JP6747876B2 - Liquid processing apparatus and liquid processing method - Google Patents

Liquid processing apparatus and liquid processing method Download PDF

Info

Publication number
JP6747876B2
JP6747876B2 JP2016111916A JP2016111916A JP6747876B2 JP 6747876 B2 JP6747876 B2 JP 6747876B2 JP 2016111916 A JP2016111916 A JP 2016111916A JP 2016111916 A JP2016111916 A JP 2016111916A JP 6747876 B2 JP6747876 B2 JP 6747876B2
Authority
JP
Japan
Prior art keywords
liquid
membrane
treatment
light
filtration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016111916A
Other languages
Japanese (ja)
Other versions
JP2017217584A (en
Inventor
俊朗 國東
俊朗 國東
友明 宮ノ下
友明 宮ノ下
晃大 土田
晃大 土田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp filed Critical Organo Corp
Priority to JP2016111916A priority Critical patent/JP6747876B2/en
Publication of JP2017217584A publication Critical patent/JP2017217584A/en
Application granted granted Critical
Publication of JP6747876B2 publication Critical patent/JP6747876B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Physical Water Treatments (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Apparatus For Disinfection Or Sterilisation (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Description

本発明は、固形分を含む液体の処理装置および処理方法に関する。 The present invention relates to a treatment device and a treatment method for a liquid containing a solid content.

固形分を含む液体の固液分離を行う方法として、精密ろ過膜(MF膜)や限外ろ過膜(UF膜)等の平型ろ過膜を用いる浸漬型の膜ろ過処理が浄水処理等で用いられる。精密ろ過膜や限外ろ過膜等の浸漬型の膜ろ過装置では被処理液体中の固形分の分離は可能であるが、有機物等の溶解成分の分離をすることができない。また、これら有機物成分は膜の目詰まりを起こすことが知られており、被処理液体中に有機物が高濃度で含まれると、膜の薬品洗浄が頻繁に必要となる場合がある。平型ろ過膜の薬品洗浄を行う場合、一旦膜を浸漬槽から取出し、別の薬品洗浄槽に移送して薬品浸漬を行う必要があるため非常に手間がかかる。浸漬槽に膜が入った状態のまま薬品洗浄を行うこともあるが、その場合には薬品使用量が多量となり、ランニングコストが増加する。高圧洗浄により膜表面に蓄積した汚れを物理的に排除する方法もあるが、その場合も膜を1枚ずつ浸漬槽から取り出して洗浄する必要があるため、この方法も手間と時間を要する。また、被処理液体中に細菌等の微生物が混入している場合、膜の材質によっては生物劣化が生じることがあり、所定の固液分離性能が得られない場合がある。 As a method for solid-liquid separation of a liquid containing solids, an immersion type membrane filtration treatment using a flat filtration membrane such as a microfiltration membrane (MF membrane) or an ultrafiltration membrane (UF membrane) is used in water purification treatment or the like. To be An immersion type membrane filtration device such as a microfiltration membrane or an ultrafiltration membrane can separate solids in the liquid to be treated, but cannot separate dissolved components such as organic substances. Further, it is known that these organic components cause film clogging, and if the liquid to be treated contains a high concentration of organic substances, it may be necessary to frequently clean the film with chemicals. When performing chemical cleaning of the flat filtration membrane, it is necessary to take out the membrane from the immersion tank once and transfer it to another chemical cleaning tank for chemical immersion, which is very troublesome. Chemical cleaning may be carried out with the membrane still in the dipping tank, but in that case, the amount of chemical used becomes large and running costs increase. There is also a method of physically removing dirt accumulated on the surface of the membrane by high-pressure cleaning, but in this case as well, it is necessary to take out the membranes one by one from the dipping tank for cleaning, and this method also requires labor and time. Further, when microorganisms such as bacteria are mixed in the liquid to be treated, biodeterioration may occur depending on the material of the membrane, and a predetermined solid-liquid separation performance may not be obtained.

液体に含まれる細菌類の殺菌処理や有機物の酸化分解処理に紫外線(UV)ランプが用いられることがある。しかし、紫外線ランプは、ランプ自体の形状の制約や、電極が必須であることから、膜ろ過装置内に従来型の紫外線ランプを組み込むことは、装置構成の点からも、効率的な光照射の点からも極めて難しく、紫外線照射装置は膜ろ過装置とは別に単独で設置されることが一般的である。 An ultraviolet (UV) lamp may be used for sterilization of bacteria contained in a liquid and oxidative decomposition of organic substances. However, since the ultraviolet lamp has a restriction on the shape of the lamp itself and an electrode is indispensable, incorporating a conventional ultraviolet lamp in the membrane filtration device is effective in terms of efficient light irradiation from the viewpoint of the device configuration. It is also extremely difficult from the point of view, and the ultraviolet irradiation device is generally installed separately from the membrane filtration device.

一方、紫外線照射装置の一つとしてマイクロウェーブ紫外線発光装置が知られている。例えば、粒状の無電極紫外線発光体に外部から2.45GHz等のマイクロウェーブを照射して、紫外線発光させるものがある(例えば、特許文献1、非特許文献1参照)。 On the other hand, a microwave ultraviolet light emitting device is known as one of the ultraviolet irradiation devices. For example, there is one in which a granular electrodeless ultraviolet luminescent material is externally irradiated with a microwave of 2.45 GHz or the like to emit ultraviolet light (see, for example, Patent Document 1 and Non-Patent Document 1).

特許第5049004号公報Japanese Patent No. 5049004

堀越 智、「光触媒コーティング無電極ランプによる被災地の汚染水浄化装置の開発に関する研究」、平成26年3月、平成25年度環境研究総合推進費補助金 研究事業 総合研究報告書Satoshi Horikoshi, "Study on development of contaminated water purification device in disaster area using photocatalyst-coated electrodeless lamp", March 2014, FY2013 Environmental Research Comprehensive Expenses Subsidy Research Project General Research Report

本発明の目的は、固形分を含む液体の分離処理とともに紫外線照射処理を行うことができる、浸漬型の膜ろ過装置を備える液体処理装置および液体処理方法を提供することにある。 An object of the present invention is to provide a liquid treatment apparatus and a liquid treatment method that include an immersion type membrane filtration device that can perform ultraviolet irradiation treatment as well as separation treatment of a liquid containing solids.

