JP5886022B2 - Method for removing oxide film on copper or copper base alloy surface - Google Patents

Method for removing oxide film on copper or copper base alloy surface Download PDF

Info

Publication number
JP5886022B2
JP5886022B2 JP2011274719A JP2011274719A JP5886022B2 JP 5886022 B2 JP5886022 B2 JP 5886022B2 JP 2011274719 A JP2011274719 A JP 2011274719A JP 2011274719 A JP2011274719 A JP 2011274719A JP 5886022 B2 JP5886022 B2 JP 5886022B2
Authority
JP
Japan
Prior art keywords
copper
oxide film
pickling solution
pickling
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011274719A
Other languages
Japanese (ja)
Other versions
JP2013124403A (en
Inventor
熊谷 淳一
淳一 熊谷
圭栄 樽谷
圭栄 樽谷
加藤 直樹
直樹 加藤
賢治 久保田
賢治 久保田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Shindoh Co Ltd
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Shindoh Co Ltd
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Shindoh Co Ltd, Mitsubishi Materials Corp filed Critical Mitsubishi Shindoh Co Ltd
Priority to JP2011274719A priority Critical patent/JP5886022B2/en
Priority to KR1020120142128A priority patent/KR20130069419A/en
Priority to TW101146600A priority patent/TW201337040A/en
Priority to CN2012105323999A priority patent/CN103160844A/en
Priority to EP20120196870 priority patent/EP2604725B1/en
Priority to US13/714,746 priority patent/US20130156631A1/en
Publication of JP2013124403A publication Critical patent/JP2013124403A/en
Application granted granted Critical
Publication of JP5886022B2 publication Critical patent/JP5886022B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Cleaning And De-Greasing Of Metallic Materials By Chemical Methods (AREA)

Description

本発明は、銅或いは銅基合金表面の酸化皮膜の除去方法に関し、特に詳しくは、酸洗浴中に酸化皮膜が表面に形成された銅或いは銅基合金を浸漬して酸化皮膜を除去した後、電解槽中にて酸化皮膜を含む酸洗液を電気分解してハンドリング性の良好な高純度の銅或いは銅基合金を回収し、電気分解後の酸洗液を酸洗浴中に戻して再利用を可能にする銅或いは銅基合金表面の酸化皮膜の除去方法に関する。   The present invention relates to a method for removing an oxide film on the surface of copper or a copper base alloy, and in particular, after removing the oxide film by immersing the copper or copper base alloy having an oxide film formed on the surface in a pickling bath, Electrolyze the pickling solution containing the oxide film in the electrolytic cell to recover high-purity copper or copper-based alloy with good handling properties, and return the pickled solution after electrolysis to the pickling bath for reuse. The present invention relates to a method for removing an oxide film on the surface of copper or a copper-based alloy.

例えば、熱間圧延や熱間押出しなどの熱処理加工が施された後の銅或いは銅基合金は、その表面に生成された酸化被膜や微細な欠陥を除去することを目的として、酸洗或いはエッチング処理が通常に行われている。その酸洗或いはエッチング液には、硫酸や硫酸に過酸化水素を混合した硫酸系の酸や、塩酸、硝酸が用いられ、場合によっては、フッ酸やその他界面活性剤などの添加剤も共用される。近年では、資源回収の観点や排水処理の問題から、酸洗或いはエッチング処理でその液中に溶解された酸化銅や金属銅を電解法で回収すると共に、使用された酸洗液或いはエッチング液を再生利用することが広く試みられている。   For example, copper or copper-base alloy after heat treatment such as hot rolling or hot extrusion is pickled or etched for the purpose of removing oxide film or fine defects generated on the surface. Processing is normal. For the pickling or etching solution, sulfuric acid or sulfuric acid mixed with hydrogen peroxide in sulfuric acid, hydrochloric acid or nitric acid is used. In some cases, additives such as hydrofluoric acid and other surfactants are also shared. The In recent years, from the viewpoint of resource recovery and wastewater treatment, copper oxide or metal copper dissolved in the solution by pickling or etching is recovered by electrolysis, and the used pickling solution or etching solution is removed. Recycling has been widely attempted.

特許文献1には、銅の酸洗仕上工程にて生じる銅及び硝酸を含有する廃液から、電解により硝酸及び金属銅粉末を再生し回収する方法として、銅又は銅合金製品の酸洗工程で生じる銅及び硝酸を含有する廃液を、両極のうち少なくとも陽極をフェライト電極とし、かつ、陽極と陰極との間にアニオン隔膜とカチオン隔膜との組合せ、或いは、複数の両性膜の組合せにより、陽極域、中間域及び陰極域を形成させた装置内で、陰極域のpHを0.2〜2.0の範囲内に維持しながら電解処理し、陽極域に硝酸を、陰極域に粉末状態の銅を再生させる方法が開示されている。   In Patent Document 1, as a method for regenerating and recovering nitric acid and metallic copper powder by electrolysis from waste liquid containing copper and nitric acid produced in the copper pickling finishing process, it is produced in the pickling process of copper or copper alloy products. A waste solution containing copper and nitric acid, at least the anode of both electrodes is a ferrite electrode, and a combination of an anion membrane and a cation membrane between the anode and the cathode, or a combination of a plurality of amphoteric membranes, In the apparatus in which the intermediate region and the cathode region are formed, electrolytic treatment is performed while maintaining the pH of the cathode region within the range of 0.2 to 2.0, nitric acid is added to the anode region, and powdered copper is added to the cathode region. A method of regenerating is disclosed.

特許文献2には、銅合金酸洗廃液を再利用する場合に問題となる、細かい固形物となる錫酸化物、水酸化物を発生させることなく、効率的に錫を除去し、更に処理液中の銅を効率よく回収し、処理後の硫酸を再利用する方法として、廃液を40℃以上に加熱し、錫を選択的に沈降分離処理する前処理を施した後に、再生処理することを特徴とする銅合金酸洗廃液の再生方法が開示されている。   In Patent Document 2, tin is efficiently removed without generating tin oxide and hydroxide that become a fine solid matter, which becomes a problem when the copper alloy pickling waste liquid is reused. As a method of efficiently recovering the copper in the interior and reusing the treated sulfuric acid, the waste liquid is heated to 40 ° C. or more, and pre-treatment for selectively precipitating and separating tin is performed, followed by regeneration treatment. A characteristic method for reclaiming a copper alloy pickling waste liquid is disclosed.

特公昭61−60148号公報Japanese Patent Publication No. 61-60148 特開2003−342763号公報JP 2003-342863 A

従来の銅或いは銅基合金表面に形成された酸化皮膜の除去方法では、酸洗浴中にて酸化皮膜を除去した後に、その酸化皮膜を含む酸洗液を電解槽中にて電気分解して、ハンドリング性の良好な再生原料として利用可能な高純度の銅或いは銅基合金を効率良く回収することが難しく、また、電気分解後の酸洗液を酸洗浴中に戻して再利用することにも無理があった。   In the conventional method for removing an oxide film formed on the surface of copper or a copper base alloy, after removing the oxide film in a pickling bath, the pickling solution containing the oxide film is electrolyzed in an electrolytic bath, It is difficult to efficiently recover high-purity copper or copper-based alloy that can be used as a recyclable raw material with good handling properties, and it is also possible to return the pickling solution after electrolysis to the pickling bath for reuse. It was impossible.

