acid can be used repeatedly.
One lithium hydroxide aqueous solution removes and reduces impurities with an ion exchange resin, and then reacts with high purity lithium hydroxide and further with carbon dioxide gas to produce high purity lithium carbonate as a positive electrode active material for lithium ion secondary batteries. For firing, it can be supplied to lithium niobate, lithium tantalate or the like as a SAW filter material for electronic equipment to produce electrolyte LiPF 6 or the like.

本発明の陽極と陰極との間にカチオン交換膜、アニオン交換膜が交互に配置されており、陽極とカチオン交換膜で区画された陽極室と陽極室側から順に酸室、塩室、アルカリ室、水電解室の組がひとつ配列されている電気透析装置であり、水電解室がカチオン膜の代わりに陰極とで区画された陰極室である例を示し、硫酸リチウムの水溶液から硫酸と水酸化リチウムを同時に製造する方法の概念を示す図である。The cation exchange membrane and the anion exchange membrane are alternately arranged between the anode and the cathode of the present invention, and the acid chamber, the salt chamber, and the alkali chamber are sequentially arranged from the anode chamber and the anode chamber side partitioned by the anode and the cation exchange membrane. An electrodialysis apparatus in which one set of water electrolysis chambers is arranged, and shows an example in which the water electrolysis chamber is a cathode chamber partitioned by a cathode instead of a cation membrane. It is a figure which shows the concept of the method of manufacturing lithium simultaneously. 本発明の陽極と陰極との間にカチオン交換膜、アニオン交換膜が交互に配置されており、陽極とカチオン交換膜で区画された陽極室と陽極室側から順に酸室、塩室、アルカリ室、水電解室の組がひとつ配列されている電気透析装置であり、水電解室がカチオン交換膜の代わりに陰極で区画された陰極室である例を示し、塩化リチウムの水溶液から塩酸と水酸化リチウムを同時に製造する方法の概念を示す図である。The cation exchange membrane and the anion exchange membrane are alternately arranged between the anode and the cathode of the present invention, and the acid chamber, the salt chamber, and the alkali chamber are sequentially arranged from the anode chamber and the anode chamber side partitioned by the anode and the cation exchange membrane. An electrodialysis apparatus in which one set of water electrolysis chambers is arranged, and shows an example in which the water electrolysis chamber is a cathode chamber partitioned by a cathode instead of a cation exchange membrane. Hydrochloric acid and hydroxylation from an aqueous solution of lithium chloride It is a figure which shows the concept of the method of manufacturing lithium simultaneously. 本発明の陽極と陰極との間にカチオン交換膜、アニオン交換膜が交互に配置されており、陽極と陰極との間に酸室、塩室、アルカリ室、水電解室の組が三つ配列されている電気透析装置であり陰極に一番近い水電解室がカチオン交換膜の代わりに陰極で区画された陰極室である例を示し、硫酸リチウムの水溶液から硫酸と水酸化リチウムを同時に製造する方法の概念を示す図である。Cation exchange membranes and anion exchange membranes are alternately arranged between the anode and the cathode of the present invention, and three sets of an acid chamber, a salt chamber, an alkali chamber, and a water electrolysis chamber are arranged between the anode and the cathode. An example of an electrodialysis apparatus in which the water electrolysis chamber closest to the cathode is a cathode chamber partitioned by a cathode instead of a cation exchange membrane, and simultaneously produces sulfuric acid and lithium hydroxide from an aqueous solution of lithium sulfate It is a figure which shows the concept of a method. 本発明の陽極と陰極との間にカチオン交換膜、アニオン交換膜が交互に配置されており、陽極と陰極との間に酸室、塩室、アルカリ室、水電解室の組が三つ配列されている電気透析装置であり陰極に一番近い水電解室がカチオン交換膜の代わりに陰極で区画された陰極室である例を示し、塩化リチウムの水溶液から塩酸と水酸化リチウムを同時に製造する方法の概念を示す図である。Cation exchange membranes and anion exchange membranes are alternately arranged between the anode and the cathode of the present invention, and three sets of an acid chamber, a salt chamber, an alkali chamber, and a water electrolysis chamber are arranged between the anode and the cathode. An example of an electrodialysis device in which the water electrolysis chamber closest to the cathode is a cathode chamber partitioned by a cathode instead of a cation exchange membrane, and simultaneously produces hydrochloric acid and lithium hydroxide from an aqueous solution of lithium chloride It is a figure which shows the concept of a method.

以下、本発明を具体的に説明する。
すなわち、本発明は、(1)陽極と陰極との間にカチオン交換膜とアニオン交換膜とが交互に配列され、陽極とカチオン交換膜とで陽極室が形成され、次に陽極側から陰極側にむけて当該カチオン交換膜とアニオン膜とで区画された酸室、当該アニオン交換膜ともうひとつのカチオン交換膜とで区画された塩室、このカチオン交換膜ともうひとつのアニオン交換膜とで区画されたアルカリ室、更にこのアニオン交換膜と新たなカチオン交換膜とで区画された水電解室の順に配列されている酸室、塩室、アルカリ室、水電解室からなる組がひとつ以上配列されていて最も陰極側のアニオン膜とで構成される水電解室をカチオン膜の代わりに陰極で区画し、陰極室とする構造の電気透析装置を使用して塩室にリチウム塩の水溶液を供給して酸室から繰り返してリチウム塩を得るための酸を取り出し、アルカリ室から水酸化リチウム水溶液を取り出すことを特徴とする水酸化リチウムの製造方法であり、使用されるリチウム塩が炭酸リチウムに硫酸または塩酸を反応させて得た硫酸リチウムまたは塩化リチウム、リチウム含有鉱石から硫酸または塩酸により抽出して得た硫酸リチウムまたは塩化リチウム、使用済みリチウムイオン二次電池から回収された硫酸リチウム、塩化リチウム、潅水から選択的に吸着・分離された塩化リチウム等である。(2)前記の水酸化リチウム水溶液からキレート樹脂を用いて微量含まれるアルカリ土類金属を低減・除去する方法を付加した水酸化リチウムの製造方法、(3)前述の水酸化リチウム水溶液を微量含まれるナトリウム、カリウム等の1価の陽イオンを低減するように90−100℃の温度で濃縮・晶析を繰り返す方法を付与した水酸化リチウムの製造方法、(4)前述の水酸化リチウム水溶液から陽イオン交換樹脂を使用してナトリウム、カリウム等の1価の陽イオン、アルカリ土類金属イオンを低減・除去する方法を付加した水酸化リチウムの製造方法、(5)前述の水酸化リチウム水溶液から陰イオン交換樹脂で塩素イオン、硫酸根イオン等のアニオンを低減・除去する方法を付加した製造方法である。
The present invention will be specifically described below.
That is, the present invention provides (1) a cation exchange membrane and an anion exchange membrane arranged alternately between an anode and a cathode, and an anode chamber is formed by the anode and the cation exchange membrane. Therefore, an acid chamber partitioned by the cation exchange membrane and the anion membrane, a salt chamber partitioned by the anion exchange membrane and another cation exchange membrane, and the cation exchange membrane and another anion exchange membrane One or more pairs of an acid chamber, a salt chamber, an alkali chamber, and a water electrolysis chamber arranged in the order of a compartmented alkali chamber and a water electrolysis chamber partitioned by this anion exchange membrane and a new cation exchange membrane A water electrolysis chamber composed of an anion membrane on the most cathode side is partitioned with a cathode instead of a cation membrane, and an aqueous solution of lithium salt is supplied to the salt chamber using an electrodialyzer having a structure of the cathode chamber Is it an acid chamber? The method for producing lithium hydroxide is characterized in that an acid for repeatedly obtaining a lithium salt is taken out, and an aqueous lithium hydroxide solution is taken out from the alkaline chamber. The lithium salt used reacts sulfuric acid or hydrochloric acid with lithium carbonate. Select from lithium sulfate or lithium chloride obtained by extraction from lithium-containing ore with sulfuric acid or hydrochloric acid, lithium sulfate recovered from used lithium ion secondary batteries, lithium chloride, or irrigation. Adsorbed and separated lithium chloride and the like. (2) A method for producing lithium hydroxide by adding a method for reducing or removing a trace amount of alkaline earth metal from a lithium hydroxide aqueous solution using a chelate resin, and (3) a trace amount of the above lithium hydroxide aqueous solution. A method for producing lithium hydroxide to which a method of repeating concentration and crystallization at a temperature of 90 to 100 ° C. so as to reduce monovalent cations such as sodium and potassium, (4) from the aqueous lithium hydroxide solution described above A method of producing lithium hydroxide to which a method of reducing and removing monovalent cations such as sodium and potassium and alkaline earth metal ions using a cation exchange resin is added, (5) from the above-mentioned aqueous lithium hydroxide solution This is a production method in which an anion exchange resin is added with a method for reducing and removing anions such as chloride ions and sulfate radical ions.