本発明は、複数の平型ろ過膜を有し、マイクロウェーブにより紫外線発光する板状の発光体が前記各平型ろ過膜の間に設置された浸漬型の膜ろ過装置と、マイクロウェーブ発生手段と、を備え、前記マイクロウェーブ発生手段により発生させたマイクロウェーブを前記発光体に照射しながら、固形分を含む被処理液体を前記膜ろ過装置に通液させて、前記被処理液体の前記固形分の固液分離処理とともに紫外線照射処理を行う液体処理装置である。 The present invention has a plurality of flat filtration membranes, a plate-shaped light-emitting body that emits ultraviolet rays by microwaves is installed between the flat filtration membranes, and a microwave generation means. And irradiating the light-emitting body with a microwave generated by the microwave generation means, a liquid to be treated containing solids is passed through the membrane filtration device, and the solid of the liquid to be treated is This is a liquid processing apparatus that performs solid-liquid separation processing of the components and ultraviolet irradiation processing.

前記液体処理装置において、前記平型ろ過膜が、セラミック膜であることが好ましい。 In the liquid processing apparatus, it is preferable that the flat filtration membrane is a ceramic membrane.

前記液体処理装置において、前記平型ろ過膜と前記発光体の下方から気体による曝気を行う曝気手段を備えることが好ましい。 It is preferable that the liquid processing apparatus includes an aeration unit that performs aeration with a gas from below the flat filtration membrane and the light emitter.

また、本発明は、マイクロウェーブ発生手段により発生させたマイクロウェーブを、複数の平型ろ過膜を有し、マイクロウェーブにより紫外線発光する板状の発光体が前記各平型ろ過膜の間に設置された浸漬型の膜ろ過装置における前記発光体に照射しながら、固形分を含む被処理液体を前記膜ろ過装置に通液させて、前記被処理液体の前記固形分の固液分離処理とともに紫外線照射処理を行う処理工程を含む液体処理方法である。 Further, the present invention has a plurality of flat filtration membranes for generating the microwave generated by the microwave generation means, and plate-shaped light-emitting bodies that emit ultraviolet light by the microwaves are installed between the respective flat filtration membranes. While irradiating the light-emitting body in the immersion type membrane filtration device, the liquid to be treated containing solids is passed through the membrane filtration device, and the solid-liquid separation treatment of the solids of the liquid to be treated is performed together with ultraviolet rays. It is a liquid processing method including a processing step of performing irradiation processing.

前記液体処理方法において、前記平型ろ過膜が、セラミック膜であることが好ましい。 In the liquid treatment method, the flat filtration membrane is preferably a ceramic membrane.

前記液体処理方法において、前記平型ろ過膜と前記発光体の下方から気体による曝気を行うことが好ましい。 In the liquid treatment method, it is preferable to perform aeration with gas from below the flat filtration membrane and the light emitting body.

本発明によれば、固形分を含む液体の分離処理とともに紫外線照射処理を行うことができる、浸漬型の膜ろ過装置を備える液体処理装置および液体処理方法を提供することが可能となる。 ADVANTAGE OF THE INVENTION According to this invention, it becomes possible to provide the liquid processing apparatus and liquid processing method provided with the immersion type membrane filtration apparatus which can perform the ultraviolet irradiation process with the separation process of the liquid containing solid content.

本発明の実施形態に係る液体処理装置の一例を示す概略構成図である。It is a schematic structure figure showing an example of a liquid treatment equipment concerning an embodiment of the present invention. 比較例で用いた液体処理装置を示す概略構成図である。It is a schematic block diagram which shows the liquid processing apparatus used in the comparative example.

本発明の実施の形態について以下説明する。本実施形態は本発明を実施する一例であって、本発明は本実施形態に限定されるものではない。 Embodiments of the present invention will be described below. The present embodiment is an example for carrying out the present invention, and the present invention is not limited to this embodiment.

本発明の実施形態に係る液体処理装置の一例の概略を図1に示し、その構成について説明する。 An outline of an example of a liquid processing apparatus according to an embodiment of the present invention is shown in FIG. 1, and its configuration will be described.

本実施形態に係る液体処理装置1は、平型のろ過膜36を有し、マイクロウェーブにより紫外線発光する板状等の発光体34が内部に設置または充填された浸漬型の膜ろ過装置12と、マイクロウェーブ発生手段として、マイクロウェーブ発生装置14とを備える。液体処理装置1は、被処理液体を貯留するための被処理液槽10と、処理液を貯留するための処理液槽16とを備えてもよい。 The liquid processing apparatus 1 according to the present embodiment has a flat-type filtration membrane 36, and a dipping-type membrane filtration apparatus 12 in which a plate-shaped light-emitting body 34 that emits ultraviolet rays by microwaves is installed or filled. The microwave generator 14 is provided as a microwave generator. The liquid processing apparatus 1 may include a processed liquid tank 10 for storing a processed liquid and a processing liquid tank 16 for storing a processed liquid.

図1の液体処理装置1において、被処理液槽10の出口と膜ろ過装置12の上部入口とは、ポンプ18を介して被処理液配管22により接続されている。平型のろ過膜36の上部の処理液出口と処理液槽16の入口とは、ポンプ20を介して処理液配管24により接続されている。膜ろ過装置12の内部には、少なくとも1つの平型のろ過膜36が設置され、空間(図1の例では例えば各ろ過膜36の間)に少なくとも1つの板状等の発光体34が設置されている。膜ろ過装置12には、マイクロウェーブ発生手段として少なくとも1つのマイクロウェーブ発生装置14が、膜ろ過装置12の内部の発光体34にマイクロウェーブを照射できるように設置されている。膜ろ過装置12の内部の発光体34およびろ過膜36の下方には、曝気手段として、曝気装置40が設置され、曝気装置40はコンプレッサ38の送気側と接続されている。 In the liquid treatment apparatus 1 of FIG. 1, the outlet of the treated liquid tank 10 and the upper inlet of the membrane filtration device 12 are connected by a treated liquid pipe 22 via a pump 18. The processing liquid outlet on the upper part of the flat filtration membrane 36 and the inlet of the processing liquid tank 16 are connected via a pump 20 by a processing liquid pipe 24. At least one flat filtration membrane 36 is installed inside the membrane filtration device 12, and at least one light-emitting body 34 such as a plate is installed in a space (for example, between the filtration membranes 36 in the example of FIG. 1). Has been done. In the membrane filtration device 12, at least one microwave generation device 14 is installed as a microwave generation means so that the illuminant 34 inside the membrane filtration device 12 can be irradiated with microwaves. An aeration device 40 is installed as an aeration means below the light emitter 34 and the filtration membrane 36 inside the membrane filtration device 12, and the aeration device 40 is connected to the air feeding side of the compressor 38.

