WO2021070235A1 - Lithium recovery method and lithium recovery device - Google Patents

Lithium recovery method and lithium recovery device Download PDF

Info

Publication number
WO2021070235A1
WO2021070235A1 PCT/JP2019/039575 JP2019039575W WO2021070235A1 WO 2021070235 A1 WO2021070235 A1 WO 2021070235A1 JP 2019039575 W JP2019039575 W JP 2019039575W WO 2021070235 A1 WO2021070235 A1 WO 2021070235A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
liquid
extraction
salt
electrolysis
Prior art date
Application number
PCT/JP2019/039575
Other languages
French (fr)
Japanese (ja)
Inventor
泰教 濃添
賢三 左右田
Original Assignee
日揮グローバル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日揮グローバル株式会社 filed Critical 日揮グローバル株式会社
Priority to PCT/JP2019/039575 priority Critical patent/WO2021070235A1/en
Publication of WO2021070235A1 publication Critical patent/WO2021070235A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B26/00Obtaining alkali, alkaline earth metals or magnesium
    • C22B26/10Obtaining alkali metals
    • C22B26/12Obtaining lithium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the present invention relates to a lithium recovery method and a lithium recovery device capable of increasing and recovering the lithium concentration of an aqueous liquid containing a lithium salt and other salts.
  • the lithium concentration in brine (brine) collected in a salt lake is as dilute as several hundred mg / L.
  • lithium is concentrated and supplied to the recovery equipment by providing an evaporation pond by natural evaporation in the front stage. If the infrastructure to operate the recovery facility is not in place near the evaporation pond, install the recovery facility in a place away from the evaporation pond and collect the concentrated brine after concentration (volume reduction) by evaporation to the recovery facility. It may be transported.
  • Patent Document 1 describes a method for continuously recovering lithium ions from an aqueous solution, which comprises a phosphine oxide compound and a compound capable of supplying protons (hydrogen ions) under basic conditions (alcohols, ketones, fatty acids, etc.).
  • a method including a step (c) of mixing the aqueous solution remaining in the a) with the organic solvent remaining in the step (b) and reusing the aqueous solution in the step (a) is described.
  • Patent Document 2 describes a step (a) of preparing an electrolysis cell in which a partition capable of transmitting lithium ions and protons (hydrogen ions) is arranged between an anode (anode) and a cathode (cathode), and lithium.
  • a method including a step (f) of recovering a product containing lithium hydroxide from the anode and a step (g) of reusing the product on the anode side for back extraction is described.
  • the evaporation pond which is widely used in the conventional technology for recovering lithium from salt lake brine, requires a lot of time for natural evaporation and can be applied only to areas with low rainfall.
  • the construction of the evaporation pond requires large-scale civil engineering work, so the initial investment cost is also high.
  • an artificial means such as an evaporation can is used as a method for concentrating brine by evaporation, a large running cost is required for energy such as fuel.
  • Salt lake brine chloride brine
  • Salt lake brine sulfate brine, etc.
  • Salt lake brine which contains a large amount of impurities such as sulfate ions, is expected to be developed in the future because of its abundant resources.
  • Patent Document 1 in the lithium recovery technique using solvent extraction, if the lithium concentration in the brine at the time of extraction is low, the lithium recovery rate decreases.
  • Patent Document 2 in the lithium recovery technique using electrolysis, the recovery rate of lithium is determined in the pre-stage of the step (b) of obtaining an aqueous solution containing lithium by back extraction from a medium carrying lithium. Therefore, the electrolysis step described in Patent Document 2 does not solve the above-mentioned problem that the lithium recovery rate decreases when the lithium concentration in the brine is low.
  • An object of the present invention is to provide a lithium recovery method and a lithium recovery device capable of improving the lithium recovery rate even when the lithium concentration in the raw material liquid is low because concentration by evaporation cannot be used. It is to be.
  • a liquid to be extracted which comprises a lithium salt and an aqueous liquid containing at least a magnesium salt or a calcium salt, is brought into contact with a lithium salt extractant to bring at least the lithium salt in the liquid to be extracted.
  • the extraction step of extracting a part of the extract with the extractant and the extraction residual liquid remaining after separating the extract containing the extractant from the liquid to be extracted in the extraction step the residual liquid remains monovalent with respect to the divalent metal ion.
  • It has an electrolysis step of treating by electrolysis via a film body that preferentially or selectively permeates metal ions, and permeates the extract in the extraction step and the film body in the electrolysis step. It is a lithium recovery method characterized by recovering a lithium salt from a product.
  • a second aspect of the present invention is that the liquid to be extracted is a liquid that remains after removing the precipitate in a precipitation step of precipitating excess salt from a raw material liquid containing brine, and the film body in the electrolysis step.
  • the lithium recovery method according to the first aspect which comprises adding the product on the side that has permeated the mixture to the raw material liquid or the liquid to be extracted in the precipitation step.
  • a third aspect of the present invention is the lithium recovery method of the second aspect, characterized in that the raw material liquid in the pre-stage supplied to the precipitation step is acidic.
  • hydrochloric acid is synthesized from chlorine gas generated at the anode and hydrogen gas generated at the cathode in the electrolysis step when the extraction residual liquid contains chloride ions, and the hydrochloric acid is used to prepare the hydrochloric acid.
  • the method for recovering lithium according to any one of the first to third aspects, which comprises recovering a lithium salt from the extract in the extraction step by back extraction.
  • a fifth aspect of the present invention is characterized in that, prior to the electrolysis step, a divalent metal ion removing step of removing at least a part of divalent metal ions contained in the extraction residual liquid is performed. This is the lithium recovery method according to any one of the fourth aspects.
  • a sixth aspect of the present invention is that the liquid to be extracted is a liquid that remains after removing the precipitate in the precipitation step of precipitating excess salt from the raw material liquid containing salt water, and the extraction residual liquid contains sodium ions.
  • carbon dioxide is reacted with the product on the side that has permeated the membrane in the electrolysis step to generate sodium carbonate, and at least a part of the sodium carbonate is supplied to the precipitation step to supply the magnesium salt.
  • the method for recovering lithium according to any one of the first to fifth aspects, which comprises precipitating at least a part of a calcium salt.
  • the extraction residual liquid contains sodium ions
  • carbon dioxide is reacted with a product on the side that has permeated the film body to generate sodium carbonate, and the carbon dioxide is produced.
  • the lithium recovery method according to any one of the first to sixth aspects, which comprises supplying at least a part of sodium to a recovery step for recovering the lithium salt and precipitating at least a part of the lithium salt. is there.
  • An eighth aspect of the present invention is that the liquid to be extracted is a liquid that remains after removing the precipitate in the precipitation step of precipitating excess salt from the raw material liquid containing salt water, and the film body in the electrolysis step.
  • the lithium recovery method according to any one of the first to seventh aspects, wherein the product on the side that does not permeate the precipitate is used for washing the precipitate.
  • a precipitation portion for precipitating excess salt from a raw material liquid containing boiled water and a liquid remaining after removing the precipitate in the precipitation portion are composed of a lithium salt, a magnesium salt or a calcium salt.
  • the extraction unit which is brought into contact with a lithium salt extractant to extract at least a part of the lithium salt in the liquid to be extracted, and the extraction unit, as the liquid to be extracted, which comprises an aqueous liquid containing at least
  • the extract residual liquid remaining after separating the extract containing the extractant from the liquid to be extracted is electrolyzed via a film body that preferentially or selectively permeates the monovalent metal ion with respect to the divalent metal ion.
  • a lithium recovery apparatus characterized in that a lithium salt is recovered from a product that has permeated the film body in the electrolysis section.
  • the extraction residual liquid is treated by electrolysis in the electrolysis step.
  • the concentration of lithium ions, which are ions, can be increased preferentially or selectively. This makes it possible to improve the recovery rate of lithium.
  • the concentration of sulfate ions in the product on the side that has permeated the membrane can be reduced, so that the concentration of sulfate ions can be reduced. Even if the concentration of lithium ions is increased, precipitation of lithium sulfate is unlikely to occur.
  • the product that has permeated the membrane, in which the concentration of lithium ions is preferentially or selectively increased is returned to the precipitation step or the extraction step and brought into contact with the extractant. It is possible to increase the concentration of lithium in the liquid to be extracted and improve the recovery rate of lithium.
  • the present invention can be applied even if the raw material liquid in the previous stage is acidic.
  • hydrochloric acid used for back extraction can be produced by using chlorine gas and hydrogen gas obtained in the electrolysis step.
  • sodium carbonate is produced by utilizing the product obtained by electrolysis of the extraction residual liquid containing sodium ions, and this sodium carbonate is used in the precipitation step to magnesium in the raw material liquid.
  • the salt or calcium salt can be precipitated as magnesium carbonate or calcium carbonate.
  • the product obtained by electrolysis of the extraction residue containing sodium ions is used to produce sodium carbonate, and this sodium carbonate is used in the recovery step to lithium in an aqueous liquid.
  • the salt can be precipitated as lithium carbonate.
  • the product on the side that does not permeate the membrane in the electrolysis step has a high concentration of magnesium salt or calcium salt and a low concentration of lithium ions, so that the precipitate is washed in the precipitation step.
  • water having a high lithium concentration is used for washing the precipitate, it is possible to suppress the absorption of lithium in the precipitate and the loss.
  • the dissolution of the magnesium salt or the calcium salt contained in the precipitate can be suppressed.
  • the extraction residual liquid is treated by electrolysis and does not permeate the film body (
  • the concentration of lithium ion which is a monovalent metal ion that permeates the membrane (or has a relatively high permeability of the membrane) while removing divalent metal ions and the like (the permeability of the membrane is relatively low).
  • the concentration of lithium ion which is a monovalent metal ion that permeates the membrane (or has a relatively high permeability of the membrane) while removing divalent metal ions and the like (the permeability of the membrane is relatively low). Can be preferentially or selectively increased. This makes it possible to improve the recovery rate of lithium.
  • the concentration of sulfate ions in the product on the side that has permeated the membrane can be reduced, so that the concentration of sulfate ions can be reduced. Even if the concentration of lithium ions is increased, precipitation of lithium sulfate is unlikely to occur.
  • lithium in the liquid to be extracted in which the concentration of lithium ions is preferentially or selectively increased by electrolysis, is returned to the precipitation part or the extraction part and brought into contact with the extractant. It is possible to increase the concentration and improve the recovery rate of lithium.
  • FIG. 1 shows an outline of the lithium recovery method of the present embodiment.
  • the liquid to be extracted 20 composed of an aqueous liquid containing a lithium salt is brought into contact with the extractant 21, and at least a part of the lithium salt in the liquid to be extracted 20 is extracted into the extractant 21.
  • It has an extraction step X for making the extraction step X, and an electrolysis step E for treating the extraction residual liquid 23 of the extraction step X by electrolysis.
  • a precipitation step P for precipitating excess salt from the raw material liquid 10 may be provided prior to the extraction step X.
  • the lithium recovery device 100 shown in FIG. 1 includes a precipitation unit 13 for performing the precipitation step P, an extraction unit 24 for performing the extraction step X, and an electrolysis unit 35 for performing the electrolysis step E. ing.
  • the raw material liquid 10 is not particularly limited as long as it is brine containing lithium ions, and examples thereof include salt lake brine collected in a salt lake.
  • salt lakes are located in arid areas, water is naturally evaporated from the lake water trapped inland and salt is concentrated.
  • a method of collecting brine from the salt lake using, for example, a pump, a well, or the like can be used.
  • salts contained in brine include sodium chloride (NaCl), lithium chloride (LiCl), magnesium chloride (MgCl 2 ), calcium chloride (CaCl 2 ) and the like.
  • the brine collected from the salt lake is transferred to an evaporation pond and dried in the sun for about one year to concentrate the brine, increasing the lithium concentration to, for example, several wt%.
  • major salts such as sodium chloride (NaCl) and potassium chloride (KCl) are precipitated, and concentrated brine having an increased lithium concentration can be obtained as a supernatant.
  • NaCl sodium chloride
  • KCl potassium chloride
  • the increase may Sulfate ion (SO 4 2-) concentration in the brine, the lithium ions in the brine are precipitated as lithium sulfate (Li 2 SO 4), lithium concentration in the concentrated brine May decrease.
  • the method of concentrating brine by evaporation has large restrictions on time and location when using natural energy such as sun and wind power, and when using artificial means such as combustion heating. The running cost will increase.
  • the brine collected from the salt lake can be used as the raw material liquid 10 as it is.
  • Brine water that has undergone a predetermined treatment or adjustment may be used as the raw material liquid 10.
  • impurities may be extracted using an impurity extractant, and the extractant containing impurities may be separated from brine.
  • the pH, temperature, etc. of the brine may be adjusted.
  • a pH adjusting agent such as an acid or an alkali can be used.
  • the raw material liquid 10 may be heated or cooled to such an extent that it is not excessively concentrated.
  • a hydrous liquid other than brine may be added to the raw material liquid 10.
  • the raw material liquid 10 may be acidic with a pH of less than 7, neutral with a pH of about 7, or alkaline with a pH of more than 7.
