JP6741861B2 - Ferritic stainless steel pipe with excellent salt damage resistance in the gap, pipe end thickening structure, welded joint, and welded structure - Google Patents

Ferritic stainless steel pipe with excellent salt damage resistance in the gap, pipe end thickening structure, welded joint, and welded structure Download PDF

Info

Publication number
JP6741861B2
JP6741861B2 JP2019509936A JP2019509936A JP6741861B2 JP 6741861 B2 JP6741861 B2 JP 6741861B2 JP 2019509936 A JP2019509936 A JP 2019509936A JP 2019509936 A JP2019509936 A JP 2019509936A JP 6741861 B2 JP6741861 B2 JP 6741861B2
Authority
JP
Japan
Prior art keywords
pipe
stainless steel
gap
ferritic stainless
steel pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019509936A
Other languages
Japanese (ja)
Other versions
JPWO2018181401A1 (en
Inventor
雅俊 安部
雅俊 安部
濱田 純一
純一 濱田
信彦 平出
信彦 平出
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Stainless Steel Corp
Original Assignee
Nippon Steel Stainless Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Stainless Steel Corp filed Critical Nippon Steel Stainless Steel Corp
Publication of JPWO2018181401A1 publication Critical patent/JPWO2018181401A1/en
Application granted granted Critical
Publication of JP6741861B2 publication Critical patent/JP6741861B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/08Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/52Ferrous alloys, e.g. steel alloys containing chromium with nickel with cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/18Construction facilitating manufacture, assembly, or disassembly
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/04Tubular or hollow articles
    • B23K2101/10Pipe-lines
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2450/00Methods or apparatus for fitting, inserting or repairing different elements
    • F01N2450/22Methods or apparatus for fitting, inserting or repairing different elements by welding or brazing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2530/00Selection of materials for tubes, chambers or housings
    • F01N2530/02Corrosion resistive metals
    • F01N2530/04Steel alloys, e.g. stainless steel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L13/00Non-disconnectible pipe-joints, e.g. soldered, adhesive or caulked joints
    • F16L13/02Welded joints
    • F16L13/0209Male-female welded joints
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L9/00Rigid pipes
    • F16L9/02Rigid pipes of metal

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Heat Treatment Of Steel (AREA)
  • Arc Welding In General (AREA)

Description

本発明は、隙間構造部での耐食性が要求されるフェライト系ステンレス鋼管、管端増肉構造体、及び溶接継ぎ手に関する。
本願は、2017年3月30日に、日本に出願された特願2017−069284号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a ferritic stainless steel pipe, a pipe end thickened structure, and a welded joint, which require corrosion resistance in a gap structure portion.
The present application claims priority based on Japanese Patent Application No. 2017-069284 filed in Japan on March 30, 2017, and the content thereof is incorporated herein.

フェライト系ステンレス鋼は、家電製品や電子機器、自動車等の幅広い分野で使用されている。特に自動車分野では、エキゾーストマニホールドからマフラーまで様々な部品で使用されるため、使用されるステンレス鋼には耐熱性や耐食性などが要求される。また、これらの部品では溶接が施される場合がほとんどであるため、溶接部の強度、剛性や耐食性も要求される。 Ferritic stainless steel is used in a wide range of fields such as home appliances, electronic devices, and automobiles. Particularly in the automobile field, since it is used in various parts such as an exhaust manifold and a muffler, the stainless steel used is required to have heat resistance and corrosion resistance. In addition, since these parts are welded in most cases, strength, rigidity and corrosion resistance of the welded part are also required.

近年、自動車の軽量化を目的として、各部品に使用される材料の薄肉化を検討する場合が増加している。しかし、溶接部の強度、剛性および溶接性を確保するためには一定の肉厚が必要となる場合があり、非溶接部においても厚肉となり排気システム全体の薄手化の妨げとなる。これに対して、排気管を構成し他部品と溶接で接合される鋼管端部を増肉することにより、溶接箇所を厚肉して強度を増し、剛性および溶接性を確保する技術が知られている。これを管端増肉(鋼管の管端部を増肉すること)と呼ぶ。この場合、非溶接部は薄肉化でき、排気システム全体の薄肉・軽量化が可能となる。 In recent years, in order to reduce the weight of automobiles, there are increasing cases where thinning of materials used for each component is considered. However, in order to secure the strength, rigidity, and weldability of the welded portion, a certain thickness may be required, and even the non-welded portion becomes thicker, which hinders the exhaust system from becoming thinner. On the other hand, there is known a technique of increasing the thickness of the welded portion by increasing the thickness of the end portion of the steel pipe that constitutes the exhaust pipe and is joined to other parts by welding, thereby increasing the strength and ensuring rigidity and weldability. ing. This is called pipe end thickening (thickening the pipe end portion of the steel pipe). In this case, the non-welded portion can be made thin, and the exhaust system as a whole can be made thin and lightweight.

上記のような管端増肉に関する技術はいくつか開示されている。特許文献1には、パイプ端部の強度を確保し、且つパイプの軽量化を図る目的として、パイプを回転させながら端部にローラーを押し当てて径方向内側に折り曲げ、次いでローラーによって密着させる加工方法が開示されている。特許文献2には、管端を二重管状に成形し肉厚を倍にすることで溶接時の溶け落ちを防ぐための工法が開示されている。特許文献3には、管端を折り返して増肉するために素管に関する特許が開示されており、溶接部の内面ビード部が管内面に突き出しており、その突出量が板厚の4〜15%と規定されている。 Several techniques regarding the above-described pipe end thickening are disclosed. In Patent Document 1, for the purpose of securing the strength of the pipe end and reducing the weight of the pipe, a roller is pressed against the end while rotating the pipe to bend the pipe inward in the radial direction, and then a process of closely contacting with the roller. A method is disclosed. Patent Document 2 discloses a method for forming a pipe end into a double pipe shape and doubling the wall thickness to prevent burn-through during welding. Patent Document 3 discloses a patent relating to a raw pipe for folding back the pipe end to increase the wall thickness, the inner surface bead portion of the welded portion is projected to the inner surface of the pipe, and the projection amount is 4 to 15 of the plate thickness. It is prescribed as%.

特許文献1〜3に記載されている管端増肉されたパイプは、折り曲げられた箇所に高さ数μm〜数百μmの隙間構造を有することとなる。この隙間部に関して、特許文献1、2のように内側に折り曲げられた場合は排気系部品内部で発生する排ガス凝縮水が隙間部に滞留しやすくなる。特許文献3のように外側に折り曲げられた場合は排気系部品外部から付着する塩水が隙間部に滞留しやすくなる。
この環境で起こる腐食は、隙間腐食ではなく、隙間環境で塩水や排ガス凝縮水が滞留しやすくなることにより促進される塩害腐食である。このように隙間部での腐食が促進される恐れがあるため、使用されるステンレス鋼としては、隙間部での耐塩害性に優れる鋼種が求められる。特に排気系部品では、腐食による穴あきは排気ガスの漏れに繋がるため、耐穴あき性の高い材料を適用することが重要となる。
The pipes with thickened pipe ends described in Patent Documents 1 to 3 have a gap structure with a height of several μm to several hundreds μm at the bent portion. When the gap portion is bent inward as in Patent Documents 1 and 2, exhaust gas condensed water generated inside the exhaust system component is likely to stay in the gap portion. When bent outward as in Patent Document 3, salt water adhering from the outside of the exhaust system component tends to stay in the gap.
Corrosion that occurs in this environment is not crevice corrosion, but salt damage corrosion that is promoted by the tendency that salt water and exhaust gas condensed water easily accumulate in the crevice environment. Since the corrosion in the gap may be accelerated as described above, the stainless steel used is required to be a steel type having excellent salt damage resistance in the gap. Especially in exhaust system parts, since perforation due to corrosion leads to leakage of exhaust gas, it is important to apply a material having high perforation resistance.

特許文献4には、質量%で、C:0.001〜0.02%、N:0.001〜0.02%、Si:0.01〜0.5%、Mn:0.05〜1%、P:0.04%以下、及びS:0.01%以下、Cr:12〜25%を含有し、さらにTi:0.02〜0.5%及びNb:0.02〜1%のうちいずれか一方又は両方を含み、さらにSn:0.005〜2%を含み、残部がFeおよび不可避不純物からなることを特徴とする耐すきま腐食性に優れたフェライト系ステンレス鋼が開示されている。特許文献4に記載の技術では、Snを添加することで耐すきま腐食性を向上させているが、隙間間隔との関係について述べられていない。 In patent document 4, C: 0.001-0.02%, N: 0.001-0.02%, Si: 0.01-0.5%, Mn: 0.05-1 in mass%. %, P: 0.04% or less, S: 0.01% or less, Cr: 12 to 25%, Ti: 0.02 to 0.5% and Nb: 0.02 to 1%. Disclosed is a ferritic stainless steel excellent in crevice corrosion resistance, characterized in that it contains either or both of them, and further contains Sn: 0.005 to 2% and the balance is Fe and unavoidable impurities. .. The technique described in Patent Document 4 improves crevice corrosion resistance by adding Sn, but does not describe the relationship with the gap spacing.