本発明の水酸化リチウムを得るには、陽極室、酸室、塩室、アルカリ室、水電解室、陰極室を区画する材質は耐アルカリ性、耐酸性の材質から構成された電気透析装置とし、陽極室を設けて陽極の腐食を防ぎ、陰極室をアルカリ室と区画し、陰極の腐食を防いでおく。
本発明に使用する炭酸リチウムは、市販の炭酸リチウムでも別途回収された炭酸リチウムでも構わない。あえて炭酸リチウムを一旦、塩に転換して使用するのは、リチウム塩の方が水に対する溶解度が高く、水溶液が高濃度に出来て、従ってより電気透析装置を低抵抗で稼動できるからである。
電気透析装置は、強アルカリ、強酸に耐えうる材質であれば材料として使用できる。例えばポリプロピレン、TPX、ポリエチレン、EPDM、ブテン−1とアルファーオレフィンとの共重合体等のポリオレフィン系のプラスチックス材料が使用できる。
In order to obtain the lithium hydroxide of the present invention, an anode chamber, an acid chamber, a salt chamber, an alkali chamber, a water electrolysis chamber, and a cathode chamber are made of an electrodialyzer composed of an alkali-resistant and acid-resistant material, An anode chamber is provided to prevent corrosion of the anode, and the cathode chamber is partitioned from an alkali chamber to prevent corrosion of the cathode.
The lithium carbonate used in the present invention may be commercially available lithium carbonate or lithium carbonate collected separately. The reason why lithium carbonate is once converted into a salt is that lithium salt has higher solubility in water and a higher concentration of aqueous solution, and therefore the electrodialyzer can be operated with lower resistance.
The electrodialyzer can be used as a material as long as it can withstand strong alkalis and strong acids. For example polypropylene, TPX, polyethylene, EPDM, plastics of a polyolefin material such as a copolymer of butene-1 and alpha-olefins can be used.

本発明に使用するカチオン交換膜は、一価の陽イオン(リチウムイオン等)を通過しうる膜であり、スルホン酸基、カルボン酸基、ホスホン酸基、硫酸エステル基、リン酸エステル基を少なくとも1種以上有する高分子からなる膜であれば良い。
スルホン酸基を有するフッ素系陽イオン交換膜、ペルフルオロカルボン酸基を導入した陽イオン交換膜、四フッ化エチレンとカルボン酸・スルホン酸を官能基とするペルフルオロビニールの共重合体の陽イオン交換膜、ペルフルオロカルボン酸ポリマーとペルフルオロスルホン酸ポリマーの膜を貼りあわせた陽イオン交換膜、ペルフルオロスルホン酸ポリマーとペルフルオロカルボン酸ポリマーとを積層した陽イオン交換膜等がある。補強繊維を付したり、更に一価のカチオンの選択透過性を向上させて陽イオン交換膜を透過するカルシウムとかマグネシウム等の多価イオンの通過を抑制したり、陰イオン例えばOHイオン、塩素イオン、硫酸イオン等の通過を抑制したり排除の目的で添加剤を塗布したり、表層面を密な構造にしたり、他の膜を張り合わせてもよい。ネオセプターCMV、ネオセプターCMB、ネオセプターCMS、ネオセプターCMT、ネオセプターCIMS、ネオセプターCL−25T、ネオセプターCMD、ネオセプターCM−2、ネオセプターCSO(以上、株式会社トクヤマ社製、商品名)、セレミオンCMD、セレミオンCMT、セレミオンCMV、セレミオンCAV、セレミオンHSF、セレミオンCSO、セレミオンCMF、セレミオンCSV、セレミオンFX−151(旭硝子社製、商品名)、FKF,FKC,FKL,FKE(フマテック社製、商品名)、ナフィオン324、ナフィオン117、ナフィオン115(デュポン社製、商品名)、アシプレックスK−501(旭化成社製、商品名)等がある。
The cation exchange membrane used in the present invention is a membrane that can pass a monovalent cation (such as lithium ion), and has at least a sulfonic acid group, a carboxylic acid group, a phosphonic acid group, a sulfate ester group, and a phosphate ester group. Any film made of a polymer having one or more kinds may be used.
Fluorine cation exchange membranes with sulfonic acid groups, cation exchange membranes with perfluorocarboxylic acid groups introduced, and cation exchange membranes of perfluorovinyl copolymers with functional groups of ethylene tetrafluoride and carboxylic acid / sulfonic acid Further, there are a cation exchange membrane in which a membrane of a perfluorocarboxylic acid polymer and a perfluorosulfonic acid polymer is bonded, a cation exchange membrane in which a perfluorosulfonic acid polymer and a perfluorocarboxylic acid polymer are laminated, and the like. Attaching reinforcing fibers, further improving the selective permeability of monovalent cations to suppress the passage of multivalent ions such as calcium and magnesium that permeate the cation exchange membrane, and anions such as OH ions and chloride ions In addition, additives may be applied for the purpose of suppressing or eliminating the passage of sulfate ions, the surface layer surface may have a dense structure, or other films may be bonded together. Neoceptor CMV, Neoceptor CMB, Neoceptor CMS, Neoceptor CMT, Neoceptor CIMS, Neoceptor CL-25T, Neoceptor CMD, Neoceptor CM-2, Neoceptor CSO (above, manufactured by Tokuyama Corporation, trade name) ), Selemion CMD, Selemion CMT, Selemion CMV, Selemion CAV, Selemion HSF, Selemion CSO, Selemion CMF, Selemion CSV, Selemion FX-151 (made by Asahi Glass Co., Ltd.), FKF, FKC, FKL, FKE (Fumatec) ), Nafion 324, Nafion 117, Nafion 115 (manufactured by DuPont, trade name), Aciplex K-501 (trade name, manufactured by Asahi Kasei Co., Ltd.), and the like.

本発明に使用するアニオン交換膜は、第4級アンモニウム基の強塩基性基を有する高分子からなる膜、第1級アミノ基、第2級アミノ基、第3級アミノ基等の弱塩基性官能基を有する高分子からなる膜であればよい。
ネオセプターACM、ネオセプターAM−1、ネオセプターACS、ネオセプターACLE−5P、ネオセプターAHA、ネオセプターAMH、ネオセプターACS(以上、株式会社トクヤマ社製、商品名)、セレミオンAMV、セレミオンAMT、セレミオンDSV、セレミオンAAV、セレミオンASV、セレミオンAHT、セレミオンAPS(旭硝子社製、商品名)、FAB,FAA(フマテック社製、商品名)、アシプレックスA−501、A−231、A−101(旭化成社製、商品名)等がある。
The anion exchange membrane used in the present invention is a membrane made of a polymer having a strongly basic group of a quaternary ammonium group, a weak basicity such as a primary amino group, a secondary amino group, or a tertiary amino group. Any film made of a polymer having a functional group may be used.
Neoceptor ACM, Neoceptor AM-1, Neoceptor ACS, Neoceptor ACLE-5P, Neoceptor AHA, Neoceptor AMH, Neoceptor ACS (above, Tokuyama Co., Ltd., trade name), Selemion AMV, Selemion AMT, Selemion DSV, Selemion AAV, Selemion ASV, Selemion AHT, Selemion APS (Asahi Glass Co., Ltd., trade name), FAB, FAA (Fumatech Co., Ltd., trade name), Aciplex A-501, A-231, A-101 (Asahi Kasei) Company name, product name).

本発明に使用する陰極は、過電圧の低いものが好ましく、鉄、ニッケル、ステンレスチール等の金属板、鉄、ステンレスチール等の基材の表面に含硫黄ニッケル、ラネーニッケル系合金、酸化ニッケルが被覆されたもの、金、チタン、白金、パラジウム等の1種以上からなるメッキされたものが使用できる。The cathode used in the present invention preferably has a low overvoltage, and the surface of a substrate such as iron, nickel, stainless steel or the like, or the surface of a substrate such as iron or stainless steel, is coated with sulfur-containing nickel, Raney nickel-based alloy or nickel oxide. A plated material made of one or more of gold, titanium, platinum, palladium and the like can be used.

陽極にはステンレススチール、チタン等の金属板、その表面に酸化ルテニウム、無機酸化物、カーボン類の少なくとも1種以上被覆したもの、金、白金、パラジウム等の1種以上からなるメッキされたものが使用できる。いわゆる不溶性電極が使用される。
金属板の場合の酸化を抑制できる電圧範囲にする。
The anode is a metal plate such as stainless steel or titanium, the surface is coated with at least one of ruthenium oxide, inorganic oxide and carbon, and is plated with one or more of gold, platinum, palladium, etc. Can be used. So-called insoluble electrodes are used.
The voltage range is such that oxidation in the case of a metal plate can be suppressed.

あらかじめ酸室、アルカリ室内には導電度を付与するため別途作られた所定の酸、水酸化リチウムの希薄液を満たしておくことにより低電圧運転を可能に出来る。Low-voltage operation can be achieved by previously filling the acid chamber and the alkali chamber with a dilute solution of predetermined acid and lithium hydroxide, which are separately prepared to provide conductivity.

本発明による電気透析の方法としては、酸室およびアルカリ室にそれぞれの室に供給する酸と水酸化リチウム水溶液のタンクを設けて、それぞれの液タンクと室との間でそれぞれの液を循環させることもできる。生成してくる酸または水酸化リチウム水溶液を抜き出す方法として、稼動の始めは通電可能な濃度の薄い酸及び水酸化リチウム水溶液を仕込んでおいて酸および水酸化リチウムを生成させ、所定の濃度になった時に所定量を抜き出してから蒸留水または精製水を補充して初期の薄い濃度にもどすいわゆるバッチ式でも、予め所定濃度の酸、水酸化リチウム水溶液を仕込んでおき、通電時に通電電気量に応じて連続的に蒸留水または精製水を添加することにより所定の濃度の酸、水酸化リチウム水溶液を抜き取る連続式でもよい。As an electrodialysis method according to the present invention, an acid chamber and an alkaline chamber are provided with acid and lithium hydroxide aqueous solution tanks, and each solution is circulated between each solution tank and the chamber. You can also. As a method of extracting the acid or lithium hydroxide aqueous solution that is generated, at the beginning of operation, a thin acid and lithium hydroxide aqueous solution that can be energized are charged to produce acid and lithium hydroxide, and the concentration reaches a predetermined level. Even in the so-called batch method, where a predetermined amount is withdrawn and then replenished with distilled water or purified water to restore the initial thin concentration, a predetermined concentration of acid and lithium hydroxide aqueous solution is charged in advance, and depending on the amount of electricity applied Alternatively, a continuous type in which acid or lithium hydroxide aqueous solution having a predetermined concentration is withdrawn by continuously adding distilled water or purified water may be used.

