JP6748321B1 - 窒素富化ガスの製造装置及び製造方法 - Google Patents

窒素富化ガスの製造装置及び製造方法 Download PDF

Info

Publication number
JP6748321B1
JP6748321B1 JP2020033852A JP2020033852A JP6748321B1 JP 6748321 B1 JP6748321 B1 JP 6748321B1 JP 2020033852 A JP2020033852 A JP 2020033852A JP 2020033852 A JP2020033852 A JP 2020033852A JP 6748321 B1 JP6748321 B1 JP 6748321B1
Authority
JP
Japan
Prior art keywords
gas
raw material
nitrogen
pipe
material gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020033852A
Other languages
English (en)
Other versions
JP2020142982A (ja
Inventor
貞弘 山田
貞弘 山田
大盛 幹士
幹士 大盛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Nippon Sanso Corp
Original Assignee
Taiyo Nippon Sanso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Nippon Sanso Corp filed Critical Taiyo Nippon Sanso Corp
Application granted granted Critical
Publication of JP6748321B1 publication Critical patent/JP6748321B1/ja
Publication of JP2020142982A publication Critical patent/JP2020142982A/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Separation Of Gases By Adsorption (AREA)

Abstract

【課題】窒素の純度を調整した窒素富化ガスを容易に安定した状態で製造できる窒素富化ガスの製造装置を提供する。【解決手段】原料ガスG1となる空気から製品ガスG2となる窒素を含む窒素富化ガスを分離して製造する窒素富化ガスの製造装置1Aであって、吸着剤が充填された吸着塔2A,2Bと、吸着塔2A,2Bに原料ガスG1を加圧した状態で導入する原料ガス導入配管8dと、吸着剤に酸素を吸着させながら、原料ガスG1から分離された窒素富化ガスを吸着塔2A,2Bから導出する製品ガス導出配管12eと、原料ガス導入配管8dから分岐されて、製品ガス導出配管12eに接続された原料ガス分岐配管25とを備え、原料ガス分岐配管25を通して製品ガス導出配管12eに原料ガスG1の一部を導入する。【選択図】図6