本発明では、上述の問題点を解決し、酸洗浴中に表面に酸化皮膜が形成された銅或いは銅基合金を浸漬して酸化皮膜を除去した後、酸化皮膜を含む酸洗液を電解槽中にて電気分解して、ハンドリング性の良好な再生原料として利用可能な高純度の銅或いは銅基合金を効率良く回収し、更に、電気分解後の酸洗液を酸洗浴中に戻し再利用することが可能な銅或いは銅基合金表面の酸化皮膜の除去方法を提供する。   In the present invention, the above-mentioned problems are solved, and after removing the oxide film by immersing copper or copper-based alloy having an oxide film formed on the surface of the pickling bath, the pickling solution containing the oxide film is removed from the electrolytic bath. The high-purity copper or copper-based alloy that can be used as a recyclable raw material with good handleability is efficiently recovered, and the pickling solution after electrolysis is returned to the pickling bath for reuse. Provided is a method for removing an oxide film on the surface of copper or a copper-based alloy that can be performed.

本発明者らは、鋭意検討の結果、酸洗液として、硫酸:50〜400g/L、硝酸、過酸化水素、ペルオキソ二硫酸イオン、3価鉄イオンからなるグループから選択された少なくとも一つの酸化剤:1〜100g/L、芳香族スルホン酸、芳香族スルホン酸塩、アルキルアミンからなるグループから選択された少なくとも一つの添加剤:0.01〜10g/L、アルキルベンゼンスルホン酸、アルキルベンゼンスルホン酸塩からなるグループから選択された少なくとも一つの添加剤:0.005〜10g/L、および硫酸銅:10〜300g/Lを含有し、表面張力が50dyn/cm未満である酸洗液を使用することにより、酸化皮膜を効率良く除去でき、除去された酸化皮膜を含む酸洗液を電解槽中にて電気分解することにより、ハンドリング性の良好な再生原料として利用可能な高純度の銅或いは銅基合金を回収できることを見出した。
更に、電気分解後の酸洗液に、酸化皮膜除去及び電気分解時に消費された分量に相当する酸化剤及び添加剤を加えて酸洗浴中に戻すことにより、酸洗液を効率良く再利用できることを見出した。
As a result of intensive studies, the present inventors have determined that at least one oxidation selected from the group consisting of sulfuric acid: 50 to 400 g / L, nitric acid, hydrogen peroxide, peroxodisulfate ion, and trivalent iron ion as the pickling solution. Agent: 1 to 100 g / L, at least one additive selected from the group consisting of aromatic sulfonic acid, aromatic sulfonate, and alkylamine: 0.01 to 10 g / L, alkylbenzene sulfonic acid, alkylbenzene sulfonate At least one additive selected from the group consisting of: 0.005-10 g / L, and copper sulfate: 10-300 g / L, and using a pickling solution having a surface tension of less than 50 dyn / cm Thus, the oxide film can be removed efficiently, and the pickling solution containing the removed oxide film is electrolyzed in an electrolytic cell, so that the recyclability is improved. It has been found that high-purity copper or copper-based alloys that can be used as raw materials can be recovered.
Furthermore, the pickling solution can be reused efficiently by adding the oxidizing agent and additives corresponding to the amount consumed during removal of the oxide film and electrolysis to the pickling solution after electrolysis and returning it to the pickling bath. I found.

即ち、本発明の銅或いは銅基合金表面の酸化皮膜の除去方法は、銅或いは銅基合金表面に形成された酸化皮膜を除去する方法であって、硫酸:50〜400g/L、硝酸、過酸化水素、ペルオキソ二硫酸イオン、3価鉄イオンからなるグループから選択された少なくとも一つの酸化剤:1〜100g/L、芳香族スルホン酸、芳香族スルホン酸塩、アルキルアミンからなるグループから選択された少なくとも一つの添加剤:0.01〜10g/L、アルキルベンゼンスルホン酸、アルキルベンゼンスルホン酸塩からなるグループから選択された少なくとも一つの添加剤:0.005〜10g/L、および硫酸銅:10〜300g/Lを含有する酸洗液を含有し、表面張力が50dyn/cm未満である酸洗浴中に、表面に酸化皮膜が形成された銅或いは銅基合金を浸漬して前記酸化皮膜を除去した後、前記除去された酸化皮膜を含む酸洗液を電解槽中にて電気分解して前記酸化皮膜中の銅或いは銅基合金を回収し、更に、電気分解後の酸洗液に前記酸化皮膜除去及び前記電気分解時に消費された分量に相当する前記酸化剤及び前記添加剤を加えた後に前記酸洗浴中に戻し、前記酸洗液として再利用することを特徴とする。
That is, the method for removing an oxide film on the surface of copper or copper base alloy according to the present invention is a method for removing an oxide film formed on the surface of copper or copper base alloy, comprising sulfuric acid: 50 to 400 g / L, nitric acid, excess At least one oxidizing agent selected from the group consisting of hydrogen oxide, peroxodisulfate ion, and trivalent iron ion: 1 to 100 g / L, selected from the group consisting of aromatic sulfonic acid, aromatic sulfonate, and alkylamine At least one additive: 0.01 to 10 g / L, at least one additive selected from the group consisting of alkylbenzene sulfonic acid and alkylbenzene sulfonate: 0.005 to 10 g / L, and copper sulfate: 10 Copper or copper-based alloy having an oxide film formed on the surface thereof in a pickling bath containing a pickling solution containing 300 g / L and having a surface tension of less than 50 dyn / cm And removing the oxide film, the pickling solution containing the removed oxide film is electrolyzed in an electrolytic bath to recover copper or a copper-based alloy in the oxide film, To the pickling solution after decomposition, the oxidizing agent and the additive corresponding to the amount consumed during the removal of the oxide film and the electrolysis are added, and then returned to the pickling bath and reused as the pickling solution. It is characterized by.

硫酸が50g/L未満では、酸化皮膜の除去効果が低下し、400g/Lを超えると、効果が飽和してコスト的に無駄となる。
酸化剤が1g/L未満では、酸化皮膜の除去効果が低下し、100g/Lを超えると、除去時に発生するガス量が増加し不都合である。発生するガスは、使用される酸化剤によるが、主にNOx、酸素ガスである。
If the sulfuric acid is less than 50 g / L, the effect of removing the oxide film is reduced. If it exceeds 400 g / L, the effect is saturated and the cost is wasted.
If the oxidizing agent is less than 1 g / L, the effect of removing the oxide film is lowered, and if it exceeds 100 g / L, the amount of gas generated at the time of removal is disadvantageously increased. The generated gas depends mainly on the oxidant used, but is mainly NOx and oxygen gas.