  • the lithium concentration of the raw material liquid 10 When the lithium concentration of the raw material liquid 10 is low, it is preferable to perform the precipitation step P. For example, if the lithium concentration in the raw material liquid 10 is about 1700 to 1800 mg / L or more by weight, it is preferable to omit the precipitation step P. When the lithium concentration in the raw material liquid 10 is about 300 to 400 mg / L or less by weight, it is preferable to carry out the precipitation step P. When the lithium concentration in the raw material liquid 10 is between about 400 mg / L and about 1700 mg / L, it is decided whether to carry out or omit the precipitation step P in consideration of the lithium recovery rate in the extraction step X described later. You may.
  • a chemical such as a precipitating agent 11 is added to precipitate an excess salt content, and the lithium concentration in the supernatant is increased.
  • processing can be performed in a short time and at low cost as compared with the case of using an evaporation pond or an evaporation can.
  • sodium carbonate (Na 2 CO 3 ) is added to the raw material liquid 10
  • the magnesium ions of the raw material liquid 10 can be precipitated as magnesium carbonate (MgCO 3).
  • the settling section 13 used for storing the raw material liquid 10, the settling agent 11, and the like can be composed of a settling tank, a settling basin, and the like.
  • the liquid remaining after removing the precipitate 12 in the precipitation step P may be the liquid to be extracted 20 in the extraction step X.
  • the raw material liquid 10 may be used as it is as the liquid to be extracted 20.
  • a known solid-liquid separation method such as filtration or centrifugation can be used.
  • the lithium salt of the liquid to be extracted 20 is extracted using the extractant 21.
  • the extractant 21 include a liquid or solid extractant 21.
  • the extraction unit 24 used for contacting the liquid to be extracted 20 and the extraction agent 21 can be composed of an extraction tank, an extraction tower, an extraction device, and the like.
  • liquid extractant 21 examples include an extraction compound such as a phosphoric acid ester compound, a phosphonic acid ester compound, and a phosphine oxide compound, or an organic solvent containing an extraction compound.
  • an extraction compound such as a phosphoric acid ester compound, a phosphonic acid ester compound, and a phosphine oxide compound
  • organic solvent containing an extraction compound When the extraction compound is a liquid, the extraction compound containing no other organic solvent may be used as it is as the liquid extractant 21.
  • the organic solvent used in the extractant 21 can be selected in consideration of dissolving the extraction compound, easy separation from water, and the like.
  • Specific examples of the organic solvent are not particularly limited, but are compounds such as aliphatic hydrocarbons, aromatic hydrocarbons, carbon halides, halogenated hydrocarbons, ethers, ketones, phenols, esters, and amides. Examples of these are mixtures.
  • the mixture of organic solvents may be a composition such as kerosene (kerosene).
  • the extract 22 composed of the extractant 21 containing a lithium salt and the extract residue 23 remaining after the extractant 21 is removed by a liquid separation operation are performed. And can be separated.
  • the liquid separation operation it is preferable to utilize the difference in specific gravity between the extract 22 and the extraction residual liquid 23, and centrifugation may be used.
  • the extractant 21 used in the extraction step X may be a solid extractant.
  • a chemical structure such as a functional group that binds to a lithium salt can be introduced into a resin such as an ion exchange resin or a carrier such as clay or ceramics.
  • a resin such as an ion exchange resin
  • a carrier such as clay or ceramics.
  • the extract 22 composed of the extractant 21 containing a lithium salt and the extraction residual liquid remaining after the extractant 21 is removed by solid-liquid separation. 23 can be separated.
  • a known solid-liquid separation method such as filtration or centrifugation can be used.
  • the liquid to be extracted 20 made of an aqueous liquid is brought into contact with the extractant 21, so that at least a part of the lithium salt in the liquid to be extracted 20 is extracted by the extractant 21.
  • the proportion of impurities in the extract 22 can be reduced by the selectivity of the lithium salt with respect to the impurities such as magnesium salt, calcium salt and sodium salt contained in the liquid to be extracted 20. This simplifies the step of removing impurities when recovering the lithium salt from the extract 22.
  • the ratio (O / A ratio) of the organic phase to the aqueous phase is optimized to improve the concentration ratio of lithium ions in the lithium salt-containing extract 22.
  • the installed capacity when recovering the lithium salt from the extract 22 can be reduced.
  • the lithium concentration in the liquid to be extracted 20 is low, the amount of lithium extracted to the extract 22 side is small, and the amount of lithium discharged to the extraction residual liquid 23 side may be a considerable amount. Therefore, if lithium is recovered only from the extract 22, there is a problem that the lithium recovery rate is low. It is desirable to recover the lithium salt from the extraction residual liquid 23 as well, but the lithium concentration in the extraction residual liquid 23 is lower than the lithium concentration in the liquid to be extracted 20. Therefore, it is not easy to increase the recovery rate of the lithium salt by repeating the extraction step X.
  • the electrolysis step E is performed after the extraction step X, and the extraction residual liquid 23 of the extraction step X is treated by electrolysis.
  • the electrolysis unit 35 used in the electrolysis step E includes an electrolysis tank in which an ion exchange membrane is installed between the anode (anode) and the cathode (cathode).
  • the extraction residual liquid 23 is supplied to the anode chamber, which is a space on the anode side of the ion exchange membrane.
  • lithium ions can be moved toward the cathode chamber, which is a space on the cathode side of the ion exchange membrane.
  • Desalted water 30 such as distilled water and deionized water is supplied to the cathode chamber.
  • the volume ratio between the anode chamber and the cathode chamber can be appropriately designed.
  • the electric power required for the electrolysis step E is preferably obtained from a power generation method using natural energy such as solar power generation and wind power generation.
  • the ion exchange membrane used in the electrolysis step E preferentially or selects monovalent metal ions such as lithium (Li) and sodium (Na) over divalent metal ions such as magnesium (Mg) and calcium (Ca). It is a film body that is transparent to calcium. Specific examples thereof include cation exchange membranes used in known chlor-alkali projects. Specific examples of the cation exchange membrane include a fluorine-containing polymer membrane having a functional group that gives an anion such as carboxylic acid and sulfonic acid.
  • a cathode liquid 31 in which lithium salt is concentrated is obtained in the cathode chamber as a product on the side that has passed through the membrane body. Further, in the anode chamber, an anode solution 32 having a reduced lithium salt is obtained as a product on the side that does not permeate the membrane body.
  • the recovery rate of lithium can be improved by recovering the lithium salt from the cathode solution 31 as well.
  • the raw material liquid 10 or the liquid to be extracted 20 contains sulfate ions
  • the sulfate ions do not permeate the membrane body used in the electrolysis step E (or the permeability of the membrane body is relatively low), so that the cathode The sulfate ion concentration in the liquid 31 becomes low. Therefore, even if the lithium concentration in the cathode liquid 31 is increased by electrolysis, the precipitation of lithium sulfate can be suppressed.
  • the lithium concentration in the liquid to be extracted 20 can be increased to improve the recovery rate of lithium.
  • the concentration of magnesium salt or calcium salt is high and the concentration of lithium ions is low. Therefore, the anode solution 32 can be suitably used for cleaning the precipitate 12 in the precipitation step P. Compared with the case where water having a high lithium concentration is used for washing the precipitate 12, it is possible to suppress the absorption of lithium in the precipitate 12 and the loss. Further, as compared with the case where fresh water or the like is used for washing the precipitate 12, the dissolution of the magnesium salt or the calcium salt contained in the precipitate 12 can be suppressed.
  • the state of the precipitate 12 when washed with the anode solution 32 may be in the form of a slurry having a large amount of water or in the form of a cake having a small amount of water.
  • the electrolysis step E when a large amount of divalent metal ions such as magnesium ions and calcium ions contained in the extraction residual liquid 23 are present, at least a part of the divalent metal ions contained in the extraction residual liquid 23 is removed. It is preferable to carry out a valent metal ion removing step.
  • a known adsorption separation method using a chelate resin or the like can be used.
  • the extraction residual liquid 23 to be treated by electrolysis does not substantially contain divalent metal ions.
  • the electrolysis step E by moving the lithium ions from the anode side to the cathode side, the concentration of lithium ions in the cathode liquid 31 is preferentially or selectively selected while suppressing the precipitation of lithium sulfate or the like. Can be enhanced.
  • FIG. 2 shows each step that supplements the lithium recovery method of this embodiment. These steps can be appropriately added to the steps shown in FIG. In FIG. 2, the same reference numerals are used for the configurations common to those in FIG.
  • hydrochloric acid 41 is in the state of an aqueous hydrochloric acid solution because it is easy to handle.
  • An aqueous hydrochloric acid solution can be obtained by allowing water to absorb hydrogen chloride (HCl) gas obtained by burning hydrogen gas 34 in chlorine gas 33.
  • Hydrochloric acid 41 can separate the lithium-containing liquid 42 from the extractant 21 by adding it to the extract 22 in the back extraction step S in which the lithium salt is back-extracted from the extract 22.
  • the lithium-containing liquid 42 is an aqueous liquid containing a lithium salt.
  • the extractant 21 recovered in the back extraction step S can be reused in the extraction step X after undergoing treatments such as washing and purification as necessary.
  • chloride ions are also present in the extraction residual liquid 23 processed in the electrolysis step E. Therefore, by using hydrochloric acid 41 synthesized from chlorine gas 33 and hydrogen gas 34 generated by electrolysis, the cost of chemicals can be reduced.
  • the chemical used for the back extraction of the extract 22 is not limited to the hydrochloric acid 41 produced in the hydrochloric acid production step H.
  • a cathode solution 31 containing sodium ions can be supplied to the sodium carbonate synthesis step N, and carbon dioxide 51 can be reacted to synthesize a sodium carbonate-containing solution 52.
  • the sodium carbonate-containing liquid 52 contains lithium hydroxide (LiOH) together with sodium carbonate (Na 2 CO 3).
  • LiOH lithium hydroxide
  • Na 2 CO 3 sodium carbonate
  • the recovery rate of lithium can be improved or the loss of lithium can be reduced, as will be described later.
  • the sodium carbonate-containing liquid 52 is used in the recovery step R, as shown in FIG. 2, not only when lithium is recovered from the lithium-containing liquid 42 after back extraction, but also lithium from an arbitrary aqueous solution containing lithium. Can be used when collecting.
  • the magnesium salt or calcium salt in the raw material liquid 10 can be precipitated as magnesium carbonate or calcium carbonate.
  • the sodium carbonate-containing liquid 52 used as the precipitant 11 contains a lithium salt, the lithium concentration in the liquid to be extracted 20 is increased as compared with the case where an aqueous solution of the precipitant 11 not containing the lithium salt is used. Can be enhanced.
  • the lithium salt contained in the lithium-containing liquid 42 after the back extraction is recovered as a precipitate 62 containing lithium carbonate (Li 2 CO 3 ) by adding the sodium carbonate-containing liquid 52 as a precipitant 61 in the recovery step R. can do.
  • the lithium salt recovered as the precipitate 62 may be a lithium salt other than lithium carbonate, such as lithium sulfate.
  • a substance other than sodium carbonate may be used as the precipitant 61.
  • a known solid-liquid separation method such as filtration or centrifugation can be used.
  • the lithium carbonate recovered as the precipitate 62 is compared with the case where the sodium carbonate-containing liquid 52 containing no lithium salt is used. The amount can be improved.
  • the lithium concentration in the raw material liquid 10 is low, even when the ratio of lithium ions extracted in the extraction step X is relatively low.
  • the lithium ions remaining in the extraction residual liquid 23 can be recovered.
  • the cost of the evaporation pond, the evaporation can, etc. can be reduced, and even when the sulfate ion concentration in the brine is high, the lithium ion in the brine is lithium sulfate. The loss due to precipitation can be suppressed.
  • the lithium concentration in the extraction residual liquid 23 is relatively high with respect to the lithium concentration in brine, and the lithium recovery rate is as low as 29 to 41%.
  • the lithium concentration ratio represents the ratio at which the lithium concentration in the lithium-containing liquid 42 after back extraction is concentrated with respect to the lithium concentration in the brine used for the raw material liquid 10.
  • the lithium recovery rate represents the ratio of lithium recovered from the brine used in the raw material liquid 10 to the lithium-containing liquid 42 after back extraction.
  • the lithium concentration in the lithium-containing liquid 42 after the back extraction can be increased.
  • the capacity of the equipment required for removing impurities or recovering lithium in the steps after the extraction step X or the back extraction step S can be reduced.
  • the extraction step X is performed directly from the liquid to be extracted 20 having the same lithium concentration as the brine without concentrating the brine, there is a limitation in improving the lithium recovery rate. Therefore, by treating the extraction residual liquid 23 by electrolysis as in the above-described embodiment, the lithium concentration of the cathode liquid 31 is made higher than the lithium concentration of the extraction residual liquid 23, and the lithium recovery rate is improved. Is possible. Further, chlorine and hydrogen produced in the electrolysis step E can be used for producing hydrochloric acid used in the back extraction step S. The electrolysis step E and the hydrochloric acid production step H can be easily carried out by existing techniques in the same manner as the steps used in the general chlor-alkali business.
  • the present invention can be used for producing lithium compounds used in various applications such as lithium ion batteries, lithium-containing alloys, ceramic products, lithium soaps, and pharmaceuticals.
  • E Electrolysis process, F ... Supply process, H ... Hydrochloride production process, N ... Sodium carbonate synthesis process, P ... Precipitation process, R ... Recovery process, S ... Reverse extraction process, X ... Extraction process, 10 ... Raw material liquid, 11 ... Precipitant, 12 ... Precipitate, 13 ... Precipitate, 20 ... Liquid to be extracted, 21 ... Extractor, 22 ... Extract, 23 ... Extraction residue, 24 ... Extraction part, 30 ... Water, 31 ... Cathode liquid , 32 ... anode solution, 33 ... chlorine gas, 34 ... hydrogen gas, 35 ... electrolysis part, 41 ... hydrochloric acid, 42 ... lithium-containing solution, 51 ... carbon dioxide, 52 ... sodium carbonate-containing solution, 61 ... precipitant, 62 ... Precipitate, 63 ... Aqueous liquid, 100 ... Lithium recovery device.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