同様に塩水溶液も塩室と塩タンクとを塩水溶液循環ラインで結び、塩室から排出された濃度の低くなった塩水溶液を塩タンクに通して再び塩室に循環する方法が採用される。セル電圧を測定し、測定された電圧が予め設定された電圧値を越えた時に塩水溶液循環ラインに新たな塩水溶液を塩水溶液供給ラインに通して供給する。Similarly, the salt solution is also connected to the salt chamber and the salt tank through a salt solution circulation line, and the salt solution having a reduced concentration discharged from the salt chamber is passed through the salt tank and circulated again to the salt chamber. The cell voltage is measured, and when the measured voltage exceeds a preset voltage value, a new salt solution is supplied to the salt solution circulation line through the salt solution supply line.

セル電圧を監視する方法は、従来公知の方法が採用される。セル電圧を検知するには一般的には複数枚隔てた膜と膜との間に2本以上の白金線電極を挿入しておき、通電下に電圧を測定し、前述の電極間のセル積層数で除して算出する方法を採用することができる。陽極室と陰極室に白金線電極を挿入しておきスタック間の電圧を検出し、セル電圧を測定することにより塩水溶液の濃度の平均値を得ることが出来るとともに異常発生がいずれかの膜に発生した場合にも検出可能であり好ましい。As a method of monitoring the cell voltage, a conventionally known method is adopted. In order to detect the cell voltage, generally two or more platinum wire electrodes are inserted between two or more separated membranes, the voltage is measured under energization, and the cell stack between the aforementioned electrodes is measured. A method of calculating by dividing by a number can be employed. By inserting platinum wire electrodes in the anode chamber and cathode chamber, the voltage between the stacks is detected, and the cell voltage is measured, so that the average value of the concentration of the salt solution can be obtained and abnormalities can occur in any of the membranes. Even if it occurs, it can be detected and is preferable.

セル電圧は通常1〜3ボルトである。予め設定されたセル電圧、例えば、4〜6ボルトを越えた時、塩室の塩水溶液の濃度が電気透析には適さない程度まで低下していることを意味する。かかる場合には、塩水溶液循環ラインに新たな塩水溶液を供給する。The cell voltage is usually 1 to 3 volts. When exceeding a preset cell voltage, for example, 4 to 6 volts, it means that the concentration of the salt aqueous solution in the salt chamber is lowered to an extent that is not suitable for electrodialysis. In such a case, a new salt solution is supplied to the salt solution circulation line.

本発明の電気透析装置の稼動は太陽光発電により得られるセル電圧約0.7Vの直流である太陽電池セルを所望の電圧範囲にシリーズ接続し、蓄電し、電圧安定装置を使用して稼動できる。従来の100Vないし200Vの交流電流からの直流電流変換、低電圧化するために電圧安定装置での発熱によるエネルギー損出するのに比して省エネルギー、低ランニングコストの観点から太陽光発電の電源と組み合わせるのが特に好ましい。The electrodialysis apparatus of the present invention can be operated by connecting a series of solar cells having a cell voltage of about 0.7 V obtained by solar power generation to a desired voltage range, storing electricity, and using a voltage stabilizer. . Compared with conventional DC current conversion from 100V to 200V AC current, energy loss due to heat generation in the voltage stabilizer to lower the voltage, from the viewpoint of energy saving and low running cost It is particularly preferable to combine them.

本発明に用いられる電気透析の電流密度は、通常0.3〜50A/dmの範囲であり好ましくは1〜20A/dmの範囲の定電流密度で稼動する。
セル電圧は、電流密度が一定であれば、酸、塩水溶液、水酸化リチウム水溶液の濃度、各溶液の流速、温度、陽イオン交換膜、陰イオン交換膜の電気抵抗、ブリスター、スケール発生の有無等の要因によって変化する。新たな塩水溶液を追加してもセル電圧が低下しない時は、イオン交換膜にスケールが発生したものと考えられるので、即座に電気透析を停止するのがよい。
Current density of electrodialysis to be used in the present invention is usually in the range of 0.3~50A / dm 2 preferably runs at a constant current density in the range of 1 to 20A / dm 2.
If the current density is constant, the cell voltage is the concentration of acid, salt aqueous solution, lithium hydroxide aqueous solution, flow rate of each solution, temperature, cation exchange membrane, electric resistance of anion exchange membrane, blister, presence / absence of scale It depends on factors such as. When the cell voltage does not decrease even when adding a new salt solution, since it is considered that scale occurs in the ion-exchange membrane, it is preferable to stop the electrodialysis immediately.

本発明の電気透析で得られた水酸化リチウム水溶液からイオン交換膜を通過した更に極微量のイオンを除去するには、例えば、カルシウム、マグネシウム等のアルカリ土類、微量の金属イオンを吸着除去するキレート剤としては、イミノジ酢酸型、アミノリン酸型のキレート樹脂を使用することが出来る。カラム内での空間速度(SV)は、通常、2から10hr−1の範囲で精製操作を行う。またこれらのキレート樹脂は、ナトリウム塩で出荷されることが多いので使用する前に酸処理、水洗、9−11%の超純度水酸化リチウム濃度の水溶液でリチウム塩に転換しておく。特に限定されないが、アンバーライトIRC748(オルガノ社製)、アンバーライトIRC747(オルガノ社製)のリチウム塩が使用される。In order to further remove trace amounts of ions that have passed through the ion exchange membrane from the lithium hydroxide aqueous solution obtained by electrodialysis according to the present invention, for example, alkaline earth such as calcium and magnesium, and trace amounts of metal ions are removed by adsorption. As the chelating agent, iminodiacetic acid type or aminophosphoric acid type chelating resins can be used. The space velocity (SV) in the column is usually 2 to 10 hr −1 in the purification operation. Since these chelate resins are often shipped as sodium salts, they are converted to lithium salts with an acid treatment, water washing, and an aqueous solution of 9-11% ultrapure lithium hydroxide before use. Although not particularly limited, lithium salts of Amberlite IRC748 (manufactured by Organo) and Amberlite IRC747 (manufactured by Organo) are used.

リチウム以外のナトリウム、カリウム等の一価のアルカリイオンを低減するには、100℃での水に対する溶解度の差違、すなわち水酸化ナトリウム(347g/水100g)、水酸化カリウム(178g/水100g)と水酸化リチウム(17.5g/水100g)の溶解度差を利用して水酸化リチウム水溶液を加熱濃縮する過程で、水の沸点近くで水酸化リチウム・1水和物を晶析・脱水し、蒸発した蒸留熱水を使用して繰り返して晶析・脱水する多段晶析・脱水法を適用する。またこの過程で微量混在している炭酸水素リチウム、炭酸リチウムを加水分解して水酸化リチウムに戻すことができる。分解した微量の炭酸ガスは、蒸留されるのでガス吸収して蒸留水から除去するのが良い。更に、二価のアルカリ土類のカルシウム、マグネシウム等の完全吸着とナトリウム、カリウム等の1価のカチオンの低減・除去する陽イオン交換樹脂としてスチレン・ジビニルベンゼンとの架橋ポリマーのスルホン酸基を官能基とする強酸性陽イオン交換樹脂とカルボン酸基を官能基とするアクリル酸やメタクリル酸とジビニルベンゼンの共重合体を母体とする弱酸性陽イオン交換樹脂を用いることができる。不純物量に応じて水素イオンを放出するR−H型とLiカチオンを放出するR−Li型のいずれでも使用できる。市販のナトリウム塩で出荷されているカチオン交換樹脂は使用する前に酸処理、水洗、9−11%の超純度水酸化リチウム濃度の水溶液あるいは超高純度炭酸リチウムでリチウム塩に転換しておく。カラム内での空間速度(SV)は、通常、1から10hr−1の範囲で精製操作を行う。特に限定されないが、商品名アンバーライト(オルガノ社製)のIR120B、IR124、IR200CT、IR252、商品名ダイヤイオン(三菱化学社製)SK、PK、HPK25のリチウム塩等が使用される。In order to reduce monovalent alkali ions such as sodium and potassium other than lithium, the difference in solubility in water at 100 ° C., that is, sodium hydroxide (347 g / 100 g of water), potassium hydroxide (178 g / 100 g of water) and Lithium hydroxide monohydrate crystallizes, dehydrates and evaporates near the boiling point of water in the process of heating and concentrating lithium hydroxide aqueous solution using the difference in solubility of lithium hydroxide (17.5 g / 100 g of water) A multi-stage crystallization / dehydration method is used in which crystallization / dehydration is repeated using the distilled hot water. Further, in this process, a small amount of lithium hydrogen carbonate and lithium carbonate can be hydrolyzed and returned to lithium hydroxide. Since the decomposed trace amount of carbon dioxide gas is distilled, it is better to absorb the gas and remove it from the distilled water. Furthermore, sulfonic acid groups of styrene / divinylbenzene cross-linked polymers are functionalized as a cation exchange resin that completely adsorbs divalent alkaline earth calcium and magnesium, and reduces or removes monovalent cations such as sodium and potassium. A strongly acidic cation exchange resin based on a carboxylic acid group and a weak acid cation exchange resin based on a copolymer of acrylic acid or methacrylic acid and divinylbenzene having a carboxylic acid group as a functional group can be used. Either the RH type that releases hydrogen ions or the R-Li type that releases Li cations according to the amount of impurities can be used. The cation exchange resin shipped as a commercially available sodium salt is converted to a lithium salt with an acid treatment, washing with water, an aqueous solution of 9-11% ultrapure lithium hydroxide concentration or ultrapure lithium carbonate before use. The space velocity (SV) in the column is usually 1 to 10 hr −1 in the purification operation. Although not particularly limited, IR120B, IR124, IR200CT, IR252 of trade name Amberlite (manufactured by Organo), lithium salt of trade name Diaion (manufactured by Mitsubishi Chemical) SK, PK, HPK25, and the like are used.