Description

本発明は、窒素富化ガスの製造装置及び製造方法に関する。
従来より、吸着剤として分子篩炭素(MSC:Molecular Sieving Carbon)を用いた圧力変動吸着(PSA:Pressure Swing Adsorption)法によって、原料ガスとなる空気から製品ガスとなる窒素を含む窒素富化ガスを分離して製造する圧力変動吸着装置(以下、PSA装置という。)がある。
窒素富化ガスは、空気よりも窒素濃度が高く酸素濃度の低いガスのことである。また、窒素富化ガスとして、高純度(99%〜99.999%)の窒素ガスを含むものとする。このような窒素富化ガスは、防爆用のパージガスや熱処理炉の雰囲気ガス用など、多くの用途で利用されている。MSCは、活性炭の一種であり、酸素と窒素との吸着速度の差を利用して、空気中から酸素を優先的に吸着し、残りの窒素を高純度で分離するものである。
ところで、上述したPSA装置では、窒素の純度が規定以上となる製品ガスを容易に供給できる一方、外気温や原料ガスの圧力変動等といった外的影響を受け易く、窒素の純度を一定に保つことが困難であった。
その一方で、レーザ加工機のアシストガス、加熱処理装置の雰囲気ガス、立体構造物製造装置の雰囲気ガスなどに使用される製品ガスとしては、適量の酸素を含んだ窒素富化ガスが必要となる場合がある。
そこで、製品ガスの必要な条件及び使用目的に応じて、窒素の純度を調整した窒素富化ガスを容易に安定した状態で供給できるガス供給設備が求められている(例えば、上記特許文献1を参照。)。
特許第3507989号公報
これまでの技術では、PSA装置の出口側に、更に高価な窒素ガス精製装置を設け、その精製した窒素ガスに所定量の酸素を含んだ窒素ガスを添加しなければならなかった。
また、製品ガスにおける窒素の純度に着目すれば、上述した外気温や原料ガスの圧力変動等といった外的影響を受け易く、窒素の純度を一定に保つことが困難なことから、実際の運転では必要な条件よりも高純度の窒素を含んだ窒素富化ガスを製造しなければならなかった。
例えば、製品ガスに求められる窒素純度が99%のとき、PSA装置により製造される窒素富化ガスの窒素純度を99.5%として、上述した外的影響によって製品ガスの窒素純度が99%を下回らないように、PSA装置を運転する必要がある。この点が製造コストが増加する一因ともなっていた。
また、PSA装置により製品ガスを製造する際に、原料ガスに余剰が生じる工程があり、この原料ガスである空気を圧縮する圧縮動力が無駄になっているという問題もあった。
本発明は、このような従来の事情に鑑みて提案されたものであり、窒素の純度を調整した窒素富化ガスを容易に安定した状態で製造でき、且つ、圧縮機の動力原単位を向上することができる窒素富化ガスの製造装置及び製造方法を提供することを目的とする。
上記目的を達成するために、本発明は以下の手段を提供する。
〔1〕 原料ガスとなる空気から製品ガスとなる窒素を含む窒素富化ガスを分離して製造する窒素富化ガスの製造装置であって、
吸着剤が充填された吸着塔と、
前記吸着塔に前記原料ガスを加圧した状態で導入する原料ガス導入配管と、
前記吸着剤に酸素を吸着させながら、前記原料ガスから分離された前記窒素富化ガスを前記吸着塔から導出する製品ガス導出配管と、
前記吸着塔から導出された前記窒素富化ガスを一時的に貯留する製品ガス貯留槽と、
前記原料ガス導入配管から分岐されて、前記製品ガス貯留槽よりも下流側の前記製品ガス導出配管と接続された原料ガス分岐配管とを備え、
前記原料ガス分岐配管を通して前記製品ガス導出配管に前記原料ガスの一部を導入することを特徴とする窒素富化ガスの製造装置。
〔2〕 前記原料ガス分岐配管を開閉する開閉弁を備え、
前記開閉弁を開閉操作することによって、前記製品ガス導出配管に対する前記原料ガスの導入を切り替えることを特徴とする前記〔1〕に記載の窒素富化ガスの製造装置
〕 前記製品ガス導出配管に導入される前記原料ガスの流量を調整する流量調整部を備えることを特徴とする前記〔1〕又は〔2〕に記載の窒素富化ガスの製造装置。
〕 前記窒素富化ガス中に含まれる酸素及びアルゴンの少なくとも1つの純度を測定する測定部を備え、
前記流量調整部は、前記測定部による測定結果に基づいて、前記製品ガス導出配管に導入される前記原料ガスの流量を調整する流量調整弁を有することを特徴とする前記〔〕に記載の窒素富化ガスの製造装置。
〕 前記流量調整部は、前記原料ガス分岐配管の一部に設けられて、前記製品ガス導出配管に導入される前記原料ガスの流量を調整する流量調整配管を有することを特徴とする前記〔〕に記載の窒素富化ガスの製造装置。
〕 レーザ加工機のアシストガスの製造用、加熱処理装置の雰囲気ガスの製造用、立体造形物製造装置の雰囲気ガスの製造用の何れかの製造に用いられることを特徴とする前記〔1〕〜〔〕の何れか一項に記載の窒素富化ガスの製造装置。
〕 原料ガスとなる空気から製品ガスとなる窒素を含む窒素富化ガスを分離して製造する窒素富化ガスの製造方法であって、
吸着剤が充填された吸着塔に原料ガス導入配管を通して前記原料ガスを加圧した状態で導入し、前記吸着剤に酸素を吸着させながら、前記吸着塔から製品ガス導出配管を通して前記原料ガスから分離された前記窒素富化ガスを導出する加圧吸着工程と、
前記原料ガス導入配管から分岐されて、前記製品ガス導出配管に接続された原料ガス分岐配管を通して前記製品ガス導出配管に前記原料ガスの一部を導入する製品ガス調整工程とを含み、
前記製品ガス調整工程において、前記吸着塔から導出された前記窒素富化ガスを一時的に貯留する製品ガス貯留槽よりも下流側の前記製品ガス導出配管と接続された前記原料ガス分岐配管を通して前記製品ガス導出配管に前記原料ガスの一部を導入することを特徴とする窒素富化ガスの製造方法。
〕 前記製品ガス調整工程において、前記原料ガス分岐配管を開閉する開閉弁を開閉操作することによって、前記製品ガス導出配管に対する前記原料ガスの導入を切り替えることを特徴とする前記〔〕に記載の窒素富化ガスの製造方法。
〕 前記製品ガス調整工程において、前記製品ガス導出配管に導入される前記原料ガスの流量を調整することを特徴とする前記〔又は〔8〕に記載の窒素富化ガスの製造方法。
10〕 前記製品ガス調整工程において、前記窒素富化ガス中に含まれる酸素及びアルゴンの少なくとも1つの純度を測定し、その測定結果に基づいて、流量調整弁により前記製品ガス導出配管に導入される前記原料ガスの流量を調整することを特徴とする前記〔〕に記載の窒素富化ガスの製造方法。
11〕 前記製品ガス調整工程において、前記原料ガス分岐配管の一部に流量調整配管を設けることによって、前記製品ガス導出配管に導入される前記原料ガスの流量を調整することを特徴とする前記〔〕に記載の窒素富化ガスの製造方法。
12〕 レーザ加工機のアシストガスの製造用、加熱処理装置の雰囲気ガスの製造用、立体造形物製造装置の雰囲気ガスの製造用の何れかの製造に用いることを特徴とする前記〔〕〜〔11〕の何れか一項に記載の窒素富化ガスの製造方法。
以上のように、本発明によれば、窒素の純度を調整した窒素富化ガスを容易に安定した状態で製造でき、且つ、圧縮機の動力原単位を向上することができる窒素富化ガスの製造装置及び製造方法を提供することが可能である。
本発明の一実施形態に係る圧力変動吸着装置の一構成例を示す系統図である。 図1に示す圧力変動吸着装置において、一方の吸着塔で加圧吸着工程を行い、他方の吸着塔で減圧再生工程を行う状態を示す系統図である。 図1に示す圧力変動吸着装置において、一方の吸着塔で減圧均圧工程を行い、他方の吸着塔で加圧均圧工程を行う状態を示す系統図である。 図1に示す圧力変動吸着装置において、一方の吸着塔で減圧再生工程を行い、他方の吸着塔で加圧吸着工程を行う状態を示す系統図である。 図1に示す圧力変動吸着装置において、一方の吸着塔で加圧均圧工程を行い、他方の吸着塔で減圧均圧工程を行う状態を示す系統図である。 本発明の第1の実施形態に係る窒素富化ガスの製造装置の構成を示す系統図である。 本発明の第2の実施形態に係る窒素富化ガスの製造装置の構成を示す系統図である。 流量調整配管と窒素純度との関係を示すグラフである。
以下、本発明の実施形態について、図面を参照して詳細に説明する。
なお、以下の説明で用いる図面においては、各構成要素を見やすくするため、構成要素によって寸法の縮尺を異ならせて示すことがあり、各構成要素の寸法比率などが実際と同じであるとは限らない。
(圧力変動吸着装置)
先ず、本発明の一実施形態として、例えば図1に示す圧力変動吸着装置(以下、PSA装置という。)1について説明する。なお、図1は、PSA装置1の一構成例を示す系統図である。
本実施形態のPSA装置1は、図1に示すように、原料ガスG1となる空気(Air)から製品ガスG2となる窒素(N)を含む窒素富化ガスを分離して製造する窒素富化ガス製造装置に本発明を適用したものである。
なお、ここで言う窒素富化ガスとは、空気よりも窒素濃度が高く酸素濃度の低いガスのことである。また、窒素富化ガスとして、高純度(99%〜99.999%)の窒素ガスを含むものとする。また、窒素ガスの純度については、製品ガスG2中に含まれる不純物(酸素)を除いたガス成分の濃度を示す。