This lithium recovery method is characterized by having: an extraction step for bringing an extraction-target liquid comprising an aqueous liquid containing at least a lithium salt and a magnesium salt or a calcium salt into contact with an extraction agent for lithium salt to cause at least a portion of the lithium salt in the extraction-target liquid to be extracted into the extraction agent; and an electrolysis step for treating an extraction residual liquid that is left in the extraction step after an extract containing the extraction agent is separated from the extraction-target liquid, to electrolysis through a membrane body that preferentially or selectively pass monovalent metal ions relative to divalent metal ions, wherein the lithium salt is recovered from the extract in the extraction step and a product passed through the membrane body in the electrolysis step.

Description

リチウム回収方法及びリチウム回収装置Lithium recovery method and lithium recovery device
 本発明は、リチウム塩と他の塩類とを含む水性液体のリチウム濃度を増加させて回収することが可能なリチウム回収方法及びリチウム回収装置に関する。 The present invention relates to a lithium recovery method and a lithium recovery device capable of increasing and recovering the lithium concentration of an aqueous liquid containing a lithium salt and other salts.
 通常、塩湖で採取される鹹水(かん水,brine)中のリチウム濃度は数百mg/Lと希薄である。従来技術において、塩湖鹹水からリチウムを回収する設備では、自然蒸発による蒸発池を前段に備えることでリチウムを濃縮し、回収設備に供給している。蒸発池の近隣に回収設備を運営するインフラが整っていない場合等においては、回収設備を蒸発池から離れた地に設置し、蒸発により濃縮(減容)された後の濃縮鹹水を回収設備まで輸送する場合もある。 Normally, the lithium concentration in brine (brine) collected in a salt lake is as dilute as several hundred mg / L. In the prior art, in the equipment for recovering lithium from salt lake brine, lithium is concentrated and supplied to the recovery equipment by providing an evaporation pond by natural evaporation in the front stage. If the infrastructure to operate the recovery facility is not in place near the evaporation pond, install the recovery facility in a place away from the evaporation pond and collect the concentrated brine after concentration (volume reduction) by evaporation to the recovery facility. It may be transported.
 特許文献1には、水溶液中からリチウムイオンを連続的に回収する方法であって、ホスフィンオキシド化合物と、塩基性条件でプロトン(水素イオン)を供給できる化合物(アルコール類、ケトン類、脂肪酸等)とを含む有機溶媒を用いて水溶液中のリチウムイオンを有機溶媒中に抽出する工程(a)と、リチウムイオンを含む有機溶媒からリチウムイオンを回収(逆抽出)する工程(b)と、工程(a)で残った水溶液と工程(b)で残った有機溶媒とを混合して、工程(a)に再利用する工程(c)とからなる方法が記載されている。 Patent Document 1 describes a method for continuously recovering lithium ions from an aqueous solution, which comprises a phosphine oxide compound and a compound capable of supplying protons (hydrogen ions) under basic conditions (alcohols, ketones, fatty acids, etc.). A step (a) of extracting lithium ions in an aqueous solution into an organic solvent using an organic solvent containing, a step (b), and a step (b) of recovering (back-extracting) lithium ions from an organic solvent containing lithium ions. A method including a step (c) of mixing the aqueous solution remaining in the a) with the organic solvent remaining in the step (b) and reusing the aqueous solution in the step (a) is described.
 特許文献2には、陽極(アノード)と陰極(カソード)との間にリチウムイオンとプロトン(水素イオン)を透過可能な隔壁が配置された電気分解セルを準備する工程(a)と、リチウムを担持した媒体から逆抽出によりリチウムを含む水溶液を得る工程(b)と、工程(b)で得られた水溶液を電気分解セルの陽極側に導入する工程(c)と、電気分解セルの陰極側に水性媒体を導入する工程(d)と、陽極で酸素ガスが生成し、陰極で水素ガスが生成し、リチウムイオンが隔壁を透過する条件で電気分解を実施する工程(e)と、陰極側から水酸化リチウムを含む生成物を回収する工程(f)と、陽極側の生成物を逆抽出に再利用する工程(g)とからなる方法が記載されている。 Patent Document 2 describes a step (a) of preparing an electrolysis cell in which a partition capable of transmitting lithium ions and protons (hydrogen ions) is arranged between an anode (anode) and a cathode (cathode), and lithium. A step (b) of obtaining an aqueous solution containing lithium by back extraction from the carried medium, a step (c) of introducing the aqueous solution obtained in the step (b) into the anode side of the electrolysis cell, and the cathode side of the electrolysis cell. The step (d) of introducing an aqueous medium into the anode, the step (e) of performing electrolysis under the condition that oxygen gas is generated at the anode, hydrogen gas is generated at the cathode, and lithium ions permeate the partition wall, and the cathode side. A method including a step (f) of recovering a product containing lithium hydroxide from the anode and a step (g) of reusing the product on the anode side for back extraction is described.
 従来の塩湖鹹水からリチウムを回収する技術で広く用いられている蒸発池は、自然蒸発に多くの時間を要する上、降雨量の少ない地域にしか適用できない。また蒸発池の建設には大規模な土木工事も必要となるため、初期投資コストも大きい。蒸発により鹹水を濃縮する手法として、蒸発缶等の人為的手段を用いる場合は、燃料等のエネルギーに多大なランニングコストが必要になる。 The evaporation pond, which is widely used in the conventional technology for recovering lithium from salt lake brine, requires a lot of time for natural evaporation and can be applied only to areas with low rainfall. In addition, the construction of the evaporation pond requires large-scale civil engineering work, so the initial investment cost is also high. When an artificial means such as an evaporation can is used as a method for concentrating brine by evaporation, a large running cost is required for energy such as fuel.
 また、鹹水中に硫酸イオンが多く含まれている場合、水分の蒸発により鹹水を濃縮すると、リチウムが硫酸リチウム(LiSO)として塩化ナトリウム(NaCl)等と共に析出し、濃縮鹹水から除去されるため、蒸発濃縮は適用できない。自然蒸発による濃縮を用いた方法が適用できる塩湖鹹水(塩化物鹹水)は、既に開発が進んでいるが、資源量が限られている。硫酸イオン等の不純物を多く含む塩湖鹹水(硫酸塩鹹水等)は、資源量が豊富であるため、今後の開発が期待される。 When the brine contains a large amount of sulfate ions, when the brine is concentrated by evaporation of water, lithium is precipitated as lithium sulfate (Li 2 SO 4 ) together with sodium chloride (NaCl) and the like, and is removed from the concentrated brine. Therefore, evaporative concentration cannot be applied. Salt lake brine (chloride brine) to which the method using concentration by natural evaporation can be applied is already under development, but the amount of resources is limited. Salt lake brine (sulfate brine, etc.), which contains a large amount of impurities such as sulfate ions, is expected to be developed in the future because of its abundant resources.
 特許文献1に記載のように、溶媒抽出を用いたリチウム回収技術では、抽出時に鹹水中のリチウム濃度が低いとリチウムの回収率が低下する。
 特許文献2に記載のように、電気分解を用いたリチウム回収技術では、リチウムの回収率が、リチウムを担持した媒体から逆抽出によりリチウムを含む水溶液を得る工程(b)の前段階で決まる。このため、特許文献2に記載の電気分解工程は、上述した鹹水中のリチウム濃度が低いときにリチウムの回収率が低下する問題を解決するものではない。
As described in Patent Document 1, in the lithium recovery technique using solvent extraction, if the lithium concentration in the brine at the time of extraction is low, the lithium recovery rate decreases.
As described in Patent Document 2, in the lithium recovery technique using electrolysis, the recovery rate of lithium is determined in the pre-stage of the step (b) of obtaining an aqueous solution containing lithium by back extraction from a medium carrying lithium. Therefore, the electrolysis step described in Patent Document 2 does not solve the above-mentioned problem that the lithium recovery rate decreases when the lithium concentration in the brine is low.
国際公開第2013/065050号International Publication No. 2013/0605050 国際公開第2017/137885号International Publication No. 2017/137858
 本発明の課題は、蒸発による濃縮が利用できない等の理由で原料液体中のリチウム濃度が低い場合であっても、リチウムの回収率を向上することが可能なリチウム回収方法及びリチウム回収装置を提供することである。 An object of the present invention is to provide a lithium recovery method and a lithium recovery device capable of improving the lithium recovery rate even when the lithium concentration in the raw material liquid is low because concentration by evaporation cannot be used. It is to be.
 本発明の第1の態様は、リチウム塩と、マグネシウム塩又はカルシウム塩とを少なくとも含む水性液体からなる被抽出液体を、リチウム塩の抽出剤に接触させ、前記被抽出液体中のリチウム塩の少なくとも一部を前記抽出剤に抽出させる抽出工程と、前記抽出工程において、前記抽出剤を含む抽出物を前記被抽出液体から分離した後に残留する抽出残液を、二価金属イオンに対して一価金属イオンを優先的又は選択的に透過する膜体を介した電気分解により処理する電気分解工程と、を有し、前記抽出工程の前記抽出物と、前記電気分解工程において前記膜体を透過した生成物とから、リチウム塩を回収することを特徴とするリチウム回収方法である。 In the first aspect of the present invention, a liquid to be extracted, which comprises a lithium salt and an aqueous liquid containing at least a magnesium salt or a calcium salt, is brought into contact with a lithium salt extractant to bring at least the lithium salt in the liquid to be extracted. In the extraction step of extracting a part of the extract with the extractant and the extraction residual liquid remaining after separating the extract containing the extractant from the liquid to be extracted in the extraction step, the residual liquid remains monovalent with respect to the divalent metal ion. It has an electrolysis step of treating by electrolysis via a film body that preferentially or selectively permeates metal ions, and permeates the extract in the extraction step and the film body in the electrolysis step. It is a lithium recovery method characterized by recovering a lithium salt from a product.
 本発明の第2の態様は、前記被抽出液体が、鹹水を含む原料液体から過剰な塩分を沈殿させる沈殿工程において、沈殿物を除去した後に残る液体であり、前記電気分解工程において前記膜体を透過した側の生成物を、前記沈殿工程の前記原料液体又は前記被抽出液体に添加することを特徴とする第1の態様のリチウム回収方法である。 A second aspect of the present invention is that the liquid to be extracted is a liquid that remains after removing the precipitate in a precipitation step of precipitating excess salt from a raw material liquid containing brine, and the film body in the electrolysis step. The lithium recovery method according to the first aspect, which comprises adding the product on the side that has permeated the mixture to the raw material liquid or the liquid to be extracted in the precipitation step.
 本発明の第3の態様は、前記沈殿工程に供給される前段階の原料液体が酸性であることを特徴とする第2の態様のリチウム回収方法である。 A third aspect of the present invention is the lithium recovery method of the second aspect, characterized in that the raw material liquid in the pre-stage supplied to the precipitation step is acidic.
 本発明の第4の態様は、前記抽出残液が塩化物イオンを含み、前記電気分解工程において陽極に生成する塩素ガス及び陰極に生成する水素ガスから塩酸を合成し、前記塩酸を用いて前記抽出工程の前記抽出物から逆抽出によりリチウム塩を回収することを特徴とする第1~第3の態様のいずれかのリチウム回収方法である。 In a fourth aspect of the present invention, hydrochloric acid is synthesized from chlorine gas generated at the anode and hydrogen gas generated at the cathode in the electrolysis step when the extraction residual liquid contains chloride ions, and the hydrochloric acid is used to prepare the hydrochloric acid. The method for recovering lithium according to any one of the first to third aspects, which comprises recovering a lithium salt from the extract in the extraction step by back extraction.
 本発明の第5の態様は、前記電気分解工程に先立って、前記抽出残液に含まれる二価金属イオンの少なくとも一部を除去する二価金属イオン除去工程を行うことを特徴とする第1~第4の態様のいずれかのリチウム回収方法である。 A fifth aspect of the present invention is characterized in that, prior to the electrolysis step, a divalent metal ion removing step of removing at least a part of divalent metal ions contained in the extraction residual liquid is performed. This is the lithium recovery method according to any one of the fourth aspects.
 本発明の第6の態様は、前記被抽出液体が、鹹水を含む原料液体から過剰な塩分を沈殿させる沈殿工程において、沈殿物を除去した後に残る液体であり、前記抽出残液がナトリウムイオンを含み、前記電気分解工程において前記膜体を透過した側の生成物に二酸化炭素を反応させて、炭酸ナトリウムを生成させ、前記炭酸ナトリウムの少なくとも一部を前記沈殿工程に供給して、前記マグネシウム塩又はカルシウム塩の少なくとも一部を沈殿させることを特徴とする第1~第5の態様のいずれかのリチウム回収方法である。 A sixth aspect of the present invention is that the liquid to be extracted is a liquid that remains after removing the precipitate in the precipitation step of precipitating excess salt from the raw material liquid containing salt water, and the extraction residual liquid contains sodium ions. Including, carbon dioxide is reacted with the product on the side that has permeated the membrane in the electrolysis step to generate sodium carbonate, and at least a part of the sodium carbonate is supplied to the precipitation step to supply the magnesium salt. Alternatively, the method for recovering lithium according to any one of the first to fifth aspects, which comprises precipitating at least a part of a calcium salt.
 本発明の第7の態様は、前記抽出残液がナトリウムイオンを含み、前記電気分解工程において前記膜体を透過した側の生成物に二酸化炭素を反応させて、炭酸ナトリウムを生成させ、前記炭酸ナトリウムの少なくとも一部を、前記リチウム塩を回収する回収工程に供給して、前記リチウム塩の少なくとも一部を沈殿させることを特徴とする第1~第6の態様のいずれかのリチウム回収方法である。 In a seventh aspect of the present invention, the extraction residual liquid contains sodium ions, and in the electrolysis step, carbon dioxide is reacted with a product on the side that has permeated the film body to generate sodium carbonate, and the carbon dioxide is produced. The lithium recovery method according to any one of the first to sixth aspects, which comprises supplying at least a part of sodium to a recovery step for recovering the lithium salt and precipitating at least a part of the lithium salt. is there.
 本発明の第8の態様は、前記被抽出液体が、鹹水を含む原料液体から過剰な塩分を沈殿させる沈殿工程において、沈殿物を除去した後に残る液体であり、前記電気分解工程において前記膜体を透過していない側の生成物を前記沈殿物の洗浄に使用することを特徴とする第1~第7の態様のいずれかのリチウム回収方法である。 An eighth aspect of the present invention is that the liquid to be extracted is a liquid that remains after removing the precipitate in the precipitation step of precipitating excess salt from the raw material liquid containing salt water, and the film body in the electrolysis step. The lithium recovery method according to any one of the first to seventh aspects, wherein the product on the side that does not permeate the precipitate is used for washing the precipitate.