塩素イオン、硫酸イオン、炭酸水素イオン等の陰イオンを吸着し、低減ないし除去するには、陰イオン交換樹脂としてスチレンとジビニルベンゼンとのコポリマーにクロロメチル化して、トリメチルアミンやジメチルアミンやジメチルエタノールアミンを使ってアミノ化したものを使用する。市販の塩素塩で出荷されているアニオン交換樹脂は使用前に超高純度水酸化リチウム水溶液で洗浄し、かつOH型へ転換する。
さらに微量の水を含むメチルアルコール、エチルアルコール、イソプロピルアルコールにより陰イオン交換樹脂製造工程から含まれて来た極微量の硫酸根イオン(SO4−−)および塩素イオン(Cl)、アミン類等を洗浄・除去しておく。また酸化劣化しやすくなっているので空気との接触を少なくし、イオン交換する電気透析されて得た水酸化リチウム水溶液の溶存酸素の低減も長期運転のために必要であれば行う。カラム内での空間速度(SV)は、通常、1から10hr−1の範囲で精製操作を行う。
特に限定されないが、商品名アンバーライト(オルガノ社製)のIRA400J、IRA400T、IRA402J、402BL、商品名ダイヤイオン(三菱化学社製)SA10A、PA300、PA318、HPA−75、WA10、WA20、WA30、SA20A、PA400、商品名レバチット(ランクセス社製)A−365等のOH転換品が使用される。
To adsorb and reduce or remove anions such as chloride ion, sulfate ion and hydrogen carbonate ion, chloromethylation to a copolymer of styrene and divinylbenzene as an anion exchange resin, trimethylamine, dimethylamine and dimethylethanolamine Use the aminated product. The anion exchange resin shipped as a commercially available chlorine salt is washed with an ultra-high purity lithium hydroxide aqueous solution before use and converted to the OH type.
Further methyl alcohol containing traces of water, ethyl alcohol, isopropyl alcohol by anion exchange resin manufacturing process trace amount came included from sulfate ion ion (SO4 -) and chlorine ion (Cl -), amines, etc. Wash and remove. Moreover, since it is easy to oxidatively deteriorate, the contact with air is reduced, and the dissolved oxygen in the lithium hydroxide aqueous solution obtained by electrodialysis for ion exchange is reduced if necessary for long-term operation. The space velocity (SV) in the column is usually 1 to 10 hr −1 in the purification operation.
Although not particularly limited, IRA400J, IRA400T, IRA402J, 402BL, trade names Amberlite (manufactured by Organo), trade names Diaion (made by Mitsubishi Chemical) SA10A, PA300, PA318, HPA-75, WA10, WA20, WA30, SA20A OH conversion products such as PA400, trade name Levacit (manufactured by LANXESS) A-365, etc. are used.

本発明の精製工程では上記のキレート剤、陽イオン交換樹脂、陰イオン交換樹脂を用いて水酸化リチウム水溶液を濃縮してから処理することもできる。
また必要であれば水酸化リチウムを析出させた晶析残液を再度、かかるイオン除去処理を行い、濃縮されて存在する不純物を除去してから熱水中での析出・脱水乾燥することで最終的に水酸化リチウムの収率を高めることも出来る。
In the purification step of the present invention, the aqueous solution of lithium hydroxide can be concentrated after using the above chelating agent, cation exchange resin, or anion exchange resin.
In addition, if necessary, the crystallization residual liquid in which lithium hydroxide is precipitated is again subjected to such ion removal treatment, concentrated impurities are removed, and then the precipitate is dehydrated and dehydrated and dried in hot water. In particular, the yield of lithium hydroxide can be increased.

以下実施例、比較例、参考例により本発明を詳しく説明するが、本発明の範囲は、これらの実施例に限定されるものではない。 分析法は、リチウムは、原子吸光法でリチウム以外の各元素は、ICP法で測定する。リチウム量(%)については、滴定法でもとめたアルカリ滴定当量からICP法でもとめたリチウム以外のアルカリ、アルカリ土類分を補正し、水酸化リチウム・1水和物として算出し、リチウム理論含有量16.5494%を乗じた数値として示す。塩素イオン(Cl)と硫酸根(SO4−−)は、イオンクロマトグラフィー法で測定する。Hereinafter, the present invention will be described in detail with reference to Examples, Comparative Examples, and Reference Examples, but the scope of the present invention is not limited to these Examples. As for the analytical method, lithium is measured by atomic absorption method, and each element other than lithium is measured by ICP method. Lithium content (%) is calculated as lithium hydroxide monohydrate by correcting alkali and alkaline earth components other than lithium as determined by ICP method from alkali titration equivalent as determined by titration method. It is shown as a numerical value multiplied by the amount 16.5494%. Chlorine ions (Cl ) and sulfate radicals (SO 4 − − ) are measured by ion chromatography.

特級試薬の硫酸を蒸留水で希釈し、テクニカルグレードの炭酸リチウム(ケメタルフット社製)顆粒と反応させて上澄み液を硫酸リチウム水溶液とする。
陽極と陰極との間にカチオン交換膜(商品名ネオセプタCMB、アストム社製)とアニオン交換膜(商品名ネオセプタAHA、アストム社製)を使用した構造の電気透析装置において酸室、塩室、アルカリ室、水電解室(陰極室)の1組が配列されている電気透析装置に陽極と陰極の間に直流電流を通す。塩室に硫酸リチウムの水溶液を供給し、酸室に硫酸水溶液を存在させ、アルカリ室に超高純度水酸化リチウム水溶液を存在させて酸室から硫酸をアルカリ室から水酸化リチウム水溶液をそれぞれ独立に取り出す。安定運転状態で取り出した水酸化リチウム水溶液をアンバーライトIRC748のLi変性品カラムに通す。この液を加熱・濃縮し、水の沸騰温度付近の98℃で晶析し、熱水より分離・脱水する。この晶析物を水蒸気から凝縮して得た蒸留水を用いて溶解し、再度、加熱・濃縮し、98℃で晶析し、熱水より分離・脱水し、乾燥する。得られた水酸化リチウム・1水和物の分析結果を表1に示す。
The special grade sulfuric acid is diluted with distilled water and reacted with technical grade lithium carbonate (Kemetalfoot) granules to make the supernatant liquid lithium aqueous solution.
In an electrodialysis apparatus using a cation exchange membrane (trade name Neocepta CMB, manufactured by Astom) and an anion exchange membrane (trade name Neocepta AHA, manufactured by Astom) between the anode and the cathode, an acid chamber, a salt chamber, an alkali A direct current is passed between an anode and a cathode through an electrodialysis apparatus in which one set of a chamber and a water electrolysis chamber (cathode chamber) is arranged. Supply an aqueous solution of lithium sulfate to the salt chamber, make the aqueous solution of sulfuric acid exist in the acid chamber, and make the ultrahigh purity lithium hydroxide aqueous solution exist in the alkaline chamber, and separate the sulfuric acid from the acid chamber and the aqueous lithium hydroxide solution from the alkaline chamber, respectively. Take out. The lithium hydroxide aqueous solution taken out in a stable operation state is passed through a Limber modified product column of Amberlite IRC748. This liquid is heated and concentrated, crystallized at 98 ° C. near the boiling temperature of water, and separated and dehydrated from hot water. This crystallized product is dissolved using distilled water obtained by condensing from water vapor, heated and concentrated again, crystallized at 98 ° C., separated and dehydrated from hot water, and dried. The analysis results of the obtained lithium hydroxide monohydrate are shown in Table 1.

