WO2017149835A1 - Method and apparatus for dissolving and collecting group 5 elements and/or group 6 elements in which water vapor pressure is controlled - Google Patents

Method and apparatus for dissolving and collecting group 5 elements and/or group 6 elements in which water vapor pressure is controlled Download PDF

Info

Publication number
WO2017149835A1
WO2017149835A1 PCT/JP2016/081820 JP2016081820W WO2017149835A1 WO 2017149835 A1 WO2017149835 A1 WO 2017149835A1 JP 2016081820 W JP2016081820 W JP 2016081820W WO 2017149835 A1 WO2017149835 A1 WO 2017149835A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
melt
electrolytic cell
metal hydroxide
dissolving
Prior art date
Application number
PCT/JP2016/081820
Other languages
French (fr)
Japanese (ja)
Inventor
大石 哲雄
Original Assignee
国立研究開発法人産業技術総合研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立研究開発法人産業技術総合研究所 filed Critical 国立研究開発法人産業技術総合研究所
Priority to JP2018502514A priority Critical patent/JP6747641B2/en
Publication of WO2017149835A1 publication Critical patent/WO2017149835A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B34/00Obtaining refractory metals
    • C22B34/20Obtaining niobium, tantalum or vanadium
    • C22B34/24Obtaining niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B34/00Obtaining refractory metals
    • C22B34/30Obtaining chromium, molybdenum or tungsten
    • C22B34/34Obtaining molybdenum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B34/00Obtaining refractory metals
    • C22B34/30Obtaining chromium, molybdenum or tungsten
    • C22B34/36Obtaining tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the present invention relates to used cemented carbide tools and various metal products containing Group 5 elements and / or Group 6 elements (hereinafter sometimes referred to as “target elements”) such as tungsten, molybdenum, niobium, and tantalum.
  • target elements such as tungsten, molybdenum, niobium, and tantalum.
  • the present invention relates to a technique for improving the efficiency of dissolution by controlling the partial pressure of water vapor when the target element is dissolved in an alkali metal hydroxide or alkaline earth metal hydroxide melt by electrolysis.
  • Non-Patent Document 1 As conventional techniques for recovering and recycling tungsten, two methods, a zinc treatment method and an oxidation-wet method, are actually in operation (see Non-Patent Document 1). It has problems such as being unable to be removed, requiring many processes, high energy consumption and high economic cost.
  • the present inventor previously described sodium hydroxide or the like as a technology for efficiently dissolving and recovering the target element from a carbide tool or various metal products containing the target element such as tungsten.
  • the technique of anodizing and dissolving the target element in the above-mentioned alkali metal hydroxide or alkaline earth metal hydroxide melt can rapidly dissolve the target element at a relatively low voltage. Although it has excellent features such as less contamination of dissolved impurities and easier control of dissolution compared to other methods, the following problems have been encountered in the course of advancing research. Recognized that it exists. (1) When the partial pressure of water vapor in the atmosphere containing molten alkali metal hydroxide is low, sodium is generated at the cathode as the counter electrode, which may significantly reduce current efficiency and require extra voltage for electrolysis. As a result, power consumption increases.
  • the present invention solves the problems recognized in the above-described test and research process, can reduce the voltage and power required for dissolution, and can improve the solubility of the target element in the melt. It is an issue to provide. Moreover, this invention makes it a subject to provide the collection
  • the present inventor has obtained the following knowledge in the process of advancing various test studies.
  • A In the melt, when the target element is electrolyzed and dissolved, if the water content (or water vapor partial pressure) in the melt is increased, the cathode reaction as the counter electrode proceeds more easily than the generation of sodium. Since the target element can be dissolved by electrolysis even when the voltage is low, power consumption required for electrolysis can be reduced.
  • B When the moisture content in the melt is increased, the solubility of the target element in the melt is improved, so that the amount of melt such as required molten alkali metal hydroxide can be reduced, and the subsequent recovery process can be performed. It is also possible to reduce the amount of necessary chemicals such as neutralization treatment.
  • the target element After dissolving the target element in the melt with a high water content, the target element is oxo of the target element such as Na 2 WO 4 by lowering the water content of the melt or lowering the temperature of the melt. It can be recovered by precipitation as an acid salt.
  • the target element such as Na 2 WO 4
  • the present invention has been completed based on the above findings, and the present invention provides the following invention.
  • ⁇ 2> To adjust the water content of the melt, water vapor or a gas containing water vapor is passed through the melt, or is supplied into the gas phase of an electrolytic cell containing the melt.
  • ⁇ 3> The method for dissolving a Group 5 element and / or a Group 6 element according to ⁇ 1> or ⁇ 2>, wherein sodium hydroxide is used as the alkali metal hydroxide.
  • ⁇ 4> The material according to any one of ⁇ 1> to ⁇ 3>, wherein the substance containing a Group 5 element and / or a Group 6 element contains at least one of tungsten, molybdenum, niobium, and tantalum.
  • a melt having an increased concentration of the Group 5 element and / or the Group 6 element obtained by the dissolving method according to any one of ⁇ 1> to ⁇ 4> is dissolved in water to A method for dissolving a Group 5 element and / or a Group 6 element in an aqueous solution of a Group element and / or Group 6 element oxoacid salt.
  • An electrolytic cell in which the water content of the melt is 0.2 to 5.0 wt% and a recovery tank in which the water content of the melt is lower than that of the electrolytic cell are provided.
  • the melt with increased concentration of the Group 6 element is transferred to the recovery tank to precipitate the Group 5 element and / or the compound containing the Group 6 element, and the Group 5 element and / or Group 6 element of the recovery tank is precipitated.
  • a group 5 element comprising: an electrolytic cell containing a melt of any one of the hydroxides as a main component; and a moisture content adjusting means for adjusting the moisture content of the melt.
  • Group 6 element dissolution or dissolution / recovery device comprising: an electrolytic cell containing a melt of any one of the hydroxides as a main component; and a moisture content adjusting means for adjusting the moisture content of the melt.
  • Group 6 element dissolution or dissolution / recovery device comprising: an electrolytic cell containing a melt of any one of the hydroxides as a main component; and a moisture content adjusting means for adjusting the moisture content of the melt.
  • Group 6 element dissolution or dissolution / recovery device comprising: an electrolytic cell containing a melt of any one
  • a recovery tank containing a melt of any of the above as a main component, a high moisture content adjusting means for maintaining a high moisture content of the melt contained in the electrolytic cell, and a moisture content of the melt contained in the recovery tank.
  • Low moisture content adjusting means that is maintained lower than the electrolytic cell and / or melting temperature adjusting means that maintains the melting temperature of the melt contained in the recovery tank lower than the electrolytic cell, Group 5 element and / or sixth in the electrolytic cell Recovery tank with increased concentration of group elements Group 5 element characterized by comprising melt transfer means for transferring, and return means for returning the melt with reduced concentration of Group 5 element and / or Group 6 element in the recovery tank to the electrolytic cell And / or a Group 6 element dissolution / recovery device.
  • the present invention can include the following embodiments.
  • ⁇ 11> The material according to any one of ⁇ 1> to ⁇ 4>, wherein the substance containing a Group 5 element and / or a Group 6 element is a used cemented carbide tool, a catalyst, and / or a weight. Method for dissolving Group 5 element and / or Group 6 element.
  • ⁇ 12> A substance containing a Group 5 element and / or a Group 6 element in advance, either an alkali metal hydroxide, an alkaline earth metal hydroxide, a mixed hydroxide thereof, or the above hydroxide ⁇ 1> to ⁇ 4> and ⁇ 11>, wherein the element of Group 5 and / or Group 6 is contained in the melt. Dissolution method.
  • the water content adjusting means is configured to pass water vapor or a gas containing water vapor into the melt, or supply it into a gas phase of an electrolytic cell containing the melt.
  • the high moisture content adjusting means passes water vapor or a gas containing water vapor into the melt, or supplies it into the gas phase of an electrolytic cell containing the melt.
  • a voltage necessary for electrolysis can be suppressed.
  • the amount of alkali metal hydroxide or alkaline earth hydroxide such as sodium hydroxide is reduced by appropriately controlling the water content (water vapor partial pressure) in the melt. Therefore, the reagent used for the subsequent neutralization treatment can be reduced in the same manner.
  • the moisture content (steam partial pressure) in the melt is appropriately controlled, or if the saturation solubility of the target element in the melt is adjusted by appropriately controlling the temperature of the melt, electrolysis can be performed.
  • Example 1 and Comparative Example 1 having different water contents (water vapor partial pressure) in the sodium hydroxide molten bath were compared, a tungsten alloy carbide chip was electrolyzed and dissolved in the sodium hydroxide molten bath.
  • the figure which showed the time change of an electric current value The solid line shows Example 1 in which Ar gas was supplied to the reaction vessel (the gas phase of the electrolytic cell) through a 90 ° C. water bath and the broken line shows Comparative Example 1 in which Ar gas was supplied to the reaction vessel without going through the water bath.
  • Comparative Example 2 solid line in which WO 3 exceeding the saturation amount in an Ar atmosphere was previously added to molten sodium hydroxide
  • Comparative Example 1 dashed line in which no addition was made
  • Ar gas was added to the reaction vessel (electrolyzer) without passing through a water bath It is the figure which showed the time change of the electric current value at the time of electrolyzing with a constant voltage of 1V, supplying it to (gas phase).
  • a constant voltage of 0.4 V while adding WO 3 exceeding the saturation amount in an Ar atmosphere to molten sodium hydroxide in advance and supplying Ar gas through a water bath at 90 ° C.
  • Example 2A solid line, water content of about 2 wt%) electrolyzed in Example 2B (single-dotted line, water content of about 0.2 wt%) while supplying Ar gas to the reaction vessel through a 23 ° C. water bath while supplying a constant voltage of 1 V %)
  • Comparative Example 2 dashed line, water content less than about 0.2 wt%) electrolyzed at a constant voltage of 1 V while supplying Ar gas to the reaction vessel without passing through a water bath, the time change of the current value was shown.
  • the elements to be dissolved or recovered in the present invention are Group 5 elements and / or Group 6 elements (target elements), and specifically, W, Mo, Cr, V, Nb, and Ta. Of these, W, Ta, and Mo, which have high practical expectations, are desirable.
  • the substance to be dissolved or recovered containing these elements may be those containing the elements as metals or carbides, used carbide tools, various metal products, catalysts, and Examples include in-process waste generated in these manufacturing processes.
  • the present invention is not limited to these, and any substance may be used as long as it is a substance containing at least one of these elements and can apply a voltage as an anode. Good.
  • Such a substance containing the target element may contain or contain an organic substance such as various plastics as a surface coating material or the like, or a ceramic composed of an element other than the target element may be used as a surface coating material or a binder. It may be provided or contained as a main component or subcomponent.
  • ceramics composed of elements other than the target element include titanium nitride, aluminum nitride, alumina, silica, titanium carbide, titanium carbonitride, titanium aluminum nitride, and aluminum chrome nitride.
  • the alkali metal hydroxide and alkaline earth metal hydroxide used in the dissolution method of the present invention are an electrolyte at the time of anodization and also a solvent for dissolving the target element.
  • Specific examples thereof include sodium hydroxide, potassium hydroxide, lithium hydroxide, calcium hydroxide, and magnesium hydroxide.
  • alkali metal hydroxides are desirable in terms of reactivity and the like, and sodium hydroxide is particularly preferably used among them.
  • These hydroxides may be used alone or as a mixture (mixed hydroxide), and other components and impurities may be mixed or mixed so long as anodization and solubility are not significantly reduced. May be mixed.
  • Examples of other components to be mixed include other hydroxides and electrolytes for adjusting viscosity and conductivity.