芳香族スルホン酸、芳香族スルホン酸塩、アルキルアミンからなるグループから選択された少なくとも一つの添加剤は、銅或いは銅基合金表面に付着している前工程から持ち込まれる加工油が酸洗液を汚染していても、電気分解時に、ハンドリング性の良好な再生原料として利用可能な高純度の銅或いは銅基合金を陰極上に析出させ、陰極上で過酸化水素が還元分解されることを防ぐ。また、酸洗液中の酸化剤の安定剤として作用するため、酸化剤の消耗を抑える役割も果たす。
その添加量が、0.01g/L未満、或いは、10g/Lを超えても上述の効果は得られない。
At least one additive selected from the group consisting of aromatic sulfonic acids, aromatic sulfonates, and alkylamines may be used when the processing oil brought in from the previous step attached to the copper or copper-based alloy surface is pickled. Even if it is contaminated, high-purity copper or copper-based alloy that can be used as a recyclable raw material with good handling properties is deposited on the cathode during electrolysis, and hydrogen peroxide is prevented from being reduced and decomposed on the cathode. . Moreover, since it acts as a stabilizer for the oxidant in the pickling solution, it also serves to suppress the consumption of the oxidant.
Even if the addition amount is less than 0.01 g / L or exceeds 10 g / L, the above-mentioned effects cannot be obtained.

アルキルベンゼンスルホン酸、アルキルベンゼンスルホン酸塩からなるグループから選択された少なくとも一つの添加剤は、酸洗液中でも化学的に安定で、長期間にわたりの酸洗液の表面張力を下げてミストの飛散を防止し、酸洗液の浸透力を上げて酸洗能力を高める。特に、電気分解時に陰極から発生する酸素ガスに起因する大量の硫酸ミストの飛散を防止することができる。
その添加量が、0.005g/L未満、或いは、10g/Lを超えても上述の効果は得られない。
At least one additive selected from the group consisting of alkyl benzene sulfonic acid and alkyl benzene sulfonate is chemically stable even in pickling solution, and reduces the surface tension of pickling solution over a long period of time to prevent mist scattering. And increase the pickling ability of the pickling solution to increase the pickling ability. In particular, it is possible to prevent a large amount of sulfuric acid mist from being scattered due to oxygen gas generated from the cathode during electrolysis.
Even if the addition amount is less than 0.005 g / L or more than 10 g / L, the above-mentioned effect cannot be obtained.

芳香族スルホン類、芳香族スルホン酸塩、アルキルアミンからなるグループから選択された少なくとも一つの添加剤と、アルキルベンゼンスルホン酸、アルキルベンゼンスルホン酸塩からなるグループから選択された少なくとも一つの添加剤との組合せにより、本発明での良好な効果を得ることができる。   A combination of at least one additive selected from the group consisting of aromatic sulfones, aromatic sulfonates and alkylamines and at least one additive selected from the group consisting of alkylbenzene sulfonic acids and alkylbenzene sulfonates Thus, a good effect in the present invention can be obtained.

硫酸銅が10g/L未満では、次のステップでの電気分解の効率が減少し、300g/Lを超えると、飽和溶解度近くになるため硫酸銅が除去液中に析出して無駄となる。   If the copper sulfate is less than 10 g / L, the efficiency of electrolysis in the next step is reduced, and if it exceeds 300 g / L, the copper is precipitated in the removal solution and is wasted because it becomes close to the saturation solubility.

電気分解後の酸洗液に酸化皮膜除去及び電気分解時に消費された分量に相当する酸化剤及び添加剤を加えた後に酸洗浴中に戻すことにより、酸洗液として効率良く再利用することが可能となり、バッチ処理のみでなく、連続での銅或いは銅基合金表面の酸化皮膜の除去も可能となる。銅或いは銅基合金の種類にもよるが、加える(消費された)酸化剤及び添加剤量は、初期量の0.5〜10%程度である。   By adding the oxidizing agent and additives corresponding to the amount consumed during the removal of the oxide film and electrolysis to the pickled solution after electrolysis, it can be efficiently reused as a pickling solution by returning it to the pickling bath. This enables not only batch processing but also continuous removal of the oxide film on the surface of copper or copper-based alloy. Although depending on the type of copper or copper-based alloy, the amount of oxidant and additive added (consumed) is about 0.5 to 10% of the initial amount.

また、本発明の銅或いは銅基合金表面の酸化皮膜の除去方法は、前記酸洗液の表面張力が50dyn/cm未満であることを特徴とする。
主にアルキルベンゼンスルホン酸、アルキルベンゼンスルホン酸塩からなるグループから選択された少なくとも一つの添加剤により、酸洗液の表面張力を50dyn/cm未満とすることにより、電気分解時に、陰極からの酸素ガスに起因する大量の硫酸ミストの飛散を効率良く防ぐことができ、ハンドリング性の良好な再生原料として利用可能な高純度の銅或いは銅基合金を更に効率良く回収することができる。
The method for removing an oxide film on the surface of copper or copper-based alloy according to the present invention is characterized in that the pickling solution has a surface tension of less than 50 dyn / cm.
By making the surface tension of the pickling solution less than 50 dyn / cm with at least one additive selected from the group consisting mainly of alkylbenzene sulfonic acid and alkylbenzene sulfonate, oxygen gas from the cathode is reduced during electrolysis. It is possible to efficiently prevent a large amount of sulfuric acid mist from being scattered, and it is possible to more efficiently recover high-purity copper or a copper-based alloy that can be used as a recycled raw material with good handling properties.

また、本発明の再生原料として利用可能な銅或いは銅基合金は、前述の銅或いは銅基合金表面の酸化皮膜の除去方法により得られたことを特徴とする。
酸洗液には、酸化皮膜中に含まれる酸化銅或いは酸化銅基合金、或いは、金属銅或いは金属銅基合金を電気分解で回収する際に必要とされる好適で最適量の電解液成分が含有されているので、特別な手段を加えることなく、除去された酸化皮膜を含む酸洗液を電気分解することができ、効率良く、再生原料として利用可能な銅或いは銅基合金を回収することができる。
Moreover, the copper or copper base alloy that can be used as the reclaimed raw material of the present invention is obtained by the above-described method for removing an oxide film on the surface of copper or copper base alloy.
The pickling solution contains a suitable and optimum amount of electrolyte component required for recovering copper oxide or a copper oxide base alloy contained in the oxide film, or metal copper or a metal copper base alloy by electrolysis. Since it is contained, it is possible to electrolyze the pickling solution including the removed oxide film without adding any special means, and to efficiently recover copper or a copper-based alloy that can be used as a recycled material. Can do.

