JP6745684B2 - Vibratory parts carrier - Google Patents

Vibratory parts carrier Download PDF

Info

Publication number
JP6745684B2
JP6745684B2 JP2016169325A JP2016169325A JP6745684B2 JP 6745684 B2 JP6745684 B2 JP 6745684B2 JP 2016169325 A JP2016169325 A JP 2016169325A JP 2016169325 A JP2016169325 A JP 2016169325A JP 6745684 B2 JP6745684 B2 JP 6745684B2
Authority
JP
Japan
Prior art keywords
vibration
base
vibrating body
component
horizontal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016169325A
Other languages
Japanese (ja)
Other versions
JP2018034950A (en
Inventor
正夫 大橋
正夫 大橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp filed Critical NTN Corp
Priority to JP2016169325A priority Critical patent/JP6745684B2/en
Publication of JP2018034950A publication Critical patent/JP2018034950A/en
Application granted granted Critical
Publication of JP6745684B2 publication Critical patent/JP6745684B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Jigging Conveyors (AREA)

Description

本発明は、加振機構の駆動により部品搬送部材を振動させて部品を搬送する振動式部品搬送装置に関する。 The present invention relates to a vibration type component transfer device that drives a vibrating mechanism to vibrate a component transfer member to transfer a component.

振動式部品搬送装置には、直線状の部品搬送路が形成された部品搬送部材に対し、部品搬送に最適な振動を付与することを目的として、部品搬送部材が取り付けられる上部振動体と床上に設置される基台との間に中間振動体を配し、水平方向に向けた鉛直振動用板ばねで上部振動体と中間振動体とを連結し、鉛直方向に向けた水平振動用板ばねで中間振動体と基台とを連結して、部品搬送部材の水平方向の振動と鉛直方向の振動をそれぞれ調整できる構成とした複合振動式のものがある(例えば、特許文献1、2参照。)。 The vibration type component transfer device has a structure in which a linear component transfer path is formed on the upper vibrating body to which the component transfer member is attached and on the floor for the purpose of imparting optimum vibration to the component transfer member. An intermediate vibrating body is placed between the installed base and the horizontal vibrating leaf spring connects the upper vibrating body and the intermediate vibrating body with the horizontal vibrating leaf spring. There is a compound vibration type in which the intermediate vibration body and the base are connected to each other so that the horizontal vibration and the vertical vibration of the component conveying member can be adjusted respectively (for example, refer to Patent Documents 1 and 2). ..

特開昭55−84707号公報JP-A-55-84707 特開平11−180525号公報JP, 11-180525, A

図6は上記のような複合振動式の部品搬送装置の一例をモデル的に示す(振動の発生源となる加振機構は図示省略)。この部品搬送装置は、振動系として、大別3つの部品、すなわちトラフ(部品搬送部材)Aと上部振動体Bとが一体になった部品、中間振動体Cおよび基台Dを備えている。そして、上部振動体Bと中間振動体Cとが鉛直振動用板ばねKbで、中間振動体Cと基台Dとが水平振動用板ばねKcでそれぞれ連結され、基台Dは防振ばね(防振部材)Kdで床に接続されている。ここで、以下の説明のために、部品搬送方向をX軸方向、部品搬送方向と直交する水平方向をY軸方向、部品搬送方向と直交する鉛直方向をZ軸方向と定義する。 FIG. 6 shows a model of an example of the composite vibration type component transfer device as described above (the vibrating mechanism serving as a vibration source is not shown). The component transfer device includes, as a vibration system, roughly three parts, that is, a part in which a trough (component transfer member) A and an upper vibrating body B are integrated, an intermediate vibrating body C and a base D. The upper vibrating body B and the intermediate vibrating body C are connected by a vertical vibration leaf spring Kb, the intermediate vibrating body C and a base D are connected by a horizontal vibration leaf spring Kc, respectively, and the base D is a vibration-proof spring ( Anti-vibration member) Kd is connected to the floor. Here, for the following description, the component transport direction is defined as the X-axis direction, the horizontal direction orthogonal to the component transport direction is defined as the Y-axis direction, and the vertical direction orthogonal to the component transport direction is defined as the Z-axis direction.

この振動系は、振動工学でいう2自由度の振動系とみなすことができる。すなわち、図7に示すように、水平な台上で摩擦のないころ上に二つの物体m1、m2を置き、そのうちの一方の物体m1を弾性体K1で固定体に結合し、両物体m1、m2を弾性体K2で結合したモデルと同じである。図7のモデルにおいて、図中のD1ないしD2の変位を与えたときの自由振動については、ニュートンの第2法則と弾性体によるばね応力との釣り合い力によって運動方程式を作ることができ、動的な状態を説明できる。ここで、物体m1と固定体を結合する弾性体K1のばね定数が無視できるほど小さい場合は、弾性体K2のみを考えればよい。また、固定体と結合される物体m1の質量が非常に大きい場合は、物体m1がほとんど動かないので、1軸上を一つの物体m2が変位する1自由度の振動系とみなせる。 This vibration system can be regarded as a vibration system having two degrees of freedom in vibration engineering. That is, as shown in FIG. 7, two objects m1 and m2 are placed on a friction-free roller on a horizontal table, and one of the objects m1 is connected to a fixed body by an elastic body K1. This is the same as the model in which m2 is connected by the elastic body K2. In the model of FIG. 7, with respect to the free vibration when the displacement of D1 or D2 in the figure is given, the equation of motion can be created by the balance force between Newton's second law and the spring stress by the elastic body, Can explain various situations. If the spring constant of the elastic body K1 that connects the object m1 and the fixed body is so small that it can be ignored, only the elastic body K2 needs to be considered. Further, when the mass of the object m1 coupled to the fixed body is very large, the object m1 hardly moves, so that it can be regarded as a one-degree-of-freedom vibration system in which one object m2 is displaced on one axis.

これをふまえて図6をみると、基台Dを床と接続する防振ばねKdは、通常、その上の振動系に対して十分に軟らかく設定されているので、そのばね作用をほとんど無視することができる。したがって、図6の振動系では、前記の3つの部品とこれらをつなぐ鉛直振動用板ばねKbおよび水平振動用板ばねKcのみを考察すればよい。 Based on this, referring to FIG. 6, the vibration-proof spring Kd that connects the base D to the floor is normally set to be sufficiently soft for the vibration system above it, so that its spring action is almost ignored. be able to. Therefore, in the vibration system of FIG. 6, only the above-described three components and the vertical vibration leaf spring Kb and the horizontal vibration leaf spring Kc that connect them need to be considered.

ここで、一般に、板ばねは、厚さ方向へは一定のばね定数をもって変形するが、厚さ方向と直交する平面方向には大きな剛性を有しほとんど変形しない。したがって、図6の部品搬送装置においては、水平振動用板ばねKcおよび鉛直振動用板ばねKbがそれぞれの厚さ方向に弾性体として作用するので、中間振動体Cと基台Dとは水平振動用板ばねKcの厚さ方向の相対的な動きは可能であるが、その厚さ方向と直交する平面方向には一体となって運動し、上部振動体Bと中間振動体Cとは鉛直振動用板ばねKbの厚さ方向の相対的な動きは可能であるが、その厚さ方向と直交する平面方向には一体となって運動する。 Here, in general, the leaf spring deforms with a constant spring constant in the thickness direction, but has large rigidity in the plane direction orthogonal to the thickness direction and hardly deforms. Therefore, in the component transfer device of FIG. 6, since the horizontal vibration leaf spring Kc and the vertical vibration leaf spring Kb act as elastic bodies in their respective thickness directions, the intermediate vibration body C and the base D vibrate horizontally. Although the plate spring Kc can move in the thickness direction relatively, it moves integrally in the plane direction orthogonal to the thickness direction, and the upper vibrating body B and the intermediate vibrating body C vibrate vertically. Although the leaf spring Kb can move in the thickness direction, it moves integrally in the plane direction orthogonal to the thickness direction.