特許文献5には、質量%で、C:≦0.015%、Si:0.10〜0.50%、Mn:0.05〜0.50%、P≦0.050%、S:≦0.0100%、N:≦0.015%、Al:0.020〜0.100%、Cr:10.5〜13.05%を含有し、さらに、Ti:0.03〜0.30%およびNb:0.03〜0.30%のうちいずれか一方又は両方、Sn:0.03〜0.50%およびSb:0.03〜0.50%のうちいずれか一方又は両方を含有し、残部がFeおよび不可避的不純物からなり、式(2)で定義されるA値が15.23以上であることを特徴とする加熱後の耐食性に優れた自動車排気系部材用の省合金型フェライト系ステンレス鋼が開示されている。
A=[Cr]+[Si]+0.5[Mn]+10[Al]+15([Sn]+[Sb]) ・・・式(2)
特許文献5に記載の技術では、Sn、Sbを添加することで加熱後の耐食性を向上させているが、隙間が存在する際の耐食性について述べられていない。
In Patent Document 5, C: ≤ 0.015%, Si: 0.10 to 0.50%, Mn: 0.05 to 0.50%, P ≤ 0.050%, S: ≤ in mass%. 0.0100%, N: ≤ 0.015%, Al: 0.020 to 0.100%, Cr: 10.5-13.05%, and Ti: 0.03 to 0.30%. And Nb: 0.03 to 0.30%, either or both, Sn: 0.03 to 0.50%, and Sb: 0.03 to 0.50%, either or both. The balance is Fe and inevitable impurities, and the A value defined by the formula (2) is 15.23 or more, which is excellent in corrosion resistance after heating and is an alloy-saving ferrite for automobile exhaust system members. Series stainless steels are disclosed.
A=[Cr]+[Si]+0.5[Mn]+10[Al]+15([Sn]+[Sb]) Equation (2)
The technique described in Patent Document 5 improves the corrosion resistance after heating by adding Sn and Sb, but does not describe the corrosion resistance when a gap is present.

特許文献6には、質量%で、C:≦0.015%、Si:0.01〜0.50%、Mn:0.01〜0.50%、P≦0.050%、S:≦0.010%、N:≦0.015%、Al:0.010〜0.100%、Cr:16.5〜22.5%を含有し、更に、Ti:0.03〜0.30%およびNb:0.03〜0.30%のうちいずれか一方又は両方を含有し、更に、Sn:0.05〜1.00%を含有し、残部がFeおよび不可避的不純物からなることを特徴とする加熱後耐食性に優れた自動車排気系部材用の省Mo型フェライト系ステンレス鋼が開示されている。特許文献6に記載の技術では、Snを添加することで加熱後の耐食性を向上させているが、隙間が存在する際の耐食性について述べられていない。 In Patent Document 6, C: ≤ 0.015%, Si: 0.01 to 0.50%, Mn: 0.01 to 0.50%, P ≤ 0.050%, and S: ≤ by mass%. 0.010%, N: ≤ 0.015%, Al: 0.010 to 0.100%, Cr: 16.5 to 22.5%, and Ti: 0.03 to 0.30%. And Nb: 0.03 to 0.30%, either or both, and Sn: 0.05 to 1.00%, with the balance being Fe and inevitable impurities. , A Mo-saving ferritic stainless steel for an automobile exhaust system member having excellent corrosion resistance after heating is disclosed. The technique described in Patent Document 6 improves the corrosion resistance after heating by adding Sn, but does not describe the corrosion resistance when a gap is present.

特許文献7には、質量%で、C:≦0.015%、Si:0.01〜0.50%、Mn:0.01〜0.50%、P≦0.050%、S:≦0.010%、N:≦0.015%、Al:0.010〜0.100%、Cr:16.5〜22.5%、Ni:0.5〜2.0%、Sn:0.01〜0.50%を含有し、更に、Ti:0.03〜0.30%およびNb:0.03〜0.30%のうちいずれか一方又は両方を含有し、残部がFeおよび不可避的不純物からなることを特徴とする自動車排気系部材用のフェライト系ステンレス鋼が開示されている。特許文献7に記載の技術では、排気系部品の加熱後の耐食性について開示しているが、隙間環境での耐食性について述べられていない。 In Patent Document 7, C:≦0.015%, Si:0.01 to 0.50%, Mn:0.01 to 0.50%, P≦0.050%, S:≦% by mass. 0.010%, N: ≤ 0.015%, Al: 0.010 to 0.100%, Cr: 16.5 to 22.5%, Ni: 0.5 to 2.0%, Sn: 0. 01 to 0.50%, further contains either or both of Ti: 0.03 to 0.30% and Nb: 0.03 to 0.30%, the balance being Fe and unavoidable. Disclosed is a ferritic stainless steel for automobile exhaust system members, which is characterized by comprising impurities. The technique described in Patent Document 7 discloses the corrosion resistance of exhaust system components after heating, but does not describe the corrosion resistance in a gap environment.

特許文献8には、質量%で、C:0.0150%以下、Si:1.0〜1.5%、Mn:0.15〜1.0%、P:0.050%以下、S:0.0100%以下、N:0.0150%以下、Al:0.010〜0.200%、Cr:13.0〜16.0%、およびSn:0.002〜0.050%を含有し、さらにTi:0.03〜0.30%およびNb:0.03〜0.50%のうちいずれか一方又は両方を含有し、かつ(1)式で定義するA値が0.024以上であることを満たし、残部がFeおよび不可避的不純物からなることを特徴とする耐酸化性および耐食性に優れた自動車排気系部材用のフェライト系ステンレス鋼が開示されている。
A=[Si]×[Sn]+0.014[Si] ・・・(1)
ここで[Si]、[Sn]は、それぞれSi、Snの質量%としての含有量である。
特許文献8に記載の技術では、排気系部品の加熱後の耐食性について開示しているが、隙間環境での耐食性について述べられていない。
In Patent Document 8, C: 0.0150% or less, Si: 1.0 to 1.5%, Mn: 0.15 to 1.0%, P: 0.050% or less, and S: in mass%. 0.0100% or less, N: 0.0150% or less, Al: 0.010 to 0.200%, Cr: 13.0 to 16.0%, and Sn: 0.002 to 0.050% are contained. In addition, one or both of Ti: 0.03 to 0.30% and Nb: 0.03 to 0.50% are contained, and the A value defined by the formula (1) is 0.024 or more. Disclosed is a ferritic stainless steel for automobile exhaust system members, which is excellent in oxidation resistance and corrosion resistance and is characterized in that the balance thereof is Fe and inevitable impurities.
A=[Si]×[Sn]+0.014[Si] (1)
Here, [Si] and [Sn] are the contents of Si and Sn as mass%, respectively.
The technique described in Patent Document 8 discloses the corrosion resistance of exhaust system components after heating, but does not describe the corrosion resistance in a gap environment.

特許文献9には、質量%で、C:0.0150%以下、Si:0.2〜0.7%、Mn:0.2〜0.6%、P:0.050%以下、S:0.0100%以下、N:0.0150%以下、Al:0.010〜0.20%、Cr:10.5〜11.5%、Mo:0.02〜0.20%、およびSn:0.005〜0.050%を含有し、さらにTi:0.03〜0.30%およびNb:0.03〜0.50%のうちいずれか一方又は両方を含有し、かつ以下の(1)式で定義するA値が0.00065%以上であることを満たし、残部がFeおよび不可避的不純物からなることを特徴とする耐食性に優れた排気系部材用のフェライト系ステンレス鋼が開示されている。
A=[Mo]×[Sn] ・・・(1)
特許文献9に記載の技術では、排気系部品の加熱後の耐食性について開示しているが、隙間環境での耐食性について述べられていない。
In Patent Document 9, C: 0.0150% or less, Si: 0.2 to 0.7%, Mn: 0.2 to 0.6%, P: 0.050% or less, and S: in mass%. 0.0100% or less, N: 0.0150% or less, Al: 0.010 to 0.20%, Cr: 10.5-11.5%, Mo: 0.02 to 0.20%, and Sn: 0.005 to 0.050%, and either or both of Ti: 0.03 to 0.30% and Nb: 0.03 to 0.50%, and the following (1 ), a ferritic stainless steel for exhaust system members excellent in corrosion resistance, characterized in that the A value defined by the formula is 0.00065% 2 or more, and the balance is Fe and unavoidable impurities. ing.
A=[Mo]×[Sn] (1)
The technique described in Patent Document 9 discloses the corrosion resistance of exhaust system components after heating, but does not describe the corrosion resistance in a gap environment.

上記のように、従来技術においては、管端増肉されたパイプの管端部に形成される隙間環境で耐食性を改善する方法はまだ提案されていない。 As described above, in the prior art, no method has yet been proposed for improving the corrosion resistance in the gap environment formed at the pipe end portion of the pipe having the increased pipe end thickness.