 本発明の第9の態様は、鹹水を含む原料液体から過剰な塩分を沈殿させる沈殿部と、前記沈殿部において、沈殿物を除去した後に残る液体を、リチウム塩と、マグネシウム塩又はカルシウム塩とを少なくとも含む水性液体からなる被抽出液体として、リチウム塩の抽出剤に接触させ、前記被抽出液体中のリチウム塩の少なくとも一部を前記抽出剤に抽出させる抽出部と、前記抽出部において、前記抽出剤を含む抽出物を前記被抽出液体から分離した後に残留する抽出残液を、二価金属イオンに対して一価金属イオンを優先的又は選択的に透過する膜体を介した電気分解により処理する電気分解部と、を有し、前記電気分解部において前記膜体を透過した側の生成物を、前記原料液体又は前記被抽出液体に添加し、前記抽出部から得られる前記抽出物と、前記電気分解部において前記膜体を透過した生成物とから、リチウム塩を回収することを特徴とするリチウム回収装置である。 In the ninth aspect of the present invention, a precipitation portion for precipitating excess salt from a raw material liquid containing boiled water and a liquid remaining after removing the precipitate in the precipitation portion are composed of a lithium salt, a magnesium salt or a calcium salt. In the extraction unit, the extraction unit, which is brought into contact with a lithium salt extractant to extract at least a part of the lithium salt in the liquid to be extracted, and the extraction unit, as the liquid to be extracted, which comprises an aqueous liquid containing at least The extract residual liquid remaining after separating the extract containing the extractant from the liquid to be extracted is electrolyzed via a film body that preferentially or selectively permeates the monovalent metal ion with respect to the divalent metal ion. With the extract obtained from the extraction unit by adding the product on the side of the electrolysis unit that has passed through the film body to the raw material liquid or the liquid to be extracted, which has an electrolysis unit to be treated. , A lithium recovery apparatus characterized in that a lithium salt is recovered from a product that has permeated the film body in the electrolysis section.
 第1の態様によれば、被抽出液体中のリチウム濃度が低いために、抽出工程によるリチウムの回収率が低下する場合であっても、電気分解工程において抽出残液を電気分解により処理して、膜体を透過しない(又は膜体の透過性が相対的に低い)二価金属イオン等を除去しつつ、膜体を透過する(又は膜体の透過性が相対的に高い)一価金属イオンであるリチウムイオンの濃度を優先的又は選択的に高めることができる。これにより、リチウムの回収率を向上することが可能になる。さらに、硫酸イオンが膜体を透過しない(又は膜体の透過性が相対的に低い)場合には、膜体を透過した側の生成物中の硫酸イオンの濃度を低下させることができるので、リチウムイオンの濃度を高めても、硫酸リチウムの沈殿は生じにくい。 According to the first aspect, even when the lithium recovery rate in the extraction step is lowered due to the low lithium concentration in the liquid to be extracted, the extraction residual liquid is treated by electrolysis in the electrolysis step. , A monovalent metal that permeates the membrane (or has a relatively high permeability) while removing divalent metal ions that do not permeate the membrane (or the permeability of the membrane is relatively low). The concentration of lithium ions, which are ions, can be increased preferentially or selectively. This makes it possible to improve the recovery rate of lithium. Furthermore, when sulfate ions do not permeate the membrane (or the permeability of the membrane is relatively low), the concentration of sulfate ions in the product on the side that has permeated the membrane can be reduced, so that the concentration of sulfate ions can be reduced. Even if the concentration of lithium ions is increased, precipitation of lithium sulfate is unlikely to occur.
 第2の態様によれば、電気分解工程において、リチウムイオンの濃度が優先的又は選択的に高められている、膜体を透過した生成物を沈殿工程又は抽出工程に戻して、抽出剤に接触させる被抽出液体中のリチウム濃度を上昇させ、リチウムの回収率を向上することが可能になる。 According to the second aspect, in the electrolysis step, the product that has permeated the membrane, in which the concentration of lithium ions is preferentially or selectively increased, is returned to the precipitation step or the extraction step and brought into contact with the extractant. It is possible to increase the concentration of lithium in the liquid to be extracted and improve the recovery rate of lithium.
 第3の態様によれば、前段階の原料液体が酸性であっても、本発明を適用することができる。 According to the third aspect, the present invention can be applied even if the raw material liquid in the previous stage is acidic.
 第4の態様によれば、電気分解工程で得られた塩素ガス及び水素ガスを利用して、逆抽出に用いる塩酸を製造することができる。 According to the fourth aspect, hydrochloric acid used for back extraction can be produced by using chlorine gas and hydrogen gas obtained in the electrolysis step.
 第5の態様によれば、過剰な二価金属イオンが電気分解工程を阻害することを抑制することができる。 According to the fifth aspect, it is possible to prevent excess divalent metal ions from interfering with the electrolysis step.
 第6の態様によれば、ナトリウムイオンを含む抽出残液の電気分解により得られた生成物を利用して、炭酸ナトリウムを製造し、この炭酸ナトリウムを沈殿工程に用いて、原料液体中のマグネシウム塩又はカルシウム塩を、炭酸マグネシウム又は炭酸カルシウムとして沈殿させることができる。 According to the sixth aspect, sodium carbonate is produced by utilizing the product obtained by electrolysis of the extraction residual liquid containing sodium ions, and this sodium carbonate is used in the precipitation step to magnesium in the raw material liquid. The salt or calcium salt can be precipitated as magnesium carbonate or calcium carbonate.
 第7の態様によれば、ナトリウムイオンを含む抽出残液の電気分解により得られた生成物を利用して、炭酸ナトリウムを製造し、この炭酸ナトリウムを回収工程に用いて、水性液体中のリチウム塩を炭酸リチウムとして沈殿させることができる。 According to a seventh aspect, the product obtained by electrolysis of the extraction residue containing sodium ions is used to produce sodium carbonate, and this sodium carbonate is used in the recovery step to lithium in an aqueous liquid. The salt can be precipitated as lithium carbonate.
 第8の態様によれば、電気分解工程において膜体を透過していない側の生成物は、マグネシウム塩又はカルシウム塩の濃度が高く、リチウムイオンの濃度が低いため、沈殿工程において沈殿物の洗浄に好適に使用することができる。
 リチウム濃度が高い水を沈殿物の洗浄に用いる場合に比べると、沈殿物中にリチウムが吸収されて損失となるのを抑制することができる。また、淡水などを沈殿物の洗浄に用いる場合に比べると、沈殿物に含まれるマグネシウム塩又はカルシウム塩の溶解を抑制することができる。
According to the eighth aspect, the product on the side that does not permeate the membrane in the electrolysis step has a high concentration of magnesium salt or calcium salt and a low concentration of lithium ions, so that the precipitate is washed in the precipitation step. Can be suitably used for.
Compared with the case where water having a high lithium concentration is used for washing the precipitate, it is possible to suppress the absorption of lithium in the precipitate and the loss. Further, as compared with the case where fresh water or the like is used for washing the precipitate, the dissolution of the magnesium salt or the calcium salt contained in the precipitate can be suppressed.
 第9の態様によれば、鹹水中のリチウム濃度が低いために、抽出によるリチウムの回収率が低下する場合であっても、抽出残液を電気分解により処理して、膜体を透過しない(又は膜体の透過性が相対的に低い)二価金属イオン等を除去しつつ、膜体を透過する(又は膜体の透過性が相対的に高い)一価金属イオンであるリチウムイオンの濃度を優先的又は選択的に高めることができる。これにより、リチウムの回収率を向上することが可能になる。さらに、硫酸イオンが膜体を透過しない(又は膜体の透過性が相対的に低い)場合には、膜体を透過した側の生成物中の硫酸イオンの濃度を低下させることができるので、リチウムイオンの濃度を高めても、硫酸リチウムの沈殿は生じにくい。また、電気分解によって、リチウムイオンの濃度が優先的又は選択的に高められている、膜体を透過した生成物を沈殿部又は抽出部に戻して、抽出剤に接触させる被抽出液体中のリチウム濃度を上昇させ、リチウムの回収率を向上することが可能になる。 According to the ninth aspect, even when the recovery rate of lithium by extraction is lowered due to the low lithium concentration in the salt water, the extraction residual liquid is treated by electrolysis and does not permeate the film body ( Alternatively, the concentration of lithium ion, which is a monovalent metal ion that permeates the membrane (or has a relatively high permeability of the membrane) while removing divalent metal ions and the like (the permeability of the membrane is relatively low). Can be preferentially or selectively increased. This makes it possible to improve the recovery rate of lithium. Furthermore, when sulfate ions do not permeate the membrane (or the permeability of the membrane is relatively low), the concentration of sulfate ions in the product on the side that has permeated the membrane can be reduced, so that the concentration of sulfate ions can be reduced. Even if the concentration of lithium ions is increased, precipitation of lithium sulfate is unlikely to occur. In addition, lithium in the liquid to be extracted, in which the concentration of lithium ions is preferentially or selectively increased by electrolysis, is returned to the precipitation part or the extraction part and brought into contact with the extractant. It is possible to increase the concentration and improve the recovery rate of lithium.
リチウム回収方法の実施形態の概要を示す流れ図である。It is a flow chart which shows the outline of embodiment of the lithium recovery method. リチウム回収方法の実施形態を補足する流れ図である。It is a flow chart which supplements the embodiment of the lithium recovery method.
 図1に、本実施形態のリチウム回収方法の概要を示す。本実施形態のリチウム回収方法は、少なくとも、リチウム塩を含む水性液体からなる被抽出液体20を抽出剤21に接触させて、被抽出液体20中のリチウム塩の少なくとも一部を抽出剤21に抽出させる抽出工程Xと、抽出工程Xの抽出残液23を電気分解により処理する電気分解工程Eと、を有する。抽出工程Xに先立って、原料液体10から過剰な塩分を沈殿させる沈殿工程Pを設けてもよい。 FIG. 1 shows an outline of the lithium recovery method of the present embodiment. In the lithium recovery method of the present embodiment, at least the liquid to be extracted 20 composed of an aqueous liquid containing a lithium salt is brought into contact with the extractant 21, and at least a part of the lithium salt in the liquid to be extracted 20 is extracted into the extractant 21. It has an extraction step X for making the extraction step X, and an electrolysis step E for treating the extraction residual liquid 23 of the extraction step X by electrolysis. Prior to the extraction step X, a precipitation step P for precipitating excess salt from the raw material liquid 10 may be provided.
 図1に示すリチウム回収装置100は、沈殿工程Pを行うための沈殿部13と、抽出工程Xを行うための抽出部24と、電気分解工程Eを行うための電気分解部35と、を備えている。 The lithium recovery device 100 shown in FIG. 1 includes a precipitation unit 13 for performing the precipitation step P, an extraction unit 24 for performing the extraction step X, and an electrolysis unit 35 for performing the electrolysis step E. ing.
 本実施形態におけるリチウム回収方法において、原料液体10としては、リチウムイオンを含む鹹水であれば特に限定されないが、塩湖で採取される塩湖鹹水が挙げられる。塩湖が乾燥地帯に存在する場合、内陸に閉じ込められた湖水から水分が自然に蒸発され、塩分が濃縮される。原料液体10の供給工程Fは、例えばポンプ、井戸等を用いて、塩湖から鹹水を採取する方法を用いることができる。鹹水に含まれる塩類としては、例えば塩化ナトリウム(NaCl)、塩化リチウム(LiCl)、塩化マグネシウム(MgCl)、塩化カルシウム(CaCl)等が挙げられる。 In the lithium recovery method of the present embodiment, the raw material liquid 10 is not particularly limited as long as it is brine containing lithium ions, and examples thereof include salt lake brine collected in a salt lake. When salt lakes are located in arid areas, water is naturally evaporated from the lake water trapped inland and salt is concentrated. In the supply step F of the raw material liquid 10, a method of collecting brine from the salt lake using, for example, a pump, a well, or the like can be used. Examples of salts contained in brine include sodium chloride (NaCl), lithium chloride (LiCl), magnesium chloride (MgCl 2 ), calcium chloride (CaCl 2 ) and the like.
 従来のリチウム回収方法では、塩湖から採取した鹹水を蒸発池に移し、1年程度天日で乾燥して鹹水を濃縮させ、リチウム濃度を例えば数wt%まで高めている。この際、塩化ナトリウム(NaCl)、塩化カリウム(KCl)等の主要塩類が沈殿し、上澄み液としてリチウム濃度が高まった濃縮鹹水が得られる。しかし、例えば火山活動などの影響で、鹹水中の硫酸イオン(SO 2-)濃度が高まると、鹹水中のリチウムイオンが硫酸リチウム(LiSO)として沈殿し、濃縮鹹水中のリチウム濃度が低下する場合がある。また、上述したように、鹹水を蒸発により濃縮させる方法は、天日や風力のような自然エネルギーを利用する場合には時間や立地の制約が大きく、燃焼加熱等の人為的手段を利用する場合にはランニングコストが増大する。 In the conventional lithium recovery method, the brine collected from the salt lake is transferred to an evaporation pond and dried in the sun for about one year to concentrate the brine, increasing the lithium concentration to, for example, several wt%. At this time, major salts such as sodium chloride (NaCl) and potassium chloride (KCl) are precipitated, and concentrated brine having an increased lithium concentration can be obtained as a supernatant. However, for example, influence of volcanic activity, the increase may Sulfate ion (SO 4 2-) concentration in the brine, the lithium ions in the brine are precipitated as lithium sulfate (Li 2 SO 4), lithium concentration in the concentrated brine May decrease. In addition, as described above, the method of concentrating brine by evaporation has large restrictions on time and location when using natural energy such as sun and wind power, and when using artificial means such as combustion heating. The running cost will increase.
 本実施形態のリチウム回収方法では、塩湖から採取した鹹水をそのまま原料液体10とすることができる。所定の処理又は調整を経た鹹水を原料液体10としてもよい。例えば、鹹水中の不純物を低減又は除去するため、不純物用抽出剤を用いて不純物を抽出し、不純物を含む抽出剤を、鹹水から分離する等の処理を行ってもよい。必要に応じて鹹水のpH、温度等を調整してもよい。pHを調整する場合は、酸、アルカリ等のpH調整剤を使用することができる。温度を調整する場合には、原料液体10が過度に濃縮されない程度に加熱するか、あるいは冷却してもよい。原料液体10には、鹹水以外の含水液体を添加してもよい。原料液体10は、pHが7未満の酸性であってもよく、pHが7程度の中性であってもよく、pHが7超のアルカリ性であってもよい。 In the lithium recovery method of the present embodiment, the brine collected from the salt lake can be used as the raw material liquid 10 as it is. Brine water that has undergone a predetermined treatment or adjustment may be used as the raw material liquid 10. For example, in order to reduce or remove impurities in brine, impurities may be extracted using an impurity extractant, and the extractant containing impurities may be separated from brine. If necessary, the pH, temperature, etc. of the brine may be adjusted. When adjusting the pH, a pH adjusting agent such as an acid or an alkali can be used. When adjusting the temperature, the raw material liquid 10 may be heated or cooled to such an extent that it is not excessively concentrated. A hydrous liquid other than brine may be added to the raw material liquid 10. The raw material liquid 10 may be acidic with a pH of less than 7, neutral with a pH of about 7, or alkaline with a pH of more than 7.
 原料液体10のリチウム濃度が低い場合は、沈殿工程Pを行うことが好ましい。例えば原料液体10中のリチウム濃度が重量比で1700~1800mg/L程度又はそれ以上であれば、沈殿工程Pを省略することが好ましい。原料液体10中のリチウム濃度が重量比で300~400mg/L程度又はそれ以下であれば、沈殿工程Pを実施することが好ましい。原料液体10中のリチウム濃度が400mg/L程度と1700mg/L程度との中間の場合は、後述する抽出工程Xにおけるリチウム回収率を考慮して、沈殿工程Pを実施するか省略するかを決定してもよい。 When the lithium concentration of the raw material liquid 10 is low, it is preferable to perform the precipitation step P. For example, if the lithium concentration in the raw material liquid 10 is about 1700 to 1800 mg / L or more by weight, it is preferable to omit the precipitation step P. When the lithium concentration in the raw material liquid 10 is about 300 to 400 mg / L or less by weight, it is preferable to carry out the precipitation step P. When the lithium concentration in the raw material liquid 10 is between about 400 mg / L and about 1700 mg / L, it is decided whether to carry out or omit the precipitation step P in consideration of the lithium recovery rate in the extraction step X described later. You may.