  • an alkali metal hydroxide, an alkaline earth metal hydroxide, a mixed hydroxide thereof, or one containing any of the hydroxides as a main component is used in a molten state.
  • the temperature should generally be equal to or higher than the melting point, and the use temperature is determined from the solubility and diffusibility of the target element, the heat resistance of the material used, the economy, the running cost, and the like.
  • the temperature of the melt is advantageous in that the solubility and diffusibility of the target element increase as the temperature increases, but on the other hand, it is disadvantageous in terms of the heat resistance, economics, etc. of the device material.
  • a temperature of about 200 to 600 ° C. can be preferably used.
  • the voltage required for electrolysis of the target element can be reduced by increasing the water content in the molten bath of hydroxides such as alkali metal hydroxides and alkaline earth metal hydroxides.
  • the voltage required for electrolysis of the target element is about 1 V when the moisture content is less than 0.2 wt%, but the moisture content is adjusted to, for example, 1.5 to 2.0 wt% according to the present invention.
  • electrolysis can be performed even at about 0.4V.
  • the saturation solubility of the target element in the melt can be improved, and the dissolution by electrolysis can be made more efficient.
  • the moisture content dependency and the melting temperature dependency of the saturation solubility of the target element can be used to recover the target element. That is, after dissolving the target element in a state where the moisture content in the molten bath is increased to, for example, 1.5 to 2.0 wt%, the moisture content and / or the melting temperature is made lower than at the time of dissolution to reduce the target element.
  • a compound an oxoacid salt of a Group 5,6 element such as sodium tungstate
  • an electrolytic cell with a high water content and melting temperature and a recovery tank with a low water content and melting temperature are provided, and a molten material in which the target element is dissolved by electrolysis in the electrolytic cell and the dissolved concentration of the target element is increased It is possible to recover the target element compound without interrupting the electrolysis by returning the melt of the target element's dissolved concentration to the electrolytic cell.
  • the water content at the time of recovery or in the recovery tank is preferably 0 wt% or close to it in order to improve the efficiency of precipitation and recovery, but comprehensively determine the time required to sufficiently reduce the water content. Can be determined.
  • a lower melting temperature at the time of recovery or in the recovery tank is desirable for improving the efficiency of precipitation and recovery.However, if the melting temperature is lowered too much, the risk of not being able to maintain the molten state increases and energy consumption increases. It can be determined by comprehensive judgment.
  • the water content of the molten bath is, for example, a gas supply port and a gas discharge port communicating with the atmosphere, and using an electrolytic cell containing the molten bath, water or a gas containing water vapor is stored in the electrolytic cell. It can adjust by passing in the said melt, or supplying in the gaseous phase of an electrolytic cell.
  • the water content of the molten bath accommodated in the electrolytic bath is made substantially constant by supplying the gas at a constant flow rate per hour to the water bath and then constantly supplying the gas to the gas supply port of the electrolytic bath. can do.
  • the water content in a sodium hydroxide molten bath at 450 ° C.
  • the moisture content of the molten bath is in the range of 0.2 to 0.6 wt% when the temperature of the water bath is in a steady state at room temperature (around 20 ° C.). In the steady state at 90 ° C., it is about 2 wt%.
  • the water content of the molten bath is less than 0.2 wt%.
  • the atmospheric or gas phase water vapor pressure in contact with the molten bath It is thought that the moisture content will correspond to.
  • the saturated water content of the molten bath can be improved by increasing the pressure of the molten bath atmosphere or the gas phase of the molten bath, so that the control of the pressure further increases the solubility of the target element than under atmospheric pressure.
  • the gas is not limited to an inert gas such as Ar or the like, carbon dioxide gas, nitrogen gas, or the like, but can be an inert gas or an oxidizing gas enriched with oxygen in the air. . It is considered that oxygen in the gas contributes to the oxidation and dissolution of a part of the target element and leads to reduction of power consumption.
  • the apparatus used in the dissolution method of the present invention is not particularly limited, and any apparatus that has been conventionally used for anodization and has heat resistance and alkali resistance can be used as it is, and can be improved in heat resistance. It can also be used by adding. As such an apparatus, not only a batch type but also a continuous type can be used. In general, if the voltage applied to the cathode during anodization is too high, the current efficiency of the anodization decreases and undesirable side reactions occur, and the energy consumption also increases. On the other hand, if it is too low, a sufficient reaction rate cannot be obtained.
  • the water content in the molten bath is 0.2 to 5.0 wt% (the lower limit is preferably 0.5 wt% or more, more preferably 1.0 wt% or more). Accordingly, undesirable side reactions can be suppressed and current efficiency can be made relatively high.
  • the voltage to be applied during the treatment period may be constant. However, in order to shorten the treatment time, the voltage to be applied can be changed within a range where the dissolution treatment can be controlled.
  • the current may be constant, but in this case, it is necessary to check the voltage and adjust the current value, processing time, supply amount of the processing substance, and the like.
  • target elements such as tungsten, molybdenum, niobium, and tantalum are anodized.
  • tungsten or molybdenum is taken as an example, an alkali metal hydroxide is used as an ion represented by WO 4 2 ⁇ or MoO 4 2 ⁇ .
  • Alkaline earth metal hydroxides, mixed hydroxides thereof, or those containing one of the above hydroxides as a main component are considered to be dissolved in the melt.
  • impurities, Fe, Ni, etc. which are impurities, are hardly dissolved, or even if dissolved, it is expected to be deposited on the cathode. Can do.
  • Impurities such as Fe and Ni that do not dissolve in the melt remain on the surface of the object to be dissolved, but oxoacid salts of target elements such as Na 2 WO 4 and Na 2 MoO 4 It is efficiently and controllably dissolved in the melt without much influence.
  • the oxo acid salt of the target element such as Na 2 WO 4 and Na 2 MoO 4 has a high solubility in the melt having a high water content and is also high in temperature. The diffusion rate is also high, and it is considered that the dissolution is efficiently and controllable without much influence of residual impurities.
  • the melt in which the target elements are dissolved and the concentrations of these elements are increased can be easily dissolved in water, and as a result, an aqueous solution of the target element oxo acid salt can be obtained.
  • the temperature should be lowered to a temperature lower than the melting point, desirably less than 100 ° C., more desirably less than 50 ° C. in advance.
  • the substance containing the target element to be treated of the present invention includes or contains organic substances such as various plastics as a surface coating material, etc., titanium nitride, aluminum nitride, alumina, silica, titanium carbonitride, titanium aluminum
  • the material is previously alkali metal. It can be immersed in a melt containing one of a hydroxide, an alkaline earth metal hydroxide, a mixed hydroxide thereof, or the hydroxide as a main component without energization.
  • organic substances such as various plastics exposed on the surface can be decomposed and removed into hydrogen, CO 2 , low molecular gas, etc., and titanium nitride, aluminum nitride, alumina, exposed on the surface, Since surface coating materials and binders containing ceramics such as silica, titanium carbonitride, titanium aluminum nitride, and aluminum chrome nitride can be dissolved and removed, subsequent anodic oxidation and dissolution of Group 5 and 6 elements is efficient. Can be done.
  • the impurities derived from the organic matter in the melt obtained by dissolving the Group 5 and 6 elements can be reduced.
  • the temperature of the melt used for the pretreatment is appropriately determined according to the type of the organic substance to be decomposed and the ceramic to be dissolved.
  • the melting method for dissolving ceramics such as titanium nitride, aluminum nitride, alumina, silica, titanium carbonitride, titanium aluminum nitride, and aluminum chrome nitride exposed on the surface is as described above.
  • the target element is hardly dissolved when it is a metal or carbide, and is slightly dissolved when it is a nitride or oxide, but it is anodized by energization. Since the amount of dissolution is smaller than in the case, it is considered that the amount of dissolution in the subsequent anodic oxidation / dissolution process does not have a great influence.
  • the weight of sodium hydroxide contained in the molten sample was determined by acid-base titration, and the difference from the total weight was evaluated as the water content.
  • the water content in the sodium hydroxide molten bath is within the range of 0.2 to 0.6 wt% when the temperature of the water bath is room temperature (around 20 ° C.), and when the temperature of the water bath is 90 ° C. About 2 wt%.
  • Example 1 Investigation 1 of influence of water content of molten sodium hydroxide on electrolysis
  • the same reaction vessel (electrolyzer) and Ar gas supply equipment as used in Reference Example 1 were used, and the water bath temperature was 90 ° C. (water content in the sodium hydroxide molten bath was about 2 wt%).
  • An uncoated tungsten alloy carbide tip (0.6 g, about 90 wt% as tungsten carbide, about 5 wt% cobalt) is placed on a Ni plate as an anode and a nickel plate as a cathode at 450 ° C.
  • electrolysis was performed under a constant voltage condition of 0.4 V.
  • the electrolysis was terminated when the current value became almost zero (the chip was completely dissolved).
  • the current efficiency was almost 100%.
  • the result is shown by the solid line in FIG. Although it was a relatively low voltage of 0.4 V, it was completely dissolved in a relatively short time of about 5 hours.
  • Example 1 Electrolysis was carried out in the same manner as in Example 1, except that the constant voltage was 1 V and that Ar gas was supplied to the reaction vessel without passing through the water bath (the water content in the sodium hydroxide molten bath was less than 0.2 wt%). Went. The current efficiency was almost 100%. The result is shown by the broken line in FIG. When the water content in the sodium hydroxide molten bath was as low as less than about 0.2 wt%, the total dissolution required a voltage of 1 V and about 14 hours.
  • Comparative Example 2 Investigation of influence of tungsten concentration in sodium hydroxide molten bath on electrolysis
  • the result of Comparative Example 1 is also indicated by a broken line. From this, it can be said that when the concentration of tungsten in the sodium hydroxide molten bath increases, dissolution of tungsten is hindered and electrolysis cannot be performed efficiently.
  • Comparative Example 2 is the result under the condition of no water vapor (Ar gas was supplied to the reaction vessel without passing through a water bath, and the water content of molten sodium hydroxide was less than 0.2 wt%).
  • the tendency that dissolution is inhibited and electrolysis cannot be efficiently performed when the tungsten concentration in the sodium molten bath increases is considered to be the same even when the water content of the sodium hydroxide molten bath is high.
  • Example 2B Water bath temperature 23 ° C.
  • Example 2A and Comparative Example 2 are the results under the condition that only the moisture content was changed. From these comparisons, the saturation solubility of tungsten was improved by increasing the moisture content in the sodium hydroxide molten bath. It has been clarified that the factors that inhibit electrolysis can be reduced, and as a result, efficient electrolysis can be performed. Further, both Example 2B and Comparative Example 2 are the results under the condition that only the moisture content was changed in a state where tungsten was saturated. Even in the saturated state of tungsten, the moisture content in the sodium hydroxide molten bath was changed. It was clarified that the current value can be expected to increase somewhat by increasing the value.
  • the melting / recovering method and the melting / recovering apparatus of the present invention are used for tungsten, molybdenum, niobium, tantalum, etc. from used carbide tools, various metal products, catalysts, and in-process waste produced in these manufacturing processes. These target elements can be efficiently dissolved in a melt such as an alkali metal hydroxide, and thus can be effectively used for recovery and recycling of these target elements.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Processing Of Solid Wastes (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Electrolytic Production Of Metals (AREA)