特開2010−234406号公報JP, 2010-234406, A 特開2013−103250号公報JP, 2013-103250, A 特開2004−255414号公報JP, 2004-255414, A 特許第4727601号公報Japanese Patent No. 4727601 特許第5297713号公報Japanese Patent No. 5297713 特許第5320034号公報Japanese Patent No. 5320034 特許第5586279号公報Patent No. 5586279 特許第6006660号公報Japanese Patent No. 6006660 特開2014−169491号公報JP, 2014-169491, A

本発明は、管端増肉されたパイプの管端部に形成される隙間環境の耐食性を改善する解決手段を提供する。 The present invention provides a solution for improving the corrosion resistance of the crevice environment formed at the pipe end portion of the pipe having the increased pipe end thickness.

上記課題を解決する為に、本発明者らはフェライト系ステンレス鋼管隙間部の耐食性に関して鋭意検討を行った。その結果、隙間環境では高Cr量のステンレス鋼ほど孔食深さが増加することを知見した。そしてCr量、Sn量と、孔食が深く成長する臨界隙間間隔との間にある関係があることを見出した。 In order to solve the above-mentioned problems, the inventors of the present invention have earnestly studied the corrosion resistance of the ferritic stainless steel pipe gap. As a result, it was found that in a crevice environment, the higher the Cr content, the higher the pitting depth. Then, it was found that there is a relationship between the Cr amount and the Sn amount and the critical gap distance at which pitting corrosion deeply grows.

上記課題を解決する為の手段は以下の構成を有する。
〔1〕本発明の一態様に係る隙間部の耐塩害性に優れたフェライト系ステンレス鋼管は、C:0.001〜0.100%、
Si:0.01〜2.00%、
Mn:0.01〜2.00%、
P:0.001〜0.05%、
S:0.0001〜0.005%、
Cr:10.5〜20.0%、
Sn:0.001〜0.600%、
Ti:0.001〜1.000%、
Al:0.001〜0.100%、
N:0.001〜0.02%を含有し、残部がFeおよび不可避的不純物であり、管端部に管端増肉部を具備し、前記管端部に形成される隙間間隔d(μm)は、d≧Cr/(1000Sn)(式中のCr及びSnはそれぞれの元素の含有量(質量%)を示す)の関係を満たすことを特徴とする。
Means for solving the above problems have the following configurations.
[1] The ferritic stainless steel pipe excellent in salt damage resistance of the gap portion according to one aspect of the present invention is C: 0.001 to 0.100%,
Si: 0.01 to 2.00%,
Mn: 0.01 to 2.00%,
P: 0.001-0.05%,
S: 0.0001 to 0.005%,
Cr: 10.5 to 20.0%,
Sn: 0.001 to 0.600%,
Ti: 0.001-1.000%,
Al: 0.001 to 0.100%,
N: 0.001 to 0.02% is contained, the balance is Fe and unavoidable impurities, and a pipe end thickened portion is provided at the pipe end, and a gap distance d (μm ) Satisfies the relationship of d≧Cr 2 /(1000Sn) (Cr and Sn in the formula represent the content (mass %) of each element).

〔2〕さらに質量%で
Ni:0.1〜1.0%、
Mo:0.1〜3.0%、
Cu:0.10〜3.00%、
B:0.0001〜0.0050%、
Nb:0.001〜0.300%、
W:0.001〜1.00%、
V:0.001〜0.50%、
Sb:0.001〜0.100%、
Co:0.001〜0.500%、
のうち何れか1種または2種以上を含有することを特徴とする前記〔1〕に記載の隙間部の耐塩害性に優れたフェライト系ステンレス鋼管。
[2] Further, in mass%, Ni: 0.1 to 1.0%,
Mo: 0.1-3.0%,
Cu: 0.10 to 3.00%,
B: 0.0001 to 0.0050%,
Nb: 0.001 to 0.300%,
W: 0.001-1.00%,
V: 0.001 to 0.50%,
Sb: 0.001 to 0.100%,
Co: 0.001 to 0.500%,
The ferritic stainless steel pipe having excellent salt damage resistance in the gap according to the above [1], which contains one or more of any of the above.

〔3〕さらに質量%で
Ca:0.0001〜0.0050%、
Mg:0.0001〜0.0050%、
Zr:0.0001〜0.0300%、
Ga:0.0001〜0.0100%、
Ta:0.001〜0.050%、
REM:0.001〜0.100%、
のうち何れか1種または2種以上を含有することを特徴とする前記〔1〕または〔2〕に記載の隙間部の耐塩害性に優れたフェライト系ステンレス鋼管。
〔4〕管端増肉構造体に用いられることを特徴とする前記〔1〕〜〔3〕のいずれかに記載の隙間部の耐塩害性に優れたフェライト系ステンレス鋼管。
[3] Further, in mass% Ca: 0.0001 to 0.0050%,
Mg: 0.0001 to 0.0050%,
Zr: 0.0001 to 0.0300%,
Ga: 0.0001 to 0.0100%,
Ta: 0.001 to 0.050%,
REM: 0.001 to 0.100%,
The ferritic stainless steel pipe having excellent salt damage resistance in the gap portion according to the above [1] or [2], characterized in that it contains any one kind or two or more kinds thereof.
[4] A ferritic stainless steel pipe having excellent salt damage resistance in the gap portion according to any one of [1] to [3], which is used in a pipe end thickened structure.

〔5〕本発明の一態様に係る管端増肉構造体は、前記〔1〕〜〔4〕のいずれかに記載のフェライト系ステンレス鋼管からなることを特徴とする。
〔6〕本発明の一態様に係る溶接継ぎ手は、前記〔1〕〜〔4〕のいずれかに記載のフェライト系ステンレス鋼管からなる管端増肉部を有することを特徴とする。
〔7〕前記管端増肉部に溶接で接合された構造体をさらに有し、前記フェライト系ステンレス鋼管の単管部の板厚をtとすると、溶接部のうち、前記フェライト系ステンレス鋼管側の最大溶け込み深さが0.3t〜2.0tであることを特徴とする前記〔6〕に記載の溶接継ぎ手。
〔8〕本発明の一態様に係る溶接構造体は、前記〔7〕に記載の溶接継ぎ手を有することを特徴とする。
[5] A pipe end thickened structure according to an aspect of the present invention is characterized by being formed of the ferritic stainless steel pipe according to any one of [1] to [4].
[6] A welded joint according to one aspect of the present invention is characterized by having a pipe end thickened portion made of the ferritic stainless steel pipe according to any one of the above [1] to [4].
[7] If the plate thickness of the single pipe portion of the ferritic stainless steel pipe is t, further having a structure joined by welding to the pipe end thickened portion, then the ferritic stainless steel pipe side of the welded portion Has a maximum penetration depth of 0.3 t to 2.0 t, and the welding joint according to [6] above.
[8] A welded structure according to an aspect of the present invention is characterized by having the welding joint described in [7] above.

本発明一態様によれば、耐隙間部塩害性(隙間部の耐塩害性)に優れたフェライト系ステンレス鋼管、それを備えた管端増肉構造体、管端増肉部を有する溶接継ぎ手、及び溶接継ぎ手を有する溶接構造体を提供することができる。 According to one aspect of the present invention, a ferritic stainless steel pipe excellent in crevice corrosion resistance (crevice corrosion resistance), a pipe end thickened structure including the ferritic stainless steel pipe, a welded joint having a pipe end thickened portion, And a welded structure having a welded joint can be provided.

ステンレス鋼管からなる管端増肉管と他の鋼管との継ぎ手構造を示す断面図である。It is sectional drawing which shows the joint structure of the pipe end thickening pipe which consists of stainless steel pipes, and another steel pipe. 図1の溶接部3周辺の拡大図であり、フェライト系ステンレス鋼管の単管部の板厚をtとすると、(a)は、最大溶け込み深さが0.3tである場合を示し、(b)は、最大溶け込み深さが1.0tの場合を示し、(c)は、最大溶け込み深さが2.0tの場合を示し、(d)は、最大溶け込み深さが2.0t超の場合を示す。FIG. 2 is an enlarged view of the periphery of the welded portion 3 in FIG. 1, where (a) shows the case where the maximum penetration depth is 0.3 t, where t is the plate thickness of the single pipe portion of the ferritic stainless steel pipe, ) Shows the case where the maximum penetration depth is 1.0t, (c) shows the case where the maximum penetration depth is 2.0t, and (d) shows the case where the maximum penetration depth exceeds 2.0t. Indicates. 実施例において製造した管端増肉管のCr量およびSn量と臨界隙間間隔との関係を示すグラフである。It is a graph which shows the relationship between the amount of Cr and the amount of Sn of a pipe end thickening pipe manufactured in an example, and a critical gap interval.