例えば、この部品搬送装置において、図示省略した水平振動用加振機構のみを作動させると、トラフAおよび上部振動体Bと中間振動体Cとが一体になって振動するため、これらの3つの部品(以下、合わせて「上方部材ABC」と称する。)と基台Dと水平振動用板ばねKcとによる水平振動系の固有周波数(円振動数)ωは(1)式のようになる。 For example, when only the horizontal vibration exciting mechanism (not shown) is operated in this component transfer device, the trough A, the upper vibrating body B, and the intermediate vibrating body C vibrate integrally, so that these three components (Hereinafter, collectively referred to as "upper member ABC"), the natural frequency (circular frequency) ω h of the horizontal vibration system formed by the base D and the horizontal vibration leaf spring Kc is expressed by equation (1).

Figure 0006745684
ここで、k:水平振動用板ばねKcのばね定数、
abc:トラフA、上部振動体Bおよび中間振動体Cの質量の総和、
:基台Dの質量
である。
Figure 0006745684
Here, k c : the spring constant of the horizontal vibration leaf spring Kc,
Mabc : Sum of masses of trough A, upper vibrating body B and intermediate vibrating body C,
M d : Mass of the base D.

したがって、水平振動用加振機構の駆動周波数を(1)式の固有周波数ωに近づけると、水平振動用板ばねKcの変形が大きくなって、上方部材ABCの部品搬送方向の振動の振幅が大きくなる。このとき、図8(a)に示すように、上方部材ABCの重心Gabcおよび基台Dの重心Gと搬送装置全体の重心Gabcdとの距離をr1、r2とすると、重心Gabcと重心Gにはそれぞれ振動力F1、F2が作用するため、重心GabcdのまわりにF1×r1およびF2×r2のモーメントが発生する。これにより、搬送装置全体は、重心Gabcdを中心としたY軸まわりの回転運動(以下、「ピッチング運動」と称する。)を行う。このときの重心Gabc、Gの振動変位(振幅)X1、X2は、図8(b)に示すように、全体の重心Gabcdと重心Gabc、Gを結んだ直線eで大きさが表される。したがって、その振幅X1、X2は二つの質量の比に反比例することがわかる。 Therefore, when the driving frequency of the horizontal vibration exciting mechanism is brought close to the natural frequency ω h of the equation (1), the horizontal vibration leaf spring Kc is greatly deformed, and the amplitude of the vibration of the upper member ABC in the component conveyance direction is increased. growing. At this time, as shown in FIG. 8A, if the distances between the center of gravity G abc of the upper member ABC and the center of gravity G d of the base D and the center of gravity G abcd of the entire transport apparatus are r1 and r2, then the center of gravity G abc and Since the vibration forces F1 and F2 act on the center of gravity G d , moments F1×r1 and F2×r2 are generated around the center of gravity G abcd . As a result, the entire transporting device performs a rotational movement about the Y axis around the center of gravity G abcd (hereinafter, referred to as “pitching movement”). The vibration displacements (amplitudes) X1 and X2 of the centers of gravity G abc and G d at this time are, as shown in FIG. 8B, magnitudes of a straight line e connecting the entire center of gravity G abcd and the centers of gravity G abc and G d. Is represented. Therefore, it can be seen that the amplitudes X1 and X2 are inversely proportional to the ratio of the two masses.

次に、中間振動体Cと上部振動体BおよびトラフAをつなぐ鉛直振動用板ばねKbによる鉛直振動系について述べる。実際の運転時は、この鉛直振動系による鉛直振動と前記水平振動系による水平振動との合成により、必要な角度と波形をもった振動(たとえば楕円振動)を作り出している。鉛直振動用板ばねKbは、水平振動用板ばねKcと結合方向が90°異なるので、当然ながら鉛直方向にのみ変位する。ここでは鉛直振動用加振機構は動作させていないので、鉛直方向の強制的な加振力はない。このため、機械的な外力がない限り上部振動体BとトラフAの鉛直振動はなく、前述の水平方向への変位のみになるはずである。しかしながら、前記の水平振動系は上方部材ABCと基台Dの重心位置の違いによるピッチング運動を伴っているので、トラフAと上部振動体Bはこれらの重心Gabの回りに回転振動を励起される。この回転振動の固有周波数(円振動数)ωは(2)式のようになる。 Next, a vertical vibrating system including a vertical vibrating leaf spring Kb connecting the intermediate vibrating body C, the upper vibrating body B and the trough A will be described. During actual operation, the vertical vibration generated by the vertical vibration system and the horizontal vibration generated by the horizontal vibration system are combined to generate vibration having a required angle and waveform (for example, elliptical vibration). Since the vertical vibration leaf spring Kb differs from the horizontal vibration leaf spring Kc in the coupling direction by 90°, it is naturally displaced only in the vertical direction. Since the vertical vibrating vibration mechanism is not operated here, there is no forced vibration force in the vertical direction. Therefore, as long as there is no mechanical external force, there is no vertical vibration of the upper vibrating body B and the trough A, and only the above-mentioned horizontal displacement should occur. However, since the horizontal vibration system is accompanied by the pitching motion due to the difference in the center of gravity positions of the upper member ABC and the base D, the trough A and the upper vibrating body B are excited with rotational vibration around their center of gravity G ab. R. The natural frequency (circular frequency) ω v of this rotational vibration is as shown in equation (2).

Figure 0006745684
ここで、k:鉛直振動用板ばねKbのばね定数(1ラジアンあたりのモーメント)、
ab:トラフAと上部振動体Bの慣性モーメントの和、
cd:中間振動体Cと基台Dの慣性モーメントの和
である。
Figure 0006745684
Where k b is the spring constant of the vertical vibration leaf spring Kb (moment per radian),
J ab : Sum of inertia moments of trough A and upper vibrator B,
J cd : Sum of inertia moments of the intermediate vibrating body C and the base D.

この固有周波数ωに近づくことで、トラフAと上部振動体Bは中間振動体Cに対して大きな回転振動を発生する。この起振力は前記水平振動系のピッチング運動に起因する機械的なものである。図9に示すように、トラフAと上部振動体Bの最大回転時の水平振動系に対する回転角度βが、水平振動系の床面に対する回転角度αと等しければ(回転方向は鉛直振動系と反対)、トラフAは床面に対しては見かけ上ピッチング運動が消え、水平振動のみが観測される。 By approaching the natural frequency ω v , the trough A and the upper vibrating body B generate large rotational vibration with respect to the intermediate vibrating body C. This vibration force is mechanical due to the pitching motion of the horizontal vibration system. As shown in FIG. 9, if the rotation angle β of the trough A and the upper vibrating body B with respect to the horizontal vibration system at the maximum rotation is equal to the rotation angle α of the horizontal vibration system with respect to the floor surface (the rotation direction is opposite to that of the vertical vibration system). ), the trough A apparently loses the pitching motion on the floor surface, and only horizontal vibration is observed.