Abstract

Provided are a dissolving method and a collecting method for a group 5 element and/or a group 6 element with which the voltage and power necessary for dissolution can be reduced and the solubility of said element in a molten material can be improved. The methods are characterized in that when electrolyzing a substance comprising a group 5 element and/or a group 6 element in a molten material of an alkali metal hydroxide, an alkaline earth metal hydroxide, a mixed hydroxide thereof, or a material comprising one of said hydroxides as the main component to dissolve the group 5 element and/or group 6 element in said molten material, the water content of the molten material is 0.2-5 wt%.

Description

水蒸気分圧を制御した第5族元素及び/又は第6族元素の溶解、回収方法と装置Method and apparatus for dissolving and recovering Group 5 element and / or Group 6 element with controlled water vapor partial pressure
  本発明は、タングステン、モリブデン、ニオブ、タンタル等の第5族元素及び/又は第6族元素(以下、「対象元素」ということがある。)を含有する使用済みの超硬工具、各種金属製品等から対象元素をアルカリ金属水酸化物やアルカリ土類金属水酸化物の溶融物中に電解により溶解する際に、水蒸気分圧を制御して溶解を効率化する技術に関する。 The present invention relates to used cemented carbide tools and various metal products containing Group 5 elements and / or Group 6 elements (hereinafter sometimes referred to as “target elements”) such as tungsten, molybdenum, niobium, and tantalum. The present invention relates to a technique for improving the efficiency of dissolution by controlling the partial pressure of water vapor when the target element is dissolved in an alkali metal hydroxide or alkaline earth metal hydroxide melt by electrolysis.
  従来から資源の有効利用を目的として各種元素について、回収、リサイクルの促進が進められてきている。超硬工具、各種金属製品、触媒等への需要が多いタングステン、モリブデン、ニオブ、タンタル等の対象元素についても、その資源の偏在や希少性等から回収、リサイクルに対する期待は非常に大きいものがある。 Conventionally, collection and recycling of various elements have been promoted for the purpose of effective use of resources. For tungsten, molybdenum, niobium, tantalum and other target elements that are in great demand for carbide tools, various metal products, catalysts, etc., there are very high expectations for recovery and recycling due to the uneven distribution and scarcity of their resources. .
  タングステンを回収、リサイクルする従来の技術として、亜鉛処理法と酸化-湿式法の2つが実際に稼働しているが(非特許文献1参照)、これらの従来の技術は、一般的に、不純物の除去ができない、多くの工程を必要とする、エネルギー多消費で経済コストも高いなどの問題点を有している。 As conventional techniques for recovering and recycling tungsten, two methods, a zinc treatment method and an oxidation-wet method, are actually in operation (see Non-Patent Document 1). It has problems such as being unable to be removed, requiring many processes, high energy consumption and high economic cost.
  また、検討中や研究中の回収プロセスとして、超硬工具スクラップを溶融状態のNaNO3と反応させてNa2WO4を生成させ、これを水で溶解してNa2WO4溶液を作るものや、特殊鋼吹製時の溶滓にソーダ灰または苛性ソーダを加えて、タングステン、モリブデンを水溶性の塩の組成に変換せしめて冷却凝固し、湿式粉砕装置により残留金属粒をスラグより分離すると同時に、スラグ中のタングステン、モリブデン塩を水に溶解するもの等も知られているが(非特許文献1、特許文献1参照)、それぞれ多くの問題点を有している。 In addition, as a recovery process under study or research, a carbide tool scrap is reacted with molten NaNO 3 to form Na 2 WO 4 , which is dissolved in water to form a Na 2 WO 4 solution. , Add soda ash or caustic soda to hot metal at the time of special steel blowing, convert tungsten and molybdenum into water-soluble salt composition, cool and solidify, and simultaneously separate residual metal particles from slag by wet pulverizer, Although what melt | dissolves the tungsten in a slag, molybdenum salt in water is known (refer nonpatent literature 1, patent document 1), each has many problems.
 そのような従来技術を背景として、本発明者は、先に、タングステン等の対象元素を含む超硬工具や各種金属製品等から対象元素を効率的に溶解し回収する技術として、水酸化ナトリウム等のアルカリ金属水酸化物やアルカリ土類水酸化物の400~600℃の溶融物中において対象元素を陽極酸化し溶解する技術を開発した(特許文献2参照)。 Against the background of such conventional technology, the present inventor previously described sodium hydroxide or the like as a technology for efficiently dissolving and recovering the target element from a carbide tool or various metal products containing the target element such as tungsten. Has developed a technique for anodizing and dissolving the target element in a 400 to 600 ° C. melt of alkali metal hydroxide or alkaline earth hydroxide (see Patent Document 2).
特開昭50-161500号公報JP 50-161500 A 特開2011-32578号公報JP 2011-32578 A
  上述のアルカリ金属水酸化物やアルカリ土類金属水酸化物の溶融物中において対象元素を陽極酸化し溶解する技術は、比較的低い電圧で迅速に対象元素を溶解することができる、物質中の不純物の溶解物中への混入が少ない、他の手法に比べて溶解の制御も容易であるなどの優れた点を有しているものの、試験研究を進める過程で、次のような問題点が存在することを認識した。
(1)溶融アルカリ金属水酸化物が存在する雰囲気の水蒸気分圧が低い場合、対極である陰極でナトリウムが発生し、電流効率が大幅に低下する恐れがあるとともに電解に余計な電圧が必要となり、結果として消費電力が増大する。
(2)溶融アルカリ金属水酸化物が存在する雰囲気の水蒸気分圧が低い場合、溶融アルカリ金属水酸化物におけるタングステン等の対象元素の溶解度が低く、早い段階で飽和に達し、電解をさらに進めるには電解槽の溶融アルカリ金属水酸化物を頻繁に入れ替える必要があり、一定量の対象元素を処理するために必要な薬剤およびエネルギー量が膨大になる。
The technique of anodizing and dissolving the target element in the above-mentioned alkali metal hydroxide or alkaline earth metal hydroxide melt can rapidly dissolve the target element at a relatively low voltage. Although it has excellent features such as less contamination of dissolved impurities and easier control of dissolution compared to other methods, the following problems have been encountered in the course of advancing research. Recognized that it exists.
(1) When the partial pressure of water vapor in the atmosphere containing molten alkali metal hydroxide is low, sodium is generated at the cathode as the counter electrode, which may significantly reduce current efficiency and require extra voltage for electrolysis. As a result, power consumption increases.
(2) When the partial pressure of water vapor in the atmosphere where the molten alkali metal hydroxide is present is low, the solubility of the target element such as tungsten in the molten alkali metal hydroxide is low, reaches saturation at an early stage, and further proceeds with electrolysis Requires frequent replacement of the molten alkali metal hydroxide in the electrolytic cell, and enormous amounts of chemicals and energy are required to treat a certain amount of the target element.
 本発明は、上述のような試験研究過程で認識した問題点を解決し、溶解に要する電圧や電力を低減可能で、かつ、溶融物中の対象元素の溶解度を向上可能な対象元素の溶解方法を提供することを課題とする。
 また、本発明は、前記溶解方法を利用した対象元素の回収方法や溶解、回収装置を提供することを課題とする。
The present invention solves the problems recognized in the above-described test and research process, can reduce the voltage and power required for dissolution, and can improve the solubility of the target element in the melt. It is an issue to provide.
Moreover, this invention makes it a subject to provide the collection | recovery method and melt | dissolution and collection | recovery apparatus of the target element using the said dissolution method.
  前記課題の下、各種の試験研究を進める過程で、本発明者は次のような知見を得た。
(A)溶融物中において、対象元素を電解して溶解する際、溶融物中の含水率(乃至水蒸気分圧)を高くすると、対極である陰極の反応がナトリウム発生よりも容易に進行する水素発生になり、電圧が低くても電解による対象元素の溶解を進めることができるので、電解に必要な消費電力を低減することができる。
(B)溶融物中の含水率を高くすると、溶融物における対象元素の溶解度が向上するので、必要とする溶融アルカリ金属水酸化物などの溶融物量を低減することができ、その後の回収プロセスに必要な中和処理等の薬剤量なども低減することができる。
(C)高含水率の溶融物中で対象元素を溶解した後、溶融物の含水率を低下したり、溶融物の温度を低下することにより対象元素をNa2WO4等の対象元素のオキソ酸塩として沈殿させて回収することができる。
Under the above-mentioned problems, the present inventor has obtained the following knowledge in the process of advancing various test studies.
(A) In the melt, when the target element is electrolyzed and dissolved, if the water content (or water vapor partial pressure) in the melt is increased, the cathode reaction as the counter electrode proceeds more easily than the generation of sodium. Since the target element can be dissolved by electrolysis even when the voltage is low, power consumption required for electrolysis can be reduced.
(B) When the moisture content in the melt is increased, the solubility of the target element in the melt is improved, so that the amount of melt such as required molten alkali metal hydroxide can be reduced, and the subsequent recovery process can be performed. It is also possible to reduce the amount of necessary chemicals such as neutralization treatment.
(C) After dissolving the target element in the melt with a high water content, the target element is oxo of the target element such as Na 2 WO 4 by lowering the water content of the melt or lowering the temperature of the melt. It can be recovered by precipitation as an acid salt.
  本発明は、上記のような知見に基づいて完成に至ったものであり、本件では、以下の発明が提供される。
<1>アルカリ金属水酸化物、アルカリ土類金属水酸化物、これらの混合水酸化物、又は、前記水酸化物のいずれかを主成分として含むものの溶融物中において、第5族元素及び/又は第6族元素を含む物質を電解して第5族元素及び/又は第6族元素を前記溶融物中に溶解する第5族元素及び/又は第6族元素の溶解方法であって、前記溶融物の含水率を0.2~5.0wt%とすることを特徴とする溶解方法。
<2>前記溶融物の含水率の調整に、水蒸気若しくは水蒸気を含有するガスを前記溶融物中に通すか、又は、前記溶融物を収容した電解槽の気相中に供給することを特徴とする<1>に記載の第5族元素及び/又は第6族元素の溶解方法。
<3>アルカリ金属水酸化物として水酸化ナトリウムを用いる<1>又は<2>に記載の第5族元素及び/又は第6族元素の溶解方法。
<4>第5族元素及び/又は第6族元素を含む物質が、タングステン、モリブデン、ニオブ、タンタルのうちの少なくとも1種を含むものである<1>~<3>のいずれか1項に記載の第5族元素及び/又は第6族元素の溶解方法。
<5><1>~<4>のいずれか1項に記載の溶解方法により得られた第5族元素及び/又は第6族元素の濃度の増加した溶融物を水に溶解させて第5族元素及び/又は第6族元素のオキソ酸塩の水溶液とする第5族元素及び/又は第6族元素の溶解方法。
<6><1>~<4>のいずれか1項に記載の溶解方法を用いて第5族元素及び/又は第6族元素を前記溶融物中に溶解した後、第5族元素及び/又は第6族元素を含む化合物の前記溶融物中での飽和溶解度を低下することにより前記化合物を沈殿させて回収する第5族元素及び/又は第6族元素の回収方法。
<7>前記溶融物の飽和溶解度の低下を、前記溶融物の含水率の低下及び/又は溶融温度の低下により行う<6>に記載の第5族元素及び/又は第6族元素の回収方法。
<8>溶融物の含水率が0.2~5.0wt%の電解槽と、溶融物の含水率が電解槽に比較して低い回収槽とを設け、電解により第5族元素及び/又は第6族元素の濃度の増加した溶融物を回収槽に移送して第5族元素及び/又は第6族元素を含む化合物を沈殿させ、回収槽の第5族元素及び/又は第6族元素の濃度の低下した溶融物を電解槽に返送することを特徴とする<6>又は<7>に記載の第5族元素及び/又は第6族元素の回収方法。
<9>陰極と、第5族元素及び/又は第6族元素を含む物質を保持する陽極とを備え、アルカリ金属水酸化物、アルカリ土類金属水酸化物、これらの混合水酸化物、又は、前記水酸化物のいずれかを主成分として含むものの溶融物を収容した電解槽と、前記溶融物の含水率を調整する含水率調整手段とを具備することを特徴とする第5族元素及び/又は第6族元素の溶解又は溶解・回収装置。
<10>陰極と、第5族元素及び/又は第6族元素を含む物質を保持する陽極とを備え、アルカリ金属水酸化物、アルカリ土類金属水酸化物、これらの混合水酸化物、又は、前記水酸化物のいずれかを主成分として含むものの溶融物を収容した電解槽と、アルカリ金属水酸化物、アルカリ土類金属水酸化物、これらの混合水酸化物、又は、前記水酸化物のいずれかを主成分として含むものの溶融物を収容した回収槽と、電解槽に収容した溶融物の含水率を高く保持する高含水率調整手段と、回収槽に収容した溶融物の含水率を電解槽より低く保持する低含水率調整手段及び/又は回収槽に収容した溶融物の溶融温度を電解槽より低く保持する溶融温度調整手段と、電解槽中の第5族元素及び/又は第6族元素の濃度の増加した溶融物を回収槽に移送する溶融物移送手段と、回収槽中の第5族元素及び/又は第6族元素の濃度の低下した溶融物を電解槽に返送する返送手段を具備することを特徴とする第5族元素及び/又は第6族元素の溶解・回収装置。
The present invention has been completed based on the above findings, and the present invention provides the following invention.