特級試薬の塩酸を蒸留水で希釈し、実施例1と同じ炭酸リチウム(テクニカルグレード、ケメタルフット社製)顆粒とを反応させて得た、上澄み液を塩化リチウム水溶液とする。実施例1と同じ電気透析装置に塩室に塩酸リチウムの水溶液を供給し、酸室に塩酸水を存在させ、アルカリ室に超高純度水酸化リチウム水溶液を存在させて酸室から塩酸をアルカリ室から水酸化リチウム水溶液をそれぞれ独立に取り出す。安定運転状態で取り出した水酸化リチウムの水溶液をアンバーライトIRC748のLi変性品カラム、続けてアンバーライトIR120BのLi変性品カラムに通す。この液を加熱・濃縮し、水の沸騰温度付近の99℃で晶析し、熱水より分離・脱水する。この晶析物を水蒸気から凝縮して得た蒸留水に溶解し、再度加熱・濃縮し、99℃で晶析し、熱水より分離・脱水し、乾燥する。得られた水酸化リチウム・1水和物の分析結果を表1に示す。得られた塩酸は、炭酸リチウム顆粒を溶解するのに繰り返して使用される。The supernatant obtained by diluting hydrochloric acid, a special grade reagent, with distilled water and reacting with the same lithium carbonate (technical grade, manufactured by Kemetal Foot) granules as in Example 1 is used as an aqueous lithium chloride solution. In the same electrodialysis apparatus as in Example 1, an aqueous solution of lithium hydrochloride was supplied to the salt chamber, hydrochloric acid water was present in the acid chamber, and an ultrahigh purity lithium hydroxide aqueous solution was present in the alkali chamber, and hydrochloric acid was transferred from the acid chamber to the alkaline chamber. The lithium hydroxide aqueous solution is taken out of each independently. The aqueous solution of lithium hydroxide taken out in a stable operation state is passed through a Li-modified column of Amberlite IRC748 and then a Li-modified column of Amberlite IR120B. This liquid is heated and concentrated, crystallized at 99 ° C. near the boiling temperature of water, and separated and dehydrated from hot water. This crystallized product is dissolved in distilled water obtained by condensation from water vapor, heated and concentrated again, crystallized at 99 ° C., separated and dehydrated from hot water, and dried. The analysis results of the obtained lithium hydroxide monohydrate are shown in Table 1. The resulting hydrochloric acid is repeatedly used to dissolve the lithium carbonate granules.

実施例1のアンバーライトIRC748のLi変性品カラムを通過した液を更にアンバーライトIRA410 OHカラムに通す。加熱し、沸騰温度付近で水蒸気を除き濃縮し、98℃で析出物を分離・脱水し、乾燥する。表1に得られた水酸化リチウム・1水和物の分析結果を表1に示す。The liquid that has passed through the Li-modified column of Amberlite IRC748 in Example 1 is further passed through the Amberlite IRA410 OH column. Heat, concentrate and remove water vapor at around the boiling temperature, separate, dehydrate and dry the precipitate at 98 ° C. Table 1 shows the analysis results of the lithium hydroxide monohydrate obtained in Table 1.

実施例2のアンバーライトIRC748のLi変性品カラム、続けてアンバーライトIR120BのLi変性品カラムを通過した液を更にダイヤイオンWA20のOH転換済みカラムに通す。加熱し、沸騰温度付近で水蒸気を除き濃縮し、97℃で析出物を分離・脱水し、乾燥する。表1に得られた水酸化リチウム・1水和物の分析結果を表1に示す。The liquid which passed through the Li-modified column of Amberlite IRC748 in Example 2 and then the Li-modified column of Amberlite IR120B is further passed through the OH-converted column of Diaion WA20. Heat, concentrate and remove water vapor around the boiling temperature, separate, dehydrate and dry the precipitate at 97 ° C. Table 1 shows the analysis results of the lithium hydroxide monohydrate obtained in Table 1.

熱処理されβ化されたリチウム含有鉱石(スポジメン)から硫酸により抽出して得た硫酸リチウム粉末を蒸留水に溶解する。実施例1と同じ電極とイオン交換膜で陽極室と陰極室との間に酸室、塩室、アルカリ室、水電解室の組が三つ配列されている電気透析装置の塩室にこの硫酸リチウム水溶液を供給し、酸室に希薄硫酸水溶液を存在させ、アルカリ室に超高純度水酸化リチウム水溶液を存在させて酸室から硫酸をアルカリ室から水酸化リチウム水溶液をそれぞれ独立に取り出す。安定運転状態で取り出した水酸化リチウム水溶液を順にアンバーライトIRC748のLi変性品カラム、アンバーライトIR120BのLi変性品カラムとアンバーライトIRA410 OHカラムに通液し、精製する。加熱し、沸騰温度付近で水蒸気を除き濃縮し、97℃で析出物を分離し、乾燥する。表1に得られた水酸化リチウム・1水和物の分析結果を表1に示す。
得られた硫酸は、熱処理されたリチウム含有鉱石(スポジメン)からの抽出に使用できる。また、炭酸リチウムと反応させて硫酸リチウムを得るのにも使用される。
Lithium sulfate powder obtained by extraction with sulfuric acid from a heat-treated and β-modified lithium-containing ore (spodium) is dissolved in distilled water. The sulfuric acid was added to the salt chamber of the electrodialysis apparatus in which three sets of an acid chamber, a salt chamber, an alkali chamber, and a water electrolysis chamber were arranged between the anode chamber and the cathode chamber by the same electrode and ion exchange membrane as in Example 1. A lithium aqueous solution is supplied, a dilute sulfuric acid aqueous solution is present in the acid chamber, an ultrahigh purity lithium hydroxide aqueous solution is present in the alkali chamber, and sulfuric acid is extracted from the acid chamber and the lithium hydroxide aqueous solution is independently extracted from the alkali chamber. The lithium hydroxide aqueous solution taken out in a stable operation state is passed through a Limber modified product column of Amberlite IRC748, a Li modified product column of Amberlite IR120B and an Amberlite IRA410 OH column in order, and purified. Heat, concentrate and remove water vapor near the boiling temperature, separate the precipitate at 97 ° C. and dry. Table 1 shows the analysis results of the lithium hydroxide monohydrate obtained in Table 1.
The obtained sulfuric acid can be used for extraction from heat-treated lithium-containing ore (spo- men). It is also used to react with lithium carbonate to obtain lithium sulfate.

熱処理されβ化されたリチウム含有鉱石(スポジメン)から塩酸により抽出して得た塩化リチウム粉末を蒸留水に溶解する。実施例5と同じ電気透析装置の塩室にこの塩化リチウム水溶液を供給し、酸室に希薄塩酸を存在させ、アルカリ室に超高純度水酸化リチウム水溶液を存在させて酸室から塩酸をアルカリ室から水酸化リチウム水溶液をそれぞれ独立に取り出す。安定運転状態で取り出した水酸化リチウム水溶液を順にアンバーライトIRC748のLi変性品カラム、アンバーライトIR120BのLi変性品カラムとアンバーライトIRA410 OHカラムに通液し、精製する。加熱し、沸騰温度付近で水蒸気を除き濃縮し、97℃で析出物を分離・脱水し、乾燥する。表1に得られた水酸化リチウム・1水和物の分析結果を表1に示す。
得られた塩酸は、熱処理されたリチウム含有鉱石(スポジメン)からの抽出にも使用できる。また、炭酸リチウムと反応して塩化リチウムを得るのにも使用される。
Lithium chloride powder obtained by extraction with hydrochloric acid from a heat-treated β-modified ore containing lithium (spodium) is dissolved in distilled water. This lithium chloride aqueous solution is supplied to the salt chamber of the same electrodialysis apparatus as in Example 5, dilute hydrochloric acid is present in the acid chamber, ultrahigh purity lithium hydroxide aqueous solution is present in the alkali chamber, and hydrochloric acid is supplied from the acid chamber to the alkali chamber. The lithium hydroxide aqueous solution is taken out of each independently. The lithium hydroxide aqueous solution taken out in a stable operation state is passed through a Limber modified product column of Amberlite IRC748, a Li modified product column of Amberlite IR120B and an Amberlite IRA410 OH column in order, and purified. Heat, concentrate and remove water vapor around the boiling temperature, separate, dehydrate and dry the precipitate at 97 ° C. Table 1 shows the analysis results of the lithium hydroxide monohydrate obtained in Table 1.
The obtained hydrochloric acid can also be used for extraction from heat-treated lithium-containing ore (spo- men). It is also used to react with lithium carbonate to obtain lithium chloride.

使用済みリチウムイオン二次電池から回収された硫酸リチウム水溶液を実施例1と同じ電気透析装置の塩室にこの硫酸リチウム水溶液を供給し、酸室に希薄硫酸水溶液を存在させ、アルカリ室に超高純度水酸化リチウム水溶液を存在させて酸室から硫酸をアルカリ室から水酸化リチウム水溶液をそれぞれ独立に取り出す。安定運転状態で取り出した水酸化リチウム水溶液を順にアンバーライトIRC748のLi変性品カラム、アンバーライトIR120BのLi変性品カラムとレバチットA365のOH転換済みカラムに通液し、精製する。加熱し、沸騰温度付近で水蒸気を除き濃縮し、97℃で析出物を分離・脱水し、乾燥する。表1に得られた水酸化リチウム・1水和物の分析結果を表1に示す。
得られた硫酸は、使用済みリチウムイオン二次電池からリチウム源を硫酸リチウムとして回収するのに使用できる。また、炭酸リチウムと反応させて硫酸リチウムを得るのに使用しても良い。
The lithium sulfate aqueous solution recovered from the used lithium ion secondary battery is supplied to the salt chamber of the same electrodialysis apparatus as in Example 1, the dilute sulfuric acid aqueous solution is present in the acid chamber, and the alkaline chamber is ultrahigh. Purity lithium hydroxide aqueous solution is present, and sulfuric acid is taken out from the acid chamber and lithium hydroxide aqueous solution is taken out from the alkali chamber independently. The lithium hydroxide aqueous solution taken out in a stable operation state is sequentially passed through a Li-modified column of Amberlite IRC748, a Li-modified column of Amberlite IR120B, and an OH-converted column of Levacit A365 for purification. Heat, concentrate and remove water vapor around the boiling temperature, separate, dehydrate and dry the precipitate at 97 ° C. Table 1 shows the analysis results of the lithium hydroxide monohydrate obtained in Table 1.
The obtained sulfuric acid can be used to recover a lithium source as lithium sulfate from a used lithium ion secondary battery. Moreover, you may use for making it react with lithium carbonate and obtaining lithium sulfate.