ところで、上述のようにトラフAの見かけ上のピッチング運動を消して、安定した部品搬送を実現するには、基台DがX軸方向の水平振動とピッチング運動の合成された運動をスムーズに行えるようにしておく必要があるため、従来の部品搬送装置では、前述のように基台Dを床と接続する防振ばねKdを十分に軟らかく設定している。 By the way, as described above, in order to eliminate the apparent pitching motion of the trough A and realize stable component transportation, the base D can smoothly perform a combined motion of horizontal vibration and pitching motion in the X-axis direction. Therefore, in the conventional component transfer device, the vibration-proof spring Kd that connects the base D to the floor is set sufficiently soft as described above.

しかしながら、軟らかい防振ばねKdを用いた部品搬送装置では、基台DがX軸まわりに回転運動したりY軸方向に変位したりすることにより、トラフAの上流側端の部品供給口と前工程の装置の部品排出口との位置関係、およびトラフAの下流側端の部品排出口と次工程の装置の部品供給口との位置関係が許容範囲内に収まらなくなって、前工程や次工程との間で部品の受け渡しがスムーズに行われず、部品詰まりが生じるおそれがある。 However, in the component transfer device using the soft vibration-proof spring Kd, the base D rotates and moves in the Y-axis direction around the X-axis, and the front end of the trough A and the component supply port at the upstream end. The positional relationship between the parts discharge port of the process equipment and the positional relationship between the parts discharge port at the downstream end of the trough A and the parts supply port of the next process device are not within the allowable range, and the previous process and the next process are performed. There is a risk that the parts will not be transferred smoothly between the two and the parts will be clogged.

そこで、本発明の課題は、複合振動式の部品搬送装置において、防振部材で床に接続されている基台のX軸まわりの回転運動およびY軸方向の変位を抑えることである。 Therefore, an object of the present invention is to suppress the rotational movement around the X axis and the displacement in the Y axis direction of the base connected to the floor by the vibration isolating member in the complex vibration type component transfer device.

上記の課題を解決するため、本発明は、直線状の部品搬送路が形成された部品搬送部材と、前記部品搬送部材が取り付けられる上部振動体と、床上に設置される基台と、前記基台の部品搬送方向の両端部を床部材に接続する防振部材と、前記上部振動体と基台との間に設けられる中間振動体と、前記中間振動体と基台とを連結する第1の弾性部材と、前記上部振動体と中間振動体とを連結する第2の弾性部材とを備え、前記第1の弾性部材と第2の弾性部材のうちの一方を水平振動用弾性部材、他方を鉛直振動用弾性部材とし、前記水平振動用弾性部材と第1の加振機構とで部品搬送部材に水平方向の振動を付与し、前記鉛直振動用弾性部材と第2の加振機構とで部品搬送部材に鉛直方向の振動を付与するようにした振動式部品搬送装置において、前記防振部材は、前記基台と床部材との間に配されるスタビライザと、表裏面を部品搬送方向に向けた姿勢で前記スタビライザと床部材とを連結する第1の防振連結板と、表裏面を部品搬送方向に向けた姿勢で前記スタビライザと基台とを連結する第2の防振連結板とからなるものである構成を採用した。 In order to solve the above problems, the present invention provides a component conveying member having a linear component conveying path, an upper vibrating body to which the component conveying member is attached, a base installed on the floor, and the base. A vibration damping member that connects both ends of the platform in the component transport direction to a floor member, an intermediate vibration body provided between the upper vibration body and the base, and a first coupling the intermediate vibration body and the base. Elastic member and a second elastic member connecting the upper vibrating body and the intermediate vibrating body, one of the first elastic member and the second elastic member being a horizontal vibrating elastic member, and the other being the horizontal vibrating elastic member. Is a vertical vibration elastic member, and the horizontal vibration elastic member and the first vibrating mechanism apply horizontal vibration to the component conveying member, and the vertical vibration elastic member and the second vibrating mechanism In a vibration type component transfer device configured to apply vertical vibration to a component transfer member, the vibration isolating member is a stabilizer disposed between the base and the floor member, and the front and back surfaces in the component transfer direction. A first anti-vibration connecting plate that connects the stabilizer and the floor member in a facing position, and a second anti-vibrating connecting plate that connects the stabilizer and the base in a position in which the front and back surfaces are oriented in the component transport direction. Adopted a configuration that consists of.

すなわち、基台を床部材に接続する防振部材を、基台と床部材との間に配されるスタビライザと、それぞれ表裏面を部品搬送方向に向けた姿勢でスタビライザを基台および床部材と連結する第1、第2の防振連結板とで構成することにより、その防振部材が部品搬送方向と平行な鉛直面(X軸とZ軸を含むXZ平面)内では大きなコンプライアンスを有し、かつ部品搬送方向を軸とした(X軸まわりの)回転運動および搬送方向と直交する水平方向(Y軸方向)への運動変位に対しては大きな剛性を有するものとなるようにしたのである。 That is, a vibration isolating member that connects the base to the floor member, a stabilizer disposed between the base and the floor member, and a stabilizer and the base and floor member with the front and back surfaces oriented in the component transport direction, respectively. By configuring with the first and second vibration-proof connecting plates to be connected, the vibration-proof member has a large compliance in the vertical plane (XZ plane including the X axis and Z axis) parallel to the component conveying direction. In addition, it has a large rigidity with respect to the rotational movement (about the X-axis) about the component conveyance direction and the movement displacement in the horizontal direction (Y-axis direction) orthogonal to the conveyance direction. ..

ここで、前記基台に、部品搬送方向と平行な鉛直面(XZ平面)内で旋回可能な錘が取り付けられている構成とすれば、その錘の旋回位置を調整するだけで、容易に部品搬送部材の見かけ上のピッチング運動を抑えて部品搬送の安定化を図ることができる。以下、この錘の作用を前述の図6に基づいて説明する。 Here, if a configuration is adopted in which a weight that can swivel in a vertical plane (XZ plane) parallel to the component conveying direction is attached to the base, it is possible to easily adjust the swivel position of the weight. It is possible to suppress the apparent pitching movement of the transport member and stabilize the component transport. The operation of this weight will be described below with reference to FIG.

まず、この種の部品搬送装置では、搬送対象の部品に合わせてトラフAを様々な長さ、材質、形態のものとする必要があるので、一定の形状と質量を持った通常の機械装置と異なり、前記(2)式の固有周波数を保つことができない。これに対し、前記(1)式および(2)式からわかるように、質量(慣性モーメント)とばね定数のいずれか一方または両方を変えれば、望ましい固有周波数を得ることができる。しかしながら、板ばねのばね定数の変更は、通常その板ばねの枚数を変えることによって行うので、連続的な調整が困難である。また、前述の仕組みから水平振動と鉛直振動の運転周波数は機械的に同じ(実際には、二つの加振機構によって駆動されるが、その場合も周波数は同じ)であるので、効率的な運転を行うためには固有周波数であるωとωはできるだけ近い値に設定する必要がある。そこで、(1)式のωと(2)式のωを等しくおくと(3)式となり、これを変形すると(4)式となる。 First, in this type of component transfer device, it is necessary to make the trough A of various lengths, materials, and forms according to the parts to be transferred. Differently, the natural frequency of the equation (2) cannot be maintained. On the other hand, as can be seen from the equations (1) and (2), a desired natural frequency can be obtained by changing one or both of the mass (inertia moment) and the spring constant. However, since the spring constant of the leaf spring is usually changed by changing the number of leaf springs, continuous adjustment is difficult. In addition, the operating frequencies of horizontal vibration and vertical vibration are mechanically the same (actually, they are driven by two vibration mechanisms, but the frequencies are also the same) from the above-mentioned mechanism, so efficient operation is possible. In order to perform, the natural frequencies ω h and ω v must be set to values as close as possible. Therefore, if ω h of the equation (1) and ω v of the equation (2) are set equal, the equation (3) is obtained, and if this is modified, the equation (4) is obtained.