本実施形態に係る液体処理方法および液体処理装置1の動作について説明する。 The operation of the liquid processing method and the liquid processing apparatus 1 according to this embodiment will be described.

マイクロウェーブ発生装置14を起動させて、発生させたマイクロウェーブを膜ろ過装置12内の発光体34に照射しながら、被処理液槽10からポンプ18により、固形分を含む被処理液体が被処理液配管22を通して、膜ろ過装置12の上部入口から供給される。一方、ポンプ20を起動させ、平型のろ過膜36の内部を吸引する。これにより、膜ろ過装置12において、ろ過膜36により固形分を含む被処理液体の固液分離処理が行われるとともに、紫外線照射処理が行われる(処理工程)。ろ過膜36を通った後の処理液は、ろ過膜36の上部の処理液出口から排出され、処理液配管24を通して処理液槽16に移される。 While activating the microwave generator 14 and irradiating the generated microwaves to the light-emitting body 34 in the membrane filtration device 12, the liquid 18 containing the solid content is processed by the pump 18 from the liquid tank 10 to be processed. It is supplied from the upper inlet of the membrane filtration device 12 through the liquid pipe 22. On the other hand, the pump 20 is activated to suck the inside of the flat filtration membrane 36. As a result, in the membrane filtration device 12, the filtration membrane 36 performs the solid-liquid separation treatment of the liquid to be treated containing the solid content and the ultraviolet irradiation treatment (treatment step). The treatment liquid that has passed through the filtration membrane 36 is discharged from the treatment liquid outlet on the upper portion of the filtration membrane 36 and transferred to the treatment liquid tank 16 through the treatment liquid pipe 24.

固液分離処理では、ろ過膜36によって被処理液体から固形分が分離される。これにより、処理液の濁度を低減することができる。 In the solid-liquid separation process, the filtration membrane 36 separates solids from the liquid to be processed. Thereby, the turbidity of the treatment liquid can be reduced.

紫外線照射処理では、マイクロウェーブの照射により発光体34から発光された紫外線によって、主に、細菌類の殺菌処理および紫外線の光酸化による有機物等の酸化分解処理が行われる。 In the ultraviolet irradiation treatment, the ultraviolet rays emitted from the light-emitting body 34 by the microwave irradiation mainly perform sterilization treatment of bacteria and oxidative decomposition treatment of organic substances by photooxidation of ultraviolet rays.

ろ過膜36および発光体34の下方から気体による曝気を行うことが好ましい。例えばコンプレッサ38および曝気装置40を用いて例えば定期的に曝気による洗浄を行うことにより、ろ過膜36の表面の洗浄とともに、発光体34の洗浄も行うことができるため、汚れによる紫外線照射量の低下を抑制することが可能となる。 Aeration with a gas is preferably performed from below the filtration membrane 36 and the light-emitting body 34. For example, the compressor 38 and the aeration device 40 are used to periodically perform cleaning by aeration, so that the surface of the filtration membrane 36 can be cleaned as well as the light emitter 34, so that the amount of ultraviolet irradiation due to dirt is reduced. Can be suppressed.

曝気に用いられる気体は、特に制限はないが、空気、窒素ガス等が挙げられ、コスト等の点から、通常は、空気である。 The gas used for aeration is not particularly limited, but examples thereof include air and nitrogen gas. From the viewpoint of cost and the like, air is usually used.

本実施形態に係る液体処理方法および液体処理装置により、浸漬型の膜ろ過装置において、固形分を含む液体の固液分離処理とともに紫外線照射処理を行うことができる。また、固液分離処理と紫外線照射処理をともに行うことにより、液体処理装置の設置面積を低減することができる。 With the liquid treatment method and the liquid treatment apparatus according to the present embodiment, it is possible to perform the ultraviolet irradiation treatment together with the solid-liquid separation treatment of the liquid containing the solid content in the immersion type membrane filtration device. Moreover, by performing both the solid-liquid separation process and the ultraviolet irradiation process, the installation area of the liquid processing apparatus can be reduced.

浸漬型の膜ろ過装置12において、例えば各ろ過膜36の間にマイクロウェーブにより紫外線発光する板状等の発光体34を設置し、膜ろ過装置12の外部に発光体34にマイクロウェーブを照射するマイクロウェーブ発生装置14を設置し、被処理液体中の固形分の分離と紫外線による細菌類の殺菌処理および有機物等の酸化分解処理等の紫外線照射処理をともに行う。例えば各ろ過膜36の間に紫外線発光する板状等の発光体34を設置し、それを外部からのマイクロウェーブ照射により発光させることにより、殺菌処理および有機物の酸化分解処理等を効率よく達成できるため、紫外線照射装置と膜ろ過装置との組合せの従来型システムと比較して、ろ過膜の目詰まりや劣化を低減することができ、処理液質の向上も可能となる。特に平型のろ過膜36の表面を紫外線照射することにより目詰まり物質の分解も可能となることから、従来システムでは必須であった薬品洗浄や高圧洗浄を行わなくてもよい。また、殺菌処理および酸化分解処理と固液分離処理とを1台の装置で賄うことができることから、従来型システムと比較して大幅な設置スペースの削減も可能となる。 In the immersion type membrane filtration device 12, for example, a plate-shaped light emitting body 34 that emits ultraviolet rays by microwaves is installed between each filtration membrane 36, and the light emitting body 34 is irradiated with microwaves outside the membrane filtration device 12. The microwave generator 14 is installed to perform both the separation of solids in the liquid to be treated, the sterilization of bacteria by ultraviolet rays, and the irradiation of ultraviolet rays such as oxidative decomposition of organic substances. For example, by disposing a plate-shaped light-emitting body 34 that emits ultraviolet light between each filtration membrane 36 and causing it to emit light by microwave irradiation from the outside, it is possible to efficiently achieve sterilization treatment and oxidative decomposition treatment of organic substances. Therefore, as compared with the conventional system in which the ultraviolet irradiation device and the membrane filtration device are combined, clogging and deterioration of the filtration membrane can be reduced, and the quality of the treatment liquid can be improved. In particular, by irradiating the surface of the flat filtration membrane 36 with ultraviolet rays, the clogging substance can be decomposed. Therefore, chemical cleaning and high pressure cleaning, which are essential in the conventional system, do not have to be performed. Further, since the sterilization process, the oxidative decomposition process, and the solid-liquid separation process can be performed by one device, it is possible to significantly reduce the installation space as compared with the conventional system.