使用済みリチウムイオン二次電池から回収された塩化リチウム水溶液を実施例1と同じ電気透析装置の塩室に供給し、酸室に希薄塩酸を存在させ、アルカリ室に超高純度水酸化リチウム水溶液を存在させて酸室から塩酸をアルカリ室から水酸化リチウム水溶液をそれぞれ独立に取り出す。安定運転状態で取り出した水酸化リチウム水溶液をそれぞれ、アンバーライトIRC748のLi変性品カラム、アンバーライトIR120BのLi変性品カラムとアンバーライトIRA410 OHカラムに通液し、精製する。加熱し、沸騰温度付近で水蒸気を除き濃縮し、熱水を一部残して97℃で析出物を分離し、乾燥する。表1に得られた水酸化リチウム・1水和物の分析結果を表1に示す。
得られた塩酸は、使用済みリチウムイオン二次電池からリチウム源を塩化リチウムとして回収するのに使用できる。また、炭酸リチウムと反応させて塩化リチウムを得るのに使用しても良い。
The lithium chloride aqueous solution recovered from the used lithium ion secondary battery is supplied to the salt chamber of the same electrodialysis apparatus as in Example 1, dilute hydrochloric acid is present in the acid chamber, and an ultrahigh purity lithium hydroxide aqueous solution is added to the alkali chamber. The hydrochloric acid is removed from the acid chamber and the lithium hydroxide aqueous solution is removed from the alkaline chamber independently. The lithium hydroxide aqueous solution taken out in a stable operation state is passed through a Li-modified column of Amberlite IRC748, a Li-modified column of Amberlite IR120B, and an Amberlite IRA410 OH column for purification. Heat, concentrate and remove water vapor around the boiling temperature, separate the precipitate at 97 ° C., leaving some hot water, and dry. Table 1 shows the analysis results of the lithium hydroxide monohydrate obtained in Table 1.
The obtained hydrochloric acid can be used to recover a lithium source as lithium chloride from a used lithium ion secondary battery. Moreover, you may use for making it react with lithium carbonate and obtaining lithium chloride.

潅水から層状構造を有する水酸化アルミニュ−ムタブレットで吸着・分離された塩化リチウム粉末を蒸留水に溶解する。この塩化リチウム水溶液を実施例1と同じ電気透析装置の塩室に供給し、酸室に希薄塩酸を存在させ、アルカリ室に超高純度水酸化リチウム水溶液を存在させて酸室から塩酸をアルカリ室から水酸化リチウム水溶液をそれぞれ独立に取り出す。この水酸化リチウム水溶液をそれぞれ、アンバーライトIRC748のLi変性品カラム、アンバーライトIR120BのLi変性品カラムとアンバーライトIRA410 OHカラムに通液し、精製する。加熱し、沸騰温度付近で水蒸気を除き濃縮し、熱水を一部残して97℃で析出物を分離し、乾燥する。表1に得られた水酸化リチウム・1水和物の分析結果を表1に示す。Lithium chloride powder adsorbed and separated by aluminum hydroxide tablets having a layered structure from irrigation is dissolved in distilled water. This lithium chloride aqueous solution is supplied to the salt chamber of the same electrodialysis apparatus as in Example 1, dilute hydrochloric acid is present in the acid chamber, ultrahigh purity lithium hydroxide aqueous solution is present in the alkali chamber, and hydrochloric acid is supplied from the acid chamber to the alkali chamber. The lithium hydroxide aqueous solution is taken out of each independently. The lithium hydroxide aqueous solution is passed through a Limber modified product column of Amberlite IRC748, a Li modified product column of Amberlite IR120B, and an Amberlite IRA410 OH column for purification. Heat, concentrate and remove water vapor around the boiling temperature, separate the precipitate at 97 ° C., leaving some hot water, and dry. Table 1 shows the analysis results of the lithium hydroxide monohydrate obtained in Table 1.

比較例1Comparative Example 1

特級試薬の硫酸を蒸留水で希釈し、テクニカルグレードの炭酸リチウム(ケメタルフット社製)の顆粒と反応させて上澄み液を硫酸リチウム水溶液とする。
実施例1と同じ電気透析装置を使用して塩室に硫酸リチウムの水溶液を供給し、酸室に硫酸水溶液を存在させ、アルカリ室に超高純度水酸化リチウム水溶液を存在させて酸室から硫酸をアルカリ室から水酸化リチウム水溶液をそれぞれ独立に取り出す。安定運転状態で取り出した水酸化リチウム水溶液は、加熱・濃縮されて水の沸騰温度付近で晶析し、一部熱水を90℃で分離し、晶析物を乾燥し得られた水酸化リチウム・1水和物の分析結果を表1に示す。
Dilute the special grade reagent sulfuric acid with distilled water and react with granules of technical grade lithium carbonate (manufactured by Kemetal Foot) to make the supernatant liquid lithium aqueous solution.
Using the same electrodialysis apparatus as in Example 1, an aqueous solution of lithium sulfate was supplied to the salt chamber, an aqueous sulfuric acid solution was present in the acid chamber, an ultrahigh purity lithium hydroxide aqueous solution was present in the alkaline chamber, and the sulfuric acid was fed from the acid chamber. The lithium hydroxide aqueous solution is taken out from the alkali chamber independently. The lithium hydroxide aqueous solution taken out in a stable operation state is heated and concentrated to crystallize around the boiling temperature of water, and part of hot water is separated at 90 ° C., and the crystallized product is dried to obtain lithium hydroxide. -The analysis result of monohydrate is shown in Table 1.

比較例2Comparative Example 2

特級試薬の塩酸を蒸留水で希釈し、実施例1と同じテクニカルグレードの炭酸リチウム(ケメタルフット社製)の顆粒と反応させて得た、上澄み液を塩化リチウム水溶液とする。
実施例1と同じ電気透析装置の塩室に塩酸リチウムの水溶液を供給し、酸室に塩酸水溶液を存在させ、アルカリ室に超高純度水酸化リチウム水溶液を存在させて酸室から塩酸をアルカリ室から水酸化リチウム水溶液をそれぞれ独立に取り出す。安定運転状態で取り出した水酸化リチウム水溶液は、加熱・濃縮されて水の沸騰温度付近で晶析し、一部熱水を90℃で分離し、晶析物を乾燥し得られた水酸化リチウム・1水和物の分析結果を表1に示す。
The supernatant obtained by diluting hydrochloric acid, a special grade reagent, with distilled water and reacting with granules of lithium carbonate of the same technical grade as in Example 1 (manufactured by Kemetal Foot) is used as an aqueous lithium chloride solution.
The aqueous solution of lithium hydrochloride is supplied to the salt chamber of the same electrodialysis apparatus as in Example 1, the aqueous hydrochloric acid solution is present in the acid chamber, the ultrahigh purity lithium hydroxide aqueous solution is present in the alkaline chamber, and the hydrochloric acid is supplied from the acidic chamber to the alkaline chamber. The lithium hydroxide aqueous solution is taken out of each independently. The lithium hydroxide aqueous solution taken out in a stable operation state is heated and concentrated to crystallize around the boiling temperature of water, and part of hot water is separated at 90 ° C., and the crystallized product is dried to obtain lithium hydroxide. -The analysis result of monohydrate is shown in Table 1.

参考例1Reference example 1

原料として使用したテクニカルグレードの炭酸リチウム(ケメタルフット社製)の原子吸光法でもとめたリチウムとICP法でもとめた他の元素分析結果からリチウム理論含有量16.5494%の仮想の水酸化リチウム・1水和物中に存在する不純物レベルを表1に示す。

Figure 2011031232
A hypothetical lithium hydroxide with a theoretical lithium content of 16.5494% based on the results of the analysis of lithium using the atomic absorption method of technical grade lithium carbonate (manufactured by Kemetalfoot) and other elemental analysis results obtained using the ICP method. Table 1 shows the level of impurities present in the monohydrate.
Figure 2011031232

陽極と陰極との間にカチオン交換膜とアニオン交換膜とが交互に配列され、陽極とカチオン交換膜とで陽極室が形成され、次に陽極側から陰極側にむけて酸室、塩室、アルカリ室、水電解室の順に配列されている酸室、塩室、アルカリ室、水電解室からなる組がひとつ以上配列されていて最も陰極側のアニオン膜とで構成される水電解室をカチオン膜の代わりに陰極で区画し、陰極室とする電気透析装置を使用して同時に酸と水酸化リチウムを取り出せるようにし、日本国内に備蓄しておける炭酸リチウム、リチウム塩類から必要時に長期保存性に乏しい水酸化リチウムをクリーンに簡便に製造できる。更には微量混在する不純物を低減する精製工程を付与した高純度水酸化リチウムが製造できる。
また同時に取り出した酸は、リチウム塩を得るために繰り返して使用できる。利便性と汎用性の高い水酸化リチウムの製造方法を提供することが可能となる。
A cation exchange membrane and an anion exchange membrane are alternately arranged between the anode and the cathode, an anode chamber is formed by the anode and the cation exchange membrane, and then an acid chamber, a salt chamber, from the anode side to the cathode side, A water electrolysis chamber composed of one or more pairs of an acid chamber, a salt chamber, an alkali chamber, and a water electrolysis chamber arranged in the order of an alkali chamber and a water electrolysis chamber, and an anion membrane on the most cathode side is cationized. Use an electrodialyzer with a cathode instead of a membrane and use an electrodialyzer as a cathode chamber, so that acid and lithium hydroxide can be taken out at the same time, and long-term storage is possible when necessary from lithium carbonate and lithium salts stored in Japan. Poor lithium hydroxide can be easily produced cleanly. Furthermore, high-purity lithium hydroxide to which a purification step for reducing a small amount of impurities can be produced.
The acid taken out at the same time can be used repeatedly to obtain a lithium salt. It becomes possible to provide a convenient and versatile method for producing lithium hydroxide.