また、電気分解にて陰極上に回収された銅或いは銅基合金は、従来技術で回収されるような粉状ではなく、高純度で適度な硬さを有する板状であり、ハンドリング性も良く、洗浄が容易であり、不純物が入り難いので、回収された銅或いは銅基合金を再生原料として溶解鋳造された鋳塊は、不純物の含有量が少なく、その後の熱間圧延や熱間押出しにて割れなどの問題が発生し難い。   Also, the copper or copper-based alloy recovered on the cathode by electrolysis is not in the form of powder as recovered by the prior art, it is a plate having high purity and appropriate hardness, and has good handling properties. Ingots that are easy to wash and difficult to contain impurities, so that the recovered copper or copper-base alloy is melt-cast using recycled material as a raw material have a low content of impurities, and can be used for subsequent hot rolling and hot extrusion. Problems such as cracking are unlikely to occur.

本発明の銅或いは銅基合金表面の酸化皮膜の除去方法では、酸洗浴中に表面に酸化皮膜が形成された銅或いは銅基合金を浸漬して酸化皮膜を除去した後、酸化皮膜を含む酸洗液を電解槽中にて電気分解することにより、ハンドリング性の良好な再生原料として利用可能な高純度の銅或いは銅基合金を効率良く回収することができ、電気分解後の酸洗液を酸洗浴中に戻し再利用することが可能となる。   In the method for removing an oxide film on the surface of copper or a copper base alloy according to the present invention, after removing the oxide film by immersing the copper or copper base alloy having the oxide film formed on the surface in a pickling bath, the acid containing the oxide film is removed. By electrolyzing the washing solution in an electrolytic cell, it is possible to efficiently recover high-purity copper or copper-based alloy that can be used as a recyclable raw material with good handling properties. It can be returned to the pickling bath and reused.

本発明を実施するための一実施対応例の装置の概略図である。It is the schematic of the apparatus of the one implementation corresponding example for implementing this invention.

図1は、本発明を実施するための一実施対応例の装置の概略図であり、本発明の酸化皮膜除去装置1では、銅或いは銅基合金表面の酸化皮膜の酸洗液2が満たされた酸洗浴3内に銅或いは銅基合金4が浸漬され、その表面の酸化皮膜が酸洗液2中に除去される。酸化皮膜は、前工程での熱処理などの程度にもよるが、厚さが0.05〜10μmであり、酸化皮膜の除去液2の温度は、30〜60℃が適切であり、浸漬時間は、30〜120分であることが好ましい。酸化皮膜が除去された銅或いは銅基合金4は、酸洗浴3から搬送され、次の工程に供される。   FIG. 1 is a schematic view of an apparatus corresponding to one embodiment for carrying out the present invention. In the oxide film removing apparatus 1 of the present invention, a pickling solution 2 for an oxide film on the surface of copper or a copper base alloy is filled. Then, copper or a copper-based alloy 4 is immersed in the pickling bath 3, and the oxide film on the surface is removed in the pickling solution 2. Although the oxide film has a thickness of 0.05 to 10 μm, depending on the degree of heat treatment or the like in the previous process, the temperature of the oxide film removal liquid 2 is suitably 30 to 60 ° C., and the immersion time is 30 to 120 minutes is preferable. The copper or copper-based alloy 4 from which the oxide film has been removed is transported from the pickling bath 3 and used for the next step.

酸洗液2は、硫酸:50〜400g/L、硝酸、過酸化水素、ペルオキソ二硫酸イオン、3価鉄イオンからなるグループから選択された少なくとも一つの酸化剤:1〜100g/L、芳香族スルホン酸、芳香族スルホン酸塩、アルキルアミンからなるグループから選択された少なくとも一つの添加剤:0.01〜10g/L、アルキルベンゼンスルホン酸、アルキルベンゼンスルホン酸塩からなるグループから選択された少なくとも一つの添加剤:0.005〜10g/L、硫酸銅:10〜300g/Lを含有する。   The pickling solution 2 is sulfuric acid: 50 to 400 g / L, at least one oxidizing agent selected from the group consisting of nitric acid, hydrogen peroxide, peroxodisulfate ion, and trivalent iron ion: 1 to 100 g / L, aromatic At least one additive selected from the group consisting of sulfonic acid, aromatic sulfonate and alkylamine: 0.01 to 10 g / L, at least one selected from the group consisting of alkylbenzene sulfonic acid and alkylbenzene sulfonate Additive: 0.005 to 10 g / L, copper sulfate: 10 to 300 g / L.

硫酸が50g/L未満では、酸化皮膜の除去効果が低下し、400g/Lを超えると、効果が飽和してコスト的に無駄となる。
酸化剤が1g/L未満では、酸化皮膜の除去効果が低下し、100g/Lを超えると、除去時に発生するガス量が増加し不都合である。発生するガスは、使用される酸化剤によるが、主にNOx、酸素ガスである。酸化剤としては、例えば、過酸化水素、ペルオキソ二硫酸イオン、3価鉄イオンなどを用いることができる。
If the sulfuric acid is less than 50 g / L, the effect of removing the oxide film is reduced. If it exceeds 400 g / L, the effect is saturated and the cost is wasted.
If the oxidizing agent is less than 1 g / L, the effect of removing the oxide film is lowered, and if it exceeds 100 g / L, the amount of gas generated at the time of removal is disadvantageously increased. The generated gas depends mainly on the oxidant used, but is mainly NOx and oxygen gas. As the oxidizing agent, for example, hydrogen peroxide, peroxodisulfate ion, trivalent iron ion, or the like can be used.

芳香族スルホン酸、芳香族スルホン酸塩、アルキルアミンからなるグループから選択された少なくとも一つの添加剤は、銅或いは銅基合金表面4に付着している前工程から持ち込まれる加工油が酸洗液2を汚染しても、電気分解時に、ハンドリング性の良好な再生原料として利用可能な高純度の銅或いは銅基合金8を陰極7上に析出させることを可能とし、陰極7上で過酸化水素が還元分解されることを防ぐ。また、酸洗液2中の酸化剤の安定剤として作用するため、酸化剤の消耗を抑える役割も果たす。
その添加量が、0.01g/L未満、或いは、10g/Lを超えても上述の効果は得られない。
この添加剤としては、例えば、芳香族スルホン酸としてベンゼンスルホン酸、トルエンスルホン酸、キシレンスルホン酸、エチルベンゼンスルホン酸、クメンスルホン酸、フェノールスルホン酸、クレゾールスルホン酸、スルホサリチル酸、スルファニル酸が挙げられる。
アルキルアミンとしてはメチルアミン、エチルアミン、プロピルアミン、ブチルアミン、ペンチルアミンを用いることができる。
At least one additive selected from the group consisting of aromatic sulfonic acids, aromatic sulfonates, and alkylamines is processed oil brought from the previous step adhering to the copper or copper base alloy surface 4 is pickled. 2 can be deposited on the cathode 7 at the time of electrolysis, and can be deposited as hydrogen peroxide on the cathode 7. Prevents reductive decomposition. Moreover, since it acts as a stabilizer for the oxidant in the pickling solution 2, it also serves to suppress the consumption of the oxidant.
Even if the addition amount is less than 0.01 g / L or exceeds 10 g / L, the above-mentioned effects cannot be obtained.
Examples of the additive include aromatic sulfonic acids such as benzenesulfonic acid, toluenesulfonic acid, xylenesulfonic acid, ethylbenzenesulfonic acid, cumenesulfonic acid, phenolsulfonic acid, cresolsulfonic acid, sulfosalicylic acid, and sulfanilic acid.
As the alkylamine, methylamine, ethylamine, propylamine, butylamine, pentylamine can be used.