<1> In a melt containing an alkali metal hydroxide, an alkaline earth metal hydroxide, a mixed hydroxide thereof, or any of the above hydroxides as a main component, a Group 5 element and / or Or a method for dissolving a Group 5 element and / or a Group 6 element in which a Group 5 element and / or a Group 6 element is dissolved in the melt by electrolyzing a substance containing the Group 6 element, A melting method, wherein the water content of the melt is 0.2 to 5.0 wt%.
<2> To adjust the water content of the melt, water vapor or a gas containing water vapor is passed through the melt, or is supplied into the gas phase of an electrolytic cell containing the melt. The method for dissolving the Group 5 element and / or Group 6 element according to <1>.
<3> The method for dissolving a Group 5 element and / or a Group 6 element according to <1> or <2>, wherein sodium hydroxide is used as the alkali metal hydroxide.
<4> The material according to any one of <1> to <3>, wherein the substance containing a Group 5 element and / or a Group 6 element contains at least one of tungsten, molybdenum, niobium, and tantalum. Method for dissolving Group 5 element and / or Group 6 element.
<5> A melt having an increased concentration of the Group 5 element and / or the Group 6 element obtained by the dissolving method according to any one of <1> to <4> is dissolved in water to A method for dissolving a Group 5 element and / or a Group 6 element in an aqueous solution of a Group element and / or Group 6 element oxoacid salt.
<6> After the Group 5 element and / or Group 6 element is dissolved in the melt using the dissolution method according to any one of <1> to <4>, the Group 5 element and / or Alternatively, a method for recovering a Group 5 element and / or a Group 6 element that precipitates and recovers the compound by reducing the saturation solubility of the compound containing the Group 6 element in the melt.
<7> The method for recovering a Group 5 element and / or a Group 6 element according to <6>, wherein the saturation solubility of the melt is decreased by decreasing the water content of the melt and / or decreasing the melting temperature. .
<8> An electrolytic cell in which the water content of the melt is 0.2 to 5.0 wt% and a recovery tank in which the water content of the melt is lower than that of the electrolytic cell are provided. The melt with increased concentration of the Group 6 element is transferred to the recovery tank to precipitate the Group 5 element and / or the compound containing the Group 6 element, and the Group 5 element and / or Group 6 element of the recovery tank is precipitated. The method for recovering a Group 5 element and / or a Group 6 element according to <6> or <7>, wherein the melt having a reduced concentration is returned to the electrolytic cell.
<9> a cathode and an anode holding a substance containing a Group 5 element and / or a Group 6 element, an alkali metal hydroxide, an alkaline earth metal hydroxide, a mixed hydroxide thereof, or A group 5 element comprising: an electrolytic cell containing a melt of any one of the hydroxides as a main component; and a moisture content adjusting means for adjusting the moisture content of the melt. / Or Group 6 element dissolution or dissolution / recovery device.
<10> a cathode and an anode holding a substance containing a Group 5 element and / or a Group 6 element, an alkali metal hydroxide, an alkaline earth metal hydroxide, a mixed hydroxide thereof, or An electrolytic cell containing a melt of any one of the hydroxides as a main component, an alkali metal hydroxide, an alkaline earth metal hydroxide, a mixed hydroxide thereof, or the hydroxide A recovery tank containing a melt of any of the above as a main component, a high moisture content adjusting means for maintaining a high moisture content of the melt contained in the electrolytic cell, and a moisture content of the melt contained in the recovery tank. Low moisture content adjusting means that is maintained lower than the electrolytic cell and / or melting temperature adjusting means that maintains the melting temperature of the melt contained in the recovery tank lower than the electrolytic cell, Group 5 element and / or sixth in the electrolytic cell Recovery tank with increased concentration of group elements Group 5 element characterized by comprising melt transfer means for transferring, and return means for returning the melt with reduced concentration of Group 5 element and / or Group 6 element in the recovery tank to the electrolytic cell And / or a Group 6 element dissolution / recovery device.
本発明は、次のような実施態様を含むことができる。
<11>第5族元素及び/又は第6族元素を含む物質が、使用済みの超硬工具、触媒、及び/又は、おもりである<1>~<4>のいずれか1項に記載の第5族元素及び/又は第6族元素の溶解方法。
<12>第5族元素及び/又は第6族元素を含む物質を予め、アルカリ金属水酸化物、アルカリ土類金属水酸化物、これらの混合水酸化物、又は、前記水酸化物のいずれかを主成分として含むものの溶融物中に浸漬する予備浸漬工程を具備する、<1>~<4>、<11>のいずれか1項に記載の第5族元素及び/又は第6族元素の溶解方法。
<13>水蒸気を含有するガスは、ガスを20~100℃の水浴に通じたものである<2>に記載の溶解方法。
<14><11>~<13>のいずれか1項に記載の溶解方法により得られた第5族元素及び/又は第6族元素の濃度の増加した溶融物を水に溶解させて第5族元素及び/又は第6族元素のオキソ酸塩の水溶液とする第5族元素及び/又は第6族元素の溶解方法。
<15><11>~<13>のいずれか1項に記載の溶解方法を用いて第5族元素及び/又は第6族元素を前記溶融物中に溶解した後、第5族元素及び/又は第6族元素を含む化合物の前記溶融物中での飽和溶解度を低下することにより前記化合物を沈殿させて回収する第5族元素及び/又は第6族元素の回収方法。
<16> 前記溶融物中での飽和溶解度の低下を、前記溶融物の含水率の低下及び/又は溶融物の温度の低下により行う<15>に記載の第5族元素及び/又は第6族元素の回収方法。
<17>前記含水率調整手段は、水蒸気若しくは水蒸気を含有するガスを前記溶融物中に通すか、又は、前記溶融物を収容した電解槽の気相中に供給するものである<9>に記載の第5族元素及び/又は第6族元素の溶解又は溶解・回収装置。
<18>前記含水率調整手段は、20~100℃の水浴に通じたガスを供給するものである<17>に記載の第5族元素及び/又は第6族元素の溶解又は溶解・回収装置。
<19>前記高含水率調整手段は、水蒸気若しくは水蒸気を含有するガスを前記溶融物中に通すか、又は、前記溶融物を収容した電解槽の気相中に供給するものである<10>に記載の第5族元素及び/又は第6族元素の溶解・回収装置。
<20>前記高含水率調整手段は、20~100℃の水浴に通じたガスを供給するものである<19>に記載の第5族元素及び/又は第6族元素の溶解・回収装置。
The present invention can include the following embodiments.
<11> The material according to any one of <1> to <4>, wherein the substance containing a Group 5 element and / or a Group 6 element is a used cemented carbide tool, a catalyst, and / or a weight. Method for dissolving Group 5 element and / or Group 6 element.
<12> A substance containing a Group 5 element and / or a Group 6 element in advance, either an alkali metal hydroxide, an alkaline earth metal hydroxide, a mixed hydroxide thereof, or the above hydroxide <1> to <4> and <11>, wherein the element of Group 5 and / or Group 6 is contained in the melt. Dissolution method.
<13> The dissolving method according to <2>, wherein the gas containing water vapor is obtained by passing the gas through a water bath at 20 to 100 ° C.
<14><11> to <13> The melt having an increased concentration of the Group 5 element and / or the Group 6 element obtained by the dissolving method according to any one of the items A method for dissolving a Group 5 element and / or a Group 6 element in an aqueous solution of a Group element and / or Group 6 element oxoacid salt.
<15> After the Group 5 element and / or the Group 6 element are dissolved in the melt using the dissolution method according to any one of <11> to <13>, the Group 5 element and / or Alternatively, a method for recovering a Group 5 element and / or a Group 6 element that precipitates and recovers the compound by reducing the saturation solubility of the compound containing the Group 6 element in the melt.
<16> The group 5 element and / or the group 6 according to <15>, wherein the saturation solubility in the melt is decreased by decreasing the water content of the melt and / or decreasing the temperature of the melt. Element recovery method.
<17> The water content adjusting means is configured to pass water vapor or a gas containing water vapor into the melt, or supply it into a gas phase of an electrolytic cell containing the melt. An apparatus for dissolving or dissolving / recovering the Group 5 element and / or Group 6 element described.
<18> The apparatus for dissolving or dissolving / recovering a group 5 element and / or a group 6 element according to <17>, wherein the moisture content adjusting means supplies gas passed through a water bath at 20 to 100 ° C. .
<19> The high moisture content adjusting means passes water vapor or a gas containing water vapor into the melt, or supplies it into the gas phase of an electrolytic cell containing the melt. <10> A device for dissolving / recovering a Group 5 element and / or a Group 6 element described in 1.
<20> The apparatus for dissolving / recovering a Group 5 element and / or Group 6 element according to <19>, wherein the high water content adjusting means supplies gas passed through a water bath at 20 to 100 ° C.
  本発明によれば、第5族元素及び/又は第6族元素をアルカリ金属水酸化物等の溶融物中に電解により溶解する際に、電解に必要な電圧を抑制することができる。
 また、本発明によれば、前記溶融物中の含水率(水蒸気分圧)を適切に制御することで、水酸化ナトリウム等のアルカリ金属水酸化物やアルカリ土類水酸化物の使用量を低減できるので、その後の中和処理等に用いる試薬も同様に低減することができる。
 また、前記溶融物中の含水率(水蒸気分圧)を適切に制御したり、溶融物の温度を適切に制御することにより対象元素の前記溶融物中での飽和溶解度を調整すれば、電解を止めることなくタングステン酸ナトリウム等の第5,6族元素のオキソ酸化合物を回収することが可能となるので、第5,6族元素回収プロセスを効率化できるとともに、アルカリ金属水酸化物や中和処理用試薬等の各種薬剤の使用量をさらに抑制することができる。
According to the present invention, when a Group 5 element and / or a Group 6 element is dissolved in a melt such as an alkali metal hydroxide by electrolysis, a voltage necessary for electrolysis can be suppressed.
In addition, according to the present invention, the amount of alkali metal hydroxide or alkaline earth hydroxide such as sodium hydroxide is reduced by appropriately controlling the water content (water vapor partial pressure) in the melt. Therefore, the reagent used for the subsequent neutralization treatment can be reduced in the same manner.
Moreover, if the moisture content (steam partial pressure) in the melt is appropriately controlled, or if the saturation solubility of the target element in the melt is adjusted by appropriately controlling the temperature of the melt, electrolysis can be performed. Since it is possible to recover an oxo acid compound of a Group 5,6 element such as sodium tungstate without stopping, it is possible to improve the efficiency of the Group 5,6 element recovery process, as well as alkali metal hydroxide and neutralization. The amount of various chemicals used such as processing reagents can be further suppressed.