Claims (12)

陽極と陰極との間にカチオン交換膜とアニオン交換膜とが交互に配列され、陽極とカチオン交換膜とで陽極室が形成され、次に陽極側から陰極側にむけて当該カチオン交換膜とアニオン膜とで区画された酸室、当該アニオン交換膜ともうひとつのカチオン交換膜とで区画された塩室、このカチオン交換膜ともうひとつのアニオン交換膜とで区画されたアルカリ室、更にこのアニオン交換膜と新たなカチオン交換膜とで区画された水電解室の順に配列されている酸室、塩室、アルカリ室、水電解室からなる組がひとつ以上配列されていて最も陰極側のアニオン膜とで構成される水電解室をカチオン膜の代わりに陰極で区画し、陰極室とする電気透析装置を使用して塩室にリチウム塩の水溶液を供給して酸室から酸を、アルカリ室から水酸化リチウム水溶液を取り出すことを特徴とする水酸化リチウムの製造方法。A cation exchange membrane and an anion exchange membrane are alternately arranged between the anode and the cathode, an anode chamber is formed by the anode and the cation exchange membrane, and then the cation exchange membrane and the anion from the anode side to the cathode side. An acid chamber partitioned by a membrane, a salt chamber partitioned by the anion exchange membrane and another cation exchange membrane, an alkali chamber partitioned by this cation exchange membrane and another anion exchange membrane, and further this anion One or more pairs of acid chambers, salt chambers, alkali chambers, and water electrolysis chambers are arranged in the order of the water electrolysis chamber partitioned by the exchange membrane and the new cation exchange membrane, and the anion membrane on the most cathode side A water electrolysis chamber constituted by a cathode is partitioned by a cathode instead of a cation membrane, and an acid solution is supplied from an acid chamber by supplying an aqueous solution of a lithium salt to the salt chamber using an electrodialysis apparatus having a cathode chamber. Lithium hydroxide Method for producing a lithium hydroxide, characterized in that retrieving the anhydrous solution. 炭酸リチウムと硫酸とを反応させて得た硫酸リチウムであることを特徴とする請求項1の水酸化リチウムの製造方法。2. The method for producing lithium hydroxide according to claim 1, wherein the lithium hydroxide is obtained by reacting lithium carbonate and sulfuric acid. 炭酸リチウムと塩酸とを反応させて得た塩化リチウムであることを特徴とする請求項1の水酸化リチウムの製造方法。2. The method for producing lithium hydroxide according to claim 1, wherein the lithium hydroxide is obtained by reacting lithium carbonate with hydrochloric acid. リチウム含有鉱石から硫酸により抽出して得た硫酸リチウムであることを特徴とする請求項1の請求項1の水酸化リチウムの製造方法。2. The method for producing lithium hydroxide according to claim 1, wherein the lithium hydroxide is lithium sulfate obtained by extraction with sulfuric acid from a lithium-containing ore. リチウム含有鉱石から塩酸による抽出により得た塩化リチウムであることを特徴とする請求項1の水酸化リチウムの製造方法。The method for producing lithium hydroxide according to claim 1, which is lithium chloride obtained by extraction with hydrochloric acid from a lithium-containing ore. 使用済みリチウムイオン二次電池から回収された硫酸リチウムであることを特徴とする請求項1の請求項1の水酸化リチウムの製造方法。2. The method for producing lithium hydroxide according to claim 1, wherein the lithium hydroxide is recovered from a used lithium ion secondary battery. 使用済みリチウムイオン二次電池からリチウム分を塩酸と反応させて回収した塩化リチウムであることを特徴とする請求項1の水酸化リチウムの製造方法。2. The method for producing lithium hydroxide according to claim 1, wherein the lithium hydroxide is lithium chloride recovered by reacting a lithium content with hydrochloric acid from a used lithium ion secondary battery. 潅水から選択的に吸着・分離された塩化リチウムであることを特徴とする請求項1の水酸化リチウムの製造方法。2. The method for producing lithium hydroxide according to claim 1, wherein the lithium hydroxide is selectively adsorbed and separated from irrigation. 請求項1−7に記載の水酸化リチウム水溶液であってキレート樹脂を使用して微量含まれるアルカリ土類金属を低減・除去する方法を付加した水酸化リチウムの製造方法。A method for producing lithium hydroxide, wherein the lithium hydroxide aqueous solution according to claim 1-7 is added with a method for reducing and removing trace amounts of alkaline earth metals using a chelate resin. 請求項1−8に記載の水酸化リチウム水溶液であって微量含まれるナトリウム、カリウム等の1価の陽イオンを低減するように90−100℃の温度で濃縮・晶析を繰り返す方法を付与した水酸化リチウムの製造方法。A method for repeating concentration and crystallization at a temperature of 90 to 100 ° C so as to reduce monovalent cations such as sodium and potassium contained in a trace amount in the lithium hydroxide aqueous solution according to claim 1-8. A method for producing lithium hydroxide. 請求項1−9に記載の水酸化リチウム水溶液であって陽イオン交換樹脂を使用してナトリウム、カリウム等の1価の陽イオン、アルカリ土類金属イオンを低減・除去する方法を付加した水酸化リチウムの製造方法。10. A hydroxylation solution comprising the lithium hydroxide aqueous solution according to claim 1 to which a method for reducing and removing monovalent cations such as sodium and potassium and alkaline earth metal ions using a cation exchange resin is added. Method for producing lithium. 請求項1−10に記載の水酸化リチウム水溶液であって陰イオン交換樹脂で塩素イオン、硫酸根イオン等のアニオンを低減・除去する方法を付加した製造方法。A method for producing an aqueous lithium hydroxide solution according to claim 1 to which a method for reducing and removing anions such as chloride ions and sulfate radical ions with an anion exchange resin is added.
JP2009193627A 2009-08-04 2009-08-04 Method of manufacturing lithium hydroxide Pending JP2011031232A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009193627A JP2011031232A (en) 2009-08-04 2009-08-04 Method of manufacturing lithium hydroxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009193627A JP2011031232A (en) 2009-08-04 2009-08-04 Method of manufacturing lithium hydroxide

Publications (1)

Publication Number Publication Date
JP2011031232A true JP2011031232A (en) 2011-02-17

Family

ID=43760832

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009193627A Pending JP2011031232A (en) 2009-08-04 2009-08-04 Method of manufacturing lithium hydroxide

Country Status (1)

Country Link
JP (1) JP2011031232A (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103367197A (en) * 2012-03-29 2013-10-23 无锡华瑛微电子技术有限公司 Wafer surface processing system
WO2013159194A1 (en) * 2012-04-23 2013-10-31 Nemaska Lithium Inc. Processes for preparing lithium hydroxide
JP5367190B1 (en) * 2013-03-08 2013-12-11 株式会社アストム Method for producing lithium hydroxide
WO2016132491A1 (en) * 2015-02-18 2016-08-25 独立行政法人石油天然ガス・金属鉱物資源機構 Apparatus for producing lithium hydroxide and method for producing lithium hydroxide
KR20160136314A (en) * 2014-02-24 2016-11-29 네마스카 리튬 인코포레이션 Methods for treating lithium-containing materials
CN106186006A (en) * 2016-07-27 2016-12-07 浙江鸿浩科技有限公司 A kind of purifying lithium chloride method
CN107298450A (en) * 2016-08-31 2017-10-27 江苏力泰锂能科技有限公司 The method that lithium hydroxide and lithium carbonate are prepared using soluble lithium salt solution
CN107299361A (en) * 2016-08-31 2017-10-27 江苏力泰锂能科技有限公司 The electrodialysis plant of lithium hydroxide solution is prepared using soluble lithium salt solution
KR101857458B1 (en) * 2012-08-13 2018-05-14 리드 어드밴스드 미네랄즈 피티와이 리미티드 Processing of Lithium Containing Material
KR20180074177A (en) * 2016-12-23 2018-07-03 주식회사 포스코 Method for manufacturing lithium hydroxide and lithium carbonate
JP2018520971A (en) * 2015-05-13 2018-08-02 リサーチ インスティチュート オブ インダストリアル サイエンス アンド テクノロジー Method for producing lithium hydroxide and lithium carbonate
US10167531B2 (en) 2014-03-13 2019-01-01 Reed Advanced Materials Pty Ltd Processing of lithium containing material
JP2019194154A (en) * 2013-10-23 2019-11-07 ネマスカ リチウム インコーポレイテッド Method for preparing lithium carbonate, lithium hydroxide and lithium sulfate
WO2019228577A3 (en) * 2018-05-29 2020-01-09 Membrain S.R.O. Process for preparing lithium chemical compounds by electrodialysis method and apparatus for performing this process
CN110917882A (en) * 2019-11-04 2020-03-27 杭州匠容道环境科技有限公司 Four-channel electrodialysis device for extracting lithium from salt lake and method for extracting lithium from salt lake
CN112569793A (en) * 2020-12-25 2021-03-30 苏州明昊色谱技术有限公司 Degassing-free trace anion impurity online remover and removing method in strong alkali solution
EP3805428A1 (en) * 2013-03-15 2021-04-14 Nemaska Lithium Inc. Processes for preparing lithium hydroxide
WO2021215486A1 (en) 2020-04-21 2021-10-28 Jx金属株式会社 Method for producing lithium hydroxide
KR20220090590A (en) * 2018-12-21 2022-06-29 맹그로브 워터 테크놀로지스 리미티드 Li recovery processes and onsite chemical production for li recovery processes
CN114737206A (en) * 2022-04-29 2022-07-12 福建省龙德新能源有限公司 Preparation method of lithium hexafluorophosphate
CN115849411A (en) * 2022-11-29 2023-03-28 江苏容汇通用锂业股份有限公司 Continuous production process of lithium hydroxide