アルキルベンゼンスルホン酸、アルキルベンゼンスルホン酸塩からなるグループから選択された少なくとも一つの添加剤は、酸洗液2中でも化学的に安定で、長期間にわたりの酸洗液2の表面張力を下げてミストの飛散を防止し、酸洗液2の浸透力を上げて酸洗能力を高める効果もある。特に、電気分解時に陰極7から酸素ガスが発生し、大量の硫酸ミストが飛散するが、アルキルベンゼンスルホン酸を添加することにより、酸洗液の表面張力を下げ、硫酸ミストの飛散を防止することができる。
その添加量が、0.005g/L未満、或いは、10g/Lを超えても上述の効果は得られない。
この添加剤としては、例えば、オクチルベンゼンスルホン酸、ノニルベンゼンスルホン酸、デシルベンゼンスルホン酸、ウンデシルベンゼンスルホン酸、ドデシルベンゼンスルホン酸、トリデシルベンゼンスルホン酸、テトラデシルベンゼンスルホン酸、およびこれらの混合物を用いることができる。
At least one additive selected from the group consisting of alkyl benzene sulfonic acid and alkyl benzene sulfonate is chemically stable even in the pickling solution 2, and lowers the surface tension of the pickling solution 2 over a long period of time, thereby spreading mist. This also has the effect of increasing the penetration of the pickling solution 2 and increasing the pickling ability. In particular, oxygen gas is generated from the cathode 7 during electrolysis, and a large amount of sulfuric acid mist is scattered. However, by adding alkylbenzenesulfonic acid, the surface tension of the pickling solution can be lowered and the scattering of sulfuric acid mist can be prevented. it can.
Even if the addition amount is less than 0.005 g / L or more than 10 g / L, the above-mentioned effect cannot be obtained.
Examples of the additive include octylbenzenesulfonic acid, nonylbenzenesulfonic acid, decylbenzenesulfonic acid, undecylbenzenesulfonic acid, dodecylbenzenesulfonic acid, tridecylbenzenesulfonic acid, tetradecylbenzenesulfonic acid, and mixtures thereof. Can be used.

芳香族スルホン酸、芳香族スルホン酸塩、アルキルアミンからなるグループから選択された少なくとも一つの添加剤と、アルキルベンゼンスルホン酸、アルキルベンゼンスルホン酸塩からなるグループから選択された少なくとも一つの添加剤との組合せにより、本発明の良好な効果を得ることができる。   A combination of at least one additive selected from the group consisting of aromatic sulfonic acid, aromatic sulfonate, and alkylamine, and at least one additive selected from the group consisting of alkylbenzene sulfonic acid, alkylbenzene sulfonate Thus, the good effect of the present invention can be obtained.

硫酸銅が10g/L未満では、次のステップでの電気分解の効率が減少し、300g/Lを超えると、飽和溶解度近くになるため硫酸銅が除去液中に析出して無駄となる。   If the copper sulfate is less than 10 g / L, the efficiency of electrolysis in the next step is reduced, and if it exceeds 300 g / L, the copper is precipitated in the removal solution and is wasted because it becomes close to the saturation solubility.

また、酸洗液2の表面張力は、50dyn/cm未満であることが好ましい。主にアルキルベンゼンスルホン酸、アルキルベンゼンスルホン酸塩からなるグループから選択された少なくとも一つの添加剤により、酸洗液2の表面張力を50dyn/cm未満とすることにより、電気分解時に陰極7からの酸素ガスに起因する大量の硫酸ミストの飛散を効率的に防ぐことができ、ハンドリング性の良好な再生原料として利用可能な高純度の銅或いは銅基合金8を効率良く回収することができる。   The surface tension of the pickling solution 2 is preferably less than 50 dyn / cm. By making the surface tension of the pickling solution 2 less than 50 dyn / cm with at least one additive selected from the group consisting mainly of alkylbenzene sulfonic acid and alkylbenzene sulfonate, oxygen gas from the cathode 7 during electrolysis As a result, it is possible to efficiently prevent a large amount of sulfuric acid mist from being scattered, and to efficiently recover high-purity copper or copper-based alloy 8 that can be used as a recycled raw material with good handling properties.

次に、酸化皮膜除去装置1内の除去された酸化皮膜を含む酸洗液Xは、電解処理装置5にポンプP1により搬送される。電解処理装置5には、陽極6、陰極7がセットされ、その間に通電することにより、除去された酸化皮膜を含む酸洗液Xが電気分解され、効率良く再生原料として利用可能な銅或いは銅基合金8が陰極7上に回収する。   Next, the pickling solution X containing the removed oxide film in the oxide film removal apparatus 1 is conveyed to the electrolytic treatment apparatus 5 by the pump P1. Copper or copper that can be efficiently used as a reclaimed raw material is electrolyzed by setting the anode 6 and the cathode 7 in the electrolytic treatment apparatus 5 and energizing between them, so that the pickling solution X including the removed oxide film is electrolyzed. The base alloy 8 is collected on the cathode 7.

陰極7は、一般的にはタフピッチ銅板を使用するが、回収される銅或いは銅基合金に合わせて最適な材料を使用することが好ましい。陽極6には酸化イリジウムコートチタン板を使用することが好ましく、酸化皮膜の程度にもよるが、電流密度3〜10A/dm2にて6〜10時間程度の電気分解を施すことにより、酸化皮膜からの銅或いは銅基合金8が、陰極7上に取扱い容易な板形状にて析出される。 The cathode 7 generally uses a tough pitch copper plate, but it is preferable to use an optimum material in accordance with the recovered copper or copper base alloy. It is preferable to use an iridium oxide-coated titanium plate for the anode 6, and depending on the degree of the oxide film, the oxide film can be electrolyzed at a current density of 3 to 10 A / dm 2 for about 6 to 10 hours. Or copper-based alloy 8 is deposited on the cathode 7 in a plate shape that is easy to handle.