 沈殿工程Pでは、沈殿剤11等の薬剤を添加して、過剰な塩分を沈殿させ、上澄み液中のリチウム濃度を上昇させる。これにより、蒸発池又は蒸発缶等を用いる場合に比べて、短時間かつ低コストの処理が可能になる。例えば、炭酸ナトリウム(NaCO)を原料液体10に添加する場合、原料液体10のマグネシウムイオンを炭酸マグネシウム(MgCO)として沈殿させることができる。沈殿工程Pにおいて、原料液体10、沈殿剤11等の貯留に用いる沈殿部13は、沈殿槽、沈殿池などから構成することができる。 In the precipitation step P, a chemical such as a precipitating agent 11 is added to precipitate an excess salt content, and the lithium concentration in the supernatant is increased. As a result, processing can be performed in a short time and at low cost as compared with the case of using an evaporation pond or an evaporation can. For example, when sodium carbonate (Na 2 CO 3 ) is added to the raw material liquid 10, the magnesium ions of the raw material liquid 10 can be precipitated as magnesium carbonate (MgCO 3). In the settling step P, the settling section 13 used for storing the raw material liquid 10, the settling agent 11, and the like can be composed of a settling tank, a settling basin, and the like.
 沈殿工程Pを実施した場合は、沈殿工程Pにおいて沈殿物12を除去した後に残る液体を、抽出工程Xの被抽出液体20としてもよい。沈殿工程Pを省略した場合は、原料液体10をそのまま被抽出液体20としてもよい。沈殿物12と被抽出液体20との分離には、濾過、遠心分離など、公知の固液分離方法を用いることができる。 When the precipitation step P is carried out, the liquid remaining after removing the precipitate 12 in the precipitation step P may be the liquid to be extracted 20 in the extraction step X. When the precipitation step P is omitted, the raw material liquid 10 may be used as it is as the liquid to be extracted 20. For the separation of the precipitate 12 and the liquid to be extracted 20, a known solid-liquid separation method such as filtration or centrifugation can be used.
 抽出工程Xでは、抽出剤21を用いて、被抽出液体20のリチウム塩を抽出する。抽出剤21としては、液状又は固体状の抽出剤21が挙げられる。抽出工程Xにおいて、被抽出液体20と抽出剤21との接触に用いる抽出部24は、抽出槽、抽出塔、抽出装置などから構成することができる。 In the extraction step X, the lithium salt of the liquid to be extracted 20 is extracted using the extractant 21. Examples of the extractant 21 include a liquid or solid extractant 21. In the extraction step X, the extraction unit 24 used for contacting the liquid to be extracted 20 and the extraction agent 21 can be composed of an extraction tank, an extraction tower, an extraction device, and the like.
 液状の抽出剤21としては、リン酸エステル系化合物、ホスホン酸エステル系化合物、ホスフィンオキシド系化合物等の抽出用化合物、又は抽出用化合物を含有する有機溶媒が挙げられる。抽出用化合物が液体である場合は、他に有機溶媒を含有しない抽出用化合物をそのまま液状の抽出剤21として用いてもよい。 Examples of the liquid extractant 21 include an extraction compound such as a phosphoric acid ester compound, a phosphonic acid ester compound, and a phosphine oxide compound, or an organic solvent containing an extraction compound. When the extraction compound is a liquid, the extraction compound containing no other organic solvent may be used as it is as the liquid extractant 21.
 抽出剤21に用いられる有機溶媒としては、抽出用化合物を溶解すること、水との分離が容易であること等を考慮して選択することができる。有機溶媒の具体例としては、特に限定されないが、脂肪族炭化水素、芳香族炭化水素、ハロゲン化炭素、ハロゲン化炭化水素、エーテル類、ケトン類、フェノール類、エステル類、アミド類等の化合物又はこれらの混合物が挙げられる。有機溶媒の混合物は、ケロシン(灯油)等の組成物でもよい。 The organic solvent used in the extractant 21 can be selected in consideration of dissolving the extraction compound, easy separation from water, and the like. Specific examples of the organic solvent are not particularly limited, but are compounds such as aliphatic hydrocarbons, aromatic hydrocarbons, carbon halides, halogenated hydrocarbons, ethers, ketones, phenols, esters, and amides. Examples of these are mixtures. The mixture of organic solvents may be a composition such as kerosene (kerosene).
 液状の抽出剤21を被抽出液体20と接触させた後、分液操作によって、リチウム塩を含有する抽出剤21からなる抽出物22と、抽出剤21が除去された後に残留する抽出残液23とを分離することができる。分液操作では、抽出物22と抽出残液23との比重差を利用することが好ましく、遠心分離を利用してもよい。 After the liquid extractant 21 is brought into contact with the liquid to be extracted 20, the extract 22 composed of the extractant 21 containing a lithium salt and the extract residue 23 remaining after the extractant 21 is removed by a liquid separation operation are performed. And can be separated. In the liquid separation operation, it is preferable to utilize the difference in specific gravity between the extract 22 and the extraction residual liquid 23, and centrifugation may be used.
 抽出工程Xで用いる抽出剤21は、固体状の抽出剤でもよい。イオン交換樹脂等の樹脂、粘土、セラミックスなどの担体にリチウム塩と結合する官能基等の化学構造を導入することができる。担体は、膜状、糸状、チューブ状、粒状等とすることにより、被抽出液体20との接触面積を増大させて、抽出の効率を向上させることができる。 The extractant 21 used in the extraction step X may be a solid extractant. A chemical structure such as a functional group that binds to a lithium salt can be introduced into a resin such as an ion exchange resin or a carrier such as clay or ceramics. By forming the carrier into a film-like shape, a thread-like shape, a tubular shape, a granular shape, or the like, the contact area with the liquid to be extracted 20 can be increased and the extraction efficiency can be improved.
 固体状の抽出剤21を被抽出液体20と接触させた後、固液分離によって、リチウム塩を含有する抽出剤21からなる抽出物22と、抽出剤21が除去された後に残留する抽出残液23とを分離することができる。固体状の抽出物22と抽出残液23との分離には、濾過、遠心分離など、公知の固液分離方法を用いることができる。 After the solid extractant 21 is brought into contact with the liquid to be extracted 20, the extract 22 composed of the extractant 21 containing a lithium salt and the extraction residual liquid remaining after the extractant 21 is removed by solid-liquid separation. 23 can be separated. For the separation of the solid extract 22 and the extraction residual liquid 23, a known solid-liquid separation method such as filtration or centrifugation can be used.
 抽出工程Xでは、水性液体からなる被抽出液体20を抽出剤21に接触させることにより、被抽出液体20中のリチウム塩の少なくとも一部を抽出剤21に抽出させる。被抽出液体20に含まれるマグネシウム塩、カルシウム塩、ナトリウム塩等の不純物に対するリチウム塩の選択性により、抽出物22における不純物の割合を低減することができる。これにより、抽出物22からリチウム塩を回収するときに不純物を除去する工程を簡素化することができる。また、溶媒抽出を行う場合は、有機相と水相との比(O/A比)を最適化することで、リチウム塩を含有する抽出物22におけるリチウムイオンの濃縮倍率を向上することで、抽出物22からリチウム塩を回収するときの設備容量を縮小することができる。 In the extraction step X, the liquid to be extracted 20 made of an aqueous liquid is brought into contact with the extractant 21, so that at least a part of the lithium salt in the liquid to be extracted 20 is extracted by the extractant 21. The proportion of impurities in the extract 22 can be reduced by the selectivity of the lithium salt with respect to the impurities such as magnesium salt, calcium salt and sodium salt contained in the liquid to be extracted 20. This simplifies the step of removing impurities when recovering the lithium salt from the extract 22. When solvent extraction is performed, the ratio (O / A ratio) of the organic phase to the aqueous phase is optimized to improve the concentration ratio of lithium ions in the lithium salt-containing extract 22. The installed capacity when recovering the lithium salt from the extract 22 can be reduced.
 被抽出液体20中のリチウム濃度が低い場合は、抽出物22側に抽出されるリチウム量が少なく、抽出残液23側に排出されるリチウム量が相当の量となる場合がある。このため、抽出物22のみからリチウムを回収するのでは、リチウム回収率が低いという問題がある。抽出残液23からもリチウム塩を回収することが望ましいが、抽出残液23中のリチウム濃度は、被抽出液体20中のリチウム濃度よりも低い。このため、抽出工程Xの繰り返しによってリチウム塩の回収率を挙げるのは容易でない。 When the lithium concentration in the liquid to be extracted 20 is low, the amount of lithium extracted to the extract 22 side is small, and the amount of lithium discharged to the extraction residual liquid 23 side may be a considerable amount. Therefore, if lithium is recovered only from the extract 22, there is a problem that the lithium recovery rate is low. It is desirable to recover the lithium salt from the extraction residual liquid 23 as well, but the lithium concentration in the extraction residual liquid 23 is lower than the lithium concentration in the liquid to be extracted 20. Therefore, it is not easy to increase the recovery rate of the lithium salt by repeating the extraction step X.
 そこで、本実施形態のリチウム回収方法では、抽出工程Xの後段に電気分解工程Eを行い、抽出工程Xの抽出残液23を電気分解で処理する。電気分解工程Eに用いる電気分解部35は、陽極(アノード)と陰極(カソード)との間にイオン交換膜を設置した電気分解槽を備える。イオン交換膜よりも陽極側の空間である陽極室には、抽出残液23が供給される。電気分解により、イオン交換膜よりも陰極側の空間である陰極室に向けてリチウムイオンを移動させることができる。陰極室には、蒸留水、脱イオン水などの脱塩された水30が供給される。陽極室と陰極室の容積比等は、適宜設計することができる。 Therefore, in the lithium recovery method of the present embodiment, the electrolysis step E is performed after the extraction step X, and the extraction residual liquid 23 of the extraction step X is treated by electrolysis. The electrolysis unit 35 used in the electrolysis step E includes an electrolysis tank in which an ion exchange membrane is installed between the anode (anode) and the cathode (cathode). The extraction residual liquid 23 is supplied to the anode chamber, which is a space on the anode side of the ion exchange membrane. By electrolysis, lithium ions can be moved toward the cathode chamber, which is a space on the cathode side of the ion exchange membrane. Desalted water 30 such as distilled water and deionized water is supplied to the cathode chamber. The volume ratio between the anode chamber and the cathode chamber can be appropriately designed.
 原料液体10が未濃縮の鹹水である場合は、一定のリチウム回収量を得るために必要となる原料液体10の量が大きいため、濃縮鹹水のようにトラック等で運搬するのが容易でない。このため、本実施形態のリチウム回収方法は、塩湖付近の電力インフラが整っていない地域で実施する場合も想定される。電気分解工程Eに必要な電力は、太陽光発電、風力発電などの自然エネルギーを利用する発電方法から得ることが好ましい。 When the raw material liquid 10 is unconcentrated brine, it is not easy to transport it by truck or the like like concentrated brine because the amount of the raw material liquid 10 required to obtain a certain amount of lithium recovery is large. Therefore, it is assumed that the lithium recovery method of the present embodiment is carried out in an area near the salt lake where the electric power infrastructure is not prepared. The electric power required for the electrolysis step E is preferably obtained from a power generation method using natural energy such as solar power generation and wind power generation.
 電気分解工程Eで用いるイオン交換膜は、マグネシウム(Mg)、カルシウム(Ca)等の二価金属イオンに対して、リチウム(Li)、ナトリウム(Na)等の一価金属イオンを優先的又は選択的に透過する膜体である。その具体例としては、公知のクロールアルカリ事業で用いられる陽イオン交換膜が挙げられる。陽イオン交換膜の具体例としては、カルボン酸、スルホン酸等の陰イオンを与える官能基を有する含フッ素高分子膜が挙げられる。 The ion exchange membrane used in the electrolysis step E preferentially or selects monovalent metal ions such as lithium (Li) and sodium (Na) over divalent metal ions such as magnesium (Mg) and calcium (Ca). It is a film body that is transparent to calcium. Specific examples thereof include cation exchange membranes used in known chlor-alkali projects. Specific examples of the cation exchange membrane include a fluorine-containing polymer membrane having a functional group that gives an anion such as carboxylic acid and sulfonic acid.
 膜体を介した電気分解を用いて抽出残液23を処理することにより、陰極室には、膜体を透過した側の生成物として、リチウム塩が濃縮された陰極液31が得られる。また、陽極室には、膜体を透過していない側の生成物として、リチウム塩が減少した陽極液32が得られる。抽出物22からリチウム塩を回収することに加えて、陰極液31からもリチウム塩を回収することにより、リチウムの回収率を向上することができる。 By treating the extraction residual liquid 23 using electrolysis via the membrane body, a cathode liquid 31 in which lithium salt is concentrated is obtained in the cathode chamber as a product on the side that has passed through the membrane body. Further, in the anode chamber, an anode solution 32 having a reduced lithium salt is obtained as a product on the side that does not permeate the membrane body. In addition to recovering the lithium salt from the extract 22, the recovery rate of lithium can be improved by recovering the lithium salt from the cathode solution 31 as well.
 また、原料液体10又は被抽出液体20が硫酸イオンを含有する場合も、硫酸イオンが電気分解工程Eで用いる膜体を透過しない(又は膜体の透過性が相対的に低い)ことにより、陰極液31中の硫酸イオン濃度は低くなる。このため、電気分解により陰極液31中のリチウム濃度を高めても、硫酸リチウムの沈殿を抑制することができる。 Further, even when the raw material liquid 10 or the liquid to be extracted 20 contains sulfate ions, the sulfate ions do not permeate the membrane body used in the electrolysis step E (or the permeability of the membrane body is relatively low), so that the cathode The sulfate ion concentration in the liquid 31 becomes low. Therefore, even if the lithium concentration in the cathode liquid 31 is increased by electrolysis, the precipitation of lithium sulfate can be suppressed.
 電気分解工程Eにおいて膜体を透過した側の生成物である陰極液31にはリチウムイオンが含まれ、しかも電気分解工程Eにおいて、リチウムイオンの濃度が優先的又は選択的に高められている。このため、陰極液31を沈殿工程Pの原料液体10又は抽出工程Xの被抽出液体20に添加すると、陰極液31中のリチウム塩を沈殿工程P又は抽出工程Xに戻して、原料液体10又は被抽出液体20中のリチウム濃度を上昇させ、リチウムの回収率を向上することができる。 The cathode liquid 31, which is a product on the side that has passed through the membrane in the electrolysis step E, contains lithium ions, and the concentration of the lithium ions is preferentially or selectively increased in the electrolysis step E. Therefore, when the cathode liquid 31 is added to the raw material liquid 10 in the precipitation step P or the liquid to be extracted 20 in the extraction step X, the lithium salt in the cathode liquid 31 is returned to the precipitation step P or the extraction step X to return the raw material liquid 10 or the extraction step X. The lithium concentration in the liquid to be extracted 20 can be increased to improve the recovery rate of lithium.
 電気分解工程Eにおいて膜体を透過していない側の生成物である陽極液32では、マグネシウム塩又はカルシウム塩の濃度が高く、リチウムイオンの濃度が低い。このため、陽極液32は、沈殿工程Pにおいて沈殿物12の洗浄に好適に使用することができる。リチウム濃度が高い水を沈殿物12の洗浄に用いる場合に比べると、沈殿物12中にリチウムが吸収されて損失となるのを抑制することができる。また、淡水などを沈殿物12の洗浄に用いる場合に比べると、沈殿物12に含まれるマグネシウム塩又はカルシウム塩の溶解を抑制することができる。陽極液32を用いて洗浄する際の沈殿物12の状態は、水分の多いスラリー状でもよく、水分の少ないケーク状でもよい。 In the anode solution 32, which is a product on the side that does not permeate the membrane in the electrolysis step E, the concentration of magnesium salt or calcium salt is high and the concentration of lithium ions is low. Therefore, the anode solution 32 can be suitably used for cleaning the precipitate 12 in the precipitation step P. Compared with the case where water having a high lithium concentration is used for washing the precipitate 12, it is possible to suppress the absorption of lithium in the precipitate 12 and the loss. Further, as compared with the case where fresh water or the like is used for washing the precipitate 12, the dissolution of the magnesium salt or the calcium salt contained in the precipitate 12 can be suppressed. The state of the precipitate 12 when washed with the anode solution 32 may be in the form of a slurry having a large amount of water or in the form of a cake having a small amount of water.