Figure 0006745684
Figure 0006745684
Figure 0006745684
Figure 0006745684

上記(4)式から、水平振動用板ばねKcおよび鉛直振動用板ばねKbのばね定数k、kを調整できなくても、各部材の質量と慣性モーメントを(4)式の関係が確保されるように調整すれば効率的な運転を行えることがわかる。 From the above equation (4), even if the spring constants k c and kb of the leaf spring Kc for horizontal vibration and the leaf spring Kb for vertical vibration cannot be adjusted, the relationship between the mass of each member and the moment of inertia can be expressed by equation (4). It can be seen that efficient operation can be performed if adjustment is made so as to ensure it.

したがって、基台DにXZ平面内で旋回可能な錘を取り付けておけば、トラフAの長さ等の仕様が使用条件に応じて変わった場合でも、錘の旋回位置を調整して、基台D全体の質量を一定にしたまま慣性モーメントを変化させることにより、(4)式の関係が確保されるようにして効率的な運転を行うことができる。なお、錘の旋回位置の調整によって慣性モーメントを変化させるのは、フィギュアスケートの選手が広げた両手を体幹側に寄せることで自転を早くする(慣性モーメントを小さくして保存されているエネルギーを自転に上乗せする)のと同じ理屈である。 Therefore, if a weight that can swivel in the XZ plane is attached to the base D, even if the specifications such as the length of the trough A change according to the usage conditions, the swiveling position of the weight is adjusted and the base is adjusted. By changing the moment of inertia while keeping the mass of D as a whole constant, the relation of equation (4) is ensured and efficient operation can be performed. In addition, the moment of inertia is changed by adjusting the turning position of the weight because the figure skating player moves his/her open arms toward the trunk side to speed up the rotation (reduce the moment of inertia to save the stored energy). Add to rotation) is the same reason.

また、前記錘を、部品搬送方向と直交する水平方向(Y軸方向)に移動可能な水平方向可動部を有しているものとすれば、部品搬送部材が装置の幅方向の中心を通るXZ平面に対して対称に設計されていない場合に、水平方向可動部のY軸方向位置を調整して、Z軸まわりの回転運動(ヨーイング運動)やそれによる部品搬送路上の部品の蛇行を抑えることができる。 Further, if the weight has a horizontally movable portion that can move in the horizontal direction (Y-axis direction) orthogonal to the component transport direction, the component transport member passes through the center of the apparatus in the width direction XZ. If not designed symmetrically with respect to the plane, adjust the Y-axis position of the horizontal movable part to suppress rotational movement around the Z-axis (yawing movement) and the resulting meandering of components on the component conveyance path. You can

さらに、前記基台は、前記上部振動体および中間振動体に部品搬送方向と直交する水平方向(Y軸方向)の両側で対向する一対の重心調整部を有しており、前記基台の重心位置が前記部品搬送部材と上部振動体と中間振動体を合わせた振動系の重心位置の近傍に設定されている構成とすることが望ましい。 Further, the base has a pair of center-of-gravity adjusting portions facing the upper vibrating body and the intermediate vibrating body on both sides in the horizontal direction (Y-axis direction) orthogonal to the component conveying direction, and the center of gravity of the base is adjusted. It is desirable that the position is set in the vicinity of the center of gravity of the vibration system including the component conveying member, the upper vibrating body, and the intermediate vibrating body.

すなわち、上記の構成では、図6に対応する図10(基台Dの正面側の重心調整部となる側板Daのみを二点鎖線で図示)に示すように、基台Dの重心G’の位置が図6の場合の重心Gの位置よりも高くなり、図8(a)に対応する図8(c)に示すように、重心Gabcd’のまわりのモーメントのアーム長さr1’、r2’が図8(a)の場合のアーム長さr1、r2よりも短くなることにより、そのモーメントも図8(a)の場合よりも小さくなる。その結果、各モーメントが発生させるピッチング運動が小さくなり、図9で説明した水平振動系の回転角度αが小さくなるので、トラフAの見かけ上のピッチング運動を消そうとするときに、トラフAの水平振動系に対するピッチング運動の回転角度βも小さくて済むことになる。したがって、鉛直振動用板ばねKbに生じる変形が小さくなり、複合振動式の部品搬送装置に必要な鉛直振動をより安定して実現できるようになる。 That is, in the above-described configuration, as shown in FIG. 10 corresponding to FIG. 6 (only the side plate Da serving as the center-of-gravity adjusting portion on the front side of the base D is shown by a chain double-dashed line), the center of gravity G d ′ of the base D is 6 is higher than the position of the center of gravity G d in the case of FIG. 6, and as shown in FIG. 8C corresponding to FIG. 8A, the arm length r1′ of the moment around the center of gravity G abcd ′. , R2′ is shorter than the arm lengths r1 and r2 in the case of FIG. 8A, the moment is also smaller than that of the case of FIG. 8A. As a result, the pitching motion generated by each moment becomes small, and the rotation angle α of the horizontal vibration system described in FIG. 9 becomes small. Therefore, when trying to eliminate the apparent pitching motion of the trough A, The rotation angle β of the pitching motion with respect to the horizontal vibration system is also small. Therefore, the deformation of the vertical vibration leaf spring Kb is reduced, and the vertical vibration required for the composite vibration type component transfer device can be more stably realized.

また、前述の水平振動系の固有周波数ωとトラフAおよび上部振動体Bの重心Gabのまわりの回転振動の固有周波数ωとの一致を図るうえでも、ピッチング運動の絶対量が小さいほうがその影響が少なくて済むので好都合である。 Also, in order to match the natural frequency ω h of the horizontal vibration system with the natural frequency ω v of the rotational vibration around the center of gravity G ab of the trough A and the upper vibrating body B, the absolute amount of pitching motion is preferably smaller. This is convenient because the effect is small.

また、装置全体の寸法を大きくすることなく、基台Dの質量を大きくすると、図8(b)で説明した基台D側の振幅X1が小さくなってトラフA側の振幅X2が大きくなるが、振幅X2を一定とすれば、その振幅X1、X2の合計量は小さくなるので、水平振動用板ばねKcの負担を小さくできるとともに、部品搬送能力の向上を図ることができる。 If the mass of the base D is increased without increasing the size of the entire apparatus, the amplitude X1 on the base D side described in FIG. 8B decreases and the amplitude X2 on the trough A side increases. , If the amplitude X2 is kept constant, the total amount of the amplitudes X1 and X2 becomes small, so that the load on the horizontal vibration leaf spring Kc can be reduced and the component carrying capacity can be improved.