酸洗液2には、酸化皮膜中に含まれる酸化銅或いは酸化銅基合金、或いは、金属銅或いは金属銅基合金を電解回収する際に必要とされる好適で最適量の電解液成分が含有されているので、特別な手段を加えることなく、除去された酸化皮膜を含む酸洗液Aを電気分解することができ、これにより、効率良く再生原料として利用可能な銅或いは銅基合金8を回収することができる。   The pickling solution 2 contains a suitable and optimal amount of electrolytic solution component required for electrolytic recovery of copper oxide or a copper oxide base alloy, or metal copper or a metal copper base alloy contained in the oxide film. Therefore, the pickling solution A including the removed oxide film can be electrolyzed without adding any special means, and thereby the copper or copper-based alloy 8 that can be efficiently used as a recycle raw material can be obtained. It can be recovered.

電気分解にて陰極上に回収された銅或いは銅基合金8は、従来技術で回収されるような粉状ではなく、高純度で適度な硬さを有する板状であり、ハンドリング性も良く、洗浄が容易であり、不純物が入り難いので、回収された銅或いは銅基合金8を再生原料として溶解鋳造された鋳塊は、不純物の含有量が少なく、その後の熱間圧延や熱間押出しにて割れが発生し難いという利点を有する。   Copper or copper-based alloy 8 recovered on the cathode by electrolysis is not in the form of powder as recovered in the prior art, it is a plate having high purity and appropriate hardness, and has good handling properties. Since it is easy to clean and difficult to contain impurities, the ingot in which the recovered copper or copper-based alloy 8 is melt-cast using the recycled raw material has a low content of impurities and is used for subsequent hot rolling and hot extrusion. Therefore, there is an advantage that cracking hardly occurs.

次に、電解処理装置5内の電気分解後の酸洗液Yは、分析機器により酸化皮膜除去及び電気分解時に消費された分量の酸化剤及び添加剤を検出し、それに相当する酸化剤及び添加剤C加えた後に、ポンプP2により酸化皮膜除去装置1に搬送され、酸洗液として循環再利用される。加えられる酸化剤及び添加剤Z量は、酸化皮膜の付着量や銅或いは銅基合金の種類にもよるが、消費前の量の0.5〜10%程度である。
上述の処理は、バッチ処理での対応であるが、連続処理でも良く、銅或いは銅基合金の種類及びその酸化皮膜の度合いにより、最適な浸漬時間を選定して、酸洗液2を循環させ、連続的にその表面の酸化皮膜の除去を行うことも可能である。
Next, the pickling solution Y after electrolysis in the electrolytic treatment apparatus 5 detects the amount of oxidant and additive consumed during the removal of the oxide film and electrolysis by an analytical instrument, and the corresponding oxidant and addition are detected. After adding the agent C, it is transported to the oxide film removing apparatus 1 by the pump P2 and recycled as a pickling solution. The amount of the oxidant and additive Z to be added is about 0.5 to 10% of the amount before consumption, although it depends on the amount of oxide film deposited and the type of copper or copper-based alloy.
The above treatment is a batch treatment, but it may be a continuous treatment. Depending on the type of copper or copper base alloy and the degree of its oxide film, the optimum immersion time is selected and the pickling solution 2 is circulated. It is also possible to continuously remove the oxide film on the surface.

長さ500mm、幅100mm、厚さ30mmの三菱マテリアル株式会社製のタフピッチ銅(Cu:99.92%、O:300ppm、P:0ppm)板に、熱間圧延加工(600℃、圧下率50%)を施し、急冷して、厚さ15mmのタフピッチ銅板を作製した。このタフピッチ銅板の表面には、約0.7μmの厚さの酸化皮膜が形成されていた。
このタフピッチ銅板を表1に示す組成及び表面張力の酸洗液1m3を含有する酸洗浴に40℃にて30分間浸漬した後、洗浄して酸化皮膜を除去し、酸化被膜除去後のタフピッチ銅板の表面を目視にて観察した。
Hot rolling (600 ° C., reduction ratio 50%) on a tough pitch copper (Cu: 99.92%, O: 300 ppm, P: 0 ppm) plate made by Mitsubishi Materials Corporation having a length of 500 mm, a width of 100 mm, and a thickness of 30 mm ) And quenched to prepare a tough pitch copper plate having a thickness of 15 mm. An oxide film having a thickness of about 0.7 μm was formed on the surface of the tough pitch copper plate.
The tough pitch copper plate was immersed in a pickling bath containing 1 m 3 of pickling solution having the composition and surface tension shown in Table 1 for 30 minutes at 40 ° C., then washed to remove the oxide film, and the tough pitch copper plate after removal of the oxide film The surface of was observed visually.

表1のAは硝酸、Bは過酸化水素、Cはペルオキソ二硫酸イオン、Dは3価鉄イオン、Eはベンゼンスルホン酸、Fはベンゼンスルホン酸ナトリウム、Gはポリオキシエチレンアミン、Hはドデシルベンゼンスルホン酸、Iはドデシルベンゼンスルホン酸ナトリウムを表す。表1にて、二種類以上添加したものについては、それらを並べて表記し、その並びの順序でそれぞれの濃度を記載した。   In Table 1, A is nitric acid, B is hydrogen peroxide, C is peroxodisulfate ion, D is trivalent iron ion, E is benzenesulfonic acid, F is sodium benzenesulfonate, G is polyoxyethyleneamine, H is dodecyl Benzenesulfonic acid, I represents sodium dodecylbenzenesulfonate. In Table 1, those added two or more kinds are listed side by side, and the respective concentrations are described in the order of the order.

その結果を表1に示す。タフピッチ銅板の表面の酸化被膜が完全に除去され、ガス付着の痕跡が見られなかったものを○とし、酸化被膜が完全には除去されず、ガス付着の痕跡が見られたもの×とした。
参考として、通常の混酸(硫酸+硝酸)を酸洗液として使用したところ、40℃にて70分浸漬しなければ、酸化被膜の除去は終了せず、ガス付着の痕跡がかなり見られた。
The results are shown in Table 1. The case where the oxide film on the surface of the tough pitch copper plate was completely removed and no trace of gas adhesion was observed was marked with ◯, and the oxide film was not completely removed and the gas adhesion trace was observed with x.
As a reference, when a normal mixed acid (sulfuric acid + nitric acid) was used as the pickling solution, removal of the oxide film was not completed unless soaked at 40 ° C. for 70 minutes, and a considerable trace of gas adhesion was observed.

Figure 0005886022
Figure 0005886022

次に、除去された酸化皮膜を含む表1の組成の酸洗液全量を電解槽に移し、陰極にタフピッチ銅板、陽極に酸化イリジウムコートチタン板を用いて、温度40℃、電流密度5A/dm2、極間距離50mm、流速0.5m/minにて8時間電気分解を施し、陰極上に酸化皮膜からの銅を板状に析出させた。この板状銅を電解槽から回収して、平均表面粗さRa、銅の純度、表面の硬度を測定した。 Next, the entire amount of the pickling solution having the composition shown in Table 1 including the removed oxide film was transferred to an electrolytic cell, using a tough pitch copper plate as the cathode and an iridium oxide-coated titanium plate as the anode, a temperature of 40 ° C., and a current density of 5 A / dm. 2. Electrolysis was performed at a distance of 50 mm between electrodes and a flow rate of 0.5 m / min for 8 hours to deposit copper from the oxide film in a plate shape on the cathode. The plate-like copper was recovered from the electrolytic cell, and average surface roughness Ra, copper purity, and surface hardness were measured.