処理対象となる被処理液体は、固形分を含む液体であればよく、特に制限はない。液体としては、例えば、水や、糖液等が挙げられる。固形分としては、例えば、懸濁物質等が挙げられる。処理対象となる被処理液体の濁度は、例えば0.1度以上100度以下、色度は、例えば0.5度以上100度以下、TOCは、例えば0.1mg/L以上100mg/L以下、細菌数は、例えば、100個/mL以上100,000個/mL以下である。 The liquid to be treated to be treated is not particularly limited as long as it is a liquid containing a solid content. Examples of the liquid include water and sugar liquid. Examples of the solid content include suspended substances. The liquid to be treated has a turbidity of, for example, 0.1 degree or more and 100 degrees or less, a chromaticity of, for example, 0.5 degree or more and 100 degrees or less, and a TOC of, for example, 0.1 mg/L or more and 100 mg/L or less. The number of bacteria is, for example, 100/mL or more and 100,000/mL or less.

膜ろ過装置12は、平型のろ過膜(平型ろ過膜)をろ過槽内の被処理液体に浸漬する浸漬型の膜ろ過装置であればよく、特に制限はない。 The membrane filtration device 12 is not particularly limited as long as it is an immersion type membrane filtration device in which a flat filtration membrane (flat filtration membrane) is immersed in the liquid to be treated in the filtration tank.

膜ろ過装置12におけるマイクロウェーブを照射する面を構成する材質としては、マイクロウェーブを透過する材質であればよく特に制限はないが、例えば、石英ガラス、ポリテトラフルオロエチレン(テフロン(登録商標))、ポリスチレン、ポリエーテルエーテルケトン(PEEK)、セラミックス等が挙げられる。 There is no particular limitation on the material constituting the microwave irradiation surface of the membrane filtration device 12 as long as it is a material that transmits microwaves. For example, quartz glass, polytetrafluoroethylene (Teflon (registered trademark)) , Polystyrene, polyether ether ketone (PEEK), ceramics and the like.

膜ろ過装置12における被処理液体の供給は、通常は図1に示すように膜ろ過装置12の上部からであるが、膜ろ過装置12の下部からであってもよい。 The liquid to be treated in the membrane filtration device 12 is usually supplied from the upper part of the membrane filtration device 12 as shown in FIG. 1, but may be supplied from the lower part of the membrane filtration device 12.

ろ過膜36は、固形分の分離処理を行うことができる平型のろ過膜であればよく、特に制限はない。ろ過膜36としては、例えば、精密ろ過膜(MF膜)、限外ろ過膜(UF膜)、大孔径膜(LP膜)等が挙げられる。 The filtration membrane 36 is not particularly limited as long as it is a flat filtration membrane capable of separating solids. Examples of the filtration membrane 36 include a microfiltration membrane (MF membrane), an ultrafiltration membrane (UF membrane), and a large pore diameter membrane (LP membrane).

ろ過膜36の材質としては、例えば、有機膜または無機膜が挙げられる。有機膜としては、例えば、酢酸セルロース(CA)膜、ポリエチレン(PE)膜、ポリプロピレン(PP)膜、ポリアクリロニトリル(PAN)膜、ポリスチレン(PS)膜、ポリエーテルスルホン(PES)膜、ポリビリニデンジフルオライド(PVDF)膜、ポリテトラフルオロエチレン(PTFE)膜等が挙げられる。無機膜としては、例えば、アルミナ、チタニア、ジルコニア等のセラミック膜等が挙げられる。紫外線耐性や強度等の観点から無機膜が好ましく、セラミック膜がより好ましい。 Examples of the material of the filtration membrane 36 include an organic membrane or an inorganic membrane. Examples of the organic film include cellulose acetate (CA) film, polyethylene (PE) film, polypropylene (PP) film, polyacrylonitrile (PAN) film, polystyrene (PS) film, polyether sulfone (PES) film, and polyvinylidene. Examples thereof include a dendifluoride (PVDF) film and a polytetrafluoroethylene (PTFE) film. Examples of the inorganic film include ceramic films of alumina, titania, zirconia, and the like. From the viewpoint of UV resistance and strength, an inorganic film is preferable, and a ceramic film is more preferable.

マイクロウェーブ発生装置14は、マイクロウェーブ(周波数:例えば、2.450GHz±0.05GHz、5.800GHz±0.075GHz、24.125GHz±0.125GHz)を発生することができるものであればよく、その構成は特に制限はない。例えば、真空管を用いるマグネトロン方式の他に、半導体を用いるソリッドステート方式等が挙げられる。マグネトロン方式の発振器は、家庭用から業務用の電子レンジに幅広く用いられており比較的安価に入手できる利点があり、ソリッドステート方式の発振器は、寿命が比較的長く、波長の安定性が良好である等の利点がある。 The microwave generator 14 only needs to be capable of generating microwaves (frequency: for example, 2.450 GHz±0.05 GHz, 5.800 GHz±0.075 GHz, 24.125 GHz±0.125 GHz), The structure is not particularly limited. For example, in addition to the magnetron method using a vacuum tube, a solid state method using a semiconductor may be used. Magnetron oscillators are widely used in household and commercial microwave ovens and have the advantage that they can be obtained at a relatively low price.Solid state oscillators have a relatively long life and good wavelength stability. There are some advantages.

マイクロウェーブ発生装置14の構成例として、例えば、図1に示すように、電源装置26と、マイクロウェーブ発振器28と、導波管30と、スリースタブチューナ32と、を備える構成が挙げられる。 As an example of the configuration of the microwave generation device 14, for example, as shown in FIG. 1, a configuration including a power supply device 26, a microwave oscillator 28, a waveguide 30, and a stub tuner 32 may be mentioned.