水酸化ナトリウム溶融浴中の含水率(水蒸気分圧)が異なる実施例1と比較例1とを比較して、タングステン合金製超硬チップを水酸化ナトリウム溶融浴中で電解して溶解した際の電流値の時間変化を示した図。実線は90℃の水浴にArガスを通じ反応容器(電解槽の気相)に供給した実施例1を、破線は水浴を通じずにArガスを反応容器に供給した比較例1を、それぞれ示す。When Example 1 and Comparative Example 1 having different water contents (water vapor partial pressure) in the sodium hydroxide molten bath were compared, a tungsten alloy carbide chip was electrolyzed and dissolved in the sodium hydroxide molten bath. The figure which showed the time change of an electric current value. The solid line shows Example 1 in which Ar gas was supplied to the reaction vessel (the gas phase of the electrolytic cell) through a 90 ° C. water bath and the broken line shows Comparative Example 1 in which Ar gas was supplied to the reaction vessel without going through the water bath. Ar雰囲気下での飽和量を超えるWO3を溶融水酸化ナトリウム中に予め添加した比較例2(実線)と添加しない比較例1(破線)について、水浴を通じずにArガスを反応容器(電解槽の気相)に供給しながら1Vの定電圧で電解した際の電流値の時間変化を示した図である。In Comparative Example 2 (solid line) in which WO 3 exceeding the saturation amount in an Ar atmosphere was previously added to molten sodium hydroxide and Comparative Example 1 (dashed line) in which no addition was made, Ar gas was added to the reaction vessel (electrolyzer) without passing through a water bath It is the figure which showed the time change of the electric current value at the time of electrolyzing with a constant voltage of 1V, supplying it to (gas phase). Ar雰囲気下での飽和量を超えるWO3を溶融水酸化ナトリウム中に予め添加し、90℃の水浴を通じたArガスを反応容器(電解槽の気相)に供給しながら0.4Vの定電圧で電解した実施例2A(実線、含水率約2wt%)、23℃の水浴を通じてArガスを反応容器に供給しながら1Vの定電圧で電解した実施例2B(一点鎖線、含水率約0.2wt%)、及び、水浴を通じずにArガスを反応容器に供給しながら1Vの定電圧で電解した比較例2(破線、含水率約0.2wt%未満)について、電流値の時間変化を示した図である。A constant voltage of 0.4 V while adding WO 3 exceeding the saturation amount in an Ar atmosphere to molten sodium hydroxide in advance and supplying Ar gas through a water bath at 90 ° C. to the reaction vessel (gas phase of the electrolytic cell) Example 2A (solid line, water content of about 2 wt%) electrolyzed in Example 2B (single-dotted line, water content of about 0.2 wt%) while supplying Ar gas to the reaction vessel through a 23 ° C. water bath while supplying a constant voltage of 1 V %) And Comparative Example 2 (dashed line, water content less than about 0.2 wt%) electrolyzed at a constant voltage of 1 V while supplying Ar gas to the reaction vessel without passing through a water bath, the time change of the current value was shown. FIG.
  本発明の溶解乃至回収対象の元素は、第5族元素及び/又は第6族元素(対象元素)であり、具体的には、W、Mo、Cr、V、Nb、Taである。そのうち、特に実用面での期待が大きいW、Ta、Moが望ましい。
  これらの元素を含む溶解乃至回収対象の物質としては、該元素を金属として含むものでも、また、炭化物等として含むものであってもよく、使用済みの超硬工具、各種金属製品、触媒、及びこれらの製造工程で出る工程内廃棄物が挙げられるが、これらに限定されず、これらの元素の少なくとも1種を含む物質であり、陽極として電圧を印加できる形態であれば、どのようなものでもよい。
  そのような対象元素を含む物質は、各種プラスチック等の有機物を表面被覆材等として具備乃至含有していてもよいし、また、対象元素以外の元素で構成されるセラミックスを表面被覆材やバインダーの主成分乃至副成分として具備乃至含有していてもよい。対象元素以外の元素で構成されるセラミックスとしては、チッ化チタン、チッ化アルミ、アルミナ、シリカ、炭化チタン、炭窒化チタン、チタンアルミナイトライド、アルミクロムナイトライド等が挙げられる。
The elements to be dissolved or recovered in the present invention are Group 5 elements and / or Group 6 elements (target elements), and specifically, W, Mo, Cr, V, Nb, and Ta. Of these, W, Ta, and Mo, which have high practical expectations, are desirable.
The substance to be dissolved or recovered containing these elements may be those containing the elements as metals or carbides, used carbide tools, various metal products, catalysts, and Examples include in-process waste generated in these manufacturing processes. However, the present invention is not limited to these, and any substance may be used as long as it is a substance containing at least one of these elements and can apply a voltage as an anode. Good.
Such a substance containing the target element may contain or contain an organic substance such as various plastics as a surface coating material or the like, or a ceramic composed of an element other than the target element may be used as a surface coating material or a binder. It may be provided or contained as a main component or subcomponent. Examples of ceramics composed of elements other than the target element include titanium nitride, aluminum nitride, alumina, silica, titanium carbide, titanium carbonitride, titanium aluminum nitride, and aluminum chrome nitride.
  本発明の溶解方法に用いるアルカリ金属水酸化物、アルカリ土類金属水酸化物は、陽極酸化の際の電解質であり、また、対象元素を溶解する溶媒でもある。その具体例としては、水酸化ナトリウム、水酸化カリウム、水酸化リチウム、水酸化カルシウム、水酸化マグネシウムが挙げられる。実用的には、反応性等の点でアルカリ金属水酸化物が望ましく、そのうち、特に、水酸化ナトリウムが好適に用いられる。
  これらの水酸化物は、単体でも、また、混合したもの(混合水酸化物)であってもよいし、さらに、陽極酸化や溶解性を大きく低下させない範囲で、他の成分や不純物が混合乃至混入してもよい。混合される他の成分としては、粘度や導電性の調整等のための他の水酸化物や電解質等が挙げられる。
  本発明において、アルカリ金属水酸化物、アルカリ土類金属水酸化物、これらの混合水酸化物、又は、前記水酸化物のいずれかを主成分として含むものは、溶融状態で用いられるが、その温度は、一般的には融点以上であればよく、使用温度は、対象元素の溶解性、拡散性、用いる装置材料の耐熱性、経済性、ランニングコスト等から決定される。前記溶融物の温度は、高温にするほど対象元素の溶解性、拡散性が高くなる点で有利であるが、一方で、装置材料の耐熱性、経済性等の点で不利であるため、実用的には、通常200~600℃程度が好適に使用できる。
The alkali metal hydroxide and alkaline earth metal hydroxide used in the dissolution method of the present invention are an electrolyte at the time of anodization and also a solvent for dissolving the target element. Specific examples thereof include sodium hydroxide, potassium hydroxide, lithium hydroxide, calcium hydroxide, and magnesium hydroxide. Practically, alkali metal hydroxides are desirable in terms of reactivity and the like, and sodium hydroxide is particularly preferably used among them.
These hydroxides may be used alone or as a mixture (mixed hydroxide), and other components and impurities may be mixed or mixed so long as anodization and solubility are not significantly reduced. May be mixed. Examples of other components to be mixed include other hydroxides and electrolytes for adjusting viscosity and conductivity.
In the present invention, an alkali metal hydroxide, an alkaline earth metal hydroxide, a mixed hydroxide thereof, or one containing any of the hydroxides as a main component is used in a molten state. The temperature should generally be equal to or higher than the melting point, and the use temperature is determined from the solubility and diffusibility of the target element, the heat resistance of the material used, the economy, the running cost, and the like. The temperature of the melt is advantageous in that the solubility and diffusibility of the target element increase as the temperature increases, but on the other hand, it is disadvantageous in terms of the heat resistance, economics, etc. of the device material. In particular, a temperature of about 200 to 600 ° C. can be preferably used.
 本発明によれば、アルカリ金属水酸化物やアルカリ土類金属水酸化物等の水酸化物の溶融浴中における含水率を高めることにより、対象元素の電解に必要な電圧を低減することができる。例えば、対象元素の電解に必要な電圧は、前記含水率が0.2wt%未満の場合約1V程度であるが、本発明にしたがって前記含水率を例えば1.5~2.0wt%に調整することにより約0.4Vでも電解が可能となる。
 また、前記溶融浴中における含水率を高めることにより、前記溶融物中における対象元素の飽和溶解度を向上し、電解による溶解を効率化することもできる。
 さらに、対象元素の飽和溶解度の含水率依存性や溶融温度依存性を利用し、対象元素の回収に利用することもできる。すなわち、溶融浴中における含水率を例えば1.5~2.0wt%に高めた状態で対象元素を溶解した後、前記含水率及び/又は溶融温度を前記溶解時より低くすることにより対象元素の化合物(タングステン酸ナトリウム等の第5,6族元素のオキソ酸塩)を沈澱させて回収可能となる。その際、含水率や溶融温度の高い電解槽と含水率や溶融温度の低い回収槽を設け、電解槽において電解により対象元素を溶解して対象元素の溶解濃度の高くなった溶融物を回収槽に移送し、対象元素の化合物を沈澱させて回収し、対象元素の溶解濃度の低下した溶融物を電解槽に返送するようにして、電解を中断することなく対象元素化合物の連続的回収を可能にすることができる。なお、回収時又は回収槽における含水率は、0wt%か又はそれに近い方が沈殿、回収を効率化する上で望ましいが、含水率を十分低下させるために要する時間等を総合的に判断して決定することができる。回収時又は回収槽における溶融温度は、低い方が沈殿、回収を効率化するうえで望ましいが、溶融温度を下げ過ぎると溶融状態を維持できなくなるリスクが高まるうえ消費エネルギーも増大するため、これらを総合的に判断して決定することができる。
According to the present invention, the voltage required for electrolysis of the target element can be reduced by increasing the water content in the molten bath of hydroxides such as alkali metal hydroxides and alkaline earth metal hydroxides. . For example, the voltage required for electrolysis of the target element is about 1 V when the moisture content is less than 0.2 wt%, but the moisture content is adjusted to, for example, 1.5 to 2.0 wt% according to the present invention. Thus, electrolysis can be performed even at about 0.4V.
Further, by increasing the water content in the molten bath, the saturation solubility of the target element in the melt can be improved, and the dissolution by electrolysis can be made more efficient.
Furthermore, the moisture content dependency and the melting temperature dependency of the saturation solubility of the target element can be used to recover the target element. That is, after dissolving the target element in a state where the moisture content in the molten bath is increased to, for example, 1.5 to 2.0 wt%, the moisture content and / or the melting temperature is made lower than at the time of dissolution to reduce the target element. A compound (an oxoacid salt of a Group 5,6 element such as sodium tungstate) can be precipitated and recovered. At that time, an electrolytic cell with a high water content and melting temperature and a recovery tank with a low water content and melting temperature are provided, and a molten material in which the target element is dissolved by electrolysis in the electrolytic cell and the dissolved concentration of the target element is increased It is possible to recover the target element compound without interrupting the electrolysis by returning the melt of the target element's dissolved concentration to the electrolytic cell. Can be. The water content at the time of recovery or in the recovery tank is preferably 0 wt% or close to it in order to improve the efficiency of precipitation and recovery, but comprehensively determine the time required to sufficiently reduce the water content. Can be determined. A lower melting temperature at the time of recovery or in the recovery tank is desirable for improving the efficiency of precipitation and recovery.However, if the melting temperature is lowered too much, the risk of not being able to maintain the molten state increases and energy consumption increases. It can be determined by comprehensive judgment.
 前記溶融浴の含水率は、例えば、ガス供給口と大気に連通したガス排出口とを有し、溶融浴を収容した電解槽を用いて、水蒸気或いは水蒸気を含有するガスを電解槽に収容した前記溶融物中に通すか、又は、電解槽の気相中に供給することにより調整することができる。水浴温度を一定にし、単時間当たり一定の流量のガスを水浴に通じた後、電解槽の前記ガス供給口に定常的に供給することにより電解槽に収容した溶融浴の含水率をほぼ一定にすることができる。例えば、450℃の水酸化ナトリウム溶融浴中の含水率は、水浴の温度が室温(20℃付近)の定常状態の場合0.2~0.6wt%の範囲内であるが、水浴の温度が90℃の定常状態の場合約2wt%となる。水浴を通じずに水分を全く含まないガスを供給する場合には、溶融浴の含水率は0.2wt%未満になる。また、そのようなガスを全く供給しない状態で保持した場合、それ以前の含水率がどのような値であっても、最終的な定常状態では、溶融浴に接した大気や気相の水蒸気圧に対応する含水率になると考えられる。