Cited By (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103367197A (en) * 2012-03-29 2013-10-23 无锡华瑛微电子技术有限公司 Wafer surface processing system
WO2013159194A1 (en) * 2012-04-23 2013-10-31 Nemaska Lithium Inc. Processes for preparing lithium hydroxide
EP3824991A1 (en) * 2012-04-23 2021-05-26 Nemaska Lithium Inc. Process for preparing lithium sulphate
KR101857458B1 (en) * 2012-08-13 2018-05-14 리드 어드밴스드 미네랄즈 피티와이 리미티드 Processing of Lithium Containing Material
JP5367190B1 (en) * 2013-03-08 2013-12-11 株式会社アストム Method for producing lithium hydroxide
EP3805428A1 (en) * 2013-03-15 2021-04-14 Nemaska Lithium Inc. Processes for preparing lithium hydroxide
JP2019194154A (en) * 2013-10-23 2019-11-07 ネマスカ リチウム インコーポレイテッド Method for preparing lithium carbonate, lithium hydroxide and lithium sulfate
KR20160136314A (en) * 2014-02-24 2016-11-29 네마스카 리튬 인코포레이션 Methods for treating lithium-containing materials
KR102153976B1 (en) 2014-02-24 2020-09-10 네마스카 리튬 인코포레이션 Methods for treating lithium-containing materials
JP2017512256A (en) * 2014-02-24 2017-05-18 ネマスカ リチウム インコーポレーテッド Method for processing lithium-containing materials
KR20200106095A (en) * 2014-02-24 2020-09-10 네마스카 리튬 인코포레이션 Methods for treating lithium-containing materials
KR102341052B1 (en) 2014-02-24 2021-12-21 네마스카 리튬 인코포레이션 Methods for treating lithium-containing materials
JP2020164416A (en) * 2014-02-24 2020-10-08 ネマスカ リチウム インコーポレーテッド Methods for treating lithium-containing materials
US10167531B2 (en) 2014-03-13 2019-01-01 Reed Advanced Materials Pty Ltd Processing of lithium containing material
WO2016132491A1 (en) * 2015-02-18 2016-08-25 独立行政法人石油天然ガス・金属鉱物資源機構 Apparatus for producing lithium hydroxide and method for producing lithium hydroxide
JP2018520971A (en) * 2015-05-13 2018-08-02 リサーチ インスティチュート オブ インダストリアル サイエンス アンド テクノロジー Method for producing lithium hydroxide and lithium carbonate
US10661227B2 (en) 2015-05-13 2020-05-26 Research Institute Of Industrial Science & Technology Method for producing lithium hydroxide and lithium carbonate
CN106186006A (en) * 2016-07-27 2016-12-07 浙江鸿浩科技有限公司 A kind of purifying lithium chloride method
CN107298450B (en) * 2016-08-31 2019-11-29 江苏力泰锂能科技有限公司 The method for preparing lithium hydroxide and lithium carbonate using soluble lithium salt solution
CN107299361B (en) * 2016-08-31 2019-06-14 江苏力泰锂能科技有限公司 The electrodialysis plant of lithium hydroxide solution is prepared using soluble lithium salt solution
CN107298450A (en) * 2016-08-31 2017-10-27 江苏力泰锂能科技有限公司 The method that lithium hydroxide and lithium carbonate are prepared using soluble lithium salt solution
CN107299361A (en) * 2016-08-31 2017-10-27 江苏力泰锂能科技有限公司 The electrodialysis plant of lithium hydroxide solution is prepared using soluble lithium salt solution
KR20180074177A (en) * 2016-12-23 2018-07-03 주식회사 포스코 Method for manufacturing lithium hydroxide and lithium carbonate
KR101888181B1 (en) 2016-12-23 2018-08-13 주식회사 포스코 Method for manufacturing lithium hydroxide and lithium carbonate
WO2019228577A3 (en) * 2018-05-29 2020-01-09 Membrain S.R.O. Process for preparing lithium chemical compounds by electrodialysis method and apparatus for performing this process
CN112218704A (en) * 2018-05-29 2021-01-12 迈姆布林有限股份公司 Method for producing lithium compounds by electrodialysis and device for carrying out said method
US11649552B2 (en) 2018-12-21 2023-05-16 Mangrove Water Technologies Ltd. Li recovery processes and onsite chemical production for Li recovery processes
US11932955B2 (en) 2018-12-21 2024-03-19 Mangrove Water Technologies Ltd. Li recovery processes and onsite chemical production for Li recovery processes
US11891710B2 (en) 2018-12-21 2024-02-06 Mangrove Water Technologies Ltd. Li recovery processes and onsite chemical production for Li recovery processes
KR20220090590A (en) * 2018-12-21 2022-06-29 맹그로브 워터 테크놀로지스 리미티드 Li recovery processes and onsite chemical production for li recovery processes
KR102600507B1 (en) * 2018-12-21 2023-11-09 맹그로브 워터 테크놀로지스 리미티드 Li recovery processes and onsite chemical production for li recovery processes
US11702755B2 (en) 2018-12-21 2023-07-18 Mangrove Water Technologies Ltd. Li recovery processes and onsite chemical production for Li recovery processes
US11702754B2 (en) 2018-12-21 2023-07-18 Mangrove Water Technologies Ltd. Li recovery processes and onsite chemical production for Li recovery processes
US11634826B2 (en) 2018-12-21 2023-04-25 Mangrove Water Technologies Ltd. Li recovery processes and onsite chemical production for Li recovery processes
CN110917882A (en) * 2019-11-04 2020-03-27 杭州匠容道环境科技有限公司 Four-channel electrodialysis device for extracting lithium from salt lake and method for extracting lithium from salt lake
WO2021215486A1 (en) 2020-04-21 2021-10-28 Jx金属株式会社 Method for producing lithium hydroxide
KR20220132578A (en) 2020-04-21 2022-09-30 제이엑스금속주식회사 Manufacturing method of lithium hydroxide
CN112569793B (en) * 2020-12-25 2021-11-23 苏州明昊色谱技术有限公司 Degassing-free trace anion impurity online remover and removing method in strong alkali solution
CN112569793A (en) * 2020-12-25 2021-03-30 苏州明昊色谱技术有限公司 Degassing-free trace anion impurity online remover and removing method in strong alkali solution
CN114737206A (en) * 2022-04-29 2022-07-12 福建省龙德新能源有限公司 Preparation method of lithium hexafluorophosphate
CN115849411A (en) * 2022-11-29 2023-03-28 江苏容汇通用锂业股份有限公司 Continuous production process of lithium hydroxide

Similar Documents

Publication Publication Date Title
JP2011031232A (en) Method of manufacturing lithium hydroxide
JP2011032151A (en) Method of converting lithium carbonate to lithium hydroxide
JP2009269810A (en) Method for producing high-purity lithium hydroxide
JP2009270189A (en) Method of manufacturing high-purity lithium hydroxide
US10759671B2 (en) Method for manufacturing lithium hydroxide and lithium carbonate, and device therefor
KR101711854B1 (en) Method for manufacturing lithium hydroxide and lithium carbonate
JP5138822B1 (en) Method for producing high purity lithium hydroxide
TWI708740B (en) Bipolar electrodialysis methods and systems
US8936711B2 (en) Method of extracting lithium with high purity from lithium bearing solution by electrolysis
KR101126286B1 (en) Manufacturing method of lithium carbonate with high purity
JP5367190B1 (en) Method for producing lithium hydroxide
CA2945590C (en) Systems and methods for regeneration of aqueous alkaline solution
KR101674393B1 (en) Method for manufacturing lithium hydroxide and lithium carbonate
KR20150063159A (en) Method for the hydrometallurgical recovery of lithium, nickel and cobalt from the lithium transition metal oxide-containing fraction of used galvanic cells
KR101674394B1 (en) Method for manufacturing lithium hydroxide and lithium carbonate
CN110395749A (en) A method of lithium chloride is prepared using the displacement reaction electrodialysis of four compartments
JP5769409B2 (en) Method for producing lithium hydroxide
WO2022209641A1 (en) Electrodialysis method using bipolar membrane
WO2016175613A1 (en) Method for manufacturing lithium hydroxide and lithium carbonate, and device therefor
JP2009231238A (en) Recycling method for exhaust electrolyte
CN217498688U (en) Environment-friendly production system for preparing iron phosphate from glyphosate mother liquor
CN217795511U (en) Production system for preparing iron phosphate from glyphosate mother liquor
WO2023133625A1 (en) Method of electrochemically converting carbon dioxide into formate salts
CA3213084A1 (en) System for the production of lithium hydroxide (lioh) directly from lithium chloride (lici), without the need for the intermediate production of lithium carbonate or the like
CN111470670A (en) Method for recycling sodium sulfate electrolysis waste liquid of hydrogen-oxygen fuel cell