本発明の振動式部品搬送装置は、上述したように、基台を床部材に接続する防振部材として、部品搬送方向と平行な鉛直面(XZ平面)内では大きなコンプライアンスを有し、かつ部品搬送方向を軸とした(X軸まわりの)回転運動および部品搬送方向と直交する水平方向(Y軸方向)への運動変位に対しては大きな剛性を有するものを採用して、基台のXZ平面内での動きは抵抗が少なく、X軸まわりの回転運動とY軸方向の変位は抑えられるようにしたものであるから、部品搬送部材と前工程や次工程の装置との間でスムーズに部品の受け渡しを行うことができる。 As described above, the vibration-type component conveying device of the present invention has a large compliance in the vertical plane (XZ plane) parallel to the component conveying direction, as a vibration isolating member that connects the base to the floor member. XZ of the base is adopted, which has great rigidity with respect to rotational movement (about the X-axis) about the transport direction and movement displacement in the horizontal direction (Y-axis direction) orthogonal to the component transport direction. Since there is little resistance to movement in the plane and rotational movement around the X axis and displacement in the Y axis direction are suppressed, it is possible to smoothly move between the parts conveying member and the device of the previous process or the next process. Parts can be delivered.

実施形態の部品搬送装置の一部断面正面図(基台の正面側の側板を除く)Partial cross-sectional front view of the component transfer device of the embodiment (excluding the side plate on the front side of the base) 図1の一部断面右側面図Partial cross-section right side view of FIG. 図1の一方の防振部材付近を拡大して示す正面図The front view which expands and shows the one vibration-proof member vicinity of FIG. 図3の防振部材のスタビライザの外観斜視図FIG. 3 is an external perspective view of the stabilizer of the anti-vibration member of FIG. 図1の一方の錘付近を拡大して示す一部断面正面図FIG. 1 is a partially sectional front view showing the vicinity of one weight in FIG. 1 in an enlarged manner. 一般的な複合振動式の部品搬送装置の簡易モデルの正面図Front view of a simplified model of a general compound vibration type component transfer device 一般的な2振動系モデルの説明図Explanatory diagram of general two-vibration system model a、bは、それぞれ図6の部品搬送装置におけるピッチング運動の発生機構および振幅比率の説明図、cはaの重心位置を変更した場合を示す説明図6A and 6B are explanatory views of a pitching motion generation mechanism and an amplitude ratio in the component transfer apparatus of FIG. 6, respectively, and c is an explanatory view showing a case where the position of the center of gravity of a is changed. 図6の部品搬送装置のピッチング運動を説明する正面図The front view explaining the pitching movement of the component conveyance apparatus of FIG. 図6の基台の重心位置を変更した例を示す正面図The front view which shows the example which changed the gravity center position of the base of FIG.

以下、図面に基づき、本発明の実施形態を説明する。この振動式部品搬送装置は、図1および図2に示すように、直線状の部品搬送路1aが形成されたトラフ(部品搬送部材)1を上部振動体2の上面に取り付け、上部振動体2と床上に設置される基台3との間に中間振動体4を設け、中間振動体4と基台3とを第1の弾性部材としての板ばね5で連結し、上部振動体2と中間振動体4とを第2の弾性部材としての板ばね6で連結し、中間振動体4と基台3の間に水平方向(部品搬送方向、X軸方向)の振動を発生させる第1の加振機構7を設け、上部振動体2と基台3の間に鉛直方向(Z軸方向)の振動を発生させる第2の加振機構8を設けたものである。 Embodiments of the present invention will be described below with reference to the drawings. As shown in FIG. 1 and FIG. 2, this vibrating-type component conveying apparatus attaches a trough (component conveying member) 1 in which a linear component conveying path 1a is formed on an upper surface of an upper vibrating body 2 to form an upper vibrating body 2. And the base 3 installed on the floor, an intermediate vibrating body 4 is provided, the intermediate vibrating body 4 and the base 3 are connected by a leaf spring 5 as a first elastic member, and the intermediate body 4 and the upper vibrating body 2 are intermediate. The first vibrating body 4 is connected to the vibrating body 4 by a leaf spring 6 as a second elastic member, and the first vibrating body 4 generates vibration between the intermediate vibrating body 4 and the base 3 in the horizontal direction (component conveying direction, X axis direction). The vibrating mechanism 7 is provided, and the second vibrating mechanism 8 that generates vibration in the vertical direction (Z-axis direction) is provided between the upper vibrating body 2 and the base 3.

前記トラフ1は、上流側端(X軸方向の一端)の部品供給口が図示省略した前工程の装置の部品排出口と、下流側端(X軸方向の他端)の部品排出口が次工程の装置の部品供給口と、それぞれ所定の隙間をもって対向し、前工程および次工程との間で部品の受け渡しを行うようになっている。 The trough 1 has a component discharge port of the apparatus in the previous process, whose component supply port at the upstream end (one end in the X-axis direction) is not shown, and a component discharge port at the downstream end (the other end in the X-axis direction). The parts are opposed to the parts supply ports of the apparatus of the process with predetermined gaps, and the parts are delivered between the previous process and the next process.

前記第1の板ばね5は、表裏面をX軸方向に向けられ、Z軸方向に延びる姿勢で一端部を基台3に他端部を中間振動体4にそれぞれ固定されて、水平振動用板ばね(水平振動用弾性部材)となっている。 The first leaf spring 5 has its front and back surfaces oriented in the X-axis direction and has one end fixed to the base 3 and the other end fixed to the intermediate vibrating body 4 in a posture extending in the Z-axis direction for horizontal vibration. It is a leaf spring (elastic member for horizontal vibration).

一方、前記第2の板ばね6は、表裏面をZ軸方向に向けられ、X軸方向に延びる姿勢で一端部を上部振動体2に他端部を中間振動体4にそれぞれ固定されて、鉛直振動用板ばね(鉛直振動用弾性部材)となっている。 On the other hand, the second leaf spring 6 has its front and back surfaces oriented in the Z-axis direction and has one end fixed to the upper vibrating body 2 and the other end fixed to the intermediate vibrating body 4 in a posture extending in the X-axis direction. It is a leaf spring for vertical vibration (elastic member for vertical vibration).

前記第1の加振機構7および第2の加振機構8は、交流電磁石とこれに所定の間隔をおいて対向する可動鉄心とで構成されているが、これに限らず、同様の加振力を発生させることができるアクチュエータであればよい。 The first vibrating mechanism 7 and the second vibrating mechanism 8 are composed of an AC electromagnet and a movable iron core that faces the AC electromagnet at a predetermined interval, but the present invention is not limited to this, and the same vibrating mechanism is used. Any actuator that can generate a force may be used.

前記基台3は、X軸方向の両端部が防振部材9で床部材Fに接続されるとともに、X軸方向の中央部と両端部が、それぞれ床面上の床部材Fに固定された第1および第2の防振ゴム10、11で支持されている。 Both ends of the base 3 in the X-axis direction are connected to the floor member F by the vibration isolating members 9, and the central portion and both ends in the X-axis direction are fixed to the floor member F on the floor surface, respectively. It is supported by the first and second anti-vibration rubbers 10 and 11.

前記防振部材9は、図3に示すように、基台3と床部材Fとの間に配されるスタビライザ12と、表裏面をX軸方向に向けた姿勢でスタビライザ12と床部材Fとを連結する第1の防振連結板13と、表裏面をX軸方向に向けた姿勢でスタビライザ12と基台3とを連結する一対の第2の防振連結板14とからなる。 As shown in FIG. 3, the anti-vibration member 9 includes a stabilizer 12 arranged between the base 3 and the floor member F, and a stabilizer 12 and the floor member F with the front and back surfaces thereof oriented in the X-axis direction. And a pair of second anti-vibration connection plates 14 that connect the stabilizer 12 and the base 3 in a posture in which the front and back surfaces are oriented in the X-axis direction.