以下、本発明の実施の形態について、図面を参照して詳細に説明する。
管端増肉パイプ(フェライト系ステンレス鋼管)の隙間環境を模擬して耐食性を評価する為に、本発明者らは種々の組成の鋼板を作製した。そして、これらの鋼板からスポット溶接により管端増肉パイプの隙間部を模擬した種々の隙間間隔を有する試験片を作製した。JASO−M610−92の自動車部品の外観の腐食試験方法に従って腐食試験を100サイクル実施して隙間部の塩害腐食性を評価した。評価には最大孔食深さを用い、最大孔食深さが500μm未満の試料を“○”(good)と評価し、最大孔食深さが500μm以上の試料を“×”(poor)と評価した。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
In order to simulate the gap environment of the pipe end thickened pipe (ferritic stainless steel pipe) and evaluate the corrosion resistance, the present inventors produced steel sheets of various compositions. Then, test pieces having various gap intervals simulating the gap portion of the pipe end thickened pipe were produced from these steel plates by spot welding. The corrosion test was performed 100 cycles according to the corrosion test method of the appearance of automobile parts of JASO-M610-92, and the salt damage corrosion resistance of the gap was evaluated. The maximum pitting depth was used for evaluation, and samples with a maximum pitting depth of less than 500 μm were evaluated as “good”, and samples with a maximum pitting depth of 500 μm or more were evaluated as “x” (poor). evaluated.

図3は、上述の試験結果に基づいて、種々の母材中のSn量における母材中のCr量と、隙間部での腐食が抑制される臨界隙間間隔との関係を示す。母材中のCrは、一般環境での耐食性を向上させるが、図3より、母材中のCr量が増加するほど、隙間環境での孔食深さは増加することがわかる。そして、鋼板に対するSnの添加量を増加することで(母材中のSn量が増加するほど)、臨界隙間間隔が小さくなることがわかった。 FIG. 3 shows the relationship between the amount of Cr in the base material in various amounts of Sn in the base material and the critical gap distance at which corrosion in the gap portion is suppressed based on the above-described test results. Although Cr in the base material improves the corrosion resistance in a general environment, it can be seen from FIG. 3 that the pitting depth in the crevice environment increases as the amount of Cr in the base material increases. It was also found that the critical gap spacing becomes smaller by increasing the amount of Sn added to the steel sheet (as the amount of Sn in the base metal increases).

高Cr量の鋼種の隙間部の腐食形態を観察すると、少数の孔食が深く成長していることがわかった。一方、低Cr量の鋼種の隙間部の腐食形態は、多数の孔食が発生しているが、一つ一つの孔食の深さは、高Cr量の鋼種に比べて浅いことがわかった。 By observing the corrosion morphology of the crevices of steel types with a high Cr content, it was found that a small number of pitting corrosion deeply grew. On the other hand, in the corrosion morphology of the crevice of the low Cr content steel type, many pitting corrosions occurred, but it was found that the depth of each pitting corrosion is shallower than that of the high Cr content steel type. ..

高Cr量の鋼種では、不働態皮膜中のCr濃度が高く耐食性が高いため、孔食の発生数が減少したと考えられる。そのため、カソード反応である酸素還元反応が、少数の孔食の成長に対してのみ寄与し、一つ一つの孔食が深く成長したと考えられる。一方、低Cr量の鋼種では、カソード反応が多数の孔食の発生に寄与するため、一つ一つの孔食深さが大きく成長しなかったものと考えられる。 It is considered that the steel type with a high Cr content has a high Cr concentration in the passivation film and high corrosion resistance, and therefore the number of pitting corrosions decreased. Therefore, it is considered that the oxygen reduction reaction, which is a cathode reaction, contributes only to the growth of a small number of pits, and that each pit is deeply grown. On the other hand, it is considered that, in the steel type with a low Cr content, the cathodic reaction contributes to the generation of a large number of pitting corrosions, so that the pitting depths of individual steels did not grow significantly.

また、上述の試験により、Snは隙間環境での孔食の発生に対して効果があることが知見された。Snがステンレス鋼の活性溶解を抑制することや耐隙間腐食性を改善することは知られていた。しかし、Snが隙間環境での孔食の発生を抑制し、臨界隙間間隔を小さくすることは今回の試験結果による新たな知見である。 Further, it was found from the above-mentioned test that Sn has an effect on the occurrence of pitting corrosion in a crevice environment. It has been known that Sn suppresses active dissolution of stainless steel and improves crevice corrosion resistance. However, the fact that Sn suppresses the occurrence of pitting corrosion in the crevice environment and reduces the critical crevice spacing is a new finding based on the test results of this time.

(フェライト系ステンレス鋼管)
以下に本実施形態で規定される鋼の化学組成についてさらに詳しく説明する。なお、%は質量%を意味する。
C:Cは、鋼の耐粒界腐食性、加工性を低下させるため、その含有量を低く抑える必要がある。そのため、C含有量を0.100%以下とする。しかしながら、過度に低めることは精練コストを上昇させるため、C含有量を0.001%以上とすることが望ましい。C含有量は、より望ましくは0.003〜0.050%、さらに望ましくは0.005〜0.020%である。
(Ferrite stainless steel pipe)
The chemical composition of steel defined in this embodiment will be described in more detail below. In addition,% means mass %.
C: C lowers the intergranular corrosion resistance and workability of steel, so its content must be kept low. Therefore, the C content is set to 0.100% or less. However, an excessively low content raises the scouring cost, and therefore the C content is preferably 0.001% or more. The C content is more preferably 0.003 to 0.050%, further preferably 0.005 to 0.020%.

Si:Siは脱酸元素として有用であるが、過剰に添加すると材料を硬化させるため、その含有量を0.01〜2.00%とする。Si含有量は、より望ましくは0.02〜0.80%、さらに望ましくは0.03〜0.70%である。 Si:Si is useful as a deoxidizing element, but if added in excess, it hardens the material, so the content is made 0.01 to 2.00%. The Si content is more preferably 0.02 to 0.80%, further preferably 0.03 to 0.70%.

Mn:Mnは脱酸元素として有用であるが、過剰に含有させると耐食性を劣化させるので、その含有量を0.01〜2.00%とする。Mn含有量は、より望ましくは0.02〜0.80%、さらに望ましくは0.03〜0.70%である。 Mn: Mn is useful as a deoxidizing element, but if it is contained excessively, the corrosion resistance deteriorates, so the content is made 0.01 to 2.00%. The Mn content is more preferably 0.02 to 0.80%, further preferably 0.03 to 0.70%.

P:Pは加工性・溶接性・耐食性を劣化させる元素であり、その含有量を制限する必要がある。そのためP含有量を0.05%以下とする。ただし、過剰にP量を低減することは、精錬コストを増加させるため、その下限値を0.001%とする。P含有量は、より望ましくは0.003〜0.04%、さらに望ましくは0.005〜0.03%である。 P: P is an element that deteriorates workability, weldability, and corrosion resistance, and its content needs to be limited. Therefore, the P content is set to 0.05% or less. However, excessively reducing the amount of P increases the refining cost, so the lower limit value is made 0.001%. The P content is more preferably 0.003 to 0.04%, further preferably 0.005 to 0.03%.

S:Sは耐食性を劣化させる元素であるため、その含有量を制限する必要がある。そのためS含有量を0.005%以下とする。ただし、過剰にS量を低減することは、精錬コストを増加させるため、その下限値を0.0001%とする。S含有量は、より望ましくは0.0003〜0.003%、さらに望ましくは0.0005〜0.001%である。 S: S is an element that deteriorates corrosion resistance, so its content must be limited. Therefore, the S content is set to 0.005% or less. However, if the amount of S is excessively reduced, the refining cost increases, so the lower limit value is made 0.0001%. The S content is more preferably 0.0003 to 0.003%, further preferably 0.0005 to 0.001%.

Cr:Crは耐塩害腐食性及び耐排ガス凝縮水腐食性を確保する上で、少なくとも10.5%以上の量が必要である。Cr含有量を増加させるほど、耐食性は向上するが、加工性、製造性を低下させ、かつコストを増加させるため、上限を20.0%以下とする。Cr含有量は、より望ましくは11.0〜19.0%、さらに望ましくは13.0〜17.5%である。 Cr: Cr is necessary in an amount of at least 10.5% or more in order to secure salt corrosion resistance and exhaust gas condensed water corrosion resistance. Although the corrosion resistance is improved as the Cr content is increased, the workability and manufacturability are lowered, and the cost is increased. Therefore, the upper limit is set to 20.0% or less. The Cr content is more preferably 11.0 to 19.0%, further preferably 13.0 to 17.5%.

Sn:Snは耐食性を向上させる元素であり、少なくとも0.001%以上の量が必要である。0.001〜0.009%のSn含有量で効果があるが、Sn含有量を増やすと更に効果がある。ただし、過剰の添加は加工性や製造性を低下させるため、上限を0.600%以下とする。Sn含有量は、より望ましくは0.002〜0.500%、さらに望ましくは0.030〜0.300%である。コストを考慮すると、0.030〜0.100%が望ましい。 Sn:Sn is an element that improves the corrosion resistance, and is required to be at least 0.001% or more. The Sn content of 0.001 to 0.009% is effective, but increasing the Sn content is more effective. However, excessive addition lowers workability and manufacturability, so the upper limit is made 0.600% or less. The Sn content is more preferably 0.002 to 0.500%, further preferably 0.030 to 0.300%. Considering the cost, 0.030 to 0.100% is desirable.