(イ)銅板表面の表面粗さRaは、SPM(SIIナノテクノロジー社)を用いて測定した。
(ロ)銅板表面の硬度の測定は、MVK−G1(AKASHI社)を用いて、ビッカース硬さ試験法、JIS Z 2244に準じてN=3で行った。
(ハ)銅板の純度の測定は、銅の中に含まれる不純物を測定して、その不純物比率を100%から差し引いて求めた。
(ニ)不純物測定には、Cを除いてグロー放電質量分析装置(GD-MS:Glow Discharge Mass Spectrometry)を用いて行い、Cは脱脂した銅試料を酸素雰囲気中高周波加熱燃焼により発生するCO2ガスの赤外吸収を測定してC量に換算した。
その結果を表2に示す。
これらの結果より、実施例の板状銅は、高純度で、適度の硬度を有しており、ハンドリング性が良く、次の洗浄工程において洗浄液中のSの影響を受け難いことがわかる。
(A) The surface roughness Ra of the copper plate surface was measured using SPM (SII Nanotechnology).
(B) The hardness of the copper plate surface was measured using MVK-G1 (AKASHI) at N = 3 according to the Vickers hardness test method, JIS Z 2244.
(C) The purity of the copper plate was determined by measuring impurities contained in copper and subtracting the impurity ratio from 100%.
(D) Impurity measurement is performed using a glow discharge mass spectrometer (GD-MS) except for C, and C is CO 2 generated by high-frequency heating combustion in an oxygen atmosphere of a degreased copper sample. The infrared absorption of the gas was measured and converted to C amount.
The results are shown in Table 2.
From these results, it can be seen that the plate-like copper of the example has high purity, moderate hardness, good handleability, and is hardly affected by S in the cleaning liquid in the next cleaning step.

Figure 0005886022
Figure 0005886022

次に、これらの板状銅を硫酸水溶液で洗浄した後、溶解鋳造して鋳塊を作製し、鋳塊中のイオウ含有量(S含有量)を測定した。S含有量は赤外吸収法にて測定した。また、その鋳塊を600℃に加熱して押出加工により棒材を成形し、割れの有無を目視にて観察した。その結果を表2に示す。
これらの結果より、実施例の板状銅より溶解鋳造した鋳塊は、鋳塊中のS含有量が小さく、その鋳塊より押出加工された棒材は、割れが無いことがわかる。
Next, these plate-like coppers were washed with a sulfuric acid aqueous solution and then melt-cast to produce an ingot, and the sulfur content (S content) in the ingot was measured. S content was measured by the infrared absorption method. Further, the ingot was heated to 600 ° C., a bar was formed by extrusion, and the presence or absence of cracks was visually observed. The results are shown in Table 2.
From these results, it is understood that the ingot melt-cast from the plate-like copper of the example has a small S content in the ingot, and the bar material extruded from the ingot does not have cracks.

次に、電気分解後の酸洗液を分析して、酸洗液に消費された量に相当する酸化剤及び添加剤(0.002g)を加え、その全量を酸洗浴に戻し、次の酸洗液として使用して、他のタフピッチ銅の酸化皮膜の除去を実施例1〜8につき同様な手法にて実施した。これを更に2回繰り返し、計4回目の酸化皮膜除去のテストの各結果を表3に示す。これより、4回目のテストでも1回目と変わらない結果であることがわかる。   Next, the pickling solution after electrolysis is analyzed, and an oxidizing agent and an additive (0.002 g) corresponding to the amount consumed in the pickling solution are added, and the entire amount is returned to the pickling bath, and the next acid pickling solution is added. Using it as a washing solution, the removal of other tough pitch copper oxide films was carried out in the same manner as in Examples 1-8. This is repeated two more times, and the results of the fourth test for removing the oxide film are shown in Table 3. From this, it can be seen that the result of the fourth test is the same as the first test.

Figure 0005886022
Figure 0005886022

これらの結果より、本発明の銅或いは銅基合金表面の酸化皮膜の除去方法により得られた回収銅或いは銅合金は、ハンドリング性の良好な再生原料として利用可能な高純度の銅或いは銅基合金を効率良く回収することができ、本発明での酸洗液は、消費された量に相当する酸化剤及び添加剤を加えることにより、酸洗浴中にて充分に再利用可能であることがわかる。
なお、本発明は上記実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることは可能である。
From these results, the recovered copper or copper alloy obtained by the method for removing an oxide film on the surface of the copper or copper-based alloy of the present invention is a high-purity copper or copper-based alloy that can be used as a recyclable raw material with good handling properties. It can be seen that the pickling solution according to the present invention can be sufficiently reused in the pickling bath by adding an oxidizing agent and an additive corresponding to the consumed amount. .
In addition, this invention is not limited to the said embodiment, A various change is possible in the range which does not deviate from the meaning of this invention.

1 酸化皮膜除去装置
2 酸洗液
3 酸洗浴
4 銅或いは銅基合金
5 電解処理装置
6 陽極、
7 陰極
8 陰極上に回収された銅或いは銅基合金
P1 ポンプ
P2 ポンプ
X 酸化皮膜を含む酸洗液
Y 電気分解後の酸洗液
Z 加える酸化剤及び添加剤
DESCRIPTION OF SYMBOLS 1 Oxide film removal apparatus 2 Pickling liquid 3 Pickling bath 4 Copper or copper base alloy 5 Electrolytic processing apparatus 6 Anode,
7 Cathode 8 Copper or copper-based alloy recovered on the cathode P1 Pump P2 Pump X Pickling solution containing oxide film Y Pickling solution after electrolysis Z Oxidizing agent and additive

Claims (2)