この防振部材9のスタビライザ12は、鋳鋼等で形成された変形しにくい強靭な部品であり、図4にも示すように、X軸方向と直交する水平方向(Y軸方向)に延びる状態で配される本体部12aの両端に、X軸方向に延びる長腕部12bと、その長腕部12bの付け根部分から上方に延びる短腕部12cが設けられている。そして、第1、第2の防振連結板13、14によって、各短腕部12cが基台3下面の凹部3aに接触することなく挿入された状態で保持されている。 The stabilizer 12 of the anti-vibration member 9 is a tough component that is formed of cast steel or the like and is hard to deform, and as shown in FIG. 4, it extends in the horizontal direction (Y-axis direction) orthogonal to the X-axis direction. A long arm portion 12b extending in the X-axis direction and a short arm portion 12c extending upward from a root portion of the long arm portion 12b are provided at both ends of the main body portion 12a arranged. The short arm portions 12c are held by the first and second anti-vibration connecting plates 13 and 14 without being brought into contact with the concave portions 3a on the lower surface of the base 3.

第1の防振連結板13は、Y軸方向が長い略矩形状のもので、その四隅から突出する取付部13aでスタビライザ12の短腕部12cおよび床部材Fにボルト止めされている。また、その短辺の縁部にはX軸方向に折り曲げられた補強部13bが形成されている。一方、第2の防振連結板14は、Z軸方向が長い矩形のもので、その上下端部で基台3およびスタビライザ12の長腕部12bの先端にボルト止めされている。これらの各防振連結板13、14は、ばね鋼等で形成されており、板ばねとしての役割を果たす。 The first vibration-proof connecting plate 13 has a substantially rectangular shape with a long Y-axis direction, and is bolted to the short arm portion 12c of the stabilizer 12 and the floor member F by mounting portions 13a protruding from the four corners. Further, a reinforcing portion 13b bent in the X-axis direction is formed at the edge of the short side. On the other hand, the second anti-vibration connecting plate 14 is a rectangle having a long Z-axis direction, and is bolted to the base 3 and the tip of the long arm 12b of the stabilizer 12 at the upper and lower ends thereof. Each of these vibration-proof connecting plates 13 and 14 is made of spring steel or the like and serves as a plate spring.

そして、第1、第2の防振連結板13、14が厚さ方向(X軸方向)へは一定のばね定数で変形するが、厚さ方向と直交する平面(YZ平面)方向には変形しにくいこと、および強靭な部品であるスタビライザ12が捩じり力に抗してほとんど変形しないことから、防振部材9は、全体として、部品搬送方向と平行な鉛直面(XZ平面)内では大きなコンプライアンスを有し、部品搬送方向を軸とした(X軸まわりの)回転運動やY軸方向への運動変位に対しては大きな剛性を有するものとなっている。 Then, the first and second anti-vibration connecting plates 13 and 14 are deformed by a constant spring constant in the thickness direction (X-axis direction), but are deformed in the plane (YZ plane) direction orthogonal to the thickness direction. Since the stabilizer 12 which is a tough component is hardly deformed against the torsional force, the vibration-proof member 9 as a whole is within a vertical plane (XZ plane) parallel to the component transport direction. It has a large compliance and has a large rigidity with respect to rotational movement (about the X-axis) around the component conveyance direction and movement displacement in the Y-axis direction.

なお、基台3を支持する第1、第2の防振ゴム10、11は、各方向への変形の自由度が大きく、基台3の動作に支障のない範囲で適度に振動を減衰させるものである。 The first and second anti-vibration rubbers 10 and 11 that support the base 3 have a large degree of freedom of deformation in each direction, and appropriately dampen the vibration within a range that does not hinder the operation of the base 3. It is a thing.

また、図1および図2に示したように、前記基台3には上部振動体2および中間振動体4にY軸方向の両側で対向する一対の側板(重心調整部)3bが設けられ、その一対の側板3bのX軸方向の両端部に錘15が取り付けられており、側板3bおよび錘15を含む基台3の重心位置がトラフ1と上部振動体2と中間振動体4を合わせた振動系の重心位置の近傍に設定されている。 Further, as shown in FIGS. 1 and 2, the base 3 is provided with a pair of side plates (center of gravity adjusting portions) 3b facing the upper vibrating body 2 and the intermediate vibrating body 4 on both sides in the Y-axis direction. Weights 15 are attached to both ends of the pair of side plates 3b in the X-axis direction, and the center of gravity of the base 3 including the side plates 3b and the weight 15 is such that the trough 1, the upper vibrating body 2, and the intermediate vibrating body 4 are aligned. It is set near the center of gravity of the vibration system.

前記錘15は、図5にも示すように、Y軸方向に延びる本体部15aと、本体部15aのY軸方向の両端に形成された一対の腕部15bと、両腕部15bを貫通してその両腕部15bに固着された旋回軸15cと、本体部15aに両腕部15bと反対の側で取り付けられた水平方向可動部15dとからなる。そして、旋回軸15cの両端部にはローレット加工が施されており、その旋回軸15cの両端部を鞍形の押え金具16で基台3の側板3bの端面に形成された半円状の凹部3cに押し付けた状態で、押え金具16を側板3bにボルト17a、17bで取り付けることにより、錘15がXZ平面内で旋回可能(任意の旋回位置で固定可能)となっている。 As shown in FIG. 5, the weight 15 passes through a body portion 15a extending in the Y-axis direction, a pair of arm portions 15b formed at both ends of the body portion 15a in the Y-axis direction, and both arm portions 15b. A pivot 15c fixed to both arms 15b of the lever and a horizontally movable part 15d attached to the body 15a on the side opposite to the arms 15b. Then, both ends of the turning shaft 15c are knurled, and both ends of the turning shaft 15c are formed into saddle-shaped pressing fittings 16 on the end surface of the side plate 3b of the base 3 to form a semicircular recess. By attaching the pressing metal fitting 16 to the side plate 3b with the bolts 17a and 17b in a state of being pressed against 3c, the weight 15 can be swung in the XZ plane (fixed at an arbitrary swivel position).

また、錘15の水平方向可動部15dは、中央部にY軸方向に延びるすり割り15eが形成されており、そのすり割り15eに連続してY軸方向に延びる断面凸形の溝15fがほぼ同じ形状の本体部15aの突部15gと嵌合している。そして、すり割り15eと直交するようにねじ込んだボルト18の締め付けにより、すり割り15eおよび溝15fの幅が狭くなる方向に弾性変形して、本体部15aの突部15gを挟み付けている。すなわち、この水平方向可動部15dは、ボルト18を緩めることによりY軸方向に移動可能であり、任意のY軸方向位置で固定可能となっている。 Further, the horizontal movable portion 15d of the weight 15 has a slot 15e extending in the Y-axis direction formed in the central portion thereof, and a groove 15f having a convex cross-section extending in the Y-axis direction substantially continuous with the slot 15e is formed. The projection 15g of the main body 15a having the same shape is fitted. Then, by tightening the bolt 18 screwed so as to be orthogonal to the slot 15e, the slot 15e and the groove 15f are elastically deformed in a direction in which the width of the slot 15e and the groove 15f are narrowed, and the protrusion 15g of the main body 15a is sandwiched. That is, the horizontal movable portion 15d can be moved in the Y-axis direction by loosening the bolt 18, and can be fixed at any Y-axis direction position.