具体的に、このPSA装置1は、吸着剤Sが充填された複数(本実施形態では4つ)の吸着塔2A〜2Dを備えている。複数の吸着塔2A〜2Dは、基本的に同じ構成であり、中空円筒状に形成されて、その下部側に下部側配管3aと、その上部側に上部側配管3bとがそれぞれ接続された構成を有している。
なお、吸着塔2A〜2Dが後述する加圧吸着工程にある場合、下部側配管3aは、原料ガスG1を吸着塔2A〜2Dに導入する配管として用いられる。一方、上部側配管3bは、窒素を含む製品ガスG2を吸着塔2A〜2Dから導出する配管として用いられる。これに対して、吸着塔2A〜2Dが後述する減圧再生工程にある場合、下部側配管3aは、吸着剤Sから脱離された酸素を含む排ガスG3を吸着塔2A〜2Dから導出する配管として用いられる。
また、複数の吸着塔2A〜2Dは、対となる一方の吸着塔と他方の吸着塔とが少なくとも2対以上(本実施形態では2対)並んで配置された構成を有している。本実施形態では、4つの吸着塔2A〜2Dのうち、対となる一方の吸着塔2A及び他方の吸着塔2Bと、対となる一方の吸着塔2C及び他方の吸着塔2Dとを有している。一対の吸着塔2A,2Bと一対の吸着塔2C,2Dとは、互いに同じ構成を有している。
吸着剤Sは、各吸着塔2A〜2Dの内部に充填されている。本実施形態では、吸着剤Sとして、分子篩炭素(MSC)を用いている。MSCは、活性炭の一種であり、酸素(O)と窒素(N)との吸着速度の差を利用して、原料ガスG1となる空気中から酸素を吸着し、残った窒素を含む製品ガスG2を分離するものである。また、吸着剤Sの再生時には、排ガスG3として酸素を含む不要なガスを吸着剤Sから脱離する。なお、吸着剤Sには、上述したMSC以外にも、圧力差により酸素を選択的に吸着及び脱離できる物質を用いることができる。
本実施形態のPSA装置1は、吸着塔2A〜2Dに対して加圧した状態の原料ガスG1を導入する原料ガス導入部4と、吸着塔2A〜2Dから製品ガスG2を導出する製品ガス導出部5と、吸着塔2A〜2Dから排ガスG3を導出する排ガス導出部6と、一方の吸着塔2A,2Cと他方の吸着塔2B,2Dとの間の圧力を均圧化する圧力均圧部7とを備えている。
原料ガス導入部4は、一方の吸着塔2A,2Cの下部側配管3aと接続された第1の原料ガス導入配管8aと、他方の吸着塔2B,2Dの下部側配管3aと接続された第2の原料ガス導入配管8bと、第1の原料ガス導入配管8a及び第2の原料ガス導入配管8bと接続された第3の原料ガス導入配管8cとを有している。原料ガス導入部4は、これらの原料ガス導入配管8a〜8cを通して各吸着塔2A〜2Dに対して加圧した状態の原料ガスG1を導入する。
また、原料ガス導入部4は、第1の原料ガス導入配管8aを開閉する第1の原料ガス導入側開閉弁9aと、第2の原料ガス導入配管8bを開閉する第2の原料ガス導入側開閉弁9bとを有している。原料ガス導入部4は、これらの原料ガス導入側開閉弁9a,9bの開閉を切り替えることによって、各吸着塔2A〜2Dに対する原料ガスG1の導入を切り替える。
また、原料ガス導入部4は、吸着塔2A,2B側の第3の原料ガス導入配管8c及び吸着塔2C,2D側の第3の原料ガス導入配管8cと接続された第4の原料ガス導入配管8dと、第4の原料ガス導入配管8dと接続された原料ガス貯留槽10と、原料ガス貯留槽10と接続された第5の原料ガス導入配管8eとを有している。
第5の原料ガス導入配管8eの入側には、吸着塔2A〜2Dに導入される原料ガスG1を加圧する圧縮機11が接続されている。圧縮機11については、原料ガスG1中に含まれる酸素を吸着剤Sに吸着させるのに十分な圧力(本実施形態では300〜999kPaG)まで、原料ガスG1を加圧できるものであればよく、例えば、スクロール式などの様々な方式のものを用いることが可能である。また、圧縮機11により加圧された原料ガスG1は、ドライヤー(図示せず。)に導入され、この原料空気G1に同伴されるドレンが除去される。
原料ガス貯留槽10は、レシーバータンクとして、圧縮機11により加圧された原料ガスG1を一時的に貯留する。これにより、圧縮機11の出側における急激な圧力上昇を防ぐことが可能である。
加圧された状態の原料ガスG1は、第5の原料ガス導入配管8eを通して原料ガス貯留槽10に導入され、第4の原料ガス導入配管8dを通して原料ガス貯留槽10から導出される。
製品ガス導出部5は、一方の吸着塔2A,2Cの上部側配管3bと接続された第1の製品ガス導出配管12aと、他方の吸着塔2B,2Dの上部側配管3bと接続された第2の製品ガス導出配管12bと、第1の製品ガス導出配管12a及び第2の製品ガス導出配管12bと接続された第3の製品ガス導出配管12cとを有している。製品ガス導出部5は、これらの製品ガス導出配管12a〜12cを通して各吸着塔2A〜2Dから製品ガスG2を導出する。
また、製品ガス導出部5は、第1の製品ガス導出配管12aを開閉する第1の製品ガス導出側開閉弁13aと、第2の製品ガス導出配管12bを開閉する第2の製品ガス導出側開閉弁13bとを有している。製品ガス導出部5は、これらの製品ガス導出側開閉弁13a,13bの開閉を切り替えることによって、各吸着塔2A〜2Dから製品ガスG2の導出を切り替える。
また、製品ガス導出部5は、吸着塔2A,2B側の第3の製品ガス導出配管12c及び吸着塔2C,2D側の第3の製品ガス導出配管12cと接続された第4の製品ガス導出配管12dと、第4の製品ガス導出配管12dと接続された製品ガス貯留槽14と、製品ガス貯留槽14と接続された第5の製品ガス導出配管12eとを有している。
製品ガス貯留槽14は、バッファータンクとして、吸着塔2A〜2Dから導出された製品ガスG2を一時的に貯留する。製品ガスG2は、第4の製品ガス導出配管12dを通して製品ガス貯留槽14に導入され、第5の製品ガス導出配管12eを通して製品ガス貯留槽14から導出される。
排ガス導出部6は、一方の吸着塔2A,2Cの下部側配管3aと接続された第1の排ガス導出配管15aと、他方の吸着塔2B,2Dの下部側配管3aと接続された第2の排ガス導出配管15bと、第1の排ガス導出配管15a及び第2の排ガス導出配管15bと接続された第3の排ガス導出配管15cとを有している。排ガス導出部6は、これらの排ガス導出配管15a〜15cを通して各吸着塔2A〜2Dから排ガスG3を導出する。
また、排ガス導出部6は、第1の排ガス導出配管15aを開閉する第1の排ガス導出側開閉弁16aと、第2の排ガス導出配管15bを開閉する第2の排ガス導出側開閉弁16bとを有している。排ガス導出部6は、これらの排ガス導出側開閉弁16a,16bの開閉を切り替えることによって、各吸着塔2A〜2Dからの排ガスG3の導出を切り替える。
第3の排ガス導出配管15cの出側には、サイレンサー17が接続されている。サイレンサー17は、排ガスG3を大気中に放出(大気開放)する際の騒音を低減する。
圧力均圧部7は、一方の吸着塔2A,2Cの下部側配管3a及び他方の吸着塔2B,2Dの下部側配管3aと接続された第1の均圧配管18aと、一方の吸着塔2A,2Cの上部側配管3b及び他方の吸着塔2B,2Dの上部側配管3bと接続された第2の均圧配管18bと、一方の吸着塔2A,2Cの上部側配管3b及び他方の吸着塔2B,2Dの上部側配管3bと接続された流量調整配管19とを有している。圧力均圧部7は、これらの均圧配管18a,18b及び流量調整配管19を通して一方の吸着塔2A,2Cと他方の吸着塔2B,2Dとの間の圧力差を解消(均圧化)する。
なお、ここで言う「圧力差を解消(均圧化)する」とは、一方の吸着塔2A,2Cと他方の吸着塔2B,2Dとの間の圧力差を完全に無くすことではない。すなわち、均圧化が完了しても、実際は一方の吸着塔2A,2Cと他方の吸着塔2B,2Dとの間でガスが流れるために必要な圧力差が存在する。また、製品ガスG2中における窒素ガスの純度を維持するために、敢えて一定の圧力差を確保する場合もある。
また、圧力均圧部7は、第1の均圧配管18aを開閉する第1の均圧弁20aと、第2の均圧配管18bを開閉する第2の均圧弁20bとを有している。圧力均圧部7は、これらの均圧弁20a,20bの開閉を切り替えることによって、一方の吸着塔2A,2Cと他方の吸着塔2B,2Dとの間の均圧化を行う。
なお、本実施形態では、上述した流量調整配管19の径及び長さを調整することによって、一方の吸着塔2A,2Cと他方の吸着塔2B,2Dとの間を流れる再生ガスの流量調整が可能な構成となっている。一方、本実施形態では、このような流量調整配管19を用いる構成以外にも、例えば流量調整弁(ニードル弁)やオリフィスなどの流量調整が可能な構成を採用することが可能である。
また、本実施形態では、上述した各原料ガス導入配管8a〜8e、各製品ガス導出配管12a〜12e、各排ガス導出配管15a〜15c、各均圧配管18a,18b及び流量調整配管19として、例えばステンレス(SUS304)などの金属が用いられているが、原料ガスG1や製品ガスG2、排ガスG3と反応せず、高圧に耐え得ることができる材質のものであればよく、これに必ずしも限定されるものではない。
また、本実施形態では、上述した各原料ガス導入側開閉弁9a,9b、各製品ガス導出側開閉弁13a,13b、各排ガス導出側開閉弁16a,16bとして、自動切替式の開閉弁を用いているが、原料ガスG1や製品ガスG2、排ガスG3と反応せず、高圧に耐え得ることができるものであればよい。