銅或いは銅基合金表面に形成された酸化皮膜を除去する方法であって、硫酸:50〜400g/L、硝酸、過酸化水素、ペルオキソ二硫酸イオン、3価鉄イオンからなるグループから選択された少なくとも一つの酸化剤:1〜100g/L、芳香族スルホン酸、芳香族スルホン酸塩、アルキルアミンからなるグループから選択された少なくとも一つの添加剤:0.01〜10g/L、アルキルベンゼンスルホン酸、アルキルベンゼンスルホン酸塩からなるグループから選択された少なくとも一つの添加剤:0.005〜10g/L、および硫酸銅:10〜300g/Lを含有する酸洗液を含有し、表面張力が50dyn/cm未満である酸洗浴中に、表面に酸化皮膜が形成された銅或いは銅基合金を浸漬して前記酸化皮膜を除去した後、前記除去された酸化皮膜を含む酸洗液を電解槽中にて電気分解して前記酸化皮膜中の銅或いは銅基合金を回収し、更に、電気分解後の酸洗液に前記酸化皮膜除去及び前記電気分解時に消費された分量に相当する前記酸化剤及び前記添加剤を加えた後に前記酸洗浴中に戻し、前記酸洗液として再利用することを特徴とする銅或いは銅基合金表面の酸化皮膜の除去方法。 A method for removing an oxide film formed on a surface of copper or a copper-based alloy, which is selected from the group consisting of sulfuric acid: 50 to 400 g / L, nitric acid, hydrogen peroxide, peroxodisulfate ions, and trivalent iron ions. At least one oxidizing agent: 1 to 100 g / L, at least one additive selected from the group consisting of aromatic sulfonic acid, aromatic sulfonate, alkylamine: 0.01 to 10 g / L, alkylbenzenesulfonic acid, Contains a pickling solution containing at least one additive selected from the group consisting of alkylbenzene sulfonates: 0.005 to 10 g / L, and copper sulfate: 10 to 300 g / L, and has a surface tension of 50 dyn / cm After removing the oxide film by immersing copper or a copper-based alloy having an oxide film formed on the surface thereof in the pickling bath, the removed oxide film The pickling solution containing is electrolyzed in an electrolytic cell to recover the copper or copper-based alloy in the oxide film, and is further consumed in the pickling solution after electrolysis during the removal of the oxide film and the electrolysis. A method for removing an oxide film on the surface of copper or a copper-based alloy, comprising adding the oxidizing agent and the additive corresponding to a predetermined amount and then returning to the pickling bath and reusing it as the pickling solution. 請求項1の方法において、除去された酸化皮膜を含む酸洗液を電解槽中にて電気分解して板状の銅或いは銅基合金を陰極上に析出させて回収する銅或いは銅基合金表面の酸化皮膜の除去方法。
2. The copper or copper base alloy surface according to claim 1, wherein the pickling solution containing the removed oxide film is electrolyzed in an electrolytic cell to deposit and recover plate-like copper or copper base alloy on the cathode. Of removing the oxide film.
JP2011274719A 2011-12-15 2011-12-15 Method for removing oxide film on copper or copper base alloy surface Active JP5886022B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2011274719A JP5886022B2 (en) 2011-12-15 2011-12-15 Method for removing oxide film on copper or copper base alloy surface
KR1020120142128A KR20130069419A (en) 2011-12-15 2012-12-07 Method of removing oxide film on surface of copper or copper-base alloy and copper or copper-base alloy recovered using the method
TW101146600A TW201337040A (en) 2011-12-15 2012-12-11 Method of removing oxide film on surface of copper or copper-base alloy and copper or copper-base alloy recovered using the method
CN2012105323999A CN103160844A (en) 2011-12-15 2012-12-11 Method of removing oxide film on surface of copper or copper-base alloy and copper or copper-base alloy recovered using the method
EP20120196870 EP2604725B1 (en) 2011-12-15 2012-12-13 Method of removing oxide film on surface of copper or copper-base alloy.
US13/714,746 US20130156631A1 (en) 2011-12-15 2012-12-14 Method of removing oxide film on surface of copper or copper-base alloy and copper or copper-base alloy recovered using the method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011274719A JP5886022B2 (en) 2011-12-15 2011-12-15 Method for removing oxide film on copper or copper base alloy surface

Publications (2)

Publication Number Publication Date
JP2013124403A JP2013124403A (en) 2013-06-24
JP5886022B2 true JP5886022B2 (en) 2016-03-16

Family

ID=48775856

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011274719A Active JP5886022B2 (en) 2011-12-15 2011-12-15 Method for removing oxide film on copper or copper base alloy surface

Country Status (1)

Country Link
JP (1) JP5886022B2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5386627A (en) * 1976-12-11 1978-07-31 Furukawa Electric Co Ltd:The Recovering method for copper in copper or copper alloy-treated solution
JPH01294879A (en) * 1988-05-23 1989-11-28 Hitachi Condenser Co Ltd Method for regenerating spent etching solution
GB9620877D0 (en) * 1996-10-07 1996-11-27 Solvay Interox Ltd Metal surface treatment
DE102005006982A1 (en) * 2005-02-15 2006-08-17 Basf Ag Use of nonionic surfactants in metal extraction by electrolysis
JP4553870B2 (en) * 2006-06-05 2010-09-29 株式会社メイクリーンお仏壇本舗 Oil cleaning method
JP2008157627A (en) * 2006-12-20 2008-07-10 Sumitomo Metal Mining Co Ltd Quantitative determination method for sulfonic acid type anionic surfactant in copper electrolyte or plating liquid

Also Published As

Publication number Publication date
JP2013124403A (en) 2013-06-24

Similar Documents

Publication Publication Date Title
KR20130069419A (en) Method of removing oxide film on surface of copper or copper-base alloy and copper or copper-base alloy recovered using the method
CN108588719B (en) Deplating liquid for deplating copper-based palladium-nickel alloy plating layer
ES2605452T3 (en) Pickling stainless steel in an oxidizing electrolytic acid bath
CN108950562B (en) Two-stage tin stripping method for PCB
JP2014009370A (en) Method for recovering copper or copper based alloy metal from pickling solution after the pickling of copper or copper based alloy
CN104047022A (en) Electrolyzing and recovering method for copper in waste diamond cutter
JP6189639B2 (en) Casting surface cleaning method
US3793172A (en) Processes and baths for electro-stripping plated metal deposits from articles
JP5886022B2 (en) Method for removing oxide film on copper or copper base alloy surface
JP2013199702A (en) Method of removing oxide film on surface of copper or copper-base alloy
JP2014214378A (en) METHOD FOR RECOVERING COPPER FROM Sn PLATING STRIPPING WASTE LIQUID
US3632490A (en) Method of electrolytic descaling and pickling
JP2009504905A (en) Electropolishing method
JP2013001979A (en) Removing liquid of oxide film on surface of copper and copper-based alloy
JP5481179B2 (en) Method for stripping Sn plating layer of Cu-based material
KR20200047446A (en) Electrode and method for manufacturing same, and method for producing regenerative electrode
CN113666477A (en) Complex breaking additive, and brown oxidation waste liquid recovery treatment method and recovery device
JP6747641B2 (en) Method and apparatus for dissolving and recovering group 5 element and/or group 6 element with controlled water vapor partial pressure
CN113122906B (en) Electric release oil synergist
TW201337040A (en) Method of removing oxide film on surface of copper or copper-base alloy and copper or copper-base alloy recovered using the method
JP2517353B2 (en) Descaling method for stainless steel strip
JP2015001001A (en) Method for recovering copper from tin-plating release waste liquor
Maizelis et al. Electrochemical treatment of waste in the form of copper coating on non-conductive substrate to obtain marketable products
US1893817A (en) Electrode cleaning process
CN112159983A (en) Silver plated part deplating method with deplating liquid capable of being recycled

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141111

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150805

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150930

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160113

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160210

R150 Certificate of patent or registration of utility model

Ref document number: 5886022

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350