 また、溶融浴の飽和含水率は、溶融浴の雰囲気や溶融槽の気相の圧力を高めることにより向上することができるので、前記圧力の制御により対象元素の溶解度を大気圧下よりもさらに高めることができる。
 前記ガスとしては、Ar等の希ガス、二酸化炭素ガス、窒素ガス等の不活性ガスに限らず、空気の外、不活性ガスや空気に酸素を富化した酸化性ガスを使用することもできる。ガス中の酸素は、対象元素の一部の酸化、溶解に寄与し、消費電力削減に繋がると考えられる。
The water content of the molten bath is, for example, a gas supply port and a gas discharge port communicating with the atmosphere, and using an electrolytic cell containing the molten bath, water or a gas containing water vapor is stored in the electrolytic cell. It can adjust by passing in the said melt, or supplying in the gaseous phase of an electrolytic cell. The water content of the molten bath accommodated in the electrolytic bath is made substantially constant by supplying the gas at a constant flow rate per hour to the water bath and then constantly supplying the gas to the gas supply port of the electrolytic bath. can do. For example, the water content in a sodium hydroxide molten bath at 450 ° C. is in the range of 0.2 to 0.6 wt% when the temperature of the water bath is in a steady state at room temperature (around 20 ° C.). In the steady state at 90 ° C., it is about 2 wt%. When supplying a gas containing no water without passing through the water bath, the water content of the molten bath is less than 0.2 wt%. In addition, when such a gas is kept in a state where it is not supplied at all, whatever the moisture content before that, in the final steady state, the atmospheric or gas phase water vapor pressure in contact with the molten bath It is thought that the moisture content will correspond to.
Further, the saturated water content of the molten bath can be improved by increasing the pressure of the molten bath atmosphere or the gas phase of the molten bath, so that the control of the pressure further increases the solubility of the target element than under atmospheric pressure. be able to.
The gas is not limited to an inert gas such as Ar or the like, carbon dioxide gas, nitrogen gas, or the like, but can be an inert gas or an oxidizing gas enriched with oxygen in the air. . It is considered that oxygen in the gas contributes to the oxidation and dissolution of a part of the target element and leads to reduction of power consumption.
  本発明の溶解方法に用いる装置としては、特に限定されず、陽極酸化に従来使用されているもので耐熱性及び耐アルカリ性を有するものであれば、そのまま使用できるし、また、耐熱性の改良等を加えることにより使用することもできる。そのような装置としては、バッチ式のものだけでなく、連続式のものも使用しうる。
  陽極酸化の際に陰極との間に印加する電圧は、一般に、高すぎると陽極酸化の電流効率低下と望ましくない副反応が起こり、さらには消費エネルギーも増加する。逆に低すぎると十分な反応速度が得られないため、これらを総合的に考慮して決定することができる。本発明では、溶融浴中における含水率を0.2~5.0wt%(下限は、好ましくは0.5wt%以上、より好ましくは1.0wt%以上)にするので、電解に必要な電圧を低減することができ、それに伴い、望ましくない副反応を抑制して電流効率を比較的高くすることができる。
 溶解をバッチ式で行う場合、処理期間中印加する電圧を一定にしても良いが、処理時間短縮のため、溶解処理が制御可能な範囲で印加する電圧を変化させることもできる。また、電流を一定にしても良いが、この場合は電圧を確認して電流値や処理時間、処理物質の供給量等を調整する必要がある。
The apparatus used in the dissolution method of the present invention is not particularly limited, and any apparatus that has been conventionally used for anodization and has heat resistance and alkali resistance can be used as it is, and can be improved in heat resistance. It can also be used by adding. As such an apparatus, not only a batch type but also a continuous type can be used.
In general, if the voltage applied to the cathode during anodization is too high, the current efficiency of the anodization decreases and undesirable side reactions occur, and the energy consumption also increases. On the other hand, if it is too low, a sufficient reaction rate cannot be obtained. In the present invention, the water content in the molten bath is 0.2 to 5.0 wt% (the lower limit is preferably 0.5 wt% or more, more preferably 1.0 wt% or more). Accordingly, undesirable side reactions can be suppressed and current efficiency can be made relatively high.
When the dissolution is performed in a batch manner, the voltage to be applied during the treatment period may be constant. However, in order to shorten the treatment time, the voltage to be applied can be changed within a range where the dissolution treatment can be controlled. The current may be constant, but in this case, it is necessary to check the voltage and adjust the current value, processing time, supply amount of the processing substance, and the like.
  本発明方法では、タングステン、モリブデン、ニオブ、タンタル等の対象元素は、陽極酸化され、タングステンやモリブデンを例にすると、WO 2-やMoO 2-で示されるイオンとして、アルカリ金属水酸化物、アルカリ土類金属水酸化物、これらの混合水酸化物、又は、前記水酸化物のいずれかを主成分として含むものの溶融物中に溶解すると考えられる。その際、溶解対象物が不純物を含んでいても、不純物であるFe,Ni等はほぼ溶解しない、または溶解しても陰極上に析出すると見込まれるため、対象元素の溶解を選択的に行うことができる。前記溶融物中に溶解しない不純物のFe,Ni等は、溶解対象物の表面等に残留するが、NaWO、NaMoO等の対象元素のオキソ酸塩は、それらの残留不純物にあまり影響を受けることなく、前記溶融物中に効率的かつ制御可能に溶解される。その際の詳細なメカニズムは必ずしも明確ではないが、NaWO、NaMoO等の対象元素のオキソ酸塩は、含水率の高い前記溶融物に対し大きな溶解度を有すると共に、高温のため拡散速度も大きく、残留不純物の影響をあまり受けることなく効率的かつ制御可能に溶解されると考えられる。
  また、対象元素が溶解され、それら元素の濃度の増加した前記溶融物は、水に容易に溶解させることができ、その結果、対象元素のオキソ酸塩の水溶液を得ることもできる。前記溶融物は、水に溶解する際、安全性の観点からは、その温度を予め融点未満、望ましくは100℃未満、より望ましくは50℃未満に低下しておくことが良い。
In the method of the present invention, target elements such as tungsten, molybdenum, niobium, and tantalum are anodized. When tungsten or molybdenum is taken as an example, an alkali metal hydroxide is used as an ion represented by WO 4 2− or MoO 4 2−. , Alkaline earth metal hydroxides, mixed hydroxides thereof, or those containing one of the above hydroxides as a main component are considered to be dissolved in the melt. At that time, even if the object to be dissolved contains impurities, Fe, Ni, etc., which are impurities, are hardly dissolved, or even if dissolved, it is expected to be deposited on the cathode. Can do. Impurities such as Fe and Ni that do not dissolve in the melt remain on the surface of the object to be dissolved, but oxoacid salts of target elements such as Na 2 WO 4 and Na 2 MoO 4 It is efficiently and controllably dissolved in the melt without much influence. Although the detailed mechanism in that case is not necessarily clear, the oxo acid salt of the target element such as Na 2 WO 4 and Na 2 MoO 4 has a high solubility in the melt having a high water content and is also high in temperature. The diffusion rate is also high, and it is considered that the dissolution is efficiently and controllable without much influence of residual impurities.
In addition, the melt in which the target elements are dissolved and the concentrations of these elements are increased can be easily dissolved in water, and as a result, an aqueous solution of the target element oxo acid salt can be obtained. When the melt is dissolved in water, from the viewpoint of safety, the temperature should be lowered to a temperature lower than the melting point, desirably less than 100 ° C., more desirably less than 50 ° C. in advance.
  本発明の処理対象である対象元素を含む物質が、各種プラスチック等の有機物を表面被覆材等として具備乃至含有する場合や、チッ化チタン、チッ化アルミ、アルミナ、シリカ、炭窒化チタン、チタンアルミナイトライド、アルミクロムナイトライドを始めとした、対象元素以外の元素で構成されるセラミックスを表面被覆材やバインダーの主成分乃至副成分として具備乃至含有する場合には、該物質を予め、アルカリ金属水酸化物、アルカリ土類金属水酸化物、これらの混合水酸化物、又は、前記水酸化物のいずれかを主成分として含むものの溶融物中に通電することなく浸漬することができる。そのような予備処理により、表面に露出する各種プラスチック等の有機物は、水素、CO、低分子の気体等に分解除去できるし、また、表面に露出するチッ化チタン、チッ化アルミ、アルミナ、シリカ、炭窒化チタン、チタンアルミナイトライド、アルミクロムナイトライドを始めとしたセラミックスを含む表面被覆材やバインダーは、溶解除去できるため、その後の第5,6族元素の陽極酸化や溶解を効率的に行うことができる。また、該予備処理に用いる溶融物を、第5,6族元素の陽極酸化、溶解に用いる溶融物と別に設けることにより、第5,6族元素の溶解した溶融物中における前記有機物由来の不純物量や前記セラミックス由来の不純物量を低減することができる。該予備処理に用いる溶融物の温度は、分解する有機物や溶解するセラミックスの種類に応じて適宜決定される。
  このような表面に露出するチッ化チタン、チッ化アルミ、アルミナ、シリカ、炭窒化チタン、チタンアルミナイトライド、アルミクロムナイトライドを始めとしたセラミックスを溶解する溶解方法は、前述のような陽極酸化、溶解方法の予備処理としてだけでなく、第5,6族元素を含む物質から第5,6族元素を回収するための様々な処理方法においても、前記セラミックスを溶解除去するために採用することができる。
  なお、このような通電しない予備浸漬処理において、対象元素は、金属や炭化物である場合にはほとんど溶解せず、窒化物や酸化物である場合には多少溶解するものの、通電して陽極酸化する場合に較べ溶解量は少ないので、その後の陽極酸化・溶解工程における溶解量に大きな影響を及ぼさないと考えられる。
In the case where the substance containing the target element to be treated of the present invention includes or contains organic substances such as various plastics as a surface coating material, etc., titanium nitride, aluminum nitride, alumina, silica, titanium carbonitride, titanium aluminum When ceramics composed of elements other than the target element, such as nitride and aluminum chrome nitride, are provided or contained as the main component or subcomponent of the surface coating material or binder, the material is previously alkali metal. It can be immersed in a melt containing one of a hydroxide, an alkaline earth metal hydroxide, a mixed hydroxide thereof, or the hydroxide as a main component without energization. By such pretreatment, organic substances such as various plastics exposed on the surface can be decomposed and removed into hydrogen, CO 2 , low molecular gas, etc., and titanium nitride, aluminum nitride, alumina, exposed on the surface, Since surface coating materials and binders containing ceramics such as silica, titanium carbonitride, titanium aluminum nitride, and aluminum chrome nitride can be dissolved and removed, subsequent anodic oxidation and dissolution of Group 5 and 6 elements is efficient. Can be done. Further, by providing the melt used for the pretreatment separately from the melt used for the anodic oxidation and dissolution of the Group 5 and 6 elements, the impurities derived from the organic matter in the melt obtained by dissolving the Group 5 and 6 elements The amount of impurities and the amount of impurities derived from the ceramics can be reduced. The temperature of the melt used for the pretreatment is appropriately determined according to the type of the organic substance to be decomposed and the ceramic to be dissolved.
The melting method for dissolving ceramics such as titanium nitride, aluminum nitride, alumina, silica, titanium carbonitride, titanium aluminum nitride, and aluminum chrome nitride exposed on the surface is as described above. Adopted to dissolve and remove the ceramics not only as a pretreatment of the dissolution method but also in various treatment methods for recovering the Group 5 and 6 elements from the substances containing the Group 5 and 6 elements. Can do.