 電気分解工程Eにおいて、抽出残液23に含まれるマグネシウムイオンやカルシウムイオン等の二価金属イオンが多く存在する場合は、抽出残液23に含まれる二価金属イオンの少なくとも一部を除去する二価金属イオン除去工程を行うことが好ましい。二価金属イオン除去工程には、公知のキレート樹脂等による吸着分離方法を用いることができる。二価金属イオン除去工程を経た抽出残液23を電気分解で処理することにより、電気分解工程Eの阻害を抑制することができる。 In the electrolysis step E, when a large amount of divalent metal ions such as magnesium ions and calcium ions contained in the extraction residual liquid 23 are present, at least a part of the divalent metal ions contained in the extraction residual liquid 23 is removed. It is preferable to carry out a valent metal ion removing step. In the divalent metal ion removing step, a known adsorption separation method using a chelate resin or the like can be used. By treating the extraction residual liquid 23 that has undergone the divalent metal ion removing step by electrolysis, the inhibition of the electrolysis step E can be suppressed.
 なお、電気分解で処理する抽出残液23中に二価金属イオンが実質的に含まれなくても差し支えない。この場合も、電気分解工程Eにおいて、リチウムイオンを陽極側から陰極側へ移動させることにより、硫酸リチウム等の沈殿を抑制しながら、陰極液31において、リチウムイオンの濃度を優先的又は選択的に高めることができる。 Note that it does not matter if the extraction residual liquid 23 to be treated by electrolysis does not substantially contain divalent metal ions. Also in this case, in the electrolysis step E, by moving the lithium ions from the anode side to the cathode side, the concentration of lithium ions in the cathode liquid 31 is preferentially or selectively selected while suppressing the precipitation of lithium sulfate or the like. Can be enhanced.
 図2に、本実施形態のリチウム回収方法を補足する各工程を示す。これらの工程は、図1に示す工程に適宜付加することができる。図2において、図1と共通する構成には、同一の符号を用いた。 FIG. 2 shows each step that supplements the lithium recovery method of this embodiment. These steps can be appropriately added to the steps shown in FIG. In FIG. 2, the same reference numerals are used for the configurations common to those in FIG.
 抽出残液23が塩化物イオン(Cl)を含む場合、電気分解工程Eにおいて陽極に生成する塩素ガス33及び陰極に生成する水素ガス34を塩酸製造工程Hに供給し、塩酸41を合成することができる。塩酸41が塩酸水溶液の状態であると、取り扱いやすいため好ましい。水素ガス34を塩素ガス33中で燃焼させて得られる塩化水素(HCl)ガスを水に吸収させることで、塩酸水溶液を得ることができる。 When the extraction residual liquid 23 contains chloride ion (Cl ), the chlorine gas 33 generated at the anode and the hydrogen gas 34 generated at the cathode in the electrolysis step E are supplied to the hydrochloric acid production step H to synthesize hydrochloric acid 41. be able to. It is preferable that hydrochloric acid 41 is in the state of an aqueous hydrochloric acid solution because it is easy to handle. An aqueous hydrochloric acid solution can be obtained by allowing water to absorb hydrogen chloride (HCl) gas obtained by burning hydrogen gas 34 in chlorine gas 33.
 塩酸41は、抽出物22からリチウム塩を逆抽出する逆抽出工程Sにおいて、抽出物22に添加することにより、抽出剤21からリチウム含有液42を分離することができる。リチウム含有液42は、リチウム塩を含む水性液体である。逆抽出工程Sで回収された抽出剤21は、必要に応じて洗浄、精製等の処理を経た後、抽出工程Xに再利用することができる。 Hydrochloric acid 41 can separate the lithium-containing liquid 42 from the extractant 21 by adding it to the extract 22 in the back extraction step S in which the lithium salt is back-extracted from the extract 22. The lithium-containing liquid 42 is an aqueous liquid containing a lithium salt. The extractant 21 recovered in the back extraction step S can be reused in the extraction step X after undergoing treatments such as washing and purification as necessary.
 塩化物イオンを含有する鹹水を原料液体10に用いる場合、電気分解工程Eで処理される抽出残液23中にも塩化物イオンが存在することとなる。そこで、電気分解で生成する塩素ガス33及び水素ガス34から合成した塩酸41を利用することにより、薬剤のコストを低減することができる。ただし、抽出物22の逆抽出に用いる薬剤は、塩酸製造工程Hで製造する塩酸41に限られるものではない。 When brine containing chloride ions is used as the raw material liquid 10, chloride ions are also present in the extraction residual liquid 23 processed in the electrolysis step E. Therefore, by using hydrochloric acid 41 synthesized from chlorine gas 33 and hydrogen gas 34 generated by electrolysis, the cost of chemicals can be reduced. However, the chemical used for the back extraction of the extract 22 is not limited to the hydrochloric acid 41 produced in the hydrochloric acid production step H.
 ナトリウムイオンを含有する鹹水を原料液体10に用いる場合、電気分解工程Eで処理される抽出残液23及び陰極液31中にもナトリウムイオンが存在することとなる。ナトリウムイオン(Na)が含まれる陰極液31を炭酸ナトリウム合成工程Nに供給し、二酸化炭素51を反応させて、炭酸ナトリウム含有液52を合成することができる。 When brine containing sodium ions is used as the raw material liquid 10, sodium ions are also present in the extraction residual liquid 23 and the cathode liquid 31 treated in the electrolysis step E. A cathode solution 31 containing sodium ions (Na + ) can be supplied to the sodium carbonate synthesis step N, and carbon dioxide 51 can be reacted to synthesize a sodium carbonate-containing solution 52.
 炭酸ナトリウム含有液52には、炭酸ナトリウム(NaCO)とともに水酸化リチウム(LiOH)が含まれる。沈殿工程P又は回収工程Rにおいて、リチウム塩を含有する炭酸ナトリウム含有液52を使用することにより、後述するように、リチウムの回収率を向上し、又は、リチウムの損失を低減することができる。炭酸ナトリウム含有液52を回収工程Rに使用する際には、図2に示すように、逆抽出後のリチウム含有液42からリチウムを回収する場合に限らず、リチウムを含有する任意の水溶液からリチウムを回収する場合に利用することができる。 The sodium carbonate-containing liquid 52 contains lithium hydroxide (LiOH) together with sodium carbonate (Na 2 CO 3). By using the sodium carbonate-containing liquid 52 containing a lithium salt in the precipitation step P or the recovery step R, the recovery rate of lithium can be improved or the loss of lithium can be reduced, as will be described later. When the sodium carbonate-containing liquid 52 is used in the recovery step R, as shown in FIG. 2, not only when lithium is recovered from the lithium-containing liquid 42 after back extraction, but also lithium from an arbitrary aqueous solution containing lithium. Can be used when collecting.
 炭酸ナトリウムを上述した沈殿工程Pの沈殿剤11に用いると、原料液体10中のマグネシウム塩又はカルシウム塩を、炭酸マグネシウム又は炭酸カルシウムとして沈殿させることができる。沈殿剤11として使用する炭酸ナトリウム含有液52にリチウム塩が含まれている場合には、リチウム塩を含有しない沈殿剤11の水溶液を使用する場合に比べて、被抽出液体20中のリチウム濃度を高めることができる。 When sodium carbonate is used as the precipitating agent 11 in the precipitation step P described above, the magnesium salt or calcium salt in the raw material liquid 10 can be precipitated as magnesium carbonate or calcium carbonate. When the sodium carbonate-containing liquid 52 used as the precipitant 11 contains a lithium salt, the lithium concentration in the liquid to be extracted 20 is increased as compared with the case where an aqueous solution of the precipitant 11 not containing the lithium salt is used. Can be enhanced.
 逆抽出後のリチウム含有液42に含まれるリチウム塩は、回収工程Rにおいて、炭酸ナトリウム含有液52を沈殿剤61として添加することにより、炭酸リチウム(LiCO)を含む沈殿物62として回収することができる。なお、沈殿物62として回収されるリチウム塩は、硫酸リチウムなど、炭酸リチウム以外のリチウム塩でもよい。沈殿剤61には、炭酸ナトリウム以外の物質を用いてもよい。沈殿物62と水性液体63との分離には、濾過、遠心分離など、公知の固液分離方法を用いることができる。沈殿剤61として、リチウム塩を含有する炭酸ナトリウム含有液52を使用する場合には、リチウム塩を含有しない炭酸ナトリウム含有液52を使用する場合に比べて、沈殿物62として回収される炭酸リチウムの量を向上することができる。 The lithium salt contained in the lithium-containing liquid 42 after the back extraction is recovered as a precipitate 62 containing lithium carbonate (Li 2 CO 3 ) by adding the sodium carbonate-containing liquid 52 as a precipitant 61 in the recovery step R. can do. The lithium salt recovered as the precipitate 62 may be a lithium salt other than lithium carbonate, such as lithium sulfate. A substance other than sodium carbonate may be used as the precipitant 61. For the separation of the precipitate 62 and the aqueous liquid 63, a known solid-liquid separation method such as filtration or centrifugation can be used. When the sodium carbonate-containing liquid 52 containing a lithium salt is used as the precipitant 61, the lithium carbonate recovered as the precipitate 62 is compared with the case where the sodium carbonate-containing liquid 52 containing no lithium salt is used. The amount can be improved.
 以上説明したように、本実施形態のリチウム回収方法によれば、原料液体10中のリチウム濃度が低いために、抽出工程Xで抽出されるリチウムイオンの割合が相対的に低い場合であっても、抽出残液23を電気分解工程Eで処理することにより、抽出残液23に残留したリチウムイオンを回収することができる。 As described above, according to the lithium recovery method of the present embodiment, since the lithium concentration in the raw material liquid 10 is low, even when the ratio of lithium ions extracted in the extraction step X is relatively low. By treating the extraction residual liquid 23 in the electrolysis step E, the lithium ions remaining in the extraction residual liquid 23 can be recovered.
 鹹水を濃縮しないで原料液体10とする場合には、蒸発池、蒸発缶などのコストを低減することができると共に、鹹水中の硫酸イオン濃度が高い場合にも、鹹水中のリチウムイオンが硫酸リチウムとして析出することによる損失を抑制することができる。 When the raw material liquid 10 is used without concentrating the brine, the cost of the evaporation pond, the evaporation can, etc. can be reduced, and even when the sulfate ion concentration in the brine is high, the lithium ion in the brine is lithium sulfate. The loss due to precipitation can be suppressed.
 電気分解工程Eで得られる生成物からは、水酸化ナトリウム、炭酸ナトリウム、塩酸などの薬剤を生成させることができる。水酸化ナトリウム、炭酸ナトリウムは、沈殿工程P、回収工程R等で利用することができる。塩酸は、逆抽出工程Sなどで利用することができる。本実施形態のリチウム回収方法を、都市などの商工業地から離れたインフラが整っていない地域で実施する場合であっても、薬剤の購入及び運搬コストを低減することができる。 From the product obtained in the electrolysis step E, chemicals such as sodium hydroxide, sodium carbonate, and hydrochloric acid can be produced. Sodium hydroxide and sodium carbonate can be used in the precipitation step P, the recovery step R, and the like. Hydrochloric acid can be used in the back extraction step S and the like. Even when the lithium recovery method of the present embodiment is carried out in an area away from commercial and industrial areas such as a city where infrastructure is not in place, it is possible to reduce the cost of purchasing and transporting the drug.
 次に、鹹水から抽出工程X及び逆抽出工程Sを用いてリチウムを回収する実施例を示す。リチウム濃度が295~335mg/Lである鹹水を原料液体10に用いて、抽出工程X及び逆抽出工程Sを実施した。その結果を表1に示す。表1ではリチウムを「Li」と略記した。 Next, an example of recovering lithium from the brine using the extraction step X and the back extraction step S will be shown. Extraction step X and back extraction step S were carried out using brine having a lithium concentration of 295 to 335 mg / L as the raw material liquid 10. The results are shown in Table 1. In Table 1, lithium is abbreviated as "Li".
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示されるように、抽出残液23中のリチウム濃度は、鹹水中のリチウム濃度に対して比較的高く、リチウム回収率は29~41%と低くなっている。リチウム濃縮率は、原料液体10に用いた鹹水中のリチウム濃度に対して、逆抽出後のリチウム含有液42中のリチウム濃度が濃縮された倍率を表す。リチウム回収率は、原料液体10に用いた鹹水から逆抽出後のリチウム含有液42に回収されたリチウムの割合を表す。 As shown in Table 1, the lithium concentration in the extraction residual liquid 23 is relatively high with respect to the lithium concentration in brine, and the lithium recovery rate is as low as 29 to 41%. The lithium concentration ratio represents the ratio at which the lithium concentration in the lithium-containing liquid 42 after back extraction is concentrated with respect to the lithium concentration in the brine used for the raw material liquid 10. The lithium recovery rate represents the ratio of lithium recovered from the brine used in the raw material liquid 10 to the lithium-containing liquid 42 after back extraction.
 抽出工程X及び逆抽出工程SにおけるO/A比を調整又は最適化することで、逆抽出後のリチウム含有液42中のリチウム濃度を高めることができる。これにより、抽出工程X又は逆抽出工程Sより後の工程における不純物の除去又はリチウムの回収に要する設備の容量を縮小することができる。 By adjusting or optimizing the O / A ratio in the extraction step X and the back extraction step S, the lithium concentration in the lithium-containing liquid 42 after the back extraction can be increased. As a result, the capacity of the equipment required for removing impurities or recovering lithium in the steps after the extraction step X or the back extraction step S can be reduced.
 しかし、鹹水の濃縮等を行わず、鹹水と同程度のリチウム濃度を有する被抽出液体20から直接、抽出工程Xを行うのでは、リチウムの回収率を向上するのに制約がある。そこで、上述の実施形態のように、抽出残液23を電気分解により処理することで、陰極液31のリチウム濃度を抽出残液23のリチウム濃度よりも高めて、リチウムの回収率を向上することが可能である。また、電気分解工程Eで生成する塩素及び水素は、逆抽出工程Sに用いる塩酸を製造するために利用することができる。電気分解工程E及び塩酸製造工程Hは、一般的なクロールアルカリ事業で用いられる工程と同様にして、既存の技術で容易に実施することができる。 However, if the extraction step X is performed directly from the liquid to be extracted 20 having the same lithium concentration as the brine without concentrating the brine, there is a limitation in improving the lithium recovery rate. Therefore, by treating the extraction residual liquid 23 by electrolysis as in the above-described embodiment, the lithium concentration of the cathode liquid 31 is made higher than the lithium concentration of the extraction residual liquid 23, and the lithium recovery rate is improved. Is possible. Further, chlorine and hydrogen produced in the electrolysis step E can be used for producing hydrochloric acid used in the back extraction step S. The electrolysis step E and the hydrochloric acid production step H can be easily carried out by existing techniques in the same manner as the steps used in the general chlor-alkali business.
 本発明は、リチウムイオン電池、リチウム含有合金、窯業製品、リチウム石鹸、医薬品などの各種用途に利用されるリチウム化合物の製造に利用することができる。 The present invention can be used for producing lithium compounds used in various applications such as lithium ion batteries, lithium-containing alloys, ceramic products, lithium soaps, and pharmaceuticals.
E…電気分解工程、F…供給工程、H…塩酸製造工程、N…炭酸ナトリウム合成工程、P…沈殿工程、R…回収工程、S…逆抽出工程、X…抽出工程、10…原料液体、11…沈殿剤、12…沈殿物、13…沈殿部、20…被抽出液体、21…抽出剤、22…抽出物、23…抽出残液、24…抽出部、30…水、31…陰極液、32…陽極液、33…塩素ガス、34…水素ガス、35…電気分解部、41…塩酸、42…リチウム含有液、51…二酸化炭素、52…炭酸ナトリウム含有液、61…沈殿剤、62…沈殿物、63…水性液体、100…リチウム回収装置。 E ... Electrolysis process, F ... Supply process, H ... Hydrochloride production process, N ... Sodium carbonate synthesis process, P ... Precipitation process, R ... Recovery process, S ... Reverse extraction process, X ... Extraction process, 10 ... Raw material liquid, 11 ... Precipitant, 12 ... Precipitate, 13 ... Precipitate, 20 ... Liquid to be extracted, 21 ... Extractor, 22 ... Extract, 23 ... Extraction residue, 24 ... Extraction part, 30 ... Water, 31 ... Cathode liquid , 32 ... anode solution, 33 ... chlorine gas, 34 ... hydrogen gas, 35 ... electrolysis part, 41 ... hydrochloric acid, 42 ... lithium-containing solution, 51 ... carbon dioxide, 52 ... sodium carbonate-containing solution, 61 ... precipitant, 62 ... Precipitate, 63 ... Aqueous liquid, 100 ... Lithium recovery device.