以上のような構成を有する本実施形態のPSA装置1では、下記表1に示す手順に従って、上述した一方の吸着塔2A,2Cと他方の吸着塔2B,2Dとの間で、加圧均圧工程と、加圧吸着工程と、減圧均圧工程と、減圧再生工程との各工程を順次繰り返す。これにより、原料ガスG1となる空気中に含まれる窒素を連続的に分離して、製品ガスG2である窒素富化ガスを連続的に製造することが可能である。
なお、表1は、PSA装置1の各吸着塔2A〜2Dにおける動作の手順を説明するための工程表である。
Figure 0006748321
本実施形態のPSA装置1では、表1に示すように、一対の吸着塔2A,2Bのうち、一方の吸着塔2Aが加圧吸着工程を行っている間、他方の吸着塔2Bが減圧再生工程を行う。また、一方の吸着塔2Aが減圧均圧工程を行っている間、他方の吸着塔2Bが加圧均圧工程を行う。
逆に、一方の吸着塔2Aが減圧再生工程を行っている間、他方の吸着塔2Bが加圧吸着工程を行う。また、一方の吸着塔2Aが加圧均圧工程を行っている間、他方の吸着塔2Bが減圧均圧工程を行う。
同様に、本実施形態のPSA装置1では、一対の吸着塔2C,2Dのうち、一方の吸着塔2Cが加圧吸着工程を行っている間、他方の吸着塔2Dが減圧再生工程を行う。また、一方の吸着塔2Cが減圧均圧工程を行っている間、他方の吸着塔2Dが加圧均圧工程を行う。
逆に、一方の吸着塔2Cが減圧再生工程を行っている間、他方の吸着塔2Dが加圧吸着工程を行う。また、一方の吸着塔2Cが加圧均圧工程を行っている間、他方の吸着塔2Dが減圧均圧工程を行う。
また、本実施形態のPSA装置1では、一対の吸着塔2A,2Bと一対の吸着塔2C,2Dとのうち、一対の吸着塔2A,2Bが加圧吸着工程及び減圧再生工程を行っている間に、一対の吸着塔2C,2Dが加圧均圧工程及び減圧均圧工程を完了する。
逆に、一対の吸着塔2C,2Dが加圧吸着工程及び減圧再生工程を行っている間に、一対の吸着塔2A,2Bが加圧均圧工程及び減圧均圧工程を完了する。
したがって、各吸着塔2A〜2Dでは、互いの工程をずらして行う以外は、基本的に同じ手順で、加圧均圧工程と、加圧吸着工程と、減圧均圧工程と、減圧再生工程とを順次繰り返すことから、PSA装置1の具体的な動作については、図2〜図5に示す吸着塔2A,2B側の各工程を順に挙げて説明するものとする。
なお、図2は、PSA装置1において、一方の吸着塔2Aで加圧吸着工程を行い、他方の吸着塔2Bで減圧再生工程を行う状態を示す系統図である。図3は、PSA装置1において、一方の吸着塔2Aで減圧均圧工程を行い、他方の吸着塔2Bで加圧均圧工程を行う状態を示す系統図である。図4は、PSA装置1において、一方の吸着塔2Aで減圧再生工程を行い、他方の吸着塔2Bで加圧吸着工程を行う状態を示す系統図である。図5は、PSA装置1において、一方の吸着塔2Aで加圧均圧工程を行い、他方の吸着塔2Bで減圧均圧工程を行う状態を示す系統図である。
本実施形態のPSA装置1では、先ず、図2に示すように、一対の吸着塔2A,2Bのうち、一方の吸着塔2Aが加圧吸着工程を行っている間、他方の吸着塔2Bが減圧再生工程を行う。
具体的には、第1の原料ガス導入側開閉弁9aと、第1の製品ガス導出側開閉弁13aと、第2の排ガス導出側開閉弁16bとを開放する。一方、第2の原料ガス導入側開閉弁9bと、第2の製品ガス導出側開閉弁13bと、第1の排ガス導出側開閉弁16aと、第1の均圧弁20a及び第2の均圧弁20bとを閉塞する。
これにより、一方の吸着塔2A側の加圧吸着工程では、第1の原料ガス導入配管8aを通して一方の吸着塔2Aの下部側配管3a側から加圧された状態の原料ガスG1が導入される。
一方の吸着塔2Aでは、内部に充填された吸着剤Sの間を下部側配管3a側から上部側配管3b側に向かって原料ガスG1が通過する間に、この原料ガスG1中に含まれる酸素を吸着剤Sに吸着させ、吸着剤Sを通過した窒素を含む製品ガスG2と分離する。分離された製品ガスG2は、一方の吸着塔2Aの上部側配管3b側から第1の製品ガス導出配管12aを通して導出される。
これに対して、他方の吸着塔2B側の減圧再生工程では、第2の排ガス導出側開閉弁16bを開放することによって、他方の吸着塔2B内の圧力が減圧される。
他方の吸着塔2Bでは、内部圧力が低下するのに伴って、吸着剤Sに吸着された酸素を含む排ガスG3が吸着剤Sから脱離する。脱離した排ガスG3は、他方の吸着塔2Bの下部側配管3a側から第2の排ガス導出配管15bを通して導出される。
また、他方の吸着塔2B側の減圧再生工程では、吸着剤Sを再生するパージガスG4として、一方の吸着塔2A側から導出された製品ガスG2の一部を他方の吸着塔2Bの上部側配管3b側から流量調整配管19を通して導入することが好ましい。吸着剤Sの再生時に、このようなパージガスG4を導入することによって、吸着剤Sに吸着された酸素の脱離を促進することが可能である。
次に、図3に示すように、一方の吸着塔2Aが減圧均圧工程を行っている間、他方の吸着塔2Bが加圧均圧工程を行う。
具体的には、第1の均圧弁20a及び第2の均圧弁20bを開放する。一方、第1の原料ガス導入側開閉弁9a及び第2の原料ガス導入側開閉弁9bと、第1の製品ガス導出側開閉弁13a及び第2の製品ガス導出側開閉弁13bと、第1の排ガス導出側開閉弁16a及び第2の排ガス導出側開閉弁16bとを閉塞する。
これにより、一方の吸着塔2Aの減圧均圧工程では、一方の吸着塔2A内に残留した相対的に高圧な残留ガスG5が一方の吸着塔2Aの下部側配管3a及び上部側配管3b側から第1の均圧配管18a及び第2の均圧配管18bを通して導出される。
これに対して、他方の吸着塔2Bの加圧均圧工程では、第1の均圧配管18a及び第2の均圧配管18bを通して他方の吸着塔2Bの下部側配管3a及び上部側配管3b側から相対的に高圧な残留ガスG5が導入される。
残留ガスG5は、一方の吸着塔2Aと他方の吸着塔2Bとの間の圧力差が解消(均圧化)されるまで、一方の吸着塔2A側から他方の吸着塔2B側へと導入される。
次に、図4に示すように、一対の吸着塔2A,2Bのうち、一方の吸着塔2Aが減圧再生工程を行っている間、他方の吸着塔2Bが加圧吸着工程を行う。
具体的には、第2の原料ガス導入側開閉弁9bと、第2の製品ガス導出側開閉弁13bと、第1の排ガス導出側開閉弁16aとを開放する。一方、第1の原料ガス導入側開閉弁9aと、第1の製品ガス導出側開閉弁13aと、第2の排ガス導出側開閉弁16bと、第1の均圧弁20a及び第2の均圧弁20bとを閉塞する。
これにより、他方の吸着塔2B側の加圧吸着工程では、第2の原料ガス導入配管8bを通して他方の吸着塔2Bの下部側配管3a側から加圧された状態の原料ガスG1が導入される。
他方の吸着塔2Bでは、内部に充填された吸着剤Sの間を下部側配管3a側から上部側配管3b側に向かって原料ガスG1が通過する間に、この原料ガスG1中に含まれる酸素を吸着剤Sに吸着させ、吸着剤Sを通過した窒素を含む製品ガスG2と分離する。分離された製品ガスG2は、他方の吸着塔2Bの上部側配管3b側から第2の製品ガス導出配管12bを通して導出される。
これに対して、一方の吸着塔2A側の減圧再生工程では、第1の排ガス導出側開閉弁16aを開放することによって、一方の吸着塔2A内の圧力が減圧される。
一方の吸着塔2Aでは、内部圧力が低下するのに伴って、吸着剤Sに吸着された酸素を含む排ガスG3が吸着剤Sから脱離する。脱離した排ガスG3は、一方の吸着塔2Aの下部側配管3a側から第1の排ガス導出配管15aを通して導出される。
また、一方の吸着塔2A側の減圧再生工程では、吸着剤Sを再生するパージガスG4として、他方の吸着塔2B側から導出された製品ガスG2の一部を一方の吸着塔2Aの上部側配管3b側から流量調整配管19を通して導入することが好ましい。吸着剤Sの再生時に、このようなパージガスG4を導入することによって、吸着剤Sに吸着された酸素の脱離を促進することが可能である。
次に、図5に示すように、一方の吸着塔2Aが加圧均圧工程を行っている間、他方の吸着塔2Bが減圧均圧工程を行う。
具体的には、第1の均圧弁20a及び第2の均圧弁20bを開放する。一方、第1の原料ガス導入側開閉弁9a及び第2の原料ガス導入側開閉弁9bと、第1の製品ガス導出側開閉弁13a及び第2の製品ガス導出側開閉弁13bと、第1の排ガス導出側開閉弁16a及び第2の排ガス導出側開閉弁16bとを閉塞する。
これにより、他方の吸着塔2Bの減圧均圧工程では、他方の吸着塔2B内に残留した相対的に高圧な残留ガスG5が他方の吸着塔2Bの下部側配管3a及び上部側配管3b側から第1の均圧配管18a及び第2の均圧配管18bを通して導出される。
これに対して、一方の吸着塔2Aの加圧均圧工程では、第1の均圧配管18a及び第2の均圧配管18bを通して一方の吸着塔2Aの下部側配管3a及び上部側配管3b側から相対的に高圧な残留ガスG5が導入される。
残留ガスG5は、一方の吸着塔2Aと他方の吸着塔2Bとの間の圧力差が解消(均圧化)されるまで、他方の吸着塔2B側から一方の吸着塔2A側へと導入される。
以上のようにして、本実施形態のPSA装置1では、各吸着塔2A〜2Dにおいて、上述した各工程を順次繰り返すことによって、原料ガスG1となる空気から製品ガスG2となる窒素富化ガスを分離して製造することが可能である。
(第1の実施形態)
次に、本発明の第1の実施形態に係る窒素富化ガスの製造装置として、図6に示すPSA装置1Aについて説明する。
なお、図6は、PSA装置1Aの構成を示す系統図である。また、以下の説明では、上記PSA装置1と同等の部位については、説明を省略すると共に、図面において同じ符号を付すものとする。
本実施形態のPSA装置1Aは、上記PSA装置1の構成に加えて、図6に示すような構成を備えている。なお、図6に示すPSA装置1Aでは、上記PSA装置1が備える4つの吸着塔2A〜2Dのうち、吸着塔2A,2B側のみを図示している。
具体的に、このPSA装置1Aは、第4の原料ガス導入配管8dから第3の原料ガス導入配管8cとは分岐されて、第5の製品ガス導出配管12eに接続された原料ガス分岐配管25と、原料ガス分岐配管25を開閉する原料ガス分岐側開閉弁(本実施形態では電磁弁)26とを備えている。
本実施形態のPSA装置1Aでは、原料ガス分岐配管25を通して第5の製品ガス導出配管12eに原料ガスG1の一部を導入することが可能となっている。また、原料ガス分岐側開閉弁26を開閉操作することによって、第5の製品ガス導出配管12eに対する原料ガスG1の導入を切り替えることが可能となっている。
本実施形態のPSA装置1Aでは、原料ガス分岐配管25を通して第5の製品ガス導出配管12eに原料ガスG1の一部を導入することで、製品ガスG2に原料ガスG1を添加し、この製品ガスG2における窒素の純度を調整した窒素富化ガスを容易に安定した状態で製造することが可能である。
また、本実施形態のPSA装置1Aでは、上述した製品ガス貯留槽14よりも下流側に位置する第5の製品ガス導出配管15eに原料ガス分岐配管25が接続されていることが好ましい。この場合、製品ガス貯留槽14から導出された製品ガスG2に原料ガスG1を添加することになる。これにより、製品ガスG2に原料ガスG1が添加された後に製品ガス貯留槽14に貯留されるよりも、上述した製品ガスG2に原料ガスG1を添加したことによる効果を速やかに得ることが可能である。
また、本実施形態のPSA装置1Aは、第5の製品ガス導出配管12eに導入される原料ガスG1の圧力を減圧する減圧弁27と、第5の製品ガス導出配管12eから原料ガス分岐配管25への製品ガスG2の逆流を防止する逆止弁28とを備えている。
減圧弁27は、原料ガス分岐側開閉弁26を挟んだ原料ガス分岐配管25の上流側に位置して設けられている。一方、逆止弁28は、原料ガス分岐側開閉弁26を挟んだ原料ガス分岐配管25の下流側に位置して設けられている。
本実施形態のPSA装置1Aでは、圧縮機11の負荷・無負荷運転と、吸着塔2A〜2Dの圧力スイング操作によって、原料ガス分岐配管25を流れる原料ガスG1の圧力が変動する。したがって、上述した減圧弁27及び逆止弁28を原料ガス分岐配管25に設けることで、この原料ガス分岐配管25を通して第5の製品ガス導出配管12eに原料ガスG1を安定した状態で導入することが可能である。
また、本実施形態のPSA装置1Aでは、上述した一方の吸着塔2A,2Cと他方の吸着塔2B,2Dとの間の圧力を均圧化する加圧均圧工程及び減圧均圧工程がある。加圧均圧工程及び減圧均圧工程では、吸着塔2A〜2Dに原料ガスG1が導入されないため、原料ガスG1が余剰となる。したがって、これらの均圧工程に合わせて、原料ガス分岐側開閉弁26を開放することで、原料ガス分岐配管25を通して第5の製品ガス導出配管12eに原料ガスG1を適切に導入することが可能である。また、原料ガスG1を有効に利用することが可能である。
但し、原料ガスG1の圧力は、上述した圧縮機11の負荷・無負荷運転によって変動している。したがって、原料ガスG1の1次側(高い圧力側)の圧力は変動しており、この原料ガスG1の圧力を決定することは事実上困難である。このため、原料ガス分岐配管25には、求められる運転状況に応じて、原料ガスG1の適切な圧力をその都度設定する必要がある。
また、本実施形態のPSA装置1Aは、製品ガスG2中に含まれる酸素及びアルゴンの少なくとも1つの純度を測定する測定部29と、測定部29による測定結果に基づいて、第5の製品ガス導出配管12eに導入される原料ガスG1の流量を調整する流量調整部30とを備えている。
ここで、従来のPSA装置では、製品ガスの流量及び酸素濃度が一定であったとしても、外気温や原料ガスの圧力変動等といった外的変化を大きく受けた場合には、製品ガスの純度のバラツキが大きくなる傾向にあった。
これに対して、本実施形態のPSA装置1Aでは、測定部29による測定結果に基づいて、原料ガスG1の流量を調整するフィードバック制御を行っている。このため、外的変化を大きく受けて製造される製品ガスの純度がばらつき易い状況であっても、製品ガスG2の純度のバラツキを小さく抑えることが可能である。
また、製品ガスG2の純度のバラツキが小さいことから、製造条件における窒素富化ガスの純度を高く設定(例えば99.99%)する必要はなく、目標に近い窒素富化ガスの純度(例えば99.2%)で製造できることから、製造コストの低減が可能である。
測定部29は、酸素濃度計(図示せず。)を用いて第5の製品ガス導出配管12eを流れる製品ガスG2中の酸素濃度を測定し、その測定結果から製品ガスG2における窒素の純度を演算部(図示せず。)にて演算により求める。また、測定部29によって、第5の製品ガス導出配管12eを流れる製品ガスG2中の酸素濃度とアルゴン濃度との少なくとも1つを測定し、その測定結果から製品ガスG2における窒素の純度を演算により求めてもよい。
流量調整部30は、第5の製品ガス導出配管12eに導入される原料ガスG1の流量を調整する流量調整弁(本実施形態ではニードル弁)31と、原料ガス分岐配管25を流れる原料ガスG1の流量を測定する流量計32とを有している。流量調整弁31は、原料ガス分岐配管25の原料ガス分岐側開閉弁26と減圧弁27との間に位置して設けられている。流量計32は、原料ガス分岐配管25の流量調整弁31と減圧弁27との間に位置して設けられている。
流量調整部30では、測定部29による測定結果に基づいて、原料ガス分岐配管25から第5の製品ガス導出配管12eに導入すべき原料ガスG1の最適な流量を演算により求める。また、流量調整部30では、流量計32による測定結果が演算により求めた流量値となるように、流量調整弁31により第5の製品ガス導出配管12eに導入される原料ガスG1の流量を調整する。
これにより、製品ガスG2に適量の原料ガスG1を添加し、この製品ガスG2における窒素の純度を精度良く調整することが可能である。また、従来のようなPSA装置の出口側に高価な窒素ガス精製装置を設けたり、窒素の必要な純度毎に設備を設けたりするといった必要がなく、窒素の純度を調整した窒素富化ガスを安価に製造することが可能である。
なお、PSA装置1Aでは、上述した流量調整弁31の代わりに、原料ガス分岐側開閉弁26により第5の製品ガス導出配管12eに導入される原料ガスG1の流量を調整することも可能である。
(第2の実施形態)
次に、本発明の第2の実施形態に係る窒素富化ガスの製造装置として、図7に示すPSA装置1Bについて説明する。
なお、図7は、PSA装置1Bの構成を示す系統図である。また、以下の説明では、上記PSA装置1,1Aと同等の部位については、説明を省略すると共に、図面において同じ符号を付すものとする。
本実施形態のPSA装置1Bは、上記PSA装置1,1Aの構成に加えて、図7に示すような構成を備えている。なお、図7に示すPSA装置1Bでは、上記PSA装置1が備える4つの吸着塔2A〜2Dのうち、吸着塔2A,2B側のみを図示しているが、吸着塔2C,2D側についても、吸着塔2A,2B側と同様の構成とすることが可能である。
具体的に、このPSA装置1Bは、上記PSA装置1Aとは流量調整部30の構成が異なっている。また、測定部29が省略された構成となっている。すなわち、この流量調整部30は、上述した流量調整弁31及び流量計32の代わりに、製品ガス導出配管25に導入される原料ガスGの流量を調整する流量調整配管33を有している。
流量調整配管33は、原料ガス分岐配管25の一部に設けられて、その長さや径を変更することによって、製品ガス導出配管25に導入される原料ガスGの流量を調整することが可能となっている。
すなわち、流量調整配管33の長さを長くする又は流量調整配管33の径を小さくすることによって、流量調整配管33での圧力損失が相対的に大きくなる。これにより、製品ガス導出配管25に導入される原料ガスGの流量を相対的に下げることができる。逆に、流量調整配管33の長さを短くする又は流量調整配管33の径を大きくすることによって、流量調整配管33での圧力損失が相対的に小さくなる。これにより、製品ガス導出配管25に導入される原料ガスGの流量を相対的に上げることができる。
以上のように、本実施形態のPSA装置1Bでは、上記PSA装置1Aと同様に、原料ガス分岐配管25を通して第5の製品ガス導出配管12eに原料ガスG1の一部を導入することが可能となっている。また、原料ガス分岐側開閉弁26を開閉操作することによって、第5の製品ガス導出配管12eに対する原料ガスG1の導入を切り替えることが可能となっている。
また、本実施形態のPSA装置1Bでは、上記PSA装置1Aと同様に、原料ガス分岐配管25を通して第5の製品ガス導出配管12eに原料ガスG1の一部を導入することで、製品ガスG2に原料ガスG1を添加し、この製品ガスG2における窒素の純度を調整した窒素富化ガスを容易に安定した状態で製造することが可能である。
また、本実施形態のPSA装置1Bでは、上記PSA装置1Aと同様に、圧縮機11の負荷・無負荷運転と、吸着塔2A〜2Dの圧力スイング操作によって、原料ガス分岐配管25を流れる原料ガスG1の圧力が変動する。したがって、上述した減圧弁27及び逆止弁28を原料ガス分岐配管25に設けることで、この原料ガス分岐配管25を通して第5の製品ガス導出配管15eに原料ガスG1を安定した状態で導入することが可能である。
また、本実施形態のPSA装置1Bでは、上記PSA装置1Aと同様に、上述した均圧工程に合わせて、原料ガス分岐側開閉弁26を開放することで、原料ガス分岐配管25を通して第5の製品ガス導出配管12eに原料ガスG1を適切に導入することが可能である。また、原料ガスG1を有効に利用することが可能である。
また、本実施形態のPSA装置1Bでは、上述した流量調整配管33により第5の製品ガス導出配管12eに導入される原料ガスG1の流量を調整することで、製品ガスG2に適量の原料ガスG1を添加し、この製品ガスG2における窒素の純度を精度良く調整することが可能である。また、従来のようなPSA装置の出口側に高価な窒素ガス精製装置を設けたり、窒素の必要な純度毎に設備を設けたりするといった必要がなく、窒素の純度を調整した窒素富化ガスを安価に製造することが可能である。
以下、実施例により本発明の効果をより明らかなものとする。なお、本発明は、以下の実施例に限定されるものではなく、その要旨を変更しない範囲で適宜変更して実施することができる。
(実施例1)
実施例1では、上記PSA装置1Aを用いて、製品ガスG2として、窒素の純度が99.9%、流量が45Nm/hの窒素富化ガスを製造した。
また、製品ガスG2に添加される原料ガスG1の流量[L/min]を流量調整弁31により調整したときの製品ガスG2における窒素純度[%]の変化を測定した。その測定結果を下記表2に示す。
Figure 0006748321
表2に示すように、原料ガスG1の流量を調整することによって、製品ガスG2の窒素純度を99.5〜99.9%の範囲で容易に調整できることを確認した。また、製品ガスG2の窒素純度は、原料ガスG1の流量毎に、そのバラツキを0.05%以内に抑えられることを確認した。
(実施例2)
実施例2では、上記PSA装置1Bを用いて、製品ガスG2として、窒素の純度が99.99%、流量が36Nm/hの窒素富化ガスを製造した。
また、流量調整配管33として、ナイロンチューブを使用し、このチューブの径[mm]及び長さ[mm]を変更したときの製品ガスG2における窒素純度[%]の変化を測定した。その測定結果を下記表3に示す。また、その測定結果をまとめたグラフを図8に示す。
Figure 0006748321
表3及び図8に示すように、チューブの径及び長さを変更することによって、製品ガスG2の窒素純度を95〜99%の範囲で容易に調整できることを確認した。また、製品ガスG2の窒素純度は、チューブのサイズ毎に、そのバラツキを0.05%以内に抑えられることを確認した。
(実施例3)
実施例3では、ある条件のPSA装置において、予め設定された窒素純度に対して、製品ガスの窒素純度の変動幅が、±0.2%変動する場合を想定する。すなわち、製品ガスに必要な窒素純度が99%である場合、従来は、窒素純度を99.2%に設定する。これにより、製品ガスの窒素純度が、99.4%(99.2%+0.2%)〜99.0%(99.2%−0.2%)間で変動しても対応可能な運転を行っている。
これに対して、本発明では、製品ガスに必要な窒素純度が99%である場合、従来と同様に、窒素純度を99.2%に設定する。一方、PSA装置により製造される製品ガスの窒素純度が所定の純度よりも高い場合、例えば、窒素純度が99.4%(99.2%+0.2%)の場合を想定する。このとき、製品ガスに原料ガスを添加することで、容易に製品ガスの窒素純度を調整することが可能である。これにより、従来よりも多い製品ガスが得られ、動力源単位で製造コストを低減することが可能である。
(実施例4)
実施例4では、上記PSA装置1Aを用いて、製品ガスG2として、窒素の純度が99.9%、流量が45Nm/hの窒素富化ガスを製造した。
外気温の影響により、製品ガスG2中の酸素濃度が100ppm〜1,000ppmの間で変化した場合において、測定部29による測定結果に基づいて、原料ガスG1の流量を調整するフィードバック制御を行うことによって、原料ガスG1の供給量を変更したときの製品ガスG2における酸素純度[%]及び窒素純度[%]の変化を測定した。その測定結果を下記表4に示す。
Figure 0006748321
なお、表4中の動力原単位[%]は、原料ガスG1の一部を製品ガスG2に供給する原料ガス分岐配管25を設けずに、余剰の原料ガスG1を排出する従来のPSA装置での動力原単位を100%としたときの、本発明のPSA装置1Aを用いて、製品ガスG2を製造したときの動力原単位を、以下の式により求めて、相対的に示したものである。
動力原単位[%]=([本発明のPSA装置を用いたときの動力源単位]/[従来のPSA装置を用いたときの動力源単位])×100
また、表4中に示す窒素純度には、アルゴン等の微量の不純物も含まれる。
表4に示すように、測定部29による測定結果に基づいて、原料ガスG1の流量を調整するフィードバック制御を行うことによって、製品ガスG2おける窒素純度のバラツキの平均が0.002%となり、各窒素純度のバラツキが0.005%の範囲内に抑えられることを確認した。また、動力源単位は、従来のPSA装置を100%としたときと比較して、平均値で79.7%に向上した。さらに、フィードバック制御により外的影響を限りなく小さくすることが可能なことから、目標に近い窒素純度で製品ガスG2を製造することができ、製造コストを低減することが可能となった。
(比較例1)
比較例1では、原料ガス分岐配管25を設けない従来のPSA装置を用いて、製品ガスとして、窒素の純度が99.9%、流量が45Nm/hの窒素富化ガスを製造した。
ここで、最終製品ガスとしての目標製品窒素純度を窒素純度99.0%、酸素純度1.00%とし、製品ガス導出ラインに別途、窒素PSA(製造条件:酸素純度5.0%、窒素純度95.0%)からのガス供給ラインを取り付け、流量10.000Nm/h、8.00NL/minでガスを混合したときの製品ガスにおける酸素純度[%]及び窒素純度[%]の変化を測定した。その測定結果を下記表5に示す。なお、表5中に示す窒素純度には、アルゴン等の微量の不純物も含まれる。
Figure 0006748321
表5に示すように、窒素PSAからガスを混合して最終製品ガスを製造する場合、外気温の影響により製造窒素ガスの窒素純度がばらつくことによって、窒素PSAから一定条件(一定ガス純度、一定流量)で供給しても、最終製品ガス純度の平均バラツキが0.055%とばらついてしまうことがわかる。
また、比較例1では、原料ガスの余剰分は排出しており、実施例4と比較して、動力源単位が低くなった。また、窒素PSAを用いてガスを供給していることから、製造コストが高くなった。
なお、本発明は、上記実施形態のものに必ずしも限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。
具体的に、本発明は、上記PSA装置1,1A,1Bのように、4つの吸着塔2A〜2Dを備えた構成に必ずしも限定されるものではなく、例えば、2つ吸着塔を備えた構成や、6つ又は8つの吸着塔を備えた構成など、その吸着塔の数について適宜変更することが可能である。
また、本発明を適用した窒素富化ガスの製造装置及び製造方法は、特に制限なく、目的に応じて適宜用いることができるが、例えば、レーザ加工機のアシストガスの製造用、加熱処理装置の雰囲気ガスの製造用、立体構造物製造装置の雰囲気ガスの製造用などに用いることができる。
1,1A,1B…PSA装置(圧力変動吸着装置) 2A〜2H…吸着塔 3a…下部側配管 3b…上部側配管 4…原料ガス導入部 5…製品ガス導出部 6…排ガス導出部 7…圧力均圧部 8a…第1の原料ガス導入配管 8b…第2の原料ガス導入配管 8c…第3の原料ガス導入配管 8d…第4の原料ガス導入配管 8e…第5の原料ガス導入配管 9a…第1の原料ガス側開閉弁 9b…第2の原料ガス側開閉弁 10…原料ガス貯留槽 11…圧縮機 12a…第1の製品ガス導出配管 12b…第2の製品ガス導出配管 12c…第3の製品ガス導出配管 12d…第4の製品ガス導出配管 12e…第5の製品ガス導出配管 13a…第1の製品ガス側開閉弁 13b…第2の製品ガス側開閉弁 14…製品ガス貯留槽 15a…第1の排ガス導出配管 15b…第2の排ガス導出配管 15c…第3の排ガス導出配管 15d…第4の排ガス導出配管 16a…第1の排ガス側開閉弁 16b…第2の排ガス側開閉弁 17…サイレンサー 18a…第1の均圧配管 18b…第2の均圧配管 19…流量調整配管 20a…第1の均圧弁 20b…第2の均圧弁 21…土台 22…操作盤 23,23A,23B…原料ガス導入分岐管 24,24A,24B…排ガス導出分岐管 25…原料ガス分岐配管 26…原料ガス分岐側開閉弁 27…減圧弁 28…逆止弁 29…測定部 30…流量調整部 31…流量調整弁 32…流量計 33…流量調整配管 S…吸着剤 G1…原料ガス(空気) G2…製品ガス(窒素富化ガス) G3…排ガス G4…パージガス G5…残留ガス

Claims (12)

  1. 原料ガスとなる空気から製品ガスとなる窒素を含む窒素富化ガスを分離して製造する窒素富化ガスの製造装置であって、
    吸着剤が充填された吸着塔と、
    前記吸着塔に前記原料ガスを加圧した状態で導入する原料ガス導入配管と、
    前記吸着剤に酸素を吸着させながら、前記原料ガスから分離された前記窒素富化ガスを前記吸着塔から導出する製品ガス導出配管と、
    前記吸着塔から導出された前記窒素富化ガスを一時的に貯留する製品ガス貯留槽と、
    前記原料ガス導入配管から分岐されて、前記製品ガス貯留槽よりも下流側の前記製品ガス導出配管と接続された原料ガス分岐配管とを備え、
    前記原料ガス分岐配管を通して前記製品ガス導出配管に前記原料ガスの一部を導入することを特徴とする窒素富化ガスの製造装置。
  2. 前記原料ガス分岐配管を開閉する開閉弁を備え、
    前記開閉弁を開閉操作することによって、前記製品ガス導出配管に対する前記原料ガスの導入を切り替えることを特徴とする請求項1に記載の窒素富化ガスの製造装置。
  3. 前記製品ガス導出配管に導入される前記原料ガスの流量を調整する流量調整部を備えることを特徴とする請求項1又は2に記載の窒素富化ガスの製造装置。
  4. 前記窒素富化ガス中に含まれる酸素及びアルゴンの少なくとも1つの純度を測定する測定部を備え、
    前記流量調整部は、前記測定部による測定結果に基づいて、前記製品ガス導出配管に導入される前記原料ガスの流量を調整する流量調整弁を有することを特徴とする請求項に記載の窒素富化ガスの製造装置。
  5. 前記流量調整部は、前記原料ガス分岐配管の一部に設けられて、前記製品ガス導出配管に導入される前記原料ガスの流量を調整する流量調整配管を有することを特徴とする請求項に記載の窒素富化ガスの製造装置。
  6. レーザ加工機のアシストガスの製造用、加熱処理装置の雰囲気ガスの製造用、立体造形物製造装置の雰囲気ガスの製造用の何れかの製造に用いられることを特徴とする請求項1〜の何れか一項に記載の窒素富化ガスの製造装置。
  7. 原料ガスとなる空気から製品ガスとなる窒素を含む窒素富化ガスを分離して製造する窒素富化ガスの製造方法であって、
    吸着剤が充填された吸着塔に原料ガス導入配管を通して前記原料ガスを加圧した状態で導入し、前記吸着剤に酸素を吸着させながら、前記吸着塔から製品ガス導出配管を通して前記原料ガスから分離された前記窒素富化ガスを導出する加圧吸着工程と、
    前記原料ガス導入配管から分岐されて、前記製品ガス導出配管に接続された原料ガス分岐配管を通して前記製品ガス導出配管に前記原料ガスの一部を導入する製品ガス調整工程とを含み、
    前記製品ガス調整工程において、前記吸着塔から導出された前記窒素富化ガスを一時的に貯留する製品ガス貯留槽よりも下流側の前記製品ガス導出配管と接続された前記原料ガス分岐配管を通して前記製品ガス導出配管に前記原料ガスの一部を導入することを特徴とする窒素富化ガスの製造方法。
  8. 前記製品ガス調整工程において、前記原料ガス分岐配管を開閉する開閉弁を開閉操作することによって、前記製品ガス導出配管に対する前記原料ガスの導入を切り替えることを特徴とする請求項に記載の窒素富化ガスの製造方法。
  9. 前記製品ガス調整工程において、前記製品ガス導出配管に導入される前記原料ガスの流量を調整することを特徴とする請求項7又は8に記載の窒素富化ガスの製造方法。
  10. 前記製品ガス調整工程において、前記窒素富化ガス中に含まれる酸素及びアルゴンの少なくとも1つの純度を測定し、その測定結果に基づいて、流量調整弁により前記製品ガス導出配管に導入される前記原料ガスの流量を調整することを特徴とする請求項に記載の窒素富化ガスの製造方法。
  11. 前記製品ガス調整工程において、前記原料ガス分岐配管の一部に流量調整配管を設けることによって、前記製品ガス導出配管に導入される前記原料ガスの流量を調整することを特徴とする請求項に記載の窒素富化ガスの製造方法。
  12. レーザ加工機のアシストガスの製造用、加熱処理装置の雰囲気ガスの製造用、立体造形物製造装置の雰囲気ガスの製造用の何れかの製造に用いることを特徴とする請求項11の何れか一項に記載の窒素富化ガスの製造方法。
JP2020033852A 2019-02-28 2020-02-28 窒素富化ガスの製造装置及び製造方法 Active JP6748321B1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019035842 2019-02-28
JP2019035842 2019-02-28