例えば、電源装置26から供給された電源により、マイクロウェーブ発振器28が発生したマイクロウェーブが、導波管30を通り、膜ろ過装置12内の発光体34に照射される。スリースタブチューナ32により、導波管30におけるインピーダンス整合を調整することができる。マイクロウェーブ発生装置14は、導波管30の膜ろ過装置12を挟んだ対抗側に短絡器(図示せず)を備えていてもよい。 For example, by the power supplied from the power supply device 26, the microwave generated by the microwave oscillator 28 passes through the waveguide 30 and is applied to the light emitting body 34 in the membrane filtration device 12. The three-stub tuner 32 allows the impedance matching in the waveguide 30 to be adjusted. The microwave generation device 14 may include a short-circuit device (not shown) on the opposite side of the waveguide 30 that sandwiches the membrane filtration device 12.

マイクロウェーブの照射は、膜ろ過装置12のある1方向から行ってもよいし、2方向以上の複数方向から行ってもよい。膜ろ過装置12の幅が大きくなると(例えば、50cm以上)、マイクロウェーブが中心部まで到達しない場合があるので、膜ろ過装置12に対して2方向以上の複数方向から照射を行うことが好ましい。 The microwave irradiation may be performed from one direction in which the membrane filtration device 12 is provided, or may be performed from two or more directions. When the width of the membrane filtration device 12 becomes large (for example, 50 cm or more), the microwave may not reach the central portion, so it is preferable to irradiate the membrane filtration device 12 from two or more directions.

発光体34は、マイクロウェーブにより紫外線(例えば、波長100nm〜400nmの光)発光するものであればよく、紫外線以外に可視光線(例えば、波長400nm〜780nmの光)や赤外線(例えば、波長780nm〜1mmの光)の発生有無による制限は特にない。発光体34としては、例えば、紫外線の吸収が小さい石英製やテフロン(登録商標)樹脂等のフッ素樹脂製であって、球形状や、円筒の両端を球状にしたカプセル形状等の容器に、水銀ガス、水素ガス、キセノンガス、窒素ガス、アルゴンガス、ヘリウムガス、塩素ガス、フッ素ガス、重水素ガス等の、マイクロウェーブにより紫外線発光する放電ガスを所定の封入圧で封入した無電極紫外線発光カプセル、板形状等の容器に上記放電ガスを所定の封入圧で封入した無電極紫外線発光板状発光体等が挙げられる。放電ガスを封入した無電極紫外線発光カプセルや無電極紫外線発光板状発光体に、マイクロウェーブを照射することにより、ガスが励起され、紫外線を発光する。放電ガスや封入圧を適宜選択することにより、発光波長を調整することができる。また、カプセルの比重を調整するために、このカプセルの両端または一端に、カプセルと同様の材料で形成した中空または中実の突起状の比重調整部を設けてもよい。 The light-emitting body 34 may be one that emits ultraviolet rays (for example, light having a wavelength of 100 nm to 400 nm) by microwaves, and in addition to ultraviolet rays, visible light (for example, light having a wavelength of 400 nm to 780 nm) or infrared rays (for example, wavelength 780 nm-). There is no particular limitation depending on whether or not (1 mm light) is generated. The light-emitting body 34 is made of, for example, quartz or Teflon (registered trademark) resin, which has a small absorption of ultraviolet rays, and is made of a fluororesin, and has a spherical shape or a capsule-shaped container in which both ends of a cylinder are spherical. Electrode-free ultraviolet light emitting capsule in which a discharge gas that emits ultraviolet light by microwaves, such as gas, hydrogen gas, xenon gas, nitrogen gas, argon gas, helium gas, chlorine gas, fluorine gas, deuterium gas, etc., is sealed at a predetermined sealing pressure. Examples include an electrodeless ultraviolet light emitting plate-shaped light emitting body in which the above discharge gas is sealed in a plate-shaped container at a predetermined sealing pressure. By irradiating the electrodeless ultraviolet light emitting capsule or the electrodeless ultraviolet light emitting plate-like light emitting body containing the discharge gas with microwaves, the gas is excited to emit ultraviolet light. The emission wavelength can be adjusted by appropriately selecting the discharge gas and the filling pressure. Further, in order to adjust the specific gravity of the capsule, a hollow or solid protruding specific gravity adjusting portion formed of the same material as the capsule may be provided at both ends or one end of the capsule.

発光体34が球形状の場合、最大径は、例えば、1.0mm〜10mmの範囲であり、2.0mm〜4.0mmの範囲であることが好ましい。発光体34が円筒の両端を球状にしたカプセル形状の場合、径は、例えば、1.0mm〜10mmの範囲であり、2.0mm〜4.0mmの範囲であることが好ましく、高さは、例えば、2.0mm〜20mmの範囲であり、4.0mm〜8.0mmの範囲であることが好ましい。 When the luminous body 34 has a spherical shape, the maximum diameter is, for example, in the range of 1.0 mm to 10 mm, preferably in the range of 2.0 mm to 4.0 mm. When the light-emitting body 34 has a capsule shape in which both ends of a cylinder are spherical, the diameter is, for example, in the range of 1.0 mm to 10 mm, preferably in the range of 2.0 mm to 4.0 mm, and the height is For example, it is in the range of 2.0 mm to 20 mm, preferably in the range of 4.0 mm to 8.0 mm.

比重調整部の径は、例えば、1.0mm〜10mmの範囲であり、2.0mm〜4.0mmの範囲であることが好ましく、高さは、例えば、2.0mm〜20mmの範囲であり、4.0mm〜10mmの範囲であることが好ましい。 The specific gravity adjusting portion has a diameter of, for example, 1.0 mm to 10 mm, preferably 2.0 mm to 4.0 mm, and a height of, for example, 2.0 mm to 20 mm. It is preferably in the range of 4.0 mm to 10 mm.

発光体34の発光波長は、処理対象となる有機物と細菌類の種類等に応じて適宜選択すればよく、特に制限はない。有機物の酸化分解処理を主に行う場合には、通常、波長185±0.1nmや220±0.1nmの紫外線を発生する発光体が用いられ、細菌類の殺菌処理を主に行うには、通常、波長254±0.7nmや260±0.7nmの紫外線を発生する発光体が用いられる。 The emission wavelength of the light emitter 34 may be appropriately selected according to the types of organic substances and bacteria to be treated and is not particularly limited. When the oxidative decomposition treatment of organic matter is mainly performed, usually, a luminescent material that emits ultraviolet rays having a wavelength of 185±0.1 nm or 220±0.1 nm is used, and when mainly performing sterilization treatment of bacteria, Usually, an illuminant that emits ultraviolet rays having a wavelength of 254±0.7 nm or 260±0.7 nm is used.