Claims (9)

  1.  リチウム塩と、マグネシウム塩又はカルシウム塩とを少なくとも含む水性液体からなる被抽出液体を、リチウム塩の抽出剤に接触させ、前記被抽出液体中のリチウム塩の少なくとも一部を前記抽出剤に抽出させる抽出工程と、
     前記抽出工程において、前記抽出剤を含む抽出物を前記被抽出液体から分離した後に残留する抽出残液を、二価金属イオンに対して一価金属イオンを優先的又は選択的に透過する膜体を介した電気分解により処理する電気分解工程と、を有し、
     前記抽出工程の前記抽出物と、前記電気分解工程において前記膜体を透過した生成物とから、リチウム塩を回収することを特徴とするリチウム回収方法。
    A liquid to be extracted, which comprises a lithium salt and an aqueous liquid containing at least a magnesium salt or a calcium salt, is brought into contact with a lithium salt extractant, and at least a part of the lithium salt in the liquid to be extracted is extracted by the extractant. Extraction process and
    In the extraction step, a film body that preferentially or selectively permeates the monovalent metal ion with respect to the divalent metal ion in the extraction residual liquid remaining after separating the extract containing the extractant from the liquid to be extracted. Has an electrolysis process, which is processed by electrolysis via
    A method for recovering lithium, which comprises recovering a lithium salt from the extract in the extraction step and the product that has permeated the film body in the electrolysis step.
  2.  前記被抽出液体が、鹹水を含む原料液体から過剰な塩分を沈殿させる沈殿工程において、沈殿物を除去した後に残る液体であり、
     前記電気分解工程において前記膜体を透過した側の生成物を、前記沈殿工程の前記原料液体又は前記被抽出液体に添加することを特徴とする請求項1に記載のリチウム回収方法。
    The liquid to be extracted is a liquid that remains after removing the precipitate in the precipitation step of precipitating excess salt from the raw material liquid containing brine.
    The lithium recovery method according to claim 1, wherein the product on the side that has permeated the film body in the electrolysis step is added to the raw material liquid or the liquid to be extracted in the precipitation step.
  3.  前記沈殿工程に供給される前段階の原料液体が酸性であることを特徴とする請求項2に記載のリチウム回収方法。 The lithium recovery method according to claim 2, wherein the raw material liquid in the pre-stage supplied to the precipitation step is acidic.
  4.  前記抽出残液が塩化物イオンを含み、
     前記電気分解工程において陽極に生成する塩素ガス及び陰極に生成する水素ガスから塩酸を合成し、
     前記塩酸を用いて前記抽出工程の前記抽出物から逆抽出によりリチウム塩を回収することを特徴とする請求項1~3のいずれか1項に記載のリチウム回収方法。
    The extraction residue contains chloride ions and contains
    Hydrochloric acid is synthesized from chlorine gas generated at the anode and hydrogen gas generated at the cathode in the electrolysis step.
    The lithium recovery method according to any one of claims 1 to 3, wherein the lithium salt is recovered from the extract in the extraction step by back extraction using the hydrochloric acid.
  5.  前記電気分解工程に先立って、前記抽出残液に含まれる二価金属イオンの少なくとも一部を除去する二価金属イオン除去工程を行うことを特徴とする請求項1~4のいずれか1項に記載のリチウム回収方法。 The present invention according to any one of claims 1 to 4, wherein a divalent metal ion removing step of removing at least a part of the divalent metal ions contained in the extraction residual liquid is performed prior to the electrolysis step. The lithium recovery method described.
  6.  前記被抽出液体が、鹹水を含む原料液体から過剰な塩分を沈殿させる沈殿工程において、沈殿物を除去した後に残る液体であり、
     前記抽出残液がナトリウムイオンを含み、
     前記電気分解工程において前記膜体を透過した側の生成物に二酸化炭素を反応させて、炭酸ナトリウムを生成させ、前記炭酸ナトリウムの少なくとも一部を前記沈殿工程に供給して、前記マグネシウム塩又はカルシウム塩の少なくとも一部を沈殿させることを特徴とする請求項1~5のいずれか1項に記載のリチウム回収方法。
    The liquid to be extracted is a liquid that remains after removing the precipitate in the precipitation step of precipitating excess salt from the raw material liquid containing brine.
    The extraction residue contains sodium ions and contains
    In the electrolysis step, carbon dioxide is reacted with the product on the side that has permeated the membrane to produce sodium carbonate, and at least a part of the sodium carbonate is supplied to the precipitation step to supply the magnesium salt or calcium. The lithium recovery method according to any one of claims 1 to 5, wherein at least a part of the salt is precipitated.
  7.  前記抽出残液がナトリウムイオンを含み、
     前記電気分解工程において前記膜体を透過した側の生成物に二酸化炭素を反応させて、炭酸ナトリウムを生成させ、前記炭酸ナトリウムの少なくとも一部を、前記リチウム塩を回収する回収工程に供給して、前記リチウム塩の少なくとも一部を沈殿させることを特徴とする請求項1~6のいずれか1項に記載のリチウム回収方法。
    The extraction residue contains sodium ions and contains
    In the electrolysis step, carbon dioxide is reacted with the product on the side that has permeated the film body to generate sodium carbonate, and at least a part of the sodium carbonate is supplied to the recovery step for recovering the lithium salt. The lithium recovery method according to any one of claims 1 to 6, wherein at least a part of the lithium salt is precipitated.
  8.  前記被抽出液体が、鹹水を含む原料液体から過剰な塩分を沈殿させる沈殿工程において、沈殿物を除去した後に残る液体であり、
     前記電気分解工程において前記膜体を透過していない側の生成物を前記沈殿物の洗浄に使用することを特徴とする請求項1~7のいずれか1項に記載のリチウム回収方法。
    The liquid to be extracted is a liquid that remains after removing the precipitate in the precipitation step of precipitating excess salt from the raw material liquid containing brine.
    The lithium recovery method according to any one of claims 1 to 7, wherein the product on the side that does not permeate the membrane body is used for washing the precipitate in the electrolysis step.
  9.  鹹水を含む原料液体から過剰な塩分を沈殿させる沈殿部と、
     前記沈殿部において、沈殿物を除去した後に残る液体を、リチウム塩と、マグネシウム塩又はカルシウム塩とを少なくとも含む水性液体からなる被抽出液体として、リチウム塩の抽出剤に接触させ、前記被抽出液体中のリチウム塩の少なくとも一部を前記抽出剤に抽出させる抽出部と、
     前記抽出部において、前記抽出剤を含む抽出物を前記被抽出液体から分離した後に残留する抽出残液を、二価金属イオンに対して一価金属イオンを優先的又は選択的に透過する膜体を介した電気分解により処理する電気分解部と、を有し、
     前記電気分解部において前記膜体を透過した側の生成物を、前記原料液体又は前記被抽出液体に添加し、
     前記抽出部から得られる前記抽出物と、前記電気分解部において前記膜体を透過した生成物とから、リチウム塩を回収することを特徴とするリチウム回収装置。
    A sedimentation part that precipitates excess salt from the raw material liquid containing brine,
    The liquid remaining after removing the precipitate in the precipitate is brought into contact with a lithium salt extractant as a liquid to be extracted, which is an aqueous liquid containing at least a lithium salt and a magnesium salt or a calcium salt, and the liquid to be extracted. An extraction unit that allows the extractant to extract at least a part of the lithium salt in the extract.
    A film body that preferentially or selectively permeates the extraction residual liquid remaining after separating the extract containing the extractant from the liquid to be extracted in the extraction unit with respect to the divalent metal ions. Has an electrolyzed part, which is processed by electrolysis via
    The product on the side that has passed through the membrane in the electrolysis section is added to the raw material liquid or the liquid to be extracted.
    A lithium recovery device for recovering a lithium salt from the extract obtained from the extraction unit and the product that has permeated the membrane body in the electrolysis unit.
PCT/JP2019/039575 2019-10-08 2019-10-08 Lithium recovery method and lithium recovery device WO2021070235A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/039575 WO2021070235A1 (en) 2019-10-08 2019-10-08 Lithium recovery method and lithium recovery device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/039575 WO2021070235A1 (en) 2019-10-08 2019-10-08 Lithium recovery method and lithium recovery device