Publications (2)

Publication Number Publication Date
JP6748321B1 true JP6748321B1 (ja) 2020-08-26
JP2020142982A JP2020142982A (ja) 2020-09-10

Family

ID=72146255

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020033852A Active JP6748321B1 (ja) 2019-02-28 2020-02-28 窒素富化ガスの製造装置及び製造方法

Country Status (1)

Country Link
JP (1) JP6748321B1 (ja)

Also Published As

Publication number Publication date
JP2020142982A (ja) 2020-09-10

Similar Documents

Publication Publication Date Title
JP5917169B2 (ja) 窒素富化ガス製造方法、ガス分離方法および窒素富化ガス製造装置
JP5009708B2 (ja) 圧力スイング吸着方法及び装置
EP1334758A1 (en) Gas separating and purifying method and its apparatus
ZA200702064B (en) Combined cryogenic distillation and PSA for argon production
US9359203B2 (en) Method for producing nitrogen gas, method for separating gas and device for producing nitrogen gas
US9649589B2 (en) Oxygen concentrator system and method
GB1572532A (en) Method for separation of a gaseous mixture
JP2022054755A (ja) 圧力変動吸着装置
JP6748321B1 (ja) 窒素富化ガスの製造装置及び製造方法
JPS58151304A (ja) プレツシヤ−スイング法による酸素製造方法
WO2013114707A1 (ja) 製品ガス供給方法、及び製品ガス供給システム
JP6452206B2 (ja) 炭酸ガスの精製方法および精製システム
JP7195887B2 (ja) 圧力変動吸着装置
KR20230144060A (ko) 산소 농축 장치, 제어 방법 및 제어 프로그램
JP2020001017A (ja) 圧力変動吸着装置
KR20230143176A (ko) 산소 농축 장치, 제어 방법 및 제어 프로그램
JP2023103541A (ja) 窒素ガス製造装置の運転方法
CN116078112A (zh) 一种三塔串联变压吸附装置和吸附工艺
CN116617811A (zh) 一种三塔串联变压吸附装置和吸附工艺
JP2003040606A (ja) 酸素濃縮器
JP2017202447A (ja) ガス分離装置
EP0996493A1 (en) Process and plant for the separation of nitrogen and oxygen from gases rich of nitrogen and/or oxygen

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200228

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20200228

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20200317

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200602

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200703

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200728

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200806

R150 Certificate of patent or registration of utility model

Ref document number: 6748321

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250