Ti:Tiは耐食性を向上させるのに有用な元素であり、0.001%以上の量で含有させることができる。ただし、過剰に添加するとコストを増加させるため、上限を1.000%とする。Ti含有量は、より望ましくは0.002〜0.500%、さらに望ましくは0.003〜0.200%である。 Ti: Ti is an element useful for improving the corrosion resistance and can be contained in an amount of 0.001% or more. However, if added excessively, the cost will increase, so the upper limit is made 1.000%. The Ti content is more preferably 0.002 to 0.500%, further preferably 0.003 to 0.200%.

Al:Alは脱酸効果等の精練上有用な元素であり、少なくとも0.001%以上の量が必要である。しかしながら、過剰に添加すると粗大な介在物を形成し耐食性を低下させるため、上限を0.100%以下とする。Al含有量は、より望ましくは0.005〜0.080%、さらに望ましくは0.010〜0.070%である。 Al: Al is an element useful for refining such as deoxidizing effect, and is required to be at least 0.001%. However, if added excessively, coarse inclusions are formed and the corrosion resistance is reduced, so the upper limit is made 0.100% or less. The Al content is more preferably 0.005 to 0.080%, further preferably 0.010 to 0.070%.

N:Nは成形性と耐食性を劣化させるため、N含有量を0.02%以下とする。ただし過度な低減は精錬コストの増加に繋がるため、下限を0.001%とする。N含有量は、より望ましくは0.002〜0.015%、さらに望ましくは0.003〜0.010%である。 N: N deteriorates formability and corrosion resistance, so the N content is made 0.02% or less. However, excessive reduction leads to an increase in refining cost, so the lower limit is made 0.001%. The N content is more preferably 0.002 to 0.015%, further preferably 0.003 to 0.010%.

以上が本実施形態のフェライト系ステンレス鋼の基本となる化学組成であるが、本実施形態では、更に、次のような元素を必要に応じて含有させることができる。
Ni:Niは耐食性を向上させるのに有用な元素であり、0.1%以上の量で含有させることができる。ただし、過剰な添加はコストを増大させるため、その上限を1.0%とする。Ni含有量は、より望ましくは0.2〜0.8%、さらに望ましくは0.3〜0.5%である。
The above is the basic chemical composition of the ferritic stainless steel of the present embodiment, but in the present embodiment, the following elements can be further contained as necessary.
Ni: Ni is an element useful for improving the corrosion resistance, and can be contained in an amount of 0.1% or more. However, excessive addition increases cost, so the upper limit is made 1.0%. The Ni content is more preferably 0.2 to 0.8%, further preferably 0.3 to 0.5%.

Mo:Moは耐食性を向上させるのに有用な元素であり、0.1%以上の量で含有させることができる。ただし、過剰な添加はコストを増大させるため、その上限を3.0%とする。Mo含有量は、より望ましくは0.2〜2.0%、さらに望ましくは0.3〜1.5%である。 Mo: Mo is an element useful for improving the corrosion resistance and can be contained in an amount of 0.1% or more. However, excessive addition increases cost, so the upper limit is made 3.0%. The Mo content is more preferably 0.2 to 2.0%, further preferably 0.3 to 1.5%.

Cu:Cuは耐食性を向上させるのに有用な元素であり、0.10%以上の量で含有させることができる。ただし、過剰な添加はコストを増大させるため、上限を3.00%とする。Cu含有量は、より望ましくは0.20〜2.00%、さらに望ましくは0.30〜1.50%である。 Cu: Cu is an element useful for improving the corrosion resistance and can be contained in an amount of 0.10% or more. However, excessive addition increases cost, so the upper limit is made 3.00%. The Cu content is more preferably 0.20 to 2.00%, further preferably 0.30 to 1.50%.

B:Bは熱間加工性を向上させるのに有用な元素であり、0.0001%以上の量で含有させることができる。ただし、過剰な添加は耐食性を低下させるため、上限を0.0050%以下とする。B含有量は、より望ましくは0.0005〜0.0030%、さらに望ましくは0.0010〜0.0010%である。 B: B is an element useful for improving hot workability and can be contained in an amount of 0.0001% or more. However, excessive addition lowers the corrosion resistance, so the upper limit is made 0.0050% or less. The B content is more preferably 0.0005 to 0.0030%, further preferably 0.0010 to 0.0010%.

Nb:Nbは耐食性の向上に有用な元素であり、0.001%以上の量で含有させることが望ましい。ただし、過剰の添加は加工性や製造性を低下させるため、上限を0.300%以下とする。Nb含有量は、より望ましくは0.005〜0.200%、さらに望ましくは0.010〜0.100%である。 Nb: Nb is an element useful for improving the corrosion resistance, and it is desirable to contain 0.001% or more. However, excessive addition deteriorates workability and manufacturability, so the upper limit is made 0.300% or less. The Nb content is more preferably 0.005 to 0.200%, further preferably 0.010 to 0.100%.

W:Wは耐食性の向上に有用な元素であり、0.001%以上の量で含有させることが望ましい。ただし、過剰の添加は加工性や製造性を低下させるため、上限を1.00%以下とする。W含有量は、より望ましくは0.005〜0.70%、さらに望ましくは0.010〜0.50%である。 W: W is an element useful for improving corrosion resistance, and is preferably contained in an amount of 0.001% or more. However, excessive addition lowers workability and manufacturability, so the upper limit is made 1.00% or less. The W content is more preferably 0.005 to 0.70%, further preferably 0.010 to 0.50%.

V:Vは耐食性の向上に有用な元素であり、0.001%以上の量で含有させることが望ましい。ただし、過剰の添加は加工性や製造性を低下させるため、上限を0.50%以下とする。V含有量は、より望ましくは0.005〜0.40%、さらに望ましくは0.010〜0.30%である。 V: V is an element useful for improving the corrosion resistance, and is preferably contained in an amount of 0.001% or more. However, excessive addition lowers workability and manufacturability, so the upper limit is made 0.50% or less. The V content is more preferably 0.005 to 0.40%, further preferably 0.010 to 0.30%.

Sb:Sbは耐食性の向上に有用な元素であり、0.001%以上の量で含有させることが望ましい。ただし、過剰の添加は加工性や製造性を低下させるため、上限を0.100%以下とする。Sb含有量は、より望ましくは0.005〜0.080%、さらに望ましくは0.010〜0.050%である。 Sb: Sb is an element useful for improving corrosion resistance, and is preferably contained in an amount of 0.001% or more. However, excessive addition deteriorates workability and manufacturability, so the upper limit is made 0.100% or less. The Sb content is more preferably 0.005 to 0.080%, further preferably 0.010 to 0.050%.

Co:Coは二次加工性と靭性を向上させる上で、0.001%以上の量で含有させることが望ましい。ただし、過剰の添加は加工性や製造性を低下させるため、上限を0.500%以下とする。Co含有量は、より望ましくは0.002〜0.400%、さらに望ましくは0.003〜0.300%である。
なお、Ni、Mo、Cu、B、Nb、W、V、Sb、Coの1種または2種以上の合計含有量は、コストアップなどの点から6%以下が望ましい。
Co: Co is preferably contained in an amount of 0.001% or more in order to improve secondary workability and toughness. However, excessive addition lowers workability and manufacturability, so the upper limit is made 0.500% or less. The Co content is more preferably 0.002 to 0.400%, further preferably 0.003 to 0.300%.
The total content of one or more of Ni, Mo, Cu, B, Nb, W, V, Sb, and Co is preferably 6% or less from the viewpoint of cost increase.

Ca:Caは脱硫や熱間加工性を向上させる上で、0.0001%以上の量で含有させることが望ましい。ただし、過剰に添加すると水溶性の介在物CaSが生成して耐食性を低下させるため、上限を0.0050%とする。Ca含有量は、より望ましくは0.0002〜0.0045%、さらに望ましくは0.0003〜0.0040%である。 Ca: Ca is preferably contained in an amount of 0.0001% or more in order to improve desulfurization and hot workability. However, if added excessively, water-soluble inclusions CaS are formed and corrosion resistance is reduced, so the upper limit is made 0.0050%. The Ca content is more preferably 0.0002 to 0.0045%, further preferably 0.0003 to 0.0040%.

Mg:Mgは組織を微細化し、加工性、靭性を向上させる上で、0.0001%以上の量で含有させることが望ましい。ただし、過剰に添加すると熱間加工性を低下させるため、上限を0.0050%とする。Mg含有量は、より望ましくは0.0003〜0.0040%、さらに望ましくは0.0005〜0.0030%である。 Mg: Mg is preferably contained in an amount of 0.0001% or more in order to refine the structure and improve workability and toughness. However, if added excessively, the hot workability is deteriorated, so the upper limit is made 0.0050%. The Mg content is more preferably 0.0003 to 0.0040%, further preferably 0.0005 to 0.0030%.

Zr:Zrは耐食性を向上させる上で、0.0001%以上の量で含有させることが望ましい。ただし、過剰の添加は加工性や製造性を低下させるため、上限を0.0300%とする。Zr含有量は、より望ましくは0.0005〜0.0200%、さらに望ましくは0.0010〜0.0100%である。 Zr: Zr is preferably contained in an amount of 0.0001% or more in order to improve the corrosion resistance. However, excessive addition deteriorates workability and manufacturability, so the upper limit is made 0.0300%. The Zr content is more preferably 0.0005 to 0.0200%, further preferably 0.0010 to 0.0100%.