In such a pre-immersion process without energization, the target element is hardly dissolved when it is a metal or carbide, and is slightly dissolved when it is a nitride or oxide, but it is anodized by energization. Since the amount of dissolution is smaller than in the case, it is considered that the amount of dissolution in the subsequent anodic oxidation / dissolution process does not have a great influence.
  以下、本発明を実施例等によりさらに具体的に説明するが、本発明はこの実施例等によって何ら限定されるものではない。 Hereinafter, the present invention will be described more specifically with reference to examples and the like, but the present invention is not limited to the examples and the like.
(参考例1;水酸化ナトリウム溶融浴中の含水率の測定)
 ガスの供給口と大気に連通した排出口とを有する反応容器(電解槽)を準備し、水酸化ナトリウムを収容して450℃で溶融した。単位時間当たりの流量が一定のArガスを所定温度に保った水浴を通じた後に前記供給口から反応容器に定常的に供給し、前記水浴の温度を変化させることで水酸化ナトリウム溶融浴中の含水率(乃至水蒸気分圧)を調整した。水酸化ナトリウム溶融浴中の含水率は、定常状態となったと考えられる水温変更から24時間後に滴定により求めた。具体的には、溶融試料中に含まれる水酸化ナトリウム重量を酸-塩基滴定により求め、全重量との差分を含水量として評価した。その結果、水酸化ナトリウム溶融浴中の含水率は、水浴の温度が室温(20℃付近)の場合0.2~0.6wt%の範囲内であり、また、水浴の温度が90℃の場合約2wt%であった。水浴を通じることなくArガスを反応容器に供給する場合には、溶融水酸化ナトリウム中の含水率の定量は困難であるが、0.2wt%未満であることは明らかである。
(Reference Example 1; Measurement of moisture content in sodium hydroxide molten bath)
A reaction vessel (electrolyzer) having a gas supply port and a discharge port communicating with the atmosphere was prepared, and sodium hydroxide was accommodated and melted at 450 ° C. The water content in the sodium hydroxide molten bath is changed by constantly supplying the reaction vessel from the supply port to the reaction vessel after passing Ar gas having a constant flow rate per unit time at a predetermined temperature, and changing the temperature of the water bath. The rate (or water vapor partial pressure) was adjusted. The water content in the sodium hydroxide molten bath was determined by titration 24 hours after changing the water temperature, which was considered to be a steady state. Specifically, the weight of sodium hydroxide contained in the molten sample was determined by acid-base titration, and the difference from the total weight was evaluated as the water content. As a result, the water content in the sodium hydroxide molten bath is within the range of 0.2 to 0.6 wt% when the temperature of the water bath is room temperature (around 20 ° C.), and when the temperature of the water bath is 90 ° C. About 2 wt%. When Ar gas is supplied to the reaction vessel without passing through a water bath, it is clear that the moisture content in the molten sodium hydroxide is difficult to determine, but is less than 0.2 wt%.
(実施例1;電解に及ぼす溶融水酸化ナトリウムの含水率の影響調査1)
  参考例1で使用したと同様の反応容器(電解槽)やArガス供給設備を用い、水浴温度を90℃(水酸化ナトリウム溶融浴中の含水率約2wt%)とした。被覆無しのタングステン合金製超硬チップ1個(0.6g、タングステンカーバイドとして90wt%程度、コバルトが5wt%程度)をNi製のプレート上に設置して陽極とし、ニッケル板を陰極として、450℃で溶融した水酸化ナトリウム中において、0.4 Vの定電圧条件で電解を行った。電流値がほぼゼロになった時点(チップが全溶解した状態)で電解を終了した。電流効率はほぼ100%であった。その結果を図1の実線で示す。0.4 Vの比較的低い電圧でありながら5時間程度の比較的短時間で全溶解した。
(Example 1; Investigation 1 of influence of water content of molten sodium hydroxide on electrolysis)
The same reaction vessel (electrolyzer) and Ar gas supply equipment as used in Reference Example 1 were used, and the water bath temperature was 90 ° C. (water content in the sodium hydroxide molten bath was about 2 wt%). An uncoated tungsten alloy carbide tip (0.6 g, about 90 wt% as tungsten carbide, about 5 wt% cobalt) is placed on a Ni plate as an anode and a nickel plate as a cathode at 450 ° C. In the sodium hydroxide melted in step 1, electrolysis was performed under a constant voltage condition of 0.4 V. The electrolysis was terminated when the current value became almost zero (the chip was completely dissolved). The current efficiency was almost 100%. The result is shown by the solid line in FIG. Although it was a relatively low voltage of 0.4 V, it was completely dissolved in a relatively short time of about 5 hours.
(比較例1)
  定電圧を1Vとしたこと、及び、Arガスを水浴を通じずに反応容器に供給したこと(水酸化ナトリウム溶融浴中の含水率0.2wt%未満)以外は実施例1と全く同様にして電解を行った。電流効率はほぼ100%であった。その結果を図1の破線で示す。水酸化ナトリウム溶融浴中の含水率が約0.2wt%未満と低い場合、全溶解に電圧1Vでかつ14時間程度必要であった。
(Comparative Example 1)
Electrolysis was carried out in the same manner as in Example 1, except that the constant voltage was 1 V and that Ar gas was supplied to the reaction vessel without passing through the water bath (the water content in the sodium hydroxide molten bath was less than 0.2 wt%). Went. The current efficiency was almost 100%. The result is shown by the broken line in FIG. When the water content in the sodium hydroxide molten bath was as low as less than about 0.2 wt%, the total dissolution required a voltage of 1 V and about 14 hours.
(水酸化ナトリウム溶融浴中の含水率の影響調査1の結果評価)
 上記実施例1と比較例1の結果から、水酸化ナトリウム溶融浴中の含水率(水蒸気分圧)を高くすることにより、電解に必要な電圧を1Vから0.4Vに低減できるとともに、溶解に要する時間を約1/3程度と効率的な溶解を行うことができることが明らかとなった。
(Assessment of the results of Investigation 1 for the effect of water content in the sodium hydroxide molten bath)
From the results of Example 1 and Comparative Example 1, by increasing the water content (water vapor partial pressure) in the sodium hydroxide molten bath, the voltage required for electrolysis can be reduced from 1 V to 0.4 V and dissolved. It was revealed that the time required is about 1/3 and efficient dissolution can be performed.
(比較例2:水酸化ナトリウム溶融浴中のタングステン濃度の電解に及ぼす影響調査)
  電解開始前の水酸化ナトリウム溶融浴中にArガス雰囲気下での飽和量を超えるWO3(NaOH:WO3=5:1)を添加したこと以外は比較例1と全く同様にして電解を行った。その結果を図2の実線で示す。比較のため、比較例1の結果を併せて破線で示す。このことから、水酸化ナトリウム溶融浴中のタングステン濃度が増加するとタングステンの溶解が阻害され、電解を効率的に行うことができなくなると言える。なお、比較例2は、水蒸気無し(水浴を通じずにArガスを反応容器に供給したもので、溶融水酸化ナトリウムの含水率0.2wt%未満)の条件下での結果であるが、水酸化ナトリウム溶融浴中のタングステン濃度が増加すると溶解が阻害され、電解を効率的に行うことができなくなるとの傾向は、水酸化ナトリウム溶融浴の含水率が高くても同様であると考えられる。
(Comparative Example 2: Investigation of influence of tungsten concentration in sodium hydroxide molten bath on electrolysis)
Electrolysis was carried out in exactly the same way as in Comparative Example 1, except that WO 3 (NaOH: WO 3 = 5: 1) exceeding the saturation amount in the Ar gas atmosphere was added to the sodium hydroxide molten bath before the start of electrolysis. It was. The result is shown by the solid line in FIG. For comparison, the result of Comparative Example 1 is also indicated by a broken line. From this, it can be said that when the concentration of tungsten in the sodium hydroxide molten bath increases, dissolution of tungsten is hindered and electrolysis cannot be performed efficiently. Comparative Example 2 is the result under the condition of no water vapor (Ar gas was supplied to the reaction vessel without passing through a water bath, and the water content of molten sodium hydroxide was less than 0.2 wt%). The tendency that dissolution is inhibited and electrolysis cannot be efficiently performed when the tungsten concentration in the sodium molten bath increases is considered to be the same even when the water content of the sodium hydroxide molten bath is high.
(実施例2、比較例2;電解に及ぼす水酸化ナトリウム溶融浴中の含水率の影響調査2)
  電解開始前の水酸化ナトリウム溶融浴にWO3を添加した後、次の(1)~(3)のいずれかの条件で電解を行った。
(1)実施例2A:水浴温度90℃(水酸化ナトリウム溶融浴中の含水率約2wt%)、電圧0.4V、NaOH:WO3=5:1(Arガス雰囲気下での飽和量を超えるWO3を添加)
(2)実施例2B:水浴温度23℃(水酸化ナトリウム溶融浴中の含水率約0.2~0.6wt%)、電圧1V、NaOH:WO3=4:1(この条件での飽和量を超えるWO3を添加)
(3)比較例2:水浴を介さず(水酸化ナトリウム溶融浴中の含水率0.2wt%未満)、電圧1V、NaOH:WO3=5:1(Arガス雰囲気下での飽和量を超えるWO3を添加)
 これら実施例2A、2B、比較例2の結果を図3に示す。
(Example 2, Comparative Example 2; Investigation 2 of influence of water content in sodium hydroxide molten bath on electrolysis)
After adding WO 3 to the sodium hydroxide molten bath before the start of electrolysis, electrolysis was performed under any of the following conditions (1) to (3).
(1) Example 2A: Water bath temperature 90 ° C. (water content of about 2 wt% in the sodium hydroxide molten bath), voltage 0.4 V, NaOH: WO 3 = 5: 1 (exceeding saturation in Ar gas atmosphere) Add WO 3 )
(2) Example 2B: Water bath temperature 23 ° C. (water content of about 0.2 to 0.6 wt% in sodium hydroxide molten bath), voltage 1 V, NaOH: WO 3 = 4: 1 (saturation amount under these conditions) Add more WO 3 )
(3) Comparative Example 2: without using a water bath (water content in the sodium hydroxide molten bath is less than 0.2 wt%), voltage 1 V, NaOH: WO 3 = 5: 1 (exceeding the saturation amount under Ar gas atmosphere) Add WO 3 )
The results of Examples 2A and 2B and Comparative Example 2 are shown in FIG.
(含水率の影響調査2の結果評価)
 上記実施例2Aと比較例2は含水率のみを変えた条件での結果であり、これらの比較から、水酸化ナトリウム溶融浴中の含水率を高くすることにより、タングステンの飽和溶解度を向上させて電解の阻害要因を減らすことができ、結果として効率的な電解を行えることが明らかとなった。また、実施例2Bと比較例2はともにタングステンが飽和した状態で含水率のみを変えた条件での結果であり、タングステンの飽和した状態であっても、水酸化ナトリウム溶融浴中の含水率を高くすることで、電流値の増加が多少なりとも見込めることが明らかとなった。上記実施例2A,2Bや比較例2以外に水浴温度が20℃や50℃の場合についても同様の電解実験を行った結果では、水浴温度20℃、50℃、90℃における水酸化ナトリウム水浴中のタングステンの飽和溶解度(W純分の質量%)は、それぞれ13wt%、26wt%、40wt%以上と推算された。
(Assessment of results of Moisture Content Impact Survey 2)
The above Example 2A and Comparative Example 2 are the results under the condition that only the moisture content was changed. From these comparisons, the saturation solubility of tungsten was improved by increasing the moisture content in the sodium hydroxide molten bath. It has been clarified that the factors that inhibit electrolysis can be reduced, and as a result, efficient electrolysis can be performed. Further, both Example 2B and Comparative Example 2 are the results under the condition that only the moisture content was changed in a state where tungsten was saturated. Even in the saturated state of tungsten, the moisture content in the sodium hydroxide molten bath was changed. It was clarified that the current value can be expected to increase somewhat by increasing the value. In addition to Examples 2A and 2B and Comparative Example 2, the results of the same electrolysis experiment when the water bath temperature was 20 ° C. or 50 ° C. showed that the water bath temperature was 20 ° C., 50 ° C., and 90 ° C. The saturation solubility (mass% of pure W) was estimated to be 13 wt%, 26 wt%, and 40 wt% or more, respectively.
  本発明の溶解、回収方法や、溶解、回収装置は、使用済みの超硬工具、各種金属製品、触媒、及びこれらの製造工程で出る工程内廃棄物等から、タングステン、モリブデン、ニオブ、タンタル等の対象元素をアルカリ金属水酸化物等の溶融物中に効率的に溶解することができるものであるから、それらの対象元素の回収、リサイクルに有効に利用することができる。