Publications (1)

Publication Number Publication Date
WO2021070235A1 true WO2021070235A1 (en) 2021-04-15

Family

ID=75437336

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/039575 WO2021070235A1 (en) 2019-10-08 2019-10-08 Lithium recovery method and lithium recovery device

Country Status (1)

Country Link
WO (1) WO2021070235A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023054417A1 (en) * 2021-09-28 2023-04-06 株式会社レゾナック Lithium salt extraction agent, composition, lithium salt recovery method, and lithium salt production method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0835080A (en) * 1994-07-22 1996-02-06 Mitsubishi Materials Corp Regenerating method of aluminum-containing waste liquid
JP2009269810A (en) * 2008-05-07 2009-11-19 Kee:Kk Method for producing high-purity lithium hydroxide

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0835080A (en) * 1994-07-22 1996-02-06 Mitsubishi Materials Corp Regenerating method of aluminum-containing waste liquid
JP2009269810A (en) * 2008-05-07 2009-11-19 Kee:Kk Method for producing high-purity lithium hydroxide

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023054417A1 (en) * 2021-09-28 2023-04-06 株式会社レゾナック Lithium salt extraction agent, composition, lithium salt recovery method, and lithium salt production method

Similar Documents

Publication Publication Date Title
JP7083875B2 (en) Method for Producing Lithium Hydroxide Monohydrate from Boiled Water
US20230087180A1 (en) Preparation of lithium carbonate from lithium chloride containing brines
US8641992B2 (en) Process for recovering lithium from a brine
JP6611824B2 (en) Method for producing lithium hydroxide and lithium carbonate
US9493881B2 (en) Sulfate-based electrolysis processing with flexible feed control, and use to capture carbon dioxide
KR101181922B1 (en) Manufacturing method of lithium hydroxide and lithium carbonate with high purity from brine
CA2762601A1 (en) Lithium carbonate production from brine
US20240011167A1 (en) Li recovery processes and onsite chemical production for li recovery processes
JP5611261B2 (en) K and Mg recovery method and apparatus
CN208429966U (en) A kind of processing unit of effluent brine
KR20120139701A (en) Hydrometallurgical process and method for recovering metals
AU2011376865A1 (en) Process for producing lithium carbonate from concentrated lithium brine
CN107720786A (en) A kind of LITHIUM BATTERY lithium hydroxide preparation method based on UF membrane coupled method
JP2013525246A (en) Method for producing lithium carbonate from lithium chloride
CN109970232A (en) A kind of processing method and processing device of effluent brine
JP2019526523A (en) Method for producing lithium chloride and method for producing lithium carbonate
KR20120089515A (en) Method for extracting economically lithium phosphate with high purity from brine
CN106186437A (en) A kind of process technique producing the waste water manufacturing demineralized water generation in viscose rayon
WO2021070235A1 (en) Lithium recovery method and lithium recovery device
CN114988438B (en) Lithium carbonate circulating lithium extraction process
US20240116002A1 (en) Systems and methods for direct lithium hydroxide production
JP6122899B2 (en) Method for producing lithium carbonate from lithium chloride
CN113023751A (en) Method for recovering lithium, sodium, potassium, magnesium and calcium from chloride brine
JP7385976B1 (en) Method for recovering lithium from aqueous liquids containing lithium salts
US20230373803A1 (en) Lithium recovery from precipitated solids

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19948646

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19948646

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP