JP6747641B2 - Method and apparatus for dissolving and recovering group 5 element and/or group 6 element with controlled water vapor partial pressure - Google Patents

Method and apparatus for dissolving and recovering group 5 element and/or group 6 element with controlled water vapor partial pressure Download PDF

Info

Publication number
JP6747641B2
JP6747641B2 JP2018502514A JP2018502514A JP6747641B2 JP 6747641 B2 JP6747641 B2 JP 6747641B2 JP 2018502514 A JP2018502514 A JP 2018502514A JP 2018502514 A JP2018502514 A JP 2018502514A JP 6747641 B2 JP6747641 B2 JP 6747641B2
Authority
JP
Japan
Prior art keywords
group
melt
water content
metal hydroxide
dissolving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018502514A
Other languages
Japanese (ja)
Other versions
JPWO2017149835A1 (en
Inventor
大石 哲雄
哲雄 大石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Publication of JPWO2017149835A1 publication Critical patent/JPWO2017149835A1/en
Application granted granted Critical
Publication of JP6747641B2 publication Critical patent/JP6747641B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B34/00Obtaining refractory metals
    • C22B34/20Obtaining niobium, tantalum or vanadium
    • C22B34/24Obtaining niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B34/00Obtaining refractory metals
    • C22B34/30Obtaining chromium, molybdenum or tungsten
    • C22B34/34Obtaining molybdenum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B34/00Obtaining refractory metals
    • C22B34/30Obtaining chromium, molybdenum or tungsten
    • C22B34/36Obtaining tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Processing Of Solid Wastes (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Electrolytic Production Of Metals (AREA)

Description

本発明は、タングステン、モリブデン、ニオブ、タンタル等の第5族元素及び/又は第6族元素(以下、「対象元素」ということがある。)を含有する使用済みの超硬工具、各種金属製品等から対象元素をアルカリ金属水酸化物やアルカリ土類金属水酸化物の溶融物中に電解により溶解する際に、水蒸気分圧を制御して溶解を効率化する技術に関する。 The present invention relates to used cemented carbide tools and various metal products containing a Group 5 element and/or a Group 6 element such as tungsten, molybdenum, niobium and tantalum (hereinafter sometimes referred to as “target element”). And the like, the present invention relates to a technique for controlling the partial pressure of water vapor to make the dissolution efficient when the target element is dissolved in a melt of an alkali metal hydroxide or an alkaline earth metal hydroxide by electrolysis.

従来から資源の有効利用を目的として各種元素について、回収、リサイクルの促進が進められてきている。超硬工具、各種金属製品、触媒等への需要が多いタングステン、モリブデン、ニオブ、タンタル等の対象元素についても、その資源の偏在や希少性等から回収、リサイクルに対する期待は非常に大きいものがある。 Conventionally, collection and recycling of various elements have been promoted for the purpose of effective use of resources. Even for target elements such as tungsten, molybdenum, niobium, and tantalum, which are in great demand for cemented carbide tools, various metal products, catalysts, etc., there are great expectations for recovery and recycling due to uneven distribution of resources and scarcity. ..

タングステンを回収、リサイクルする従来の技術として、亜鉛処理法と酸化−湿式法の2つが実際に稼働しているが(非特許文献1参照)、これらの従来の技術は、一般的に、不純物の除去ができない、多くの工程を必要とする、エネルギー多消費で経済コストも高いなどの問題点を有している。 As a conventional technique for recovering and recycling tungsten, a zinc treatment method and an oxidation-wet method are actually operating (see Non-Patent Document 1). It has problems that it cannot be removed, requires many steps, consumes a lot of energy, and has a high economic cost.

また、検討中や研究中の回収プロセスとして、超硬工具スクラップを溶融状態のNaNO3と反応させてNa2WO4を生成させ、これを水で溶解してNa2WO4溶液を作るものや、特殊鋼吹製時の溶滓にソーダ灰または苛性ソーダを加えて、タングステン、モリブデンを水溶性の塩の組成に変換せしめて冷却凝固し、湿式粉砕装置により残留金属粒をスラグより分離すると同時に、スラグ中のタングステン、モリブデン塩を水に溶解するもの等も知られているが(非特許文献1、特許文献1参照)、それぞれ多くの問題点を有している。Further, as a recovery process under study or research, a method of reacting cemented carbide tool scrap with molten NaNO 3 to produce Na 2 WO 4 and dissolving it with water to produce a Na 2 WO 4 solution, In addition, by adding soda ash or caustic soda to the slag at the time of special steel blowing, converting tungsten and molybdenum to the composition of water-soluble salt and cooling and solidifying, the residual metal particles are separated from the slag by a wet crushing device at the same time, Although it is known that tungsten or molybdenum salt in slag is dissolved in water (see Non-Patent Document 1 and Patent Document 1), each has many problems.

そのような従来技術を背景として、本発明者は、先に、タングステン等の対象元素を含む超硬工具や各種金属製品等から対象元素を効率的に溶解し回収する技術として、水酸化ナトリウム等のアルカリ金属水酸化物やアルカリ土類水酸化物の400〜600℃の溶融物中において対象元素を陽極酸化し溶解する技術を開発した(特許文献2参照)。 Against the background of such a conventional technique, the present inventor has previously proposed a technique for efficiently dissolving and recovering a target element from a cemented carbide tool or various metal products containing the target element such as tungsten, sodium hydroxide, etc. Has developed a technique for anodizing and dissolving the target element in the melt of the alkali metal hydroxide or alkaline earth hydroxide at 400 to 600°C (see Patent Document 2).

特開昭50−161500号公報Japanese Patent Laid-Open No. 50-161500 特開2011−32578号公報JP, 2011-32578, A

「金属資源レポート」Vol.38 No.4 独立行政法人石油天然ガス・金属鉱物資源機構(2008年11月)P407−417"Metal Resources Report" Vol.38 No.4 Japan Agency for Petroleum, Natural Gas and Metals and Mineral Resources (November 2008) P407-417

上述のアルカリ金属水酸化物やアルカリ土類金属水酸化物の溶融物中において対象元素を陽極酸化し溶解する技術は、比較的低い電圧で迅速に対象元素を溶解することができる、物質中の不純物の溶解物中への混入が少ない、他の手法に比べて溶解の制御も容易であるなどの優れた点を有しているものの、試験研究を進める過程で、次のような問題点が存在することを認識した。
(1)溶融アルカリ金属水酸化物が存在する雰囲気の水蒸気分圧が低い場合、対極である陰極でナトリウムが発生し、電流効率が大幅に低下する恐れがあるとともに電解に余計な電圧が必要となり、結果として消費電力が増大する。
(2)溶融アルカリ金属水酸化物が存在する雰囲気の水蒸気分圧が低い場合、溶融アルカリ金属水酸化物におけるタングステン等の対象元素の溶解度が低く、早い段階で飽和に達し、電解をさらに進めるには電解槽の溶融アルカリ金属水酸化物を頻繁に入れ替える必要があり、一定量の対象元素を処理するために必要な薬剤およびエネルギー量が膨大になる。
The technique of anodizing and dissolving the target element in the melt of the above-mentioned alkali metal hydroxide or alkaline earth metal hydroxide can rapidly dissolve the target element at a relatively low voltage. Although it has advantages such as less contamination of impurities into the melt and easier control of dissolution compared to other methods, the following problems were encountered in the course of the test research. Recognized to exist.
(1) When the partial pressure of water vapor in the atmosphere in which molten alkali metal hydroxide is present is low, sodium may be generated at the cathode that is the counter electrode, and the current efficiency may be significantly reduced, and an extra voltage is required for electrolysis. As a result, power consumption increases.
(2) When the partial pressure of water vapor in the atmosphere in which the molten alkali metal hydroxide is present is low, the solubility of the target element such as tungsten in the molten alkali metal hydroxide is low, and the saturation is reached at an early stage to further promote the electrolysis. It is necessary to frequently replace the molten alkali metal hydroxide in the electrolytic cell, and the amount of chemicals and energy required to treat a certain amount of the target element becomes enormous.

本発明は、上述のような試験研究過程で認識した問題点を解決し、溶解に要する電圧や電力を低減可能で、かつ、溶融物中の対象元素の溶解度を向上可能な対象元素の溶解方法を提供することを課題とする。
また、本発明は、前記溶解方法を利用した対象元素の回収方法や溶解、回収装置を提供することを課題とする。
The present invention solves the problems recognized in the above-described test and research process, can reduce the voltage and power required for melting, and can improve the solubility of the target element in the melt The challenge is to provide.
It is another object of the present invention to provide a method of recovering a target element, a dissolution and recovery device, which utilizes the dissolution method.