一方、前記上部振動体2には、X軸方向の両端部の下面側に補助錘19が取り付けられている。補助錘19は、図2に示したように、X軸方向に延びる断面凸形の溝19aがほぼ同じ形状の上部振動体2の突部2aと嵌合しており、下面側からねじ込んだボルト20の締め付けにより上部振動体2の突部2aに固定されている。すなわち、この補助錘19は、ボルト20を緩めることによりX軸方向に移動可能となっている。 On the other hand, the upper vibrating body 2 is provided with auxiliary weights 19 on the lower surface sides of both ends in the X-axis direction. As shown in FIG. 2, the auxiliary weight 19 has a groove 19a having a convex cross-section extending in the X-axis direction fitted to the protrusion 2a of the upper vibrating body 2 having substantially the same shape, and a bolt screwed from the lower surface side. It is fixed to the protrusion 2 a of the upper vibrating body 2 by tightening 20. That is, the auxiliary weight 19 can be moved in the X-axis direction by loosening the bolt 20.

この振動式部品搬送装置は、上記の構成であり、第1の加振機構7の加振力と水平振動用板ばね5の復元力により中間振動体4に水平方向の振動が発生し、この振動が鉛直振動用板ばね6を介して上部振動体2およびトラフ1に伝わる。また、第2の加振機構8の加振力と鉛直振動用板ばね6の復元力により、上部振動体2およびトラフ1に鉛直方向の振動が発生する。そして、この水平方向の振動と鉛直方向の振動により、トラフ1に供給された部品が部品搬送路1a上を搬送される。 This vibrating-type component conveying device has the above-mentioned configuration, and the vibrating force of the first vibrating mechanism 7 and the restoring force of the horizontal vibrating leaf spring 5 cause horizontal vibration in the intermediate vibrating body 4. The vibration is transmitted to the upper vibrating body 2 and the trough 1 via the leaf spring 6 for vertical vibration. Further, the vibration force of the second vibration mechanism 8 and the restoring force of the vertical vibration leaf spring 6 cause vertical vibration in the upper vibrating body 2 and the trough 1. Then, due to the horizontal vibration and the vertical vibration, the components supplied to the trough 1 are transported on the component transport path 1a.

ここで、基台3のX軸方向の両端部を床部材Fに接続する防振部材9が、XZ平面内では大きなコンプライアンスを有し、かつX軸まわりの回転運動やY軸方向への運動変位に対しては大きな剛性を有しているので、基台3はXZ平面内でほとんど抵抗なく変位することができる一方、X軸まわりの回転運動とY軸方向の変位は抑えられる。したがって、トラフ1の部品供給口と前工程の装置の部品排出口との位置関係、およびトラフ1の部品排出口と次工程の装置の部品供給口との位置関係が許容範囲内に収まり、トラフ1が前工程や次工程の装置との間でスムーズに部品の受け渡しを行うことができる。 Here, the vibration damping member 9 that connects both ends of the base 3 in the X-axis direction to the floor member F has a large compliance in the XZ plane, and has a rotational movement about the X-axis and a movement in the Y-axis direction. Since it has a large rigidity against displacement, the base 3 can be displaced with almost no resistance in the XZ plane, while rotational movement around the X axis and displacement in the Y axis direction can be suppressed. Therefore, the positional relationship between the component supply port of the trough 1 and the component discharge port of the apparatus in the previous process, and the positional relationship between the component discharge port of the trough 1 and the component supply port of the device in the next process are within the allowable range, 1, the parts can be smoothly delivered to and from the devices of the previous process and the next process.

また、基台3にはXZ平面内で旋回可能な錘15が取り付けられているので、トラフ1の長さ等の仕様が変わった場合でも、錘15の旋回位置を調整して基台3の慣性モーメントを変化させることにより、容易にトラフ1の見かけ上のピッチング運動を抑えて部品搬送の安定化を図ることができる。なお、この基台3の錘15の調整によるピッチング運動の抑制が十分でない場合は、上部振動体2に取り付けた補助錘19のX軸方向位置を調整してピッチング運動を抑えることもできる。ただし、補助錘19はトラフ1を重くして搬送能力を小さくするので、基台3の錘15でピッチング運動を抑えられる場合は、補助錘19を取り付けない方が望ましい。 Further, since the weight 15 that can be swung in the XZ plane is attached to the base 3, even if the specifications such as the length of the trough 1 are changed, the turning position of the weight 15 is adjusted and the weight of the base 3 is adjusted. By changing the moment of inertia, it is possible to easily suppress the apparent pitching movement of the trough 1 and stabilize the component transportation. If the pitching movement is not sufficiently suppressed by adjusting the weight 15 of the base 3, the pitching movement can be suppressed by adjusting the position of the auxiliary weight 19 attached to the upper vibrating body 2 in the X-axis direction. However, since the auxiliary weight 19 makes the trough 1 heavier and reduces the carrying capacity, it is preferable not to attach the auxiliary weight 19 when the weight 15 of the base 3 can suppress the pitching movement.

そして、基台3の錘15はY軸方向に移動可能な水平方向可動部15dを有しているので、トラフ1が装置の幅方向の中心を通るXZ平面に対して対称に設計されていない場合、水平方向可動部15dのY軸方向位置を調整して、Z軸まわりの回転運動(ヨーイング運動)やそれによる部品搬送路1a上の部品の蛇行を抑えることができる。 Since the weight 15 of the base 3 has the horizontal movable portion 15d movable in the Y-axis direction, the trough 1 is not designed symmetrically with respect to the XZ plane passing through the center of the device in the width direction. In this case, the position of the horizontally movable portion 15d in the Y-axis direction can be adjusted to suppress rotational movement (yaw movement) about the Z-axis and the resulting meandering of the components on the component transport path 1a.

さらに、基台3には、上部振動体2および中間振動体4にY軸方向の両側で対向し、前記錘15が取り付けられる一対の側板3bが設けられ、側板3bおよび錘15を含む基台3の重心位置がトラフ1と上部振動体2と中間振動体4を合わせた振動系の重心位置の近傍に設定されているので、基台に側板や錘がないものに比べて、図8で説明したようにピッチング運動および鉛直振動用板ばね6に生じる変形が小さく、安定した鉛直振動が得られる。 Further, the base 3 is provided with a pair of side plates 3b which face the upper vibrating body 2 and the intermediate vibrating body 4 on both sides in the Y-axis direction and to which the weights 15 are attached, and the base including the side plates 3b and the weights 15 is provided. The center of gravity of 3 is set in the vicinity of the center of gravity of the vibrating system including the trough 1, the upper vibrating body 2 and the intermediate vibrating body 4, so that in FIG. As described, the pitching motion and the deformation of the vertical vibration leaf spring 6 are small, and stable vertical vibration can be obtained.

上述した実施形態では、中間振動体と基台とを連結する第1の板ばねを水平振動用板ばねとし、上部振動体と中間振動体とを連結する第2の板ばねを鉛直振動用板ばねとしたが、これとは逆に、第1の板ばねが鉛直振動用板ばね、第2の板ばねが水平振動用板ばねとなるように構成してもよい。 In the above-described embodiment, the first leaf spring that connects the intermediate vibrating body and the base is the horizontal vibrating leaf spring, and the second leaf spring that connects the upper vibrating body and the intermediate vibrating body is the vertical vibrating plate. Although a spring is used, conversely, the first leaf spring may be a vertical vibration leaf spring and the second leaf spring may be a horizontal vibration leaf spring.