発光体34として、発光波長の異なる2種類以上の発光体を用いてもよい。発光波長の異なる2種類以上の発光体の設置比率は、特に制限はなく、被処理液体の液質等に応じて、適宜変更すればよい。マイクロウェーブは水に吸収されやすいため、発光体に過剰に出力を与える場合があり、エネルギー的に損失が大きい。発光波長の異なる2種類以上の発光体を用い、その設置比率を適宜変更することにより、有機物、細菌類の両方を所定の除去率あるいは所定の処理液濃度とするために、いずれの対象に対しても適切な線量とすることができ、消費電力からみても効率的である。 As the light emitter 34, two or more kinds of light emitters having different emission wavelengths may be used. The installation ratio of two or more types of light emitters having different emission wavelengths is not particularly limited, and may be appropriately changed depending on the quality of the liquid to be treated and the like. Since microwaves are easily absorbed by water, they may give an excessive output to the light emitting body, resulting in a large energy loss. By using two or more types of light emitters with different emission wavelengths and appropriately changing the installation ratio, both organic substances and bacteria can be given a predetermined removal rate or a predetermined treatment liquid concentration. However, the dose can be adjusted appropriately, and it is efficient from the viewpoint of power consumption.

発光体34が板形状の場合、幅は、例えば、50mm〜1000mmの範囲であり、高さは、例えば、50mm〜1000mmの範囲であり、厚みは、例えば、5mm〜100mmの範囲であるが、用いる平型のろ過膜36の大きさ等に基づいて設定すればよく、特に制限はない。 When the light-emitting body 34 has a plate shape, the width is, for example, in the range of 50 mm to 1000 mm, the height is, for example, in the range of 50 mm to 1000 mm, and the thickness is, for example, in the range of 5 mm to 100 mm. It may be set based on the size of the flat filtration membrane 36 to be used, and there is no particular limitation.

被処理液体が膜ろ過装置12に供給される前に、被処理液体に懸濁系光触媒が添加されてもよい。被処理液体中に懸濁系光触媒を添加した場合は、紫外線酸化に加えて、光触媒による促進酸化も起きるため、さらなる処理液質の向上、膜目詰まりや劣化の抑制が可能となる。なお、添加された懸濁系光触媒は、膜ろ過装置12において固液分離される。懸濁系光触媒の添加は、被処理液槽10において行われてもよいし、被処理液配管22において行われてもよいし、被処理液槽10と膜ろ過装置12との間に別途、中間槽を設けて、中間槽において行われてもよいし、膜ろ過装置12において直接行われてもよい。 A suspension photocatalyst may be added to the liquid to be treated before the liquid to be treated is supplied to the membrane filtration device 12. When a suspension-type photocatalyst is added to the liquid to be treated, accelerated oxidation by the photocatalyst occurs in addition to the ultraviolet oxidation, so that the quality of the treated liquid can be further improved and the clogging and deterioration of the film can be suppressed. The added suspension-type photocatalyst is subjected to solid-liquid separation in the membrane filtration device 12. The suspension-type photocatalyst may be added in the liquid to be treated 10 or in the liquid pipe 22 to be treated, or separately between the liquid to be treated 10 and the membrane filtration device 12. An intermediate tank may be provided and performed in the intermediate tank, or directly in the membrane filtration device 12.

懸濁系光触媒としては、例えば、二酸化チタン(TiO)、酸化亜鉛(ZnO)、チタン酸ストロンチウム(SrTiO)等の無機系光触媒等が挙げられる。 Examples of suspension photocatalysts include inorganic photocatalysts such as titanium dioxide (TiO 2 ), zinc oxide (ZnO), and strontium titanate (SrTiO 3 ).

懸濁系光触媒の添加量は、例えば、10〜10,000mg/Lの範囲である。 The amount of the suspension photocatalyst added is, for example, in the range of 10 to 10,000 mg/L.

例えば膜ろ過装置12からの処理液の排出量が低下する等の場合には、膜ろ過装置12内を逆流洗浄(逆洗)してもよい。 For example, when the discharge amount of the treatment liquid from the membrane filtration device 12 decreases, the inside of the membrane filtration device 12 may be backwashed (backwashed).

本実施形態に係る液体処理方法および液体処理装置は、浄水処理、下水処理、工業用水処理、排水処理等における固液分離と、紫外線殺菌、紫外線酸化処理等の紫外線照射処理とをともに行う場合に適用することができ、特に、浄水処理に好適に適用することができる。 Liquid treatment method and liquid treatment apparatus according to the present embodiment, when performing both solid-liquid separation in water purification treatment, sewage treatment, industrial water treatment, wastewater treatment, etc., ultraviolet sterilization, ultraviolet irradiation treatment such as ultraviolet oxidation treatment. It can be applied, and in particular, can be suitably applied to water purification treatment.

本実施形態に係る液体処理方法および液体処理装置により、例えば濁度で1.5度以上、色度で3.0度以上、TOCで2.0mg/L以上、細菌数で2,000個/mL以上の被処理液の液質を、例えば濁度で0.1度以下、色度で0.5度以下、TOCで1.0mg/L以下、細菌数で1個/mL以下の処理液とすることができる。 With the liquid treatment method and the liquid treatment apparatus according to the present embodiment, for example, the turbidity is 1.5 degrees or more, the chromaticity is 3.0 degrees or more, the TOC is 2.0 mg/L or more, and the number of bacteria is 2,000/ For example, the turbidity is 0.1 degree or less, the chromaticity is 0.5 degree or less, the TOC is 1.0 mg/L or less, and the number of bacteria is 1 piece/mL or less. Can be

以下、実施例および比較例を挙げ、本発明をより具体的に詳細に説明するが、本発明は、以下の実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited to the following Examples.

<実施例1および比較例1>
実施例1では図1の液体処理装置1を用い、比較例1では図2に示す液体処理装置3を用いた。図2の液体処理装置3は、被処理液槽50と、紫外線照射装置52と、平型のろ過膜58を有する膜ろ過装置54と、処理液槽56と、コンプレッサ60と、曝気管62とを備える。
<Example 1 and Comparative Example 1>
In Example 1, the liquid treatment apparatus 1 shown in FIG. 1 was used, and in Comparative Example 1, the liquid treatment apparatus 3 shown in FIG. 2 was used. The liquid treatment apparatus 3 of FIG. 2 includes a liquid tank 50 to be treated, an ultraviolet irradiation device 52, a membrane filtration device 54 having a flat filtration membrane 58, a treatment liquid tank 56, a compressor 60, and an aeration pipe 62. Equipped with.