前記課題の下、各種の試験研究を進める過程で、本発明者は次のような知見を得た。
(A)溶融物中において、対象元素を電解して溶解する際、溶融物中の含水率(乃至水蒸気分圧)を高くすると、対極である陰極の反応がナトリウム発生よりも容易に進行する水素発生になり、電圧が低くても電解による対象元素の溶解を進めることができるので、電解に必要な消費電力を低減することができる。
(B)溶融物中の含水率を高くすると、溶融物における対象元素の溶解度が向上するので、必要とする溶融アルカリ金属水酸化物などの溶融物量を低減することができ、その後の回収プロセスに必要な中和処理等の薬剤量なども低減することができる。
(C)高含水率の溶融物中で対象元素を溶解した後、溶融物の含水率を低下したり、溶融物の温度を低下することにより対象元素をNa2WO4等の対象元素のオキソ酸塩として沈殿させて回収することができる。
Under the above-mentioned problems, the present inventor has obtained the following knowledge in the process of proceeding various test studies.
(A) When electrolyzing and dissolving the target element in the melt, if the water content (or steam partial pressure) in the melt is increased, the reaction of the cathode, which is the counter electrode, proceeds more easily than the generation of sodium. Even if the voltage is low, the target element can be dissolved by electrolysis even if the voltage is low, so that the power consumption required for electrolysis can be reduced.
(B) When the water content in the melt is increased, the solubility of the target element in the melt is improved, so that the required amount of melt such as molten alkali metal hydroxide can be reduced, and the subsequent recovery process can be performed. It is also possible to reduce the amount of chemicals required such as neutralization treatment.
(C) After the target element is dissolved in a melt having a high water content, the water content of the melt is lowered or the temperature of the melt is lowered to change the target element to oxo of the target element such as Na 2 WO 4 or the like. It can be precipitated and recovered as an acid salt.

本発明は、上記のような知見に基づいて完成に至ったものであり、本件では、以下の発明が提供される。
<1>アルカリ金属水酸化物、アルカリ土類金属水酸化物、これらの混合水酸化物、又は、前記水酸化物のいずれかを主成分として含むものの溶融物中において、第5族元素及び/又は第6族元素を含む物質を電解して第5族元素及び/又は第6族元素を前記溶融物中に溶解する第5族元素及び/又は第6族元素の溶解方法であって、前記溶融物の含水率を0.2〜5.0wt%とすることを特徴とする溶解方法。
<2>前記溶融物の含水率の調整に、水蒸気若しくは水蒸気を含有するガスを前記溶融物中に通すか、又は、前記溶融物を収容した電解槽の気相中に供給することを特徴とする<1>に記載の第5族元素及び/又は第6族元素の溶解方法。
<3>アルカリ金属水酸化物として水酸化ナトリウムを用いる<1>又は<2>に記載の第5族元素及び/又は第6族元素の溶解方法。
<4>第5族元素及び/又は第6族元素を含む物質が、タングステン、モリブデン、ニオブ、タンタルのうちの少なくとも1種を含むものである<1>〜<3>のいずれか1項に記載の第5族元素及び/又は第6族元素の溶解方法。
<5><1>〜<4>のいずれか1項に記載の溶解方法により得られた第5族元素及び/又は第6族元素の濃度の増加した溶融物を水に溶解させて第5族元素及び/又は第6族元素のオキソ酸塩の水溶液とする第5族元素及び/又は第6族元素の溶解方法。
<6><1>〜<4>のいずれか1項に記載の溶解方法を用いて第5族元素及び/又は第6族元素を前記溶融物中に溶解した後、第5族元素及び/又は第6族元素を含む化合物の前記溶融物中での飽和溶解度を低下することにより前記化合物を沈殿させて回収する第5族元素及び/又は第6族元素の回収方法。
<7>前記溶融物の飽和溶解度の低下を、前記溶融物の含水率の低下及び/又は溶融温度の低下により行う<6>に記載の第5族元素及び/又は第6族元素の回収方法。
<8>溶融物の含水率が0.2〜5.0wt%の電解槽と、溶融物の含水率が電解槽に比較して低い回収槽とを設け、電解により第5族元素及び/又は第6族元素の濃度の増加した溶融物を回収槽に移送して第5族元素及び/又は第6族元素を含む化合物を沈殿させ、回収槽の第5族元素及び/又は第6族元素の濃度の低下した溶融物を電解槽に返送することを特徴とする<6>又は<7>に記載の第5族元素及び/又は第6族元素の回収方法。
<9>陰極と、第5族元素及び/又は第6族元素を含む物質を保持する陽極とを備え、アルカリ金属水酸化物、アルカリ土類金属水酸化物、これらの混合水酸化物、又は、前記水酸化物のいずれかを主成分として含むものの溶融物を収容した電解槽と、前記溶融物の含水率を調整する含水率調整手段とを具備することを特徴とする第5族元素及び/又は第6族元素の溶解又は溶解・回収装置。
<10>陰極と、第5族元素及び/又は第6族元素を含む物質を保持する陽極とを備え、アルカリ金属水酸化物、アルカリ土類金属水酸化物、これらの混合水酸化物、又は、前記水酸化物のいずれかを主成分として含むものの溶融物を収容した電解槽と、アルカリ金属水酸化物、アルカリ土類金属水酸化物、これらの混合水酸化物、又は、前記水酸化物のいずれかを主成分として含むものの溶融物を収容した回収槽と、電解槽に収容した溶融物の含水率を高く保持する高含水率調整手段と、回収槽に収容した溶融物の含水率を電解槽より低く保持する低含水率調整手段及び/又は回収槽に収容した溶融物の溶融温度を電解槽より低く保持する溶融温度調整手段と、電解槽中の第5族元素及び/又は第6族元素の濃度の増加した溶融物を回収槽に移送する溶融物移送手段と、回収槽中の第5族元素及び/又は第6族元素の濃度の低下した溶融物を電解槽に返送する返送手段を具備することを特徴とする第5族元素及び/又は第6族元素の溶解・回収装置。
The present invention has been completed based on the above findings, and in this case, the following inventions are provided.
<1> In a melt of an alkali metal hydroxide, an alkaline earth metal hydroxide, a mixed hydroxide thereof, or one containing any of the above hydroxides as a main component, a Group 5 element and/or Alternatively, a method for dissolving a Group 5 element and/or a Group 6 element in which a substance containing a Group 6 element is electrolyzed to dissolve the Group 5 element and/or the Group 6 element in the melt, A method for melting, characterized in that the melt has a water content of 0.2 to 5.0 wt %.
<2> To adjust the water content of the melt, steam or a gas containing steam is passed through the melt, or is supplied into the gas phase of an electrolytic cell containing the melt. <5> The method for dissolving a Group 5 element and/or a Group 6 element according to <1>.
<3> The method for dissolving a Group 5 element and/or a Group 6 element according to <1> or <2>, wherein sodium hydroxide is used as the alkali metal hydroxide.
<4> The substance containing a Group 5 element and/or a Group 6 element contains the at least one kind of tungsten, molybdenum, niobium, and tantalum. <1> to <3> A method for dissolving a Group 5 element and/or a Group 6 element.
<5> A melt obtained by the dissolution method according to any one of <1> to <4> in which the concentration of the Group 5 element and/or the Group 6 element is increased is dissolved in water to obtain a fifth group. A method for dissolving a Group 5 element and/or a Group 6 element in an aqueous solution of an oxo acid salt of a Group element and/or a Group 6 element.
<6> After dissolving the Group 5 element and/or the Group 6 element in the melt using the dissolution method according to any one of <1> to <4>, the Group 5 element and/or Alternatively, a method for recovering a Group 5 element and/or a Group 6 element, wherein the saturation solubility of a compound containing a Group 6 element in the melt is lowered to precipitate and recover the compound.
<7> The method for recovering a Group 5 element and/or a Group 6 element according to <6>, wherein the saturation solubility of the melt is decreased by decreasing the water content of the melt and/or the melting temperature. ..
<8> An electrolysis tank having a water content of the melt of 0.2 to 5.0 wt% and a recovery tank having a water content of the melt lower than that of the electrolysis tank are provided, and electrolysis is performed to provide a Group 5 element and/or The melt of which the concentration of the Group 6 element is increased is transferred to the recovery tank to precipitate the Group 5 element and/or the compound containing the Group 6 element, and the Group 5 element and/or the Group 6 element of the recovery tank is precipitated. The method for recovering a Group 5 element and/or a Group 6 element according to <6> or <7>, wherein the melt having a reduced concentration of is returned to the electrolytic cell.
<9> a cathode and an anode holding a substance containing a Group 5 element and/or a Group 6 element, and an alkali metal hydroxide, an alkaline earth metal hydroxide, a mixed hydroxide thereof, or A Group 5 element comprising: an electrolytic cell containing a melt containing one of the hydroxides as a main component; and a water content adjusting unit for adjusting the water content of the melt, And/or a dissolution or dissolution/recovery device for Group 6 elements.
<10> a cathode and an anode holding a substance containing a Group 5 element and/or a Group 6 element, and an alkali metal hydroxide, an alkaline earth metal hydroxide, a mixed hydroxide thereof, or An electrolytic cell containing a melt containing one of the hydroxides as a main component, an alkali metal hydroxide, an alkaline earth metal hydroxide, a mixed hydroxide thereof, or the hydroxide. A recovery tank containing a melt of one containing as a main component, a high water content adjusting means for maintaining a high water content of the melt contained in the electrolysis tank, and a water content of the melt contained in the recovery tank. Low water content adjusting means for keeping the temperature lower than that of the electrolytic cell and/or melting temperature adjusting means for keeping the melting temperature of the melt contained in the recovery tank lower than that of the electrolytic cell, and Group 5 element and/or sixth element in the electrolytic cell Melt transfer means for transferring the melt with the increased concentration of the group element to the recovery tank, and return for returning the melt with the decreased concentration of the group 5 element and/or the group 6 element in the recovery tank to the electrolytic cell A dissolution/recovery device for a Group 5 element and/or a Group 6 element, characterized by comprising means.

本発明は、次のような実施態様を含むことができる。
<11>第5族元素及び/又は第6族元素を含む物質が、使用済みの超硬工具、触媒、及び/又は、おもりである<1>〜<4>のいずれか1項に記載の第5族元素及び/又は第6族元素の溶解方法。
<12>第5族元素及び/又は第6族元素を含む物質を予め、アルカリ金属水酸化物、アルカリ土類金属水酸化物、これらの混合水酸化物、又は、前記水酸化物のいずれかを主成分として含むものの溶融物中に浸漬する予備浸漬工程を具備する、<1>〜<4>、<11>のいずれか1項に記載の第5族元素及び/又は第6族元素の溶解方法。
<13>水蒸気を含有するガスは、ガスを20〜100℃の水浴に通じたものである<2>に記載の溶解方法。
<14><11>〜<13>のいずれか1項に記載の溶解方法により得られた第5族元素及び/又は第6族元素の濃度の増加した溶融物を水に溶解させて第5族元素及び/又は第6族元素のオキソ酸塩の水溶液とする第5族元素及び/又は第6族元素の溶解方法。
<15><11>〜<13>のいずれか1項に記載の溶解方法を用いて第5族元素及び/又は第6族元素を前記溶融物中に溶解した後、第5族元素及び/又は第6族元素を含む化合物の前記溶融物中での飽和溶解度を低下することにより前記化合物を沈殿させて回収する第5族元素及び/又は第6族元素の回収方法。
<16> 前記溶融物中での飽和溶解度の低下を、前記溶融物の含水率の低下及び/又は溶融物の温度の低下により行う<15>に記載の第5族元素及び/又は第6族元素の回収方法。
<17>前記含水率調整手段は、水蒸気若しくは水蒸気を含有するガスを前記溶融物中に通すか、又は、前記溶融物を収容した電解槽の気相中に供給するものである<9>に記載の第5族元素及び/又は第6族元素の溶解又は溶解・回収装置。
<18>前記含水率調整手段は、20〜100℃の水浴に通じたガスを供給するものである<17>に記載の第5族元素及び/又は第6族元素の溶解又は溶解・回収装置。
<19>前記高含水率調整手段は、水蒸気若しくは水蒸気を含有するガスを前記溶融物中に通すか、又は、前記溶融物を収容した電解槽の気相中に供給するものである<10>に記載の第5族元素及び/又は第6族元素の溶解・回収装置。
<20>前記高含水率調整手段は、20〜100℃の水浴に通じたガスを供給するものである<19>に記載の第5族元素及び/又は第6族元素の溶解・回収装置。
The present invention can include the following embodiments.
<11> The substance containing a Group 5 element and/or a Group 6 element is a used cemented carbide tool, a catalyst, and/or a weight, according to any one of <1> to <4>. A method for dissolving a Group 5 element and/or a Group 6 element.
<12> A substance containing a Group 5 element and/or a Group 6 element is preliminarily prepared from an alkali metal hydroxide, an alkaline earth metal hydroxide, a mixed hydroxide thereof, or the above hydroxide. Of the Group 5 element and/or the Group 6 element according to any one of <1> to <4> and <11>, which comprises a preliminary dipping step of immersing in a melt containing Dissolution method.
<13> The dissolution method according to <2>, wherein the gas containing water vapor is obtained by passing the gas through a water bath at 20 to 100°C.
<14><11> to <13> The melt obtained by the dissolution method according to any one of the groups 5 and/or 6 in which the concentration of the group 6 element is increased is dissolved in water to obtain a fifth group. A method for dissolving a Group 5 element and/or a Group 6 element in an aqueous solution of an oxo acid salt of a Group element and/or a Group 6 element.
<15> After dissolving the Group 5 element and/or the Group 6 element in the melt by using the dissolution method according to any one of <11> to <13>, the Group 5 element and/or Alternatively, a method for recovering a Group 5 element and/or a Group 6 element, wherein the saturation solubility of a compound containing a Group 6 element in the melt is lowered to precipitate and recover the compound.
<16> The Group 5 element and/or the Group 6 element according to <15>, wherein the saturation solubility in the melt is reduced by reducing the water content of the melt and/or the temperature of the melt. How to recover elements.
<17> The water content adjusting means passes water vapor or a gas containing water vapor through the melt, or supplies the water into the gas phase of an electrolytic cell containing the melt. A device for dissolving or dissolving/recovering the stated Group 5 element and/or Group 6 element.
<18> The apparatus for dissolving or dissolving/recovering a Group 5 element and/or a Group 6 element according to <17>, wherein the water content adjusting means supplies a gas that has passed through a water bath at 20 to 100°C. ..
<19> The high water content adjusting means passes water vapor or a gas containing water vapor through the melt, or supplies the water into the gas phase of an electrolytic cell containing the melt <10>. The dissolution/recovery device for the Group 5 element and/or the Group 6 element described in 1.
<20> The apparatus for dissolving/recovering a Group 5 element and/or a Group 6 element according to <19>, wherein the high water content adjusting means supplies a gas passed through a water bath at 20 to 100°C.

本発明によれば、第5族元素及び/又は第6族元素をアルカリ金属水酸化物等の溶融物中に電解により溶解する際に、電解に必要な電圧を抑制することができる。
また、本発明によれば、前記溶融物中の含水率(水蒸気分圧)を適切に制御することで、水酸化ナトリウム等のアルカリ金属水酸化物やアルカリ土類水酸化物の使用量を低減できるので、その後の中和処理等に用いる試薬も同様に低減することができる。
また、前記溶融物中の含水率(水蒸気分圧)を適切に制御したり、溶融物の温度を適切に制御することにより対象元素の前記溶融物中での飽和溶解度を調整すれば、電解を止めることなくタングステン酸ナトリウム等の第5,6族元素のオキソ酸化合物を回収することが可能となるので、第5,6族元素回収プロセスを効率化できるとともに、アルカリ金属水酸化物や中和処理用試薬等の各種薬剤の使用量をさらに抑制することができる。
According to the present invention, when a Group 5 element and/or a Group 6 element is dissolved in a melt such as an alkali metal hydroxide by electrolysis, the voltage required for electrolysis can be suppressed.
Further, according to the present invention, by appropriately controlling the water content (steam partial pressure) in the melt, the amount of alkali metal hydroxide such as sodium hydroxide or alkaline earth hydroxide used can be reduced. Therefore, the reagents used for the subsequent neutralization treatment and the like can be similarly reduced.
Further, if the water content (steam partial pressure) in the melt is appropriately controlled or the saturation solubility of the target element in the melt is adjusted by appropriately controlling the temperature of the melt, electrolysis can be performed. Since it becomes possible to recover the oxo acid compound of the Group 5 and 6 elements such as sodium tungstate without stopping, the recovery process of the Group 5 and 6 elements can be made efficient, and the alkali metal hydroxide and neutralization can be performed. It is possible to further suppress the usage amount of various chemicals such as a processing reagent.

水酸化ナトリウム溶融浴中の含水率(水蒸気分圧)が異なる実施例1と比較例1とを比較して、タングステン合金製超硬チップを水酸化ナトリウム溶融浴中で電解して溶解した際の電流値の時間変化を示した図。実線は90℃の水浴にArガスを通じ反応容器(電解槽の気相)に供給した実施例1を、破線は水浴を通じずにArガスを反応容器に供給した比較例1を、それぞれ示す。Comparison was made between Example 1 and Comparative Example 1 having different water contents (steam partial pressure) in the sodium hydroxide molten bath, and the tungsten alloy carbide tips were electrolyzed and dissolved in the sodium hydroxide molten bath. The figure which showed the time change of an electric current value. The solid line shows Example 1 in which Ar gas was supplied to the reaction vessel (gas phase of the electrolytic cell) in a 90° C. water bath, and the broken line shows Comparative Example 1 in which Ar gas was supplied to the reaction vessel without passing through the water bath. Ar雰囲気下での飽和量を超えるWO3を溶融水酸化ナトリウム中に予め添加した比較例2(実線)と添加しない比較例1(破線)について、水浴を通じずにArガスを反応容器(電解槽の気相)に供給しながら1Vの定電圧で電解した際の電流値の時間変化を示した図である。Regarding Comparative Example 2 (solid line) in which WO 3 in excess of the saturation amount in an Ar atmosphere was added in advance in molten sodium hydroxide and Comparative Example 1 (broken line) in which no addition was made, Ar gas was passed through a reaction vessel (electrolysis tank) without passing through a water bath. FIG. 4 is a diagram showing a time change of a current value when electrolyzing at a constant voltage of 1 V while supplying the same to the gas phase). Ar雰囲気下での飽和量を超えるWO3を溶融水酸化ナトリウム中に予め添加し、90℃の水浴を通じたArガスを反応容器(電解槽の気相)に供給しながら0.4Vの定電圧で電解した実施例2A(実線、含水率約2wt%)、23℃の水浴を通じてArガスを反応容器に供給しながら1Vの定電圧で電解した実施例2B(一点鎖線、含水率約0.2wt%)、及び、水浴を通じずにArガスを反応容器に供給しながら1Vの定電圧で電解した比較例2(破線、含水率約0.2wt%未満)について、電流値の時間変化を示した図である。WO 3 exceeding the saturation amount in an Ar atmosphere was added in advance to molten sodium hydroxide, and a constant voltage of 0.4 V was applied while supplying Ar gas through a 90°C water bath to the reaction vessel (gas phase of the electrolytic cell). Example 2A (solid line, water content about 2 wt%) electrolyzed in Example 2B (one-dot chain line, water content about 0.2 wt%) electrolyzed at a constant voltage of 1 V while supplying Ar gas to the reaction vessel through a water bath at 23°C. %) and Comparative Example 2 (broken line, water content is less than about 0.2 wt%) in which Ar gas was electrolyzed at a constant voltage of 1 V while supplying Ar gas to the reaction vessel without passing through a water bath. It is a figure.

本発明の溶解乃至回収対象の元素は、第5族元素及び/又は第6族元素(対象元素)であり、具体的には、W、Mo、Cr、V、Nb、Taである。そのうち、特に実用面での期待が大きいW、Ta、Moが望ましい。
これらの元素を含む溶解乃至回収対象の物質としては、該元素を金属として含むものでも、また、炭化物等として含むものであってもよく、使用済みの超硬工具、各種金属製品、触媒、及びこれらの製造工程で出る工程内廃棄物が挙げられるが、これらに限定されず、これらの元素の少なくとも1種を含む物質であり、陽極として電圧を印加できる形態であれば、どのようなものでもよい。
そのような対象元素を含む物質は、各種プラスチック等の有機物を表面被覆材等として具備乃至含有していてもよいし、また、対象元素以外の元素で構成されるセラミックスを表面被覆材やバインダーの主成分乃至副成分として具備乃至含有していてもよい。対象元素以外の元素で構成されるセラミックスとしては、チッ化チタン、チッ化アルミ、アルミナ、シリカ、炭化チタン、炭窒化チタン、チタンアルミナイトライド、アルミクロムナイトライド等が挙げられる。
The element to be dissolved or recovered in the present invention is a Group 5 element and/or a Group 6 element (target element), and specifically, W, Mo, Cr, V, Nb, and Ta. Of these, W, Ta, and Mo, which are particularly highly expected in practical use, are preferable.
The substance to be dissolved or recovered containing these elements may be one containing the element as a metal, or may be one containing a carbide or the like. Used cemented carbide tools, various metal products, catalysts, and Examples include, but are not limited to, in-process wastes generated in these manufacturing processes, as long as they are substances containing at least one of these elements and capable of applying a voltage as the anode. Good.
The substance containing such a target element may be provided with or contain an organic substance such as various plastics as a surface coating material or the like, and a ceramic composed of an element other than the target element may be used as a surface coating material or a binder. It may be provided or contained as a main component or a sub-component. Examples of ceramics composed of elements other than the target element include titanium nitride, aluminum nitride, alumina, silica, titanium carbide, titanium carbonitride, titanium aluminum nitride, and aluminum chromium nitride.

本発明の溶解方法に用いるアルカリ金属水酸化物、アルカリ土類金属水酸化物は、陽極酸化の際の電解質であり、また、対象元素を溶解する溶媒でもある。その具体例としては、水酸化ナトリウム、水酸化カリウム、水酸化リチウム、水酸化カルシウム、水酸化マグネシウムが挙げられる。実用的には、反応性等の点でアルカリ金属水酸化物が望ましく、そのうち、特に、水酸化ナトリウムが好適に用いられる。
これらの水酸化物は、単体でも、また、混合したもの(混合水酸化物)であってもよいし、さらに、陽極酸化や溶解性を大きく低下させない範囲で、他の成分や不純物が混合乃至混入してもよい。混合される他の成分としては、粘度や導電性の調整等のための他の水酸化物や電解質等が挙げられる。
本発明において、アルカリ金属水酸化物、アルカリ土類金属水酸化物、これらの混合水酸化物、又は、前記水酸化物のいずれかを主成分として含むものは、溶融状態で用いられるが、その温度は、一般的には融点以上であればよく、使用温度は、対象元素の溶解性、拡散性、用いる装置材料の耐熱性、経済性、ランニングコスト等から決定される。前記溶融物の温度は、高温にするほど対象元素の溶解性、拡散性が高くなる点で有利であるが、一方で、装置材料の耐熱性、経済性等の点で不利であるため、実用的には、通常200〜600℃程度が好適に使用できる。
The alkali metal hydroxide and alkaline earth metal hydroxide used in the dissolution method of the present invention are electrolytes at the time of anodic oxidation, and are also solvents for dissolving the target element. Specific examples thereof include sodium hydroxide, potassium hydroxide, lithium hydroxide, calcium hydroxide and magnesium hydroxide. Practically, alkali metal hydroxides are desirable in terms of reactivity, and among them, sodium hydroxide is particularly preferably used.
These hydroxides may be used alone or as a mixture (mixed hydroxide), and further, other components or impurities may be mixed or mixed within a range that does not significantly reduce anodization or solubility. May be mixed. Other components to be mixed include other hydroxides and electrolytes for adjusting viscosity and conductivity.
In the present invention, an alkali metal hydroxide, an alkaline earth metal hydroxide, a mixed hydroxide thereof, or one containing any of the hydroxides as a main component is used in a molten state, Generally, the temperature may be equal to or higher than the melting point, and the use temperature is determined by the solubility of the target element, the diffusivity, the heat resistance of the apparatus material used, the economical efficiency, the running cost and the like. The melt temperature is advantageous in that the higher the temperature, the higher the solubility and diffusibility of the target element, but on the other hand, it is disadvantageous in terms of heat resistance of the device material, economical efficiency, etc. Generally, a temperature of about 200 to 600° C. can be suitably used.

本発明によれば、アルカリ金属水酸化物やアルカリ土類金属水酸化物等の水酸化物の溶融浴中における含水率を高めることにより、対象元素の電解に必要な電圧を低減することができる。例えば、対象元素の電解に必要な電圧は、前記含水率が0.2wt%未満の場合約1V程度であるが、本発明にしたがって前記含水率を例えば1.5〜2.0wt%に調整することにより約0.4Vでも電解が可能となる。
また、前記溶融浴中における含水率を高めることにより、前記溶融物中における対象元素の飽和溶解度を向上し、電解による溶解を効率化することもできる。
さらに、対象元素の飽和溶解度の含水率依存性や溶融温度依存性を利用し、対象元素の回収に利用することもできる。すなわち、溶融浴中における含水率を例えば1.5〜2.0wt%に高めた状態で対象元素を溶解した後、前記含水率及び/又は溶融温度を前記溶解時より低くすることにより対象元素の化合物(タングステン酸ナトリウム等の第5,6族元素のオキソ酸塩)を沈澱させて回収可能となる。その際、含水率や溶融温度の高い電解槽と含水率や溶融温度の低い回収槽を設け、電解槽において電解により対象元素を溶解して対象元素の溶解濃度の高くなった溶融物を回収槽に移送し、対象元素の化合物を沈澱させて回収し、対象元素の溶解濃度の低下した溶融物を電解槽に返送するようにして、電解を中断することなく対象元素化合物の連続的回収を可能にすることができる。なお、回収時又は回収槽における含水率は、0wt%か又はそれに近い方が沈殿、回収を効率化する上で望ましいが、含水率を十分低下させるために要する時間等を総合的に判断して決定することができる。回収時又は回収槽における溶融温度は、低い方が沈殿、回収を効率化するうえで望ましいが、溶融温度を下げ過ぎると溶融状態を維持できなくなるリスクが高まるうえ消費エネルギーも増大するため、これらを総合的に判断して決定することができる。
According to the present invention, the voltage required for electrolysis of the target element can be reduced by increasing the water content in the molten bath of hydroxides such as alkali metal hydroxides and alkaline earth metal hydroxides. .. For example, the voltage required for electrolysis of the target element is about 1 V when the water content is less than 0.2 wt%, but the water content is adjusted to, for example, 1.5 to 2.0 wt% according to the present invention. This allows electrolysis at about 0.4V.
Further, by increasing the water content in the molten bath, the saturation solubility of the target element in the melt can be improved and the dissolution by electrolysis can be made efficient.
Furthermore, it is also possible to utilize the dependency of the saturated solubility of the target element on the water content and the melting temperature, and to utilize the recovery of the target element. That is, after the target element is dissolved in a state where the water content in the melting bath is increased to, for example, 1.5 to 2.0 wt %, the water content and/or the melting temperature is made lower than that at the time of the dissolution, thereby The compound (oxo acid salt of Group 5 and 6 elements such as sodium tungstate) can be precipitated and recovered. At that time, an electrolytic cell with a high water content and a high melting temperature and a recovery tank with a low water content and a low melting temperature are provided, and the electrolytic solution is used to dissolve the target element by electrolysis and collect the melt with a high dissolved concentration of the target element. It is possible to continuously collect the target element compound without interrupting the electrolysis by returning the melt of the target element with a reduced concentration of the target element to the electrolytic cell. Can be It is desirable that the water content at the time of recovery or in the recovery tank is 0 wt% or close to it in order to facilitate precipitation and recovery, but comprehensively judge the time required to sufficiently reduce the water content. You can decide. A lower melting temperature during collection or in the recovery tank is desirable for efficient precipitation and recovery, but if the melting temperature is too low, the risk of not maintaining the molten state increases and energy consumption also increases. It is possible to make a comprehensive judgment and make a decision.

前記溶融浴の含水率は、例えば、ガス供給口と大気に連通したガス排出口とを有し、溶融浴を収容した電解槽を用いて、水蒸気或いは水蒸気を含有するガスを電解槽に収容した前記溶融物中に通すか、又は、電解槽の気相中に供給することにより調整することができる。水浴温度を一定にし、単時間当たり一定の流量のガスを水浴に通じた後、電解槽の前記ガス供給口に定常的に供給することにより電解槽に収容した溶融浴の含水率をほぼ一定にすることができる。例えば、450℃の水酸化ナトリウム溶融浴中の含水率は、水浴の温度が室温(20℃付近)の定常状態の場合0.2〜0.6wt%の範囲内であるが、水浴の温度が90℃の定常状態の場合約2wt%となる。水浴を通じずに水分を全く含まないガスを供給する場合には、溶融浴の含水率は0.2wt%未満になる。また、そのようなガスを全く供給しない状態で保持した場合、それ以前の含水率がどのような値であっても、最終的な定常状態では、溶融浴に接した大気や気相の水蒸気圧に対応する含水率になると考えられる。
また、溶融浴の飽和含水率は、溶融浴の雰囲気や溶融槽の気相の圧力を高めることにより向上することができるので、前記圧力の制御により対象元素の溶解度を大気圧下よりもさらに高めることができる。
前記ガスとしては、Ar等の希ガス、二酸化炭素ガス、窒素ガス等の不活性ガスに限らず、空気の外、不活性ガスや空気に酸素を富化した酸化性ガスを使用することもできる。ガス中の酸素は、対象元素の一部の酸化、溶解に寄与し、消費電力削減に繋がると考えられる。
The water content of the melting bath has, for example, a gas supply port and a gas outlet communicating with the atmosphere, and an electrolytic cell containing the melting bath was used to store water vapor or a gas containing water vapor in the electrolytic cell. It can be adjusted by passing it through the melt or by feeding it into the gas phase of an electrolytic cell. After the temperature of the water bath was kept constant and a constant flow rate of gas per hour was passed through the water bath, the water content of the molten bath contained in the electrolytic cell was made almost constant by constantly supplying it to the gas supply port of the electrolytic cell. can do. For example, the water content in a 450° C. sodium hydroxide molten bath is in the range of 0.2 to 0.6 wt% when the temperature of the water bath is in a steady state at room temperature (around 20° C.), but the temperature of the water bath is It becomes about 2 wt% in the steady state of 90°C. If a gas containing no water is supplied without passing through the water bath, the water content of the molten bath will be less than 0.2 wt %. In addition, when such a gas is kept in a state of not being supplied at all, no matter what the water content before that, in the final steady state, the vapor pressure of the atmosphere or vapor phase in contact with the molten bath It is thought that the water content will correspond to.
Further, since the saturated water content of the molten bath can be improved by increasing the pressure of the atmosphere of the molten bath or the vapor phase of the melting tank, the solubility of the target element is further increased by controlling the pressure as compared with the atmospheric pressure. be able to.
The gas is not limited to a rare gas such as Ar, an inert gas such as a carbon dioxide gas, a nitrogen gas, and the like, and in addition to the air, an inert gas or an oxidizing gas enriched with oxygen in the air can be used. .. It is considered that oxygen in the gas contributes to the oxidation and dissolution of a part of the target element, which leads to a reduction in power consumption.

本発明の溶解方法に用いる装置としては、特に限定されず、陽極酸化に従来使用されているもので耐熱性及び耐アルカリ性を有するものであれば、そのまま使用できるし、また、耐熱性の改良等を加えることにより使用することもできる。そのような装置としては、バッチ式のものだけでなく、連続式のものも使用しうる。
陽極酸化の際に陰極との間に印加する電圧は、一般に、高すぎると陽極酸化の電流効率低下と望ましくない副反応が起こり、さらには消費エネルギーも増加する。逆に低すぎると十分な反応速度が得られないため、これらを総合的に考慮して決定することができる。本発明では、溶融浴中における含水率を0.2〜5.0wt%(下限は、好ましくは0.5wt%以上、より好ましくは1.0wt%以上)にするので、電解に必要な電圧を低減することができ、それに伴い、望ましくない副反応を抑制して電流効率を比較的高くすることができる。
溶解をバッチ式で行う場合、処理期間中印加する電圧を一定にしても良いが、処理時間短縮のため、溶解処理が制御可能な範囲で印加する電圧を変化させることもできる。また、電流を一定にしても良いが、この場合は電圧を確認して電流値や処理時間、処理物質の供給量等を調整する必要がある。
The apparatus used for the dissolution method of the present invention is not particularly limited, and those conventionally used for anodic oxidation and having heat resistance and alkali resistance can be used as they are, and also improvement of heat resistance, etc. It can also be used by adding. As such a device, not only a batch type but also a continuous type can be used.
When the voltage applied between the cathode and the anode during the anodic oxidation is too high, generally, the current efficiency of the anodic oxidation is lowered, an undesired side reaction occurs, and the energy consumption is increased. On the other hand, if it is too low, a sufficient reaction rate cannot be obtained, and therefore it can be determined by comprehensively considering these. In the present invention, the water content in the molten bath is set to 0.2 to 5.0 wt% (the lower limit is preferably 0.5 wt% or more, more preferably 1.0 wt% or more). It can be reduced, and accordingly, the side effect can be suppressed and the current efficiency can be made relatively high.
When the dissolution is performed in a batch system, the voltage applied during the processing period may be constant, but in order to shorten the processing time, the applied voltage may be changed within the controllable range of the dissolution processing. The current may be constant, but in this case, it is necessary to confirm the voltage and adjust the current value, the processing time, the supply amount of the processing substance, and the like.

本発明方法では、タングステン、モリブデン、ニオブ、タンタル等の対象元素は、陽極酸化され、タングステンやモリブデンを例にすると、WO 2−やMoO 2−で示されるイオンとして、アルカリ金属水酸化物、アルカリ土類金属水酸化物、これらの混合水酸化物、又は、前記水酸化物のいずれかを主成分として含むものの溶融物中に溶解すると考えられる。その際、溶解対象物が不純物を含んでいても、不純物であるFe,Ni等はほぼ溶解しない、または溶解しても陰極上に析出すると見込まれるため、対象元素の溶解を選択的に行うことができる。前記溶融物中に溶解しない不純物のFe,Ni等は、溶解対象物の表面等に残留するが、NaWO、NaMoO等の対象元素のオキソ酸塩は、それらの残留不純物にあまり影響を受けることなく、前記溶融物中に効率的かつ制御可能に溶解される。その際の詳細なメカニズムは必ずしも明確ではないが、NaWO、NaMoO等の対象元素のオキソ酸塩は、含水率の高い前記溶融物に対し大きな溶解度を有すると共に、高温のため拡散速度も大きく、残留不純物の影響をあまり受けることなく効率的かつ制御可能に溶解されると考えられる。
また、対象元素が溶解され、それら元素の濃度の増加した前記溶融物は、水に容易に溶解させることができ、その結果、対象元素のオキソ酸塩の水溶液を得ることもできる。前記溶融物は、水に溶解する際、安全性の観点からは、その温度を予め融点未満、望ましくは100℃未満、より望ましくは50℃未満に低下しておくことが良い。
In the method of the present invention, the target elements such as tungsten, molybdenum, niobium, and tantalum are anodized, and when tungsten or molybdenum is taken as an example, alkali metal hydroxide is used as ions represented by WO 4 2− and MoO 4 2−. , Alkaline earth metal hydroxides, mixed hydroxides thereof, or those containing any of the above hydroxides as a main component are considered to be dissolved in the melt. At that time, even if the object to be dissolved contains impurities, Fe, Ni, etc., which are impurities, are hardly dissolved, or even if they are dissolved, they are expected to be deposited on the cathode. Therefore, the target element should be selectively dissolved. You can Impurities such as Fe and Ni that are not dissolved in the melt remain on the surface of the object to be dissolved, but oxo acid salts of the target element such as Na 2 WO 4 and Na 2 MoO 4 are included in the residual impurities. It is efficiently and controllably dissolved in the melt without being significantly affected. Although the detailed mechanism at that time is not clear, the oxo acid salt of the target element such as Na 2 WO 4 , Na 2 MoO 4, etc. has a large solubility in the melt having a high water content and, at the same time, is high in temperature. The diffusion rate is also large, and it is considered that the impurities are dissolved efficiently and controllably without being affected by residual impurities.
Moreover, the target element is dissolved, and the melt having the increased concentration of those elements can be easily dissolved in water, and as a result, an aqueous solution of the oxo acid salt of the target element can be obtained. When the melt is dissolved in water, from the viewpoint of safety, it is preferable that the temperature be lowered to a temperature below the melting point, preferably below 100°C, more preferably below 50°C.

本発明の処理対象である対象元素を含む物質が、各種プラスチック等の有機物を表面被覆材等として具備乃至含有する場合や、チッ化チタン、チッ化アルミ、アルミナ、シリカ、炭窒化チタン、チタンアルミナイトライド、アルミクロムナイトライドを始めとした、対象元素以外の元素で構成されるセラミックスを表面被覆材やバインダーの主成分乃至副成分として具備乃至含有する場合には、該物質を予め、アルカリ金属水酸化物、アルカリ土類金属水酸化物、これらの混合水酸化物、又は、前記水酸化物のいずれかを主成分として含むものの溶融物中に通電することなく浸漬することができる。そのような予備処理により、表面に露出する各種プラスチック等の有機物は、水素、CO、低分子の気体等に分解除去できるし、また、表面に露出するチッ化チタン、チッ化アルミ、アルミナ、シリカ、炭窒化チタン、チタンアルミナイトライド、アルミクロムナイトライドを始めとしたセラミックスを含む表面被覆材やバインダーは、溶解除去できるため、その後の第5,6族元素の陽極酸化や溶解を効率的に行うことができる。また、該予備処理に用いる溶融物を、第5,6族元素の陽極酸化、溶解に用いる溶融物と別に設けることにより、第5,6族元素の溶解した溶融物中における前記有機物由来の不純物量や前記セラミックス由来の不純物量を低減することができる。該予備処理に用いる溶融物の温度は、分解する有機物や溶解するセラミックスの種類に応じて適宜決定される。
このような表面に露出するチッ化チタン、チッ化アルミ、アルミナ、シリカ、炭窒化チタン、チタンアルミナイトライド、アルミクロムナイトライドを始めとしたセラミックスを溶解する溶解方法は、前述のような陽極酸化、溶解方法の予備処理としてだけでなく、第5,6族元素を含む物質から第5,6族元素を回収するための様々な処理方法においても、前記セラミックスを溶解除去するために採用することができる。
なお、このような通電しない予備浸漬処理において、対象元素は、金属や炭化物である場合にはほとんど溶解せず、窒化物や酸化物である場合には多少溶解するものの、通電して陽極酸化する場合に較べ溶解量は少ないので、その後の陽極酸化・溶解工程における溶解量に大きな影響を及ぼさないと考えられる。
When the substance containing the target element to be treated in the present invention comprises or contains organic substances such as various plastics as a surface coating material, titanium nitride, aluminum nitride, alumina, silica, titanium carbonitride, titanium aluminum When a ceramic composed of an element other than the target element, such as nitride or aluminum chrome nitride, is provided or contained as a main component or sub-component of the surface coating material or binder, the substance is preliminarily alkali metal. The hydroxide, the alkaline earth metal hydroxide, a mixed hydroxide thereof, or a material containing any of the above hydroxides as a main component can be immersed in a melt without energization. By such a pretreatment, organic substances such as various plastics exposed on the surface can be decomposed and removed into hydrogen, CO 2 , low-molecular gas, and the like, and titanium nitride, aluminum nitride, alumina, alumina, Since surface coating materials and binders containing ceramics such as silica, titanium carbonitride, titanium aluminum nitride, and aluminum chrome nitride can be dissolved and removed, the subsequent anodic oxidation and dissolution of Group 5 and 6 elements can be efficiently performed. Can be done. Further, by providing the melt used for the pretreatment separately from the melt used for the anodic oxidation and dissolution of the Group 5 and 6 elements, impurities derived from the organic substance in the melt in which the Group 5 and 6 elements are dissolved are provided. The amount and the amount of impurities derived from the ceramics can be reduced. The temperature of the melt used for the pretreatment is appropriately determined according to the type of organic substance that decomposes and ceramics that dissolve.
The dissolution method for dissolving ceramics such as titanium nitride, aluminum nitride, alumina, silica, titanium carbonitride, titanium aluminum nitride, and aluminum chrome nitride exposed on the surface is anodization as described above. Not only as a pretreatment for the melting method, but also for various treatment methods for recovering the Group 5 and 6 elements from the substance containing the Group 5 and 6 elements to be adopted to dissolve and remove the ceramics. You can
In such a pre-immersion treatment without energization, the target element is hardly dissolved in the case of metal or carbide, and is slightly dissolved in the case of nitride or oxide, but is anodized by energization. Since the dissolution amount is smaller than that in the case, it is considered that the dissolution amount in the subsequent anodic oxidation/dissolution process is not significantly affected.

以下、本発明を実施例等によりさらに具体的に説明するが、本発明はこの実施例等によって何ら限定されるものではない。 Hereinafter, the present invention will be described more specifically with reference to Examples and the like, but the present invention is not limited to these Examples and the like.

(参考例1;水酸化ナトリウム溶融浴中の含水率の測定)
ガスの供給口と大気に連通した排出口とを有する反応容器(電解槽)を準備し、水酸化ナトリウムを収容して450℃で溶融した。単位時間当たりの流量が一定のArガスを所定温度に保った水浴を通じた後に前記供給口から反応容器に定常的に供給し、前記水浴の温度を変化させることで水酸化ナトリウム溶融浴中の含水率(乃至水蒸気分圧)を調整した。水酸化ナトリウム溶融浴中の含水率は、定常状態となったと考えられる水温変更から24時間後に滴定により求めた。具体的には、溶融試料中に含まれる水酸化ナトリウム重量を酸-塩基滴定により求め、全重量との差分を含水量として評価した。その結果、水酸化ナトリウム溶融浴中の含水率は、水浴の温度が室温(20℃付近)の場合0.2〜0.6wt%の範囲内であり、また、水浴の温度が90℃の場合約2wt%であった。水浴を通じることなくArガスを反応容器に供給する場合には、溶融水酸化ナトリウム中の含水率の定量は困難であるが、0.2wt%未満であることは明らかである。
(Reference Example 1: Measurement of water content in sodium hydroxide molten bath)
A reaction vessel (electrolytic cell) having a gas supply port and an exhaust port communicating with the atmosphere was prepared, and sodium hydroxide was contained and melted at 450°C. The water content in the sodium hydroxide molten bath is changed by constantly supplying Ar gas having a constant flow rate per unit time to the reaction vessel through the water bath kept at a predetermined temperature and changing the temperature of the water bath. The rate (or steam partial pressure) was adjusted. The water content in the sodium hydroxide molten bath was determined by titration 24 hours after changing the water temperature, which is considered to have reached a steady state. Specifically, the weight of sodium hydroxide contained in the molten sample was determined by acid-base titration, and the difference from the total weight was evaluated as the water content. As a result, the water content in the sodium hydroxide molten bath is in the range of 0.2 to 0.6 wt% when the temperature of the water bath is room temperature (around 20°C), and when the temperature of the water bath is 90°C. It was about 2 wt %. When Ar gas is supplied to the reaction vessel without passing through the water bath, it is difficult to quantify the water content in the molten sodium hydroxide, but it is clear that it is less than 0.2 wt %.

(実施例1;電解に及ぼす溶融水酸化ナトリウムの含水率の影響調査1)
参考例1で使用したと同様の反応容器(電解槽)やArガス供給設備を用い、水浴温度を90℃(水酸化ナトリウム溶融浴中の含水率約2wt%)とした。被覆無しのタングステン合金製超硬チップ1個(0.6g、タングステンカーバイドとして90wt%程度、コバルトが5wt%程度)をNi製のプレート上に設置して陽極とし、ニッケル板を陰極として、450℃で溶融した水酸化ナトリウム中において、0.4 Vの定電圧条件で電解を行った。電流値がほぼゼロになった時点(チップが全溶解した状態)で電解を終了した。電流効率はほぼ100%であった。その結果を図1の実線で示す。0.4 Vの比較的低い電圧でありながら5時間程度の比較的短時間で全溶解した。
(Example 1; Investigation 1 of influence of water content of molten sodium hydroxide on electrolysis)
Using the same reaction vessel (electrolysis cell) and Ar gas supply equipment as used in Reference Example 1, the water bath temperature was set to 90° C. (water content in the sodium hydroxide molten bath of about 2 wt %). One uncoated tungsten alloy carbide tip (0.6 g, about 90 wt% tungsten carbide, about 5 wt% cobalt) was placed on a Ni plate as an anode, and a nickel plate as a cathode at 450°C. Electrolysis was carried out in the sodium hydroxide melted in step 1 under constant voltage conditions of 0.4 V. The electrolysis was terminated when the current value became almost zero (the chip was completely dissolved). The current efficiency was almost 100%. The result is shown by the solid line in FIG. Although the voltage was relatively low at 0.4 V, total dissolution was achieved in a relatively short time of about 5 hours.

(比較例1)
定電圧を1Vとしたこと、及び、Arガスを水浴を通じずに反応容器に供給したこと(水酸化ナトリウム溶融浴中の含水率0.2wt%未満)以外は実施例1と全く同様にして電解を行った。電流効率はほぼ100%であった。その結果を図1の破線で示す。水酸化ナトリウム溶融浴中の含水率が約0.2wt%未満と低い場合、全溶解に電圧1Vでかつ14時間程度必要であった。
(Comparative Example 1)
Electrolysis was carried out in exactly the same manner as in Example 1 except that the constant voltage was 1 V and that Ar gas was supplied to the reaction vessel without passing through a water bath (water content in the sodium hydroxide molten bath was less than 0.2 wt%). I went. The current efficiency was almost 100%. The result is shown by a broken line in FIG. When the water content in the sodium hydroxide molten bath was as low as less than about 0.2 wt %, the total dissolution required a voltage of 1 V and about 14 hours.

(水酸化ナトリウム溶融浴中の含水率の影響調査1の結果評価)
上記実施例1と比較例1の結果から、水酸化ナトリウム溶融浴中の含水率(水蒸気分圧)を高くすることにより、電解に必要な電圧を1Vから0.4Vに低減できるとともに、溶解に要する時間を約1/3程度と効率的な溶解を行うことができることが明らかとなった。
(Evaluation of the results of Investigation 1 on the effect of water content in the sodium hydroxide molten bath)
From the results of Example 1 and Comparative Example 1 described above, by increasing the water content (steam partial pressure) in the sodium hydroxide molten bath, the voltage required for electrolysis can be reduced from 1V to 0.4V, and at the same time dissolution It became clear that the time required was about 1/3 and efficient dissolution could be performed.