Ga:Gaは耐食性と耐水素脆化性を向上させる上で、0.0001%以上の量で含有させることが望ましい。ただし、過剰の添加は加工性や製造性を低下させるため、上限を0.0100%とする。Ga含有量は、より望ましくは0.0005〜0.0080%、さらに望ましくは0.0010〜0.0050%である。 Ga: Ga is preferably contained in an amount of 0.0001% or more in order to improve the corrosion resistance and the hydrogen embrittlement resistance. However, excessive addition deteriorates workability and manufacturability, so the upper limit is made 0.0100%. The Ga content is more preferably 0.0005 to 0.0080%, further preferably 0.0010 to 0.0050%.

Ta:Taは耐食性を向上させる上で、0.001%以上の量で含有させることが望ましい。ただし、過剰の添加は加工性や製造性を低下させるため、上限を0.050%とする。Ta含有量は、より望ましくは0.005〜0.040%、さらに望ましくは0.010〜0.030%である。 Ta: Ta is preferably contained in an amount of 0.001% or more in order to improve the corrosion resistance. However, excessive addition lowers workability and manufacturability, so the upper limit is made 0.050%. The Ta content is more preferably 0.005 to 0.040%, further preferably 0.010 to 0.030%.

REM:REMは脱酸効果等を有するので精練上有用な元素であり、0.001%以上の量で含有させることが望ましい。ただし、過剰の添加は加工性や製造性を低下させるため、上限を0.100%とする。REM含有量は、より望ましくは0.005〜0.080%、さらに望ましくは0.010〜0.050%である。
なお、REMとはCe、La、Pr、Nd等の希土類金属である。「REMの含有量」とは、これらの全REM元素の含有量の合計値を意味する。全含有量が上記範囲内であれば、REM元素の種類が1種類であっても2種類以上であっても、同様な効果が得られる。
REM: REM is a useful element for refining because it has a deoxidizing effect and the like, and is preferably contained in an amount of 0.001% or more. However, excessive addition lowers workability and manufacturability, so the upper limit is made 0.100%. The REM content is more preferably 0.005 to 0.080%, further preferably 0.010 to 0.050%.
REM is a rare earth metal such as Ce, La, Pr, Nd. "REM content" means the total value of the content of all these REM elements. If the total content is within the above range, the same effect can be obtained whether the REM element is one kind or two or more kinds.

本実施形態のフェライト系ステンレス鋼管は、図1に示されたように管端部に管端増肉部1aを具備する。管端増肉部1aとは、鋼管の管端部において厚さを増した部位を言う。管端増肉部1aは、例えば鋼管の端部を内側又は外側に180°折り返して形成される。このため、管端増肉部1aは、内側又は外側に折り返された端部を有する。管端増肉部1aにおいて、ステンレス鋼管の外側部分(外周部分)と内側部分(内周部分)との間に隙間部1bが存在する。すなわち、鋼管の管端部において、鋼管と鋼管の折り返された部分との間に隙間部1bが存在する。鋼管と鋼管の折り返された部分との間の隙間間隔の最大値を隙間間隔d(μm)と言う。
管端部に存在する隙間間隔d(μm)は、d≧Cr/(1000Sn)(式中のCr及びSnはそれぞれの元素の含有量(質量%)を示す)の関係を満たす。
The ferritic stainless steel pipe of this embodiment includes a pipe end thickened portion 1a at the pipe end as shown in FIG. The pipe end thickened portion 1a refers to a portion where the thickness is increased at the pipe end portion of the steel pipe. The pipe end thickened portion 1a is formed, for example, by folding an end portion of a steel pipe inward or outward by 180°. Therefore, the pipe end thickened portion 1a has an end portion that is folded back inward or outward. In the pipe end thickened portion 1a, a gap portion 1b exists between the outer portion (outer peripheral portion) and the inner portion (inner peripheral portion) of the stainless steel pipe. That is, in the pipe end portion of the steel pipe, the gap portion 1b exists between the steel pipe and the folded back portion of the steel pipe. The maximum value of the gap distance between the steel pipe and the folded back portion of the steel pipe is called the gap distance d (μm).
The gap distance d (μm) existing at the tube end satisfies the relationship of d≧Cr 2 /(1000Sn) (Cr and Sn in the formula represent the content (mass %) of each element).

本実施形態の管端増肉パイプ(フェライト系ステンレス鋼管)は、本実施形態で規定される鋼成分を有するステンレス鋼板を素材とするが、ステンレス鋼板の製造方法は、製鋼−熱間圧延−焼鈍・酸洗−冷間圧延−焼鈍の各工程よりなり、各工程の製造条件については、特に規定するものでは無い。
製鋼においては、前記必須成分および必要に応じて添加される成分を含有する鋼を、転炉溶製し、次に2次精錬を行う方法が好適である。溶製した溶鋼は、公知の鋳造方法(連続鋳造)に従ってスラブとする。スラブは、所定の温度に加熱され、所定の板厚に連続圧延で熱間圧延される。熱間圧延後の焼鈍工程は省略しても良く、酸洗後の冷間圧延では、通常のゼンジミアミル、タンデムミルのいずれで圧延しても良いが、鋼管の曲げ性を考慮するとタンデムミル圧延の方が望ましい。
The pipe end thickened pipe (ferritic stainless steel pipe) of the present embodiment is made of a stainless steel plate having a steel component specified in the present embodiment. The method for manufacturing the stainless steel plate is steelmaking-hot rolling-annealing. The process consists of pickling-cold rolling-annealing, and the manufacturing conditions of each process are not particularly specified.
In steelmaking, a method in which steel containing the above-mentioned essential components and components added as necessary is melted in a converter and then secondary refining is performed is preferable. The molten steel produced is made into a slab according to a known casting method (continuous casting). The slab is heated to a predetermined temperature and hot-rolled to a predetermined plate thickness by continuous rolling. The annealing step after hot rolling may be omitted, and in the cold rolling after pickling, it may be rolled with either a normal Sendzimir mill or a tandem mill, but considering the bendability of the steel pipe, tandem mill rolling Is preferable.

冷間圧延においては、ロール粗度、ロール径、圧延油、圧延パス回数、圧延速度、圧延温度などは一般的な範囲内で適宜選択すれば良い。冷間圧延の途中に中間焼鈍を入れても良く、中間および最終焼鈍はバッチ式焼鈍でも連続式焼鈍でも構わない。また、焼鈍の雰囲気に関しては、必要であれば水素ガスあるいは窒素ガスなどの無酸化雰囲気で焼鈍する光輝焼鈍でも大気中で焼鈍しても構わない。更に、本製品板に潤滑塗装を施して、更にプレス成形を向上させても良く、潤滑膜の種類は適宜選択すれば良い。最終焼鈍後に形状矯正のために調質圧延やレベラーを付与しても構わないが、加工硬化能の低下を招くことから、これらは付与しないことが望ましい。 In cold rolling, roll roughness, roll diameter, rolling oil, number of rolling passes, rolling speed, rolling temperature and the like may be appropriately selected within a general range. Intermediate annealing may be performed during cold rolling, and the intermediate and final annealing may be batch type annealing or continuous type annealing. Regarding the annealing atmosphere, if necessary, bright annealing may be performed in a non-oxidizing atmosphere such as hydrogen gas or nitrogen gas, or annealing may be performed in the air. Further, the product plate may be subjected to lubrication coating to further improve press molding, and the type of the lubricating film may be appropriately selected. After the final annealing, temper rolling or a leveler may be added to correct the shape, but it is desirable not to add these because it causes a decrease in work hardening ability.

鋼管の製造方法については、適宜選択すれば良く、溶接方法に限定されずERW(抵抗溶接)、レーザー溶接、TIG溶接(タングステン不活性ガス溶接)等適宜選択すれば良い。また、鋼管のサイズについても用途に応じて決定すれば良い。鋼管から管端増肉するプロセスは、管端のスピニング加工あるいは鍛造処理が望ましいが、これらの工法についても特に規定するものでは無い。
また、管外側に造肉する場合と、管内側に造肉する場合が考えられるが、管外側に造肉する場合は、造肉箇所の内径は素管と同じになる。一方、管内側に造肉する場合は、造肉箇所の外径は素管と同じになる。作業能率や寸法精度を考慮すると、スピニング加工の方が望ましく、管端を一度折り曲げ、次工程にて密着させる工法を採用することが好ましい。
The method for manufacturing the steel pipe may be appropriately selected and is not limited to the welding method, and ERW (resistance welding), laser welding, TIG welding (tungsten inert gas welding) or the like may be appropriately selected. Also, the size of the steel pipe may be determined according to the application. The pipe end thickening process from a steel pipe is preferably a pipe end spinning process or a forging process, but these process methods are not particularly specified.
In addition, there are cases where the pipe is formed outside the pipe and the inside of the pipe is formed. When the pipe is formed outside the pipe, the inside diameter of the formed portion is the same as that of the raw pipe. On the other hand, when the inside of the pipe is to be machined, the outer diameter of the machined portion is the same as that of the raw pipe. Taking work efficiency and dimensional accuracy into consideration, spinning is preferable, and it is preferable to adopt a method in which the pipe end is bent once and brought into close contact in the next step.

管端部に形成される隙間間隔dが上記の関係式を満たすことにより、耐隙間部塩害性に優れた管端増肉構造体を提供できるフェライト系ステンレス鋼管を実現できる。
上述の組成と関係式を満たすフェライト系ステンレス鋼管を、特に自動車部品、二輪用部品として使用することによって、薄肉化が可能となり、効率的な部品の製造および適用した自動車、二輪車の燃費の向上が可能となる。
また、上述の組成と関係式を満たすフェライト系ステンレス鋼管によれば、耐隙間部塩害性に優れた管端増肉部を有する溶接継ぎ手や溶接構造体を提供することができる。
When the gap distance d formed at the pipe end portion satisfies the above relational expression, it is possible to realize a ferritic stainless steel pipe capable of providing a pipe end thickened structure excellent in salt corrosion resistance of the gap portion.
By using a ferritic stainless steel pipe satisfying the above-mentioned composition and relational expression as automobile parts and motorcycle parts in particular, it is possible to reduce the wall thickness, and to efficiently manufacture parts and improve the fuel efficiency of automobiles and motorcycles to which they are applied. It will be possible.
Further, according to the ferritic stainless steel pipe satisfying the above-described composition and relational expression, it is possible to provide a welded joint and a welded structure having a pipe end thickened portion having excellent salt corrosion resistance in the gap portion.

(管端増肉構造体、溶接継ぎ手、溶接構造体)
前述の如く本実施形態のフェライト系ステンレス鋼管は、C、Si、Mn、P、S、Cr、Sn、Ti、Al、Nを規定の範囲内の量で含有する組成を有し、管外側に造肉されるか、管内側に造肉される管端増肉構造体用のステンレス鋼管である。
本実施形態の管端増肉構造体は、本実施形態のフェライト系ステンレス鋼管を有する。管端増肉構造体とは、鋼管を有し、この鋼管に管端増肉部が設けられた構造体を言う。本実施形態では、管端部に形成される隙間間隔d(μm)が、d≧Cr/(1000Sn)(式中のCr及びSnはそれぞれの元素の含有量(質量%)を示す)の関係を有する管端増肉構造体を提供できる。
この管端増肉構造体であるならば、耐隙間部塩害性に優れた特徴を有する。
(Pipe end thickened structure, welded joint, welded structure)
As described above, the ferritic stainless steel pipe of the present embodiment has a composition containing C, Si, Mn, P, S, Cr, Sn, Ti, Al and N in an amount within a specified range, and It is a stainless steel pipe for a pipe-end thickening structure that is to be machined or machined inside the pipe.
The pipe end thickened structure of the present embodiment has the ferritic stainless steel pipe of the present embodiment. The pipe end thickened structure refers to a structure having a steel pipe and a pipe end thickened portion provided on the steel pipe. In the present embodiment, the gap distance d (μm) formed at the tube end portion is d≧Cr 2 /(1000Sn) (Cr and Sn in the formula represent the content (mass %) of each element). A pipe end thickening structure having a relationship can be provided.
This pipe end thickened structure has a feature that it is excellent in salt damage resistance in the gap.

本実施形態の溶接継ぎ手は、本実施形態のフェライト系ステンレス鋼管からなる管端増肉部を有する。すなわち、この溶接継ぎ手は、本実施形態のフェライト系ステンレス鋼管の管端増肉部を有する。言い換えると、本実施形態の溶接継ぎ手は、本実施形態のフェライト系ステンレス鋼管を有し、この鋼管に管端増肉部が設けられている。
本実施形態の溶接継ぎ手は、耐隙間部塩害性に優れた管端増肉部を有する。
本実施形態の溶接継ぎ手を、特に自動車部品、二輪用部品として使用することによって、部品の薄肉化が可能となり、効率的な部品の製造および適用した自動車、二輪車の燃費の向上が可能となる。
The welded joint of the present embodiment has a pipe end thickened portion made of the ferritic stainless steel pipe of the present embodiment. That is, this welded joint has the pipe end thickened portion of the ferritic stainless steel pipe of the present embodiment. In other words, the welded joint of the present embodiment has the ferritic stainless steel pipe of the present embodiment, and this pipe has a pipe end thickened portion.
The welded joint according to the present embodiment has a pipe end thickened portion having excellent resistance to salt damage in the gap.
By using the welded joint of the present embodiment, in particular, as automobile parts and motorcycle parts, it is possible to reduce the thickness of the parts, and it is possible to efficiently manufacture the parts and improve the fuel efficiency of automobiles and motorcycles to which the parts are applied.

図1は、上述のフェライト系ステンレス鋼管からなる管端増肉構造体1に対し他の鋼管2を溶接により接合した継ぎ手Aを示す。
管端増肉構造体1の管端部分に内側に折り返した部分が設けられて管端増肉部1aが形成されている。すなわち、図1の管端増肉部1aは、鋼管の端部を内側に180°折り返して形成されている。この管端増肉部1aの外側に鋼管2が溶接部3により接合されている。
管端増肉部1aにおけるステンレス鋼管の外側部分と内側部分の間に隙間部1bが形成されている。
図1の構造の継ぎ手Aにおいて、フェライト系ステンレス鋼管の上述の組成に応じて上述の関係式を満たす隙間間隔dを有する隙間部1bが形成されている。これにより、優れた耐隙間部塩害性を得ることができる。
FIG. 1 shows a joint A in which another steel pipe 2 is joined to the pipe end thickened structure 1 made of the above-mentioned ferritic stainless steel pipe by welding.
A pipe end thickened portion 1a is formed by providing an inwardly folded portion at the pipe end portion of the pipe end thickened structure 1. That is, the pipe end thickened portion 1a in FIG. 1 is formed by folding the end portion of the steel pipe inward by 180°. The steel pipe 2 is joined to the outside of the pipe end thickened portion 1a by a welded portion 3.
A gap portion 1b is formed between the outer portion and the inner portion of the stainless steel pipe in the pipe end thickened portion 1a.
In the joint A having the structure shown in FIG. 1, a gap portion 1b having a gap distance d satisfying the above relational expression is formed in accordance with the above composition of the ferritic stainless steel pipe. This makes it possible to obtain excellent resistance to salt damage in the gaps.

管端増肉パイプ(フェライト系ステンレス鋼管)を構造体と溶接する際、上記と同様に、どのような溶接方法を採用してもよい。構造体としては、鋼管などが挙げられる。
フェライト系ステンレス鋼管の管端増肉部に構造体を溶接で接合する場合(溶接継ぎ手が、管端増肉部に溶接で接合された構造体をさらに有する場合)、フェライト系ステンレス鋼管の単管部の板厚をtとすると、溶接部のうち、フェライト系ステンレス鋼管側の最大溶け込み深さが0.3t〜2.0tであることが好ましい。
最大溶け込み深さは、以下の方法により測定される。溶接部の断面を観察し、溶接部において、最も深くまで溶解した箇所を最大溶け込み部とし、その深さを最大溶け込み深さとする。
図2は、図1の溶接部3周辺の拡大図を示す。フェライト系ステンレス鋼管の単管部の板厚をtとすると、図2(a)は、最大溶け込み深さが0.3tである場合を示し、図2(b)は、最大溶け込み深さが1.0tの場合を示し、図2(c)は、最大溶け込み深さが2.0tの場合を示し、(d)は、最大溶け込み深さが2.0t超の場合を示す。
図1,2は、管端増肉部の外周面側に電極/アークを近づけて溶接を行って溶接部3が形成された場合を示す。このため、管端増肉部の外周面が、電極/アーク側の面となり、管端増肉部の内周面が、電極/アーク側の面の反対側の面(裏面)となる。管端増肉部の外周面から最大溶け込み部までの距離(深さ)が最大溶け込み深さである。
図2に示されたように、最大溶け込み部が、管端増肉部の内周面に到達していない場合、最大溶け込み深さは2.0t未満である。最大溶け込み部が、管端増肉部の内周面にちょうど到達している場合、最大溶け込み深さは2.0tである。最大溶け込み部が、管端増肉部の内周面に到達し、内周面にも溶融部が存在する場合、最大溶け込み深さは2.0t超である。すなわち、最大溶け込み深さが2.0tを超える場合とは、溶接時の電極/アーク側の面の反対側の面(裏面)に溶融部が存在する場合である。
最大溶け込み深さを0.3t以上とすることで、溶接部の強度が担保される(確保される)とともに、耐隙間部塩害性に優れた管端増肉部を有する溶接継ぎ手や後述する溶接構造体が得られる。最大溶け込み深さが2.0tを超えると、溶接部の形状が不均一となり、強度の低下や耐食性の劣化、排気ガスの漏れなどの様々な不具合に繋がる恐れがある。
When welding the pipe end thickened pipe (ferritic stainless steel pipe) to the structure, any welding method may be adopted in the same manner as above. Examples of the structure include a steel pipe.
Single pipe of ferritic stainless steel pipe when joining the structure to the thickened part of the ferritic stainless steel pipe by welding (when the welded joint further has a structure joined to the thickened part of the pipe end by welding) When the plate thickness of the portion is t, the maximum penetration depth on the ferritic stainless steel pipe side of the welded portion is preferably 0.3t to 2.0t.
The maximum penetration depth is measured by the following method. The cross section of the welded portion is observed, and the deepest melted portion of the welded portion is defined as the maximum penetration portion, and the depth is defined as the maximum penetration depth.
FIG. 2 shows an enlarged view around the welded portion 3 of FIG. Assuming that the plate thickness of the single pipe portion of the ferritic stainless steel pipe is t, FIG. 2(a) shows a case where the maximum penetration depth is 0.3t, and FIG. 2(b) shows a maximum penetration depth of 1t. 2C shows the case where the maximum penetration depth is 2.0t, and FIG. 2D shows the case where the maximum penetration depth is more than 2.0t.
1 and 2 show the case where the welded portion 3 is formed by bringing the electrode/arc close to the outer peripheral surface side of the pipe end thickened portion and performing welding. Therefore, the outer peripheral surface of the pipe end thickened portion becomes the electrode/arc side surface, and the inner peripheral surface of the pipe end thickened portion becomes the surface (rear surface) opposite to the electrode/arc side surface. The maximum penetration depth is the distance (depth) from the outer peripheral surface of the thickened pipe end to the maximum penetration.
As shown in FIG. 2, when the maximum penetration portion does not reach the inner peripheral surface of the pipe end thickened portion, the maximum penetration depth is less than 2.0t. When the maximum penetration portion has just reached the inner peripheral surface of the pipe end thickened portion, the maximum penetration depth is 2.0 t. When the maximum penetration portion reaches the inner peripheral surface of the pipe end thickened portion and the melted portion also exists on the inner peripheral surface, the maximum penetration depth is more than 2.0 t. That is, the case where the maximum penetration depth exceeds 2.0 t is the case where the melted portion exists on the surface (rear surface) opposite to the surface on the electrode/arc side during welding.
By setting the maximum penetration depth to 0.3 t or more, the strength of the welded portion is secured (secured), and a welded joint having a pipe end thickened portion with excellent salt corrosion resistance in the gap portion and welding described later. A structure is obtained. When the maximum penetration depth exceeds 2.0 t, the shape of the welded portion becomes uneven, which may lead to various problems such as reduction in strength, deterioration in corrosion resistance, and leakage of exhaust gas.