以下の装置仕様、通水条件で試験を行った。
[通水条件]
通水量:40L/h
[装置構成]
(比較例1)
紫外線照射装置:DNライティング社製、低圧紫外線ランプ(SGL1000N)、 ランプ波長185nm、254nm
膜ろ過装置:浸漬型平膜ろ過装置
平型ろ過膜(材質:セラミックMF膜)250mm×500mm×12mm 4枚(等間隔になるようにろ過槽内に配置)
ろ過槽本体:300mm×300mm×H750mm
(実施例1)
膜ろ過装置:浸漬型平膜ろ過装置
平型ろ過膜(材質:セラミックMF膜)250mm×500mm×12mm 4枚(等間隔になるようにろ過槽内に配置)
ろ過槽本体:300mm×300mm×H750mm、材質 テフロン(登録商標)製
紫外線発光板状発光体を各ろ過膜間に1枚ずつ計3枚設置
The test was conducted under the following device specifications and water flow conditions.
[Water flow conditions]
Flow rate: 40L/h
[Device configuration]
(Comparative Example 1)
Ultraviolet irradiation device: low pressure ultraviolet lamp (SGL1000N) manufactured by DN Lighting Co., lamp wavelength 185 nm, 254 nm
Membrane Filtration Device: Immersion Type Flat Membrane Filtration Device Flat Type Filtration Membrane (Material: Ceramic MF Membrane) 250 mm x 500 mm x 12 mm 4 Sheets (arranged at equal intervals in the filtration tank)
Filtration tank body: 300 mm x 300 mm x H750 mm
(Example 1)
Membrane Filtration Device: Immersion Type Flat Membrane Filtration Device Flat Type Filtration Membrane (Material: Ceramic MF Membrane) 250 mm x 500 mm x 12 mm 4 Sheets (arranged at equal intervals in the filtration tank)
Filtration tank body: 300 mm x 300 mm x H750 mm, made of Teflon (registered trademark) Ultraviolet light emitting plate-shaped light emitters, one for each filter membrane, three in total

[紫外線発光板状発光体(無電極紫外線発光板状発光体)の詳細]
・サイズ:ガス封入部 200mm×400mm×20mm
・材質:石英
・封入ガス:水銀ガス、封入圧力10Pa
・ピーク波長:185nm、254nm
[Details of ultraviolet light emitting plate-shaped light emitter (electrodeless ultraviolet light emitting plate light emitter)]
・Size: Gas filled part 200mm×400mm×20mm
・Material: Quartz ・Filled gas: Mercury gas, filled pressure 10Pa
・Peak wavelength: 185 nm, 254 nm

[マイクロウェーブ発生装置]
・電源装置:300W(30〜300W可変式)
・マイクロウェーブ発振器:マグネトロン
・周波数:2.45GHz
・導波管:L400mm×W55mm×H109mm、アルミニウム製
・チューナー:スリースタブ方式
[Microwave generator]
・Power supply device: 300W (30-300W variable type)
・Microwave oscillator: magnetron ・Frequency: 2.45 GHz
-Waveguide: L400mm x W55mm x H109mm, made of aluminum-Tuner: Three-stub system

マイクロウェーブ発生装置の電源装置の投入電力を60Wに設定した。被処理液体と処理液の水質(濁度、色度、TOC)、膜間差圧上昇速度を表1に示す。濁度および色度は、日本電色製、WA6000型(濁度測定は積分球式、色度測定は390nm透過光測定法式)を用いて測定した。TOCは、TOC計(島津製作所製、TOC500型)を用いて燃焼式で測定した。実験結果を表1に示す。 The input power of the power supply of the microwave generator was set to 60W. Table 1 shows the water quality (turbidity, chromaticity, TOC) of the liquid to be treated and the treatment liquid, and the transmembrane pressure increase rate. The turbidity and chromaticity were measured using WA6000 type (manufactured by Nippon Denshoku Co., Ltd., turbidity measurement was an integrating sphere method, and chromaticity measurement was a 390 nm transmitted light measurement method method). The TOC was measured by a combustion method using a TOC meter (TOC500 type manufactured by Shimadzu Corporation). The experimental results are shown in Table 1.

このように、実施例の浸漬型の膜ろ過装置を備える液体処理装置において、固形分を含む液体の分離処理とともに紫外線照射処理を行うことができた。 As described above, in the liquid treatment device including the immersion type membrane filtration device of the example, the ultraviolet irradiation treatment could be performed together with the separation treatment of the liquid containing the solid content.

固液分離処理と紫外線殺菌処理、紫外線酸化分解処理をともに行うことにより処理装置の設置面積を約30%削減することができた。また、ろ過膜の目詰まりや劣化を低減することができ、処理液質(色度、TOC)の向上も可能となった。 By performing the solid-liquid separation treatment, the ultraviolet sterilization treatment, and the ultraviolet oxidative decomposition treatment together, the installation area of the treatment device could be reduced by about 30%. Further, it is possible to reduce clogging and deterioration of the filtration membrane, and it is possible to improve the treatment liquid quality (chromaticity, TOC).

1,3 液体処理装置、10,50 被処理液槽、12,54 膜ろ過装置、14 マイクロウェーブ発生装置、16,56 処理液槽、18,20 ポンプ、22 被処理液配管、24 処理液配管、26 電源装置、28 マイクロウェーブ発振器、30 導波管、32 スリースタブチューナ、34 発光体、36,58 ろ過膜、38,60 コンプレッサ、40,62 曝気管。 1,3 Liquid treatment device, 10,50 Treatment liquid tank, 12,54 Membrane filtration device, 14 Microwave generator, 16,56 Treatment liquid tank, 18,20 Pump, 22 Treatment liquid pipe, 24 Treatment liquid pipe , 26 power supply device, 28 microwave oscillator, 30 waveguide, 32 stab tuner, 34 light emitter, 36,58 filtration membrane, 38,60 compressor, 40,62 aeration pipe.