1 トラフ(部品搬送部材)
1a 部品搬送路
2 上部振動体
3 基台
3b 側板(重心調整部)
4 中間振動体
5 第1の板ばね(水平振動用板ばね)
6 第2の板ばね(鉛直振動用板ばね)
7 第1の加振機構
8 第2の加振機構
9 防振部材
12 スタビライザ
13 第1の防振連結板
14 第2の防振連結板
15 錘
15d 水平方向可動部
19 補助錘
F 床部材
1 Trough (Parts conveying member)
1a Component Conveying Path 2 Upper Vibrating Body 3 Base 3b Side Plate (Center of Gravity Adjustment)
4 Intermediate Vibrator 5 First Leaf Spring (Horizontal Vibration Leaf Spring)
6 Second leaf spring (vertical vibration leaf spring)
7 First Vibration Mechanism 8 Second Vibration Mechanism 9 Vibration Isolation Member 12 Stabilizer 13 First Vibration Isolation Connection Plate 14 Second Vibration Isolation Connection Plate 15 Weight 15d Horizontal Movable Part 19 Auxiliary Weight F Floor Member

Claims (4)

直線状の部品搬送路が形成された部品搬送部材と、前記部品搬送部材が取り付けられる上部振動体と、床上に設置される基台と、前記基台の部品搬送方向の両端部を床部材に接続する防振部材と、前記上部振動体と基台との間に設けられる中間振動体と、前記中間振動体と基台とを連結する第1の弾性部材と、前記上部振動体と中間振動体とを連結する第2の弾性部材とを備え、前記第1の弾性部材と第2の弾性部材のうちの一方を水平振動用弾性部材、他方を鉛直振動用弾性部材とし、前記水平振動用弾性部材と第1の加振機構とで部品搬送部材に水平方向の振動を付与し、前記鉛直振動用弾性部材と第2の加振機構とで部品搬送部材に鉛直方向の振動を付与するようにした振動式部品搬送装置において、
前記防振部材は、前記基台と床部材との間に配されるスタビライザと、表裏面を部品搬送方向に向けた姿勢で前記スタビライザと床部材とを連結する第1の防振連結板と、表裏面を部品搬送方向に向けた姿勢で前記スタビライザと基台とを連結する第2の防振連結板とからなるものであることを特徴とする振動式部品搬送装置。
A component conveying member having a linear component conveying path, an upper vibrating body to which the component conveying member is attached, a base installed on the floor, and both end portions of the base in the component conveying direction as floor members. A vibration damping member to be connected, an intermediate vibrating body provided between the upper vibrating body and the base, a first elastic member connecting the intermediate vibrating body and the base, and the upper vibrating body and the intermediate vibration. A second elastic member for connecting to the body, wherein one of the first elastic member and the second elastic member is an elastic member for horizontal vibration and the other is an elastic member for vertical vibration, The elastic member and the first vibrating mechanism apply horizontal vibration to the component conveying member, and the elastic member for vertical vibration and the second vibrating mechanism apply vertical vibration to the component conveying member. In the vibration type component transfer device
The anti-vibration member includes a stabilizer disposed between the base and the floor member, and a first anti-vibration connection plate that connects the stabilizer and the floor member with the front and back surfaces thereof oriented in the component transport direction. A vibration-type component transfer device comprising: a second vibration-proof connecting plate that connects the stabilizer and the base with the front and back surfaces thereof oriented in the component transfer direction.
前記基台に、部品搬送方向と平行な鉛直面内で旋回可能な錘が取り付けられていることを特徴とする請求項1に記載の振動式部品搬送装置。 The vibration type component transfer device according to claim 1, wherein a weight that can be swung within a vertical plane parallel to the component transfer direction is attached to the base. 前記錘は、部品搬送方向と直交する水平方向に移動可能な水平方向可動部を有していることを特徴とする請求項2に記載の振動式部品搬送装置。 The vibration type component transfer device according to claim 2, wherein the weight has a horizontal movable portion that is movable in a horizontal direction orthogonal to the component transfer direction. 前記基台は、前記上部振動体および中間振動体に部品搬送方向と直交する水平方向の両側で対向する一対の重心調整部を有しており、前記基台の重心位置が前記部品搬送部材と上部振動体と中間振動体を合わせた振動系の重心位置の近傍に設定されていることを特徴とする請求項1乃至3のいずれかに記載の振動式部品搬送装置。 The base has a pair of center-of-gravity adjusting portions facing the upper vibrating body and the intermediate vibrating body on both sides in the horizontal direction orthogonal to the component conveying direction, and the center of gravity of the base is the component conveying member. The vibration type component transfer device according to any one of claims 1 to 3, wherein the vibration type component transfer device is set in the vicinity of a center of gravity of a vibration system including an upper vibration body and an intermediate vibration body.
JP2016169325A 2016-08-31 2016-08-31 Vibratory parts carrier Active JP6745684B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016169325A JP6745684B2 (en) 2016-08-31 2016-08-31 Vibratory parts carrier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016169325A JP6745684B2 (en) 2016-08-31 2016-08-31 Vibratory parts carrier

Publications (2)

Publication Number Publication Date
JP2018034950A JP2018034950A (en) 2018-03-08
JP6745684B2 true JP6745684B2 (en) 2020-08-26

Family

ID=61565372

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016169325A Active JP6745684B2 (en) 2016-08-31 2016-08-31 Vibratory parts carrier

Country Status (1)

Country Link
JP (1) JP6745684B2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4896680U (en) * 1972-02-21 1973-11-16
JP4857581B2 (en) * 2005-03-30 2012-01-18 シンフォニアテクノロジー株式会社 Parts conveyor
JP4635120B2 (en) * 2005-03-16 2011-02-16 太洋マシナリー株式会社 Vibration reduction device for vibrating conveyor
JP2009126650A (en) * 2007-11-26 2009-06-11 Ntn Corp Vibratory part feeding device
JP2012121660A (en) * 2010-12-07 2012-06-28 Ntn Corp Vibration type parts conveying device
ITVR20130188A1 (en) * 2013-08-06 2015-02-07 Giuseppe Eugenio Ferrari VIBRATING PLATE.

Also Published As

Publication number Publication date
JP2018034950A (en) 2018-03-08

Similar Documents

Publication Publication Date Title
WO2012147838A1 (en) Article separation and conveyance device
TWI591005B (en) Vibration device, object handling equipment and articles were installed
TWI496730B (en) Vibrating conveyor
JP4872221B2 (en) Parts conveyor
KR20130006395A (en) Parts feeder
JP5775183B2 (en) Vibrating transfer device
JP6745684B2 (en) Vibratory parts carrier
JP6739293B2 (en) Vibrating bowl feeder
JP5168816B2 (en) Parts supply device
TW201208959A (en) Vibrating parts feeder
WO2013069416A1 (en) Vibrating article-conveying apparatus
JP5806203B2 (en) Vibrating transfer device
JP5684881B1 (en) Vibrating transfer device
WO2015098492A1 (en) Vibration-type component-transporting device
JP4590763B2 (en) Linear feeder
KR102018933B1 (en) Vibration-type component transport device
JP6049244B2 (en) Drive unit for parts feeder
JP4857581B2 (en) Parts conveyor
JP7440745B2 (en) Vibratory conveyance device
JP2013047132A (en) Vibration feeder, vibration feeder driving device, and method of manufacturing the vibration feeder driving device
JP6267940B2 (en) Vibrating parts conveyor
JP5853684B2 (en) Article sorting and conveying device
JP2771621B2 (en) Linear drive for vibrating conveyor
JP5082270B2 (en) Parts supply device
JP2022143466A (en) Damping device and movable device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190729

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200521

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200707

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200804

R150 Certificate of patent or registration of utility model

Ref document number: 6745684

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250