耐隙間部塩害性に優れた管端増肉部を有する溶接継ぎ手とすることができる理由を以下に示す。
最大溶け込み深さを0.3t以上とすることで、管端増肉パイプ(フェライト系ステンレス鋼管)の外側の溶接部の形状が安定化し、腐食起点となりうる隙間構造が形成されなくなる。最大溶け込み深さは、好ましくは1.0t超であり、この場合、管端増肉パイプ(フェライト系ステンレス鋼管)の内側の隙間も塞がれ、腐食起点となりうる隙間構造がさらに減少する。これに加え、フェライト系ステンレス鋼管は、鋼中に0.001〜0.600%の量のSnを含有している。このため、万が一、腐食が発生した場合も、溶出したSn2+イオンが溶解表面に吸着し、鋼母材のさらなる溶出を抑制し、溶接部の耐食性の劣化を回避することが可能である。
The reason why a welded joint having a pipe end thickened portion having excellent salt corrosion resistance in the gap portion can be obtained is shown below.
By setting the maximum penetration depth to 0.3 t or more, the shape of the welded portion on the outer side of the pipe end thickened pipe (ferritic stainless steel pipe) is stabilized, and a gap structure that may be a starting point of corrosion is not formed. The maximum penetration depth is preferably more than 1.0 t, and in this case, the inner gap of the pipe end thickened pipe (ferrite stainless steel pipe) is also closed, and the gap structure that may be the starting point of corrosion is further reduced. In addition to this, the ferritic stainless steel pipe contains 0.001 to 0.600% of Sn in the steel. Therefore, in the unlikely event that corrosion occurs, the eluted Sn 2+ ions are adsorbed on the molten surface, and the further elution of the steel base material can be suppressed, and deterioration of the corrosion resistance of the welded portion can be avoided.

このような溶接部を達成するためには、特にシールドガスが必要な溶接においては、選ばれたシールドガスが必要となる。特に管端増肉部は隙間構造が多い。すなわち、管端増肉部は多くの隙間が存在する構造を有する。このため、不活性ガスにより適正なシールドを行うことが好ましい。具体的にはシールドガスとしては、Arが最も望ましい。シールドガスにCOやOを混合する場合は、COやOの量を5体積%以下とすることが望ましい。
すなわち、本実施形態の溶接継ぎ手の製造方法は、本実施形態のフェライト系ステンレス鋼管の管端増肉部と、構造体とを溶接により接合する工程を有する。溶接による接合工程では、溶接部にシールドガスを供給しながら溶接を行うことが好ましい。シールドガスとしては、Arなどの不活性ガスや、COとOのいずれか一方又は両方と不活性ガスとの混合ガスなどが挙げられる。混合ガス中のCOとOの量は5体積%以下が好ましい。
特に溶接方法が、TIG溶接、ミグ溶接、又はマグ溶接の場合、溶接部にシールドガスを供給しながら溶接を行うことが好ましい。溶接方法がレーザー溶接の場合、シールドガスを供給しなくともよい。
Achieving such welds requires a selected shielding gas, especially in welding where shielding gas is required. In particular, there are many gap structures in the thickened portion at the pipe end. That is, the pipe end thickened portion has a structure with many gaps. For this reason, it is preferable to properly shield with an inert gas. Specifically, Ar is most desirable as the shield gas. When mixing CO 2 or O 2 with the shield gas, it is desirable that the amount of CO 2 or O 2 be 5% by volume or less.
That is, the method for manufacturing the welded joint of the present embodiment has a step of joining the pipe end thickened portion of the ferritic stainless steel pipe of the present embodiment and the structure by welding. In the joining step by welding, it is preferable to perform welding while supplying a shield gas to the welded portion. Examples of the shield gas include an inert gas such as Ar, a mixed gas of one or both of CO 2 and O 2 , and an inert gas. The amount of CO 2 and O 2 in the mixed gas is preferably 5% by volume or less.
Particularly, when the welding method is TIG welding, MIG welding, or mag welding, it is preferable to perform welding while supplying a shield gas to the welded portion. When the welding method is laser welding, it is not necessary to supply the shield gas.

本実施形態の溶接構造体は、本実施形態の溶接継ぎ手を有し、この溶接継ぎ手は、管端増肉部に溶接で接合された構造体をさらに有し、フェライト系ステンレス鋼管の単管部の板厚をtとすると、溶接部のうち、フェライト系ステンレス鋼管側の最大溶け込み深さが0.3t〜2.0tである。
上述の組成と関係式を満たすフェライト系ステンレス鋼管によれば、耐隙間部塩害性に優れた管端増肉部を有する溶接継ぎ手や溶接構造体を提供することができる。
そして、この溶接継ぎ手や溶接構造体を、特に自動車部品、二輪用部品として使用することによって、部品の薄肉化が可能となり、効率的な部品の製造および適用した自動車、二輪車の燃費の向上が可能となる。
The welded structure of the present embodiment has the welded joint of the present embodiment, and this welded joint further has a structure joined by welding to the pipe end thickened portion, and the single pipe portion of the ferritic stainless steel pipe. Of the welded part, the maximum penetration depth of the ferritic stainless steel pipe side is 0.3t to 2.0t.
According to the ferritic stainless steel pipe satisfying the above composition and the relational expression, it is possible to provide a welded joint and a welded structure having a pipe end thickened portion having excellent salt corrosion resistance in the clearance.
By using this welded joint and welded structure as automobile parts and motorcycle parts in particular, it is possible to reduce the wall thickness of the parts, and it is possible to manufacture efficient parts and improve the fuel efficiency of automobiles and motorcycles to which they are applied. Becomes

後述する実施例においては、図1の構造の継ぎ手Aなどのこの種の継ぎ手の耐隙間部塩害性について把握するための試験を行い、フェライト系ステンレス鋼管を構成する元素の影響と臨界隙間間隔について試験した。 In the examples described later, a test was conducted to understand the salt damage resistance of crevices in joints of this type, such as joint A having the structure shown in FIG. 1, and the influence of the elements constituting the ferritic stainless steel pipe and the critical gap distance were examined. Tested.

以下、実施例に基づいて、本発明をより詳細に説明する。
(実施例1)
表1,2に示す組成の鋼を溶製した。特にSnはその効果を調べるため0.005、0.01、0.03、0.10%および0.30%の5水準とした。溶製した鋼に板厚4mmまで熱間圧延を施し、1050℃で1分間焼鈍を行い、酸洗を施した。その後、板厚0.8mmまで冷間圧延を施した。
Hereinafter, the present invention will be described in more detail based on examples.
(Example 1)
Steels having compositions shown in Tables