Claims (6)

複数の平型ろ過膜を有し、マイクロウェーブにより紫外線発光する板状の発光体が前記各平型ろ過膜の間に設置された浸漬型の膜ろ過装置と、
マイクロウェーブ発生手段と、
を備え、
前記マイクロウェーブ発生手段により発生させたマイクロウェーブを前記発光体に照射しながら、固形分を含む被処理液体を前記膜ろ過装置に通液させて、前記被処理液体の前記固形分の固液分離処理とともに紫外線照射処理を行うことを特徴とする液体処理装置。
An immersion type membrane filtration device having a plurality of flat filtration membranes, in which a plate-shaped light emitting body that emits ultraviolet rays by microwaves is installed between the respective flat filtration membranes ,
Microwave generation means,
Equipped with
While irradiating the light-emitting body with the microwave generated by the microwave generating means, a liquid to be treated containing solids is passed through the membrane filtration device to separate solids from the solids of the liquid to be treated. A liquid processing apparatus characterized by performing ultraviolet irradiation processing together with processing.
請求項1に記載の液体処理装置であって、
前記平型ろ過膜が、セラミック膜であることを特徴とする液体処理装置。
The liquid processing apparatus according to claim 1, wherein
The liquid processing apparatus, wherein the flat filtration membrane is a ceramic membrane.
請求項1または2に記載の液体処理装置であって、
前記平型ろ過膜と前記発光体の下方から気体による曝気を行う曝気手段を備えることを特徴とする液体処理装置。
The liquid processing apparatus according to claim 1 or 2, wherein
A liquid treatment apparatus comprising an aeration means for aeration with a gas from below the flat filtration membrane and the light emitter.
マイクロウェーブ発生手段により発生させたマイクロウェーブを、複数の平型ろ過膜を有し、マイクロウェーブにより紫外線発光する板状の発光体が前記各平型ろ過膜の間に設置された浸漬型の膜ろ過装置における前記発光体に照射しながら、固形分を含む被処理液体を前記膜ろ過装置に通液させて、前記被処理液体の前記固形分の固液分離処理とともに紫外線照射処理を行う処理工程を含むことを特徴とする液体処理方法。 Immersion type membrane having a plurality of flat filtration membranes for generating microwaves generated by microwave generation means, and plate-like light-emitting bodies that emit ultraviolet light by microwaves are installed between the respective flat filtration membranes. While irradiating the light-emitting body in the filtration device, a liquid to be treated containing solids is passed through the membrane filtration device, and a treatment step of performing solid-liquid separation treatment of the solids of the liquid to be treated and ultraviolet irradiation treatment. A liquid processing method comprising: 請求項4に記載の液体処理方法であって、
前記平型ろ過膜が、セラミック膜であることを特徴とする液体処理方法。
The liquid processing method according to claim 4, wherein
The liquid processing method, wherein the flat filtration membrane is a ceramic membrane.
請求項4または5に記載の液体処理方法であって、
前記平型ろ過膜と前記発光体の下方から気体による曝気を行うことを特徴とする液体処理方法。
The liquid processing method according to claim 4 or 5, wherein
A liquid treatment method, characterized in that gas is aerated from below the flat filtration membrane and the light emitter.
JP2016111916A 2016-06-03 2016-06-03 Liquid processing apparatus and liquid processing method Active JP6747876B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016111916A JP6747876B2 (en) 2016-06-03 2016-06-03 Liquid processing apparatus and liquid processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016111916A JP6747876B2 (en) 2016-06-03 2016-06-03 Liquid processing apparatus and liquid processing method

Publications (2)

Publication Number Publication Date
JP2017217584A JP2017217584A (en) 2017-12-14
JP6747876B2 true JP6747876B2 (en) 2020-08-26

Family

ID=60658037

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016111916A Active JP6747876B2 (en) 2016-06-03 2016-06-03 Liquid processing apparatus and liquid processing method

Country Status (1)

Country Link
JP (1) JP6747876B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102488109B1 (en) * 2020-10-30 2023-01-13 한국건설기술연구원 Emergency water purifying system of gravity driving type connected with underground reservoir in island drought, and method for the same
CN113171474A (en) * 2021-03-31 2021-07-27 天津市顶硕科技发展有限公司 Ultraviolet disinfection cabin for cold chain transportation of goods

Also Published As

Publication number Publication date
JP2017217584A (en) 2017-12-14

Similar Documents

Publication Publication Date Title
US10287193B2 (en) Systems and methods for the treatment of ballast water
CN102092814B (en) Device for treating ship ballast water
DK2227442T3 (en) Apparatus and method for treatment of ballast water
EP2409954A1 (en) Photocatalytic purification device
CN105921011A (en) Method and device for purifying air pollutants by electrodeless ultraviolet catalytic oxidation as well as catalytic ozonation
CN1237012C (en) Ozonation process
JP6747876B2 (en) Liquid processing apparatus and liquid processing method
KR101264350B1 (en) Apparatus for water purification using photocatalyst
RU2472712C2 (en) Water decontaminator
CN107176647B (en) Microwave photocatalysis-ceramic membrane coupling purifier
JP6747893B2 (en) Liquid processing apparatus and liquid processing method
CN210419587U (en) Photocatalysis-nanofiltration ceramic membrane advanced water purification treatment device
CN202430036U (en) Oxidation reaction device combining nanofiltration membrane with photocatalysis
CN104445766A (en) Combined technology for microwave ultraviolet ultrasonic ozone membrane filtration coordinated with water purification
CN103214133B (en) Graphene sewage purification combined device and sewage purification method thereof
JP3858734B2 (en) Water treatment equipment
JP2001070935A (en) Method and device for water treatment using photocatalyst
CN202449881U (en) Device for treating ship ballast water
JP6630617B2 (en) Liquid treatment apparatus and liquid treatment method
CN206985929U (en) A kind of water treatment system for improving dechlorination equipment
JPS58220000A (en) System for preparing extremely pure water
JP6630624B2 (en) Liquid treatment apparatus and liquid treatment method
RU119736U1 (en) DEVICE FOR DISINFECTING WATER MEDIA
CN110655143A (en) Fixed photocatalytic cyclone reactor and construction method and application thereof
CN203269708U (en) Graphene sewage purification combined device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190328

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200128

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200327

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200804

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200806

R150 Certificate of patent or registration of utility model

Ref document number: 6747876

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250