(比較例2:水酸化ナトリウム溶融浴中のタングステン濃度の電解に及ぼす影響調査)
電解開始前の水酸化ナトリウム溶融浴中にArガス雰囲気下での飽和量を超えるWO3(NaOH:WO3=5:1)を添加したこと以外は比較例1と全く同様にして電解を行った。その結果を図2の実線で示す。比較のため、比較例1の結果を併せて破線で示す。このことから、水酸化ナトリウム溶融浴中のタングステン濃度が増加するとタングステンの溶解が阻害され、電解を効率的に行うことができなくなると言える。なお、比較例2は、水蒸気無し(水浴を通じずにArガスを反応容器に供給したもので、溶融水酸化ナトリウムの含水率0.2wt%未満)の条件下での結果であるが、水酸化ナトリウム溶融浴中のタングステン濃度が増加すると溶解が阻害され、電解を効率的に行うことができなくなるとの傾向は、水酸化ナトリウム溶融浴の含水率が高くても同様であると考えられる。
(Comparative Example 2: Investigation of effect of tungsten concentration in sodium hydroxide molten bath on electrolysis)
Electrolysis was performed in exactly the same manner as in Comparative Example 1 except that WO 3 (NaOH:WO 3 =5:1) exceeding the saturation amount in an Ar gas atmosphere was added to the sodium hydroxide molten bath before the start of electrolysis. It was The result is shown by the solid line in FIG. For comparison, the results of Comparative Example 1 are also shown by a broken line. From this, it can be said that when the concentration of tungsten in the sodium hydroxide molten bath is increased, the dissolution of tungsten is hindered and the electrolysis cannot be efficiently performed. Comparative Example 2 is the result under the condition of no water vapor (Ar gas was supplied to the reaction vessel without passing through a water bath and the water content of molten sodium hydroxide was less than 0.2 wt%). It is considered that the tendency that when the concentration of tungsten in the sodium molten bath increases, the dissolution is hindered and the electrolysis cannot be performed efficiently even if the sodium hydroxide molten bath has a high water content.

(実施例2、比較例2;電解に及ぼす水酸化ナトリウム溶融浴中の含水率の影響調査2)
電解開始前の水酸化ナトリウム溶融浴にWO3を添加した後、次の(1)〜(3)のいずれかの条件で電解を行った。
(1)実施例2A:水浴温度90℃(水酸化ナトリウム溶融浴中の含水率約2wt%)、電圧0.4V、NaOH:WO3=5:1(Arガス雰囲気下での飽和量を超えるWO3を添加)
(2)実施例2B:水浴温度23℃(水酸化ナトリウム溶融浴中の含水率約0.2〜0.6wt%)、電圧1V、NaOH:WO3=4:1(この条件での飽和量を超えるWO3を添加)
(3)比較例2:水浴を介さず(水酸化ナトリウム溶融浴中の含水率0.2wt%未満)、電圧1V、NaOH:WO3=5:1(Arガス雰囲気下での飽和量を超えるWO3を添加)
これら実施例2A、2B、比較例2の結果を図3に示す。
(Example 2, Comparative Example 2; Investigation 2 of influence of water content in sodium hydroxide molten bath on electrolysis)
After addition of WO 3 in sodium hydroxide molten bath prior to initiation of the electrolysis was subjected to electrolytic in one of the following conditions (1) to (3).
(1) Example 2A: Water bath temperature 90° C. (water content in molten sodium hydroxide about 2 wt %), voltage 0.4 V, NaOH:WO 3 =5:1 (saturated amount in Ar gas atmosphere exceeded. WO 3 added)
(2) Example 2B: Water bath temperature 23° C. (water content in sodium hydroxide molten bath of about 0.2 to 0.6 wt %), voltage 1 V, NaOH:WO 3 =4:1 (saturation amount under these conditions More than WO 3 added)
(3) Comparative Example 2: Without passing through a water bath (water content in a sodium hydroxide molten bath of less than 0.2 wt%), voltage of 1 V, NaOH:WO 3 =5:1 (exceeds saturation amount in Ar gas atmosphere) WO 3 added)
The results of Examples 2A and 2B and Comparative Example 2 are shown in FIG.

(含水率の影響調査2の結果評価)
上記実施例2Aと比較例2は含水率のみを変えた条件での結果であり、これらの比較から、水酸化ナトリウム溶融浴中の含水率を高くすることにより、タングステンの飽和溶解度を向上させて電解の阻害要因を減らすことができ、結果として効率的な電解を行えることが明らかとなった。また、実施例2Bと比較例2はともにタングステンが飽和した状態で含水率のみを変えた条件での結果であり、タングステンの飽和した状態であっても、水酸化ナトリウム溶融浴中の含水率を高くすることで、電流値の増加が多少なりとも見込めることが明らかとなった。上記実施例2A,2Bや比較例2以外に水浴温度が20℃や50℃の場合についても同様の電解実験を行った結果では、水浴温度20℃、50℃、90℃における水酸化ナトリウム水浴中のタングステンの飽和溶解度(W純分の質量%)は、それぞれ13wt%、26wt%、40wt%以上と推算された。
(Evaluation of the results of the water content impact survey 2)
The above-mentioned Example 2A and Comparative Example 2 are the results under the condition that only the water content is changed. From these comparisons, it is possible to improve the saturated solubility of tungsten by increasing the water content in the sodium hydroxide molten bath. It has been clarified that the factors that inhibit electrolysis can be reduced, and as a result, efficient electrolysis can be performed. Further, both Example 2B and Comparative Example 2 are the results under the condition that only the water content is changed in the state where tungsten is saturated, and even in the state where tungsten is saturated, the water content in the sodium hydroxide molten bath is It became clear that the increase in the current value can be expected by increasing the value. In addition to the above Examples 2A and 2B and Comparative Example 2, the results of the same electrolysis experiments were conducted at water bath temperatures of 20°C and 50°C. The results show that the water bath temperature was 20°C, 50°C and 90°C in a sodium hydroxide water bath. The saturated solubilities (mass% of pure W) of tungsten were estimated to be 13 wt%, 26 wt% and 40 wt% or more, respectively.

本発明の溶解、回収方法や、溶解、回収装置は、使用済みの超硬工具、各種金属製品、触媒、及びこれらの製造工程で出る工程内廃棄物等から、タングステン、モリブデン、ニオブ、タンタル等の対象元素をアルカリ金属水酸化物等の溶融物中に効率的に溶解することができるものであるから、それらの対象元素の回収、リサイクルに有効に利用することができる。




The melting and collecting method and the melting and collecting apparatus of the present invention are used for tungsten, molybdenum, niobium, tantalum, etc. from used cemented carbide tools, various metal products, catalysts, and in-process wastes produced in the manufacturing process thereof. Since the target element of (1) can be efficiently dissolved in a melt such as an alkali metal hydroxide, it can be effectively used for recovery and recycling of the target element.




Claims (10)

アルカリ金属水酸化物、アルカリ土類金属水酸化物、これらの混合水酸化物、又は、前記水酸化物のいずれかを主成分として含むものの溶融物中において、第5族元素及び/又は第6族元素を含む物質を電解して第5族元素及び/又は第6族元素を前記溶融物中に溶解する第5族元素及び/又は第6族元素の溶解方法であって、前記溶融物の含水率を0.2〜5wt%とすることを特徴とする溶解方法。 In a melt of an alkali metal hydroxide, an alkaline earth metal hydroxide, a mixed hydroxide thereof, or one containing any of the above-mentioned hydroxides as a main component, a Group 5 element and/or a Group 6 element A method for dissolving a Group 5 element and/or a Group 6 element, comprising electrolyzing a substance containing a Group element to dissolve the Group 5 element and/or the Group 6 element in the melt, comprising: A dissolution method characterized in that the water content is 0.2 to 5 wt %. 前記溶融物の含水率の調整に、水蒸気若しくは水蒸気を含有するガスを前記溶融物中に通すか、又は、前記溶融物を収容した電解槽の気相中に供給することを特徴とする請求項1に記載の第5族元素及び/又は第6族元素の溶解方法。 In order to adjust the water content of the melt, water vapor or a gas containing water vapor is passed through the melt, or is supplied into the gas phase of an electrolytic cell containing the melt. 1. The method for dissolving a Group 5 element and/or a Group 6 element according to 1. アルカリ金属水酸化物として水酸化ナトリウムを用いる請求項1又は2に記載の第5族元素及び/又は第6族元素の溶解方法。 The method for dissolving a Group 5 element and/or a Group 6 element according to claim 1 or 2, wherein sodium hydroxide is used as the alkali metal hydroxide. 第5族元素及び/又は第6族元素を含む物質が、タングステン、モリブデン、ニオブ、タンタルのうちの少なくとも1種を含むものである請求項1〜3のいずれか1項に記載の第5族元素及び/又は第6族元素の溶解方法。 The Group 5 element according to any one of claims 1 to 3, wherein the substance containing a Group 5 element and/or a Group 6 element contains at least one of tungsten, molybdenum, niobium, and tantalum. And/or a method for dissolving a Group 6 element. 請求項1〜4のいずれか1項に記載の溶解方法により得られた第5族元素及び/又は第6族元素の濃度の増加した溶融物を水に溶解させて第5族元素及び/又は第6族元素のオキソ酸塩の水溶液とする第5族元素及び/又は第6族元素の溶解方法。 A molten material having an increased concentration of a Group 5 element and/or a Group 6 element obtained by the dissolution method according to any one of claims 1 to 4 is dissolved in water to obtain a Group 5 element and/or A method for dissolving a Group 5 element and/or a Group 6 element in an aqueous solution of a Group 6 element oxoacid salt. 請求項1〜4のいずれか1項に記載の溶解方法を用いて第5族元素及び/又は第6族元素を前記溶融物中に溶解した後、第5族元素及び/又は第6族元素を含む化合物の前記溶融物中での飽和溶解度を低下することにより前記化合物を沈殿させて回収する第5族元素及び/又は第6族元素の回収方法。 After dissolving the Group 5 element and/or the Group 6 element in the melt using the melting method according to any one of claims 1 to 4, the Group 5 element and/or the Group 6 element A method for recovering a Group 5 element and/or a Group 6 element, which comprises precipitating and recovering a compound containing, by reducing the saturated solubility thereof in the melt. 前記溶融物の飽和溶解度の低下を、前記溶融物の含水率の低下及び/又は溶融温度の低下により行う請求項6に記載の第5族元素及び/又は第6族元素の回収方法。 The method for recovering a Group 5 element and/or a Group 6 element according to claim 6, wherein the saturation solubility of the melt is lowered by lowering the water content of the melt and/or lowering the melting temperature. 溶融物の含水率が0.2〜5.0wt%の電解槽と、溶融物の含水率が電解槽に比較して低い回収槽とを設け、電解により第5族元素及び/又は第6族元素の濃度の増加した溶融物を回収槽に移送して第5族元素及び/又は第6族元素を含む化合物を沈殿させ、回収槽の第5族元素及び/又は第6族元素の濃度の低下した溶融物を電解槽に返送することを特徴とする請求項6又は7に記載の第5族元素及び/又は第6族元素の回収方法。 An electrolysis tank having a water content of the melt of 0.2 to 5.0 wt% and a recovery tank having a water content of the melt of which is lower than that of the electrolysis tank are provided, and electrolysis is performed to provide a group 5 element and/or a group 6 The melt having the increased element concentration is transferred to the recovery tank to precipitate the compound containing the Group 5 element and/or the Group 6 element, and the concentration of the Group 5 element and/or the Group 6 element in the recovery tank is increased. The method for recovering a Group 5 element and/or a Group 6 element according to claim 6 or 7, wherein the lowered melt is returned to the electrolytic cell. 陰極と、第5族元素及び/又は第6族元素を含む物質を保持する陽極とを備え、アルカリ金属水酸化物、アルカリ土類金属水酸化物、これらの混合水酸化物、又は、前記水酸化物のいずれかを主成分として含むものの溶融物を収容した電解槽と、前記溶融物の含水率を調整する含水率調整手段とを具備することを特徴とする第5族元素及び/又は第6族元素の溶解又は溶解・回収装置。 An alkali metal hydroxide, an alkaline earth metal hydroxide, a mixed hydroxide thereof, or the above water, which is provided with a cathode and an anode holding a substance containing a Group 5 element and/or a Group 6 element A Group 5 element and/or a Group 5 element characterized by comprising an electrolytic cell containing a melt containing one of the oxides as a main component and a water content adjusting means for adjusting the water content of the melt. Dissolution or dissolution/recovery device for Group 6 elements. 陰極と、第5族元素及び/又は第6族元素を含む物質を保持する陽極とを備え、アルカリ金属水酸化物、アルカリ土類金属水酸化物、これらの混合水酸化物、又は、前記水酸化物のいずれかを主成分として含むものの溶融物を収容した電解槽と、アルカリ金属水酸化物、アルカリ土類金属水酸化物、これらの混合水酸化物、又は、前記水酸化物のいずれかを主成分として含むものの溶融物を収容した回収槽と、電解槽に収容した溶融物の含水率を高く保持する高含水率調整手段と、回収槽に収容した溶融物の含水率を電解槽より低く保持する低含水率調整手段及び/又は回収槽に収容した溶融物の溶融温度を電解槽より低く保持する溶融温度調整手段と、電解槽中の第5族元素及び/又は第6族元素の濃度の増加した溶融物を回収槽に移送する溶融物移送手段と、回収槽中の第5族元素及び/又は第6族元素の濃度の低下した溶融物を電解槽に返送する返送手段を具備することを特徴とする第5族元素及び/又は第6族元素の溶解・回収装置。 An alkali metal hydroxide, an alkaline earth metal hydroxide, a mixed hydroxide thereof, or the above water, which is provided with a cathode and an anode holding a substance containing a Group 5 element and/or a Group 6 element An electrolytic cell containing a melt containing one of the oxides as a main component, an alkali metal hydroxide, an alkaline earth metal hydroxide, a mixed hydroxide thereof, or one of the hydroxides. The recovery tank containing the melt of the one containing as a main component, a high water content adjusting means for maintaining a high water content of the melt contained in the electrolysis tank, the water content of the melt contained in the recovery tank from the electrolytic tank A low water content adjusting means for maintaining a low temperature and/or a melting temperature adjusting means for maintaining a melting temperature of the melt contained in the recovery tank lower than that in the electrolytic cell; and a group 5 element and/or a group 6 element in the electrolytic cell. A melt transfer means for transferring the melt with an increased concentration to the recovery tank, and a return means for returning the melt with a decreased concentration of the Group 5 element and/or the Group 6 element in the recovery tank to the electrolytic cell A dissolution/recovery device for a Group 5 element and/or a Group 6 element, characterized in that
JP2018502514A 2016-03-03 2016-10-27 Method and apparatus for dissolving and recovering group 5 element and/or group 6 element with controlled water vapor partial pressure Active JP6747641B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2016041063 2016-03-03
JP2016041063 2016-03-03
PCT/JP2016/081820 WO2017149835A1 (en) 2016-03-03 2016-10-27 Method and apparatus for dissolving and collecting group 5 elements and/or group 6 elements in which water vapor pressure is controlled

Publications (2)

Publication Number Publication Date
JPWO2017149835A1 JPWO2017149835A1 (en) 2018-10-25
JP6747641B2 true JP6747641B2 (en) 2020-08-26

Family

ID=59743712

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018502514A Active JP6747641B2 (en) 2016-03-03 2016-10-27 Method and apparatus for dissolving and recovering group 5 element and/or group 6 element with controlled water vapor partial pressure

Country Status (2)

Country Link
JP (1) JP6747641B2 (en)
WO (1) WO2017149835A1 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4900351B2 (en) * 2008-09-19 2012-03-21 住友電気工業株式会社 Structure manufacturing method and structure manufacturing apparatus
JP5569934B2 (en) * 2009-07-07 2014-08-13 独立行政法人産業技術総合研究所 Method for dissolving Group 5 element and / or Group 6 element

Also Published As

Publication number Publication date
JPWO2017149835A1 (en) 2018-10-25
WO2017149835A1 (en) 2017-09-08

Similar Documents

Publication Publication Date Title
US10519556B2 (en) Process for recycling waste carbide
TWI432609B (en) Method for recovering valuable metal from indium - zinc oxide waste
JP5569934B2 (en) Method for dissolving Group 5 element and / or Group 6 element
JP2013036111A (en) Method of recovering tungsten
KR20200083578A (en) How to dispose of lithium ion waste battery
JP3856340B2 (en) Method of decomposing a superalloy and recovering metal components from it
JP6747641B2 (en) Method and apparatus for dissolving and recovering group 5 element and/or group 6 element with controlled water vapor partial pressure
TWI612013B (en) Method for manufacturing tungsten carbide
US10422022B2 (en) Method for producing tungsten
WO2015025304A2 (en) A process for the recovery of a tin material from electronic scrap and an electrolytic tin material obtained using the process
KR20200047446A (en) Electrode and method for manufacturing same, and method for producing regenerative electrode
JP5124824B2 (en) Method for treating a compound containing gallium
JP6159297B2 (en) Silver recovery method
CN113718268A (en) Method for recycling tungsten waste
JP6784510B2 (en) Method for producing alcohol amine polytungstate
JP2000290736A (en) Treatment of electric furnace dust
RU2285662C2 (en) METHOD OF SEDIMENTATION OF THE ELEMENTARY SELENIUM FROM THE ACID SOLUTIONS CONTAINING Se(VI)
Kosugi et al. Subcritical water electrolysis for cobalt recovery from spent lithium-ion batteries in an acidic environment
JP2013199702A (en) Method of removing oxide film on surface of copper or copper-base alloy
JP5886022B2 (en) Method for removing oxide film on copper or copper base alloy surface
CN115974071A (en) Method for comprehensively recycling aluminum electrolysis waste cathode by water leaching-pressurization purification
Malyshev et al. Environmentally Appropriate Technologies and Resource Saving in High-Temperature Electrochemical Synthesis, Deposition of Metal Coatings on Superhard Materials, and Processing of Used Cutting and Boring Tools
CN105624729A (en) Anode effect treatment device and method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180706

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190701

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20190719

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200715

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200721

R150 Certificate of patent or registration of utility model

Ref document number: 6747641

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250