 
The melting / recovering method and the melting / recovering apparatus of the present invention are used for tungsten, molybdenum, niobium, tantalum, etc. from used carbide tools, various metal products, catalysts, and in-process waste produced in these manufacturing processes. These target elements can be efficiently dissolved in a melt such as an alkali metal hydroxide, and thus can be effectively used for recovery and recycling of these target elements.




Claims (10)

  1.   アルカリ金属水酸化物、アルカリ土類金属水酸化物、これらの混合水酸化物、又は、前記水酸化物のいずれかを主成分として含むものの溶融物中において、第5族元素及び/又は第6族元素を含む物質を電解して第5族元素及び/又は第6族元素を前記溶融物中に溶解する第5族元素及び/又は第6族元素の溶解方法であって、前記溶融物の含水率を0.2~5wt%とすることを特徴とする溶解方法。 In a melt containing an alkali metal hydroxide, an alkaline earth metal hydroxide, a mixed hydroxide thereof, or any of the above hydroxides as a main component, the Group 5 element and / or the sixth element A method for dissolving a Group 5 element and / or a Group 6 element in which a substance containing a Group element is electrolyzed to dissolve a Group 5 element and / or a Group 6 element in the melt, A dissolution method, wherein the water content is 0.2 to 5 wt%.
  2.  前記溶融物の含水率の調整に、水蒸気若しくは水蒸気を含有するガスを前記溶融物中に通すか、又は、前記溶融物を収容した電解槽の気相中に供給することを特徴とする請求項1に記載の第5族元素及び/又は第6族元素の溶解方法。 The water content of the melt is adjusted by passing water vapor or a gas containing water vapor through the melt or supplying it into the gas phase of an electrolytic cell containing the melt. 2. A method for dissolving a Group 5 element and / or a Group 6 element according to 1.
  3.   アルカリ金属水酸化物として水酸化ナトリウムを用いる請求項1又は2に記載の第5族元素及び/又は第6族元素の溶解方法。 The method for dissolving a Group 5 element and / or a Group 6 element according to claim 1 or 2, wherein sodium hydroxide is used as the alkali metal hydroxide.
  4.   第5族元素及び/又は第6族元素を含む物質が、タングステン、モリブデン、ニオブ、タンタルのうちの少なくとも1種を含むものである請求項1~3のいずれか1項に記載の第5族元素及び/又は第6族元素の溶解方法。 The Group 5 element according to any one of Claims 1 to 3, wherein the substance containing a Group 5 element and / or a Group 6 element contains at least one of tungsten, molybdenum, niobium, and tantalum. / Or a method for dissolving a Group 6 element.
  5.   請求項1~4のいずれか1項に記載の溶解方法により得られた第5族元素及び/又は第6族元素の濃度の増加した溶融物を水に溶解させて第5族元素及び/又は第6族元素のオキソ酸塩の水溶液とする第5族元素及び/又は第6族元素の溶解方法。 A melt having an increased concentration of the Group 5 element and / or the Group 6 element obtained by the dissolution method according to any one of claims 1 to 4 is dissolved in water to dissolve the Group 5 element and / or A method for dissolving a Group 5 element and / or a Group 6 element in an aqueous solution of a Group 6 element oxoacid salt.
  6.  請求項1~4のいずれか1項に記載の溶解方法を用いて第5族元素及び/又は第6族元素を前記溶融物中に溶解した後、第5族元素及び/又は第6族元素を含む化合物の前記溶融物中での飽和溶解度を低下することにより前記化合物を沈殿させて回収する第5族元素及び/又は第6族元素の回収方法。 A Group 5 element and / or a Group 6 element after dissolving the Group 5 element and / or the Group 6 element in the melt using the dissolution method according to any one of claims 1 to 4. A method for recovering a Group 5 element and / or a Group 6 element, in which the compound is precipitated and recovered by lowering the saturation solubility of the compound containing the compound in the melt.
  7.  前記溶融物の飽和溶解度の低下を、前記溶融物の含水率の低下及び/又は溶融温度の低下により行う請求項6に記載の第5族元素及び/又は第6族元素の回収方法。 The method for recovering a Group 5 element and / or a Group 6 element according to claim 6, wherein the saturation solubility of the melt is decreased by decreasing the moisture content of the melt and / or decreasing the melting temperature.
  8.   溶融物の含水率が0.2~5.0wt%の電解槽と、溶融物の含水率が電解槽に比較して低い回収槽とを設け、電解により第5族元素及び/又は第6族元素の濃度の増加した溶融物を回収槽に移送して第5族元素及び/又は第6族元素を含む化合物を沈殿させ、回収槽の第5族元素及び/又は第6族元素の濃度の低下した溶融物を電解槽に返送することを特徴とする請求項6又は7に記載の第5族元素及び/又は第6族元素の回収方法。 An electrolytic cell having a melt water content of 0.2 to 5.0 wt% and a recovery tank having a low water content of the melt compared to the electrolytic cell are provided, and Group 5 elements and / or Group 6 are electrolyzed. The molten material having an increased element concentration is transferred to a recovery tank to precipitate a compound containing a Group 5 element and / or a Group 6 element, and the concentration of the Group 5 element and / or Group 6 element in the recovery tank is increased. The method for recovering a Group 5 element and / or a Group 6 element according to claim 6 or 7, wherein the lowered melt is returned to the electrolytic cell.
  9.  陰極と、第5族元素及び/又は第6族元素を含む物質を保持する陽極とを備え、アルカリ金属水酸化物、アルカリ土類金属水酸化物、これらの混合水酸化物、又は、前記水酸化物のいずれかを主成分として含むものの溶融物を収容した電解槽と、前記溶融物の含水率を調整する含水率調整手段とを具備することを特徴とする第5族元素及び/又は第6族元素の溶解又は溶解・回収装置。 A cathode and an anode holding a substance containing a Group 5 element and / or a Group 6 element; an alkali metal hydroxide, an alkaline earth metal hydroxide, a mixed hydroxide thereof, or the water A Group 5 element and / or a second element comprising an electrolytic cell containing a melt of any of the oxides as a main component and water content adjusting means for adjusting the water content of the melt. Group 6 element dissolution or dissolution / recovery equipment.
  10.  陰極と、第5族元素及び/又は第6族元素を含む物質を保持する陽極とを備え、アルカリ金属水酸化物、アルカリ土類金属水酸化物、これらの混合水酸化物、又は、前記水酸化物のいずれかを主成分として含むものの溶融物を収容した電解槽と、アルカリ金属水酸化物、アルカリ土類金属水酸化物、これらの混合水酸化物、又は、前記水酸化物のいずれかを主成分として含むものの溶融物を収容した回収槽と、電解槽に収容した溶融物の含水率を高く保持する高含水率調整手段と、回収槽に収容した溶融物の含水率を電解槽より低く保持する低含水率調整手段及び/又は回収槽に収容した溶融物の溶融温度を電解槽より低く保持する溶融温度調整手段と、電解槽中の第5族元素及び/又は第6族元素の濃度の増加した溶融物を回収槽に移送する溶融物移送手段と、回収槽中の第5族元素及び/又は第6族元素の濃度の低下した溶融物を電解槽に返送する返送手段を具備することを特徴とする第5族元素及び/又は第6族元素の溶解・回収装置。 A cathode and an anode holding a substance containing a Group 5 element and / or a Group 6 element; an alkali metal hydroxide, an alkaline earth metal hydroxide, a mixed hydroxide thereof, or the water An electrolytic cell containing any one of oxides as a main component and containing a melt, an alkali metal hydroxide, an alkaline earth metal hydroxide, a mixed hydroxide thereof, or any of the above hydroxides A recovery tank containing a melt of the main component, a high moisture content adjusting means for maintaining a high moisture content of the melt contained in the electrolytic cell, and a moisture content of the melt contained in the recovery tank from the electrolytic cell. Low moisture content adjusting means for keeping low and / or melting temperature adjusting means for keeping the melting temperature of the melt contained in the recovery tank lower than the electrolytic cell, and the group 5 element and / or the group 6 element in the electrolytic cell Transfer melt with increased concentration to recovery tank And a return means for returning the melt in which the concentration of the Group 5 element and / or the Group 6 element in the recovery tank is reduced to the electrolytic cell. / Or Group 6 element dissolution / recovery equipment.
PCT/JP2016/081820 2016-03-03 2016-10-27 Method and apparatus for dissolving and collecting group 5 elements and/or group 6 elements in which water vapor pressure is controlled WO2017149835A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018502514A JP6747641B2 (en) 2016-03-03 2016-10-27 Method and apparatus for dissolving and recovering group 5 element and/or group 6 element with controlled water vapor partial pressure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-041063 2016-03-03
JP2016041063 2016-03-03

Publications (1)

Publication Number Publication Date
WO2017149835A1 true WO2017149835A1 (en) 2017-09-08

Family

ID=59743712

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/081820 WO2017149835A1 (en) 2016-03-03 2016-10-27 Method and apparatus for dissolving and collecting group 5 elements and/or group 6 elements in which water vapor pressure is controlled

Country Status (2)

Country Link
JP (1) JP6747641B2 (en)
WO (1) WO2017149835A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024100269A1 (en) * 2022-11-11 2024-05-16 Seaborg Aps A method of recovering one or more metal species

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010070823A (en) * 2008-09-19 2010-04-02 Sumitomo Electric Ind Ltd Method for manufacturing structure and apparatus for manufacturing structure
JP2011032578A (en) * 2009-07-07 2011-02-17 National Institute Of Advanced Industrial Science & Technology Method of dissolving of fifth group element and/or sixth group element

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010070823A (en) * 2008-09-19 2010-04-02 Sumitomo Electric Ind Ltd Method for manufacturing structure and apparatus for manufacturing structure
JP2011032578A (en) * 2009-07-07 2011-02-17 National Institute Of Advanced Industrial Science & Technology Method of dissolving of fifth group element and/or sixth group element

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
KAMIMOTO, YUKI ET AL.: "Electrochemical Leaching of Tungsten from Hard Metal Alloy Using Molten Sodium Hydroxide", MATERIALS TRANSACTIONS, vol. 56, no. 5, 2015, pages 733 - 737, XP055412975 *
TETSUO OISHI ET AL.: "Yoyu Alkali-chu deno Tungsten Oyobi Cobalt no Kyodo to Suijoki Bun'atsu no Eikyo", DAI 47 KAI YOYUEN KAGAKU TORONKAI KOEN YOSHISHU, 28 October 2015 (2015-10-28), pages 74 - 75 *
TETSUO OISHI ET AL.: "Yoyu Suisanka Natoriumu- chu deno Denkai ni yoru Tungsten no Sentaku Yokai", THE MINING AND MATERIALS PROCESSING INSTITUTE OF JAPAN SHUNKI TAIKAI KOENSHU, vol. 1402, 2011 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024100269A1 (en) * 2022-11-11 2024-05-16 Seaborg Aps A method of recovering one or more metal species

Also Published As

Publication number Publication date
JPWO2017149835A1 (en) 2018-10-25
JP6747641B2 (en) 2020-08-26

Similar Documents

Publication Publication Date Title
US11261532B2 (en) Method and apparatus for electrolytic reduction of a feedstock comprising oxygen and a first metal
GB2537510A (en) Method of recovering waste hard alloy
JP5569934B2 (en) Method for dissolving Group 5 element and / or Group 6 element
JP2013036111A (en) Method of recovering tungsten
KR20030040117A (en) Process for electrochemical decomposition of superalloys
WO2017149835A1 (en) Method and apparatus for dissolving and collecting group 5 elements and/or group 6 elements in which water vapor pressure is controlled
JP6687603B2 (en) Method of manufacturing tungsten carbide
JP6594411B2 (en) Method for producing tungsten
JP3856340B2 (en) Method of decomposing a superalloy and recovering metal components from it
WO2015025304A2 (en) A process for the recovery of a tin material from electronic scrap and an electrolytic tin material obtained using the process
CN105980303B (en) The purifying of tungsten carbide composition
Kuznetsova et al. Electrochemical processing of heavy tungsten alloy wastes for obtaining a microdispersed iron-nickel base powder by using alternating current
KR20200047446A (en) Electrode and method for manufacturing same, and method for producing regenerative electrode
CN107429412B (en) Method for recovering useful substance containing tungsten
BR112020000358A2 (en) method for the hydrothermal oxidation and dissociation of metal chlorides for the separation of metals and hydrochloric acid
JP6784510B2 (en) Method for producing alcohol amine polytungstate
Palant et al. Electrochemical processing of the metallic wastes of ZhS32 nickel superalloys
JP2012092447A (en) Electrolytic extracting method of cobalt
RU2285662C2 (en) METHOD OF SEDIMENTATION OF THE ELEMENTARY SELENIUM FROM THE ACID SOLUTIONS CONTAINING Se(VI)
JP2000290736A (en) Treatment of electric furnace dust

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018502514

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16892671

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16892671

Country of ref document: EP

Kind code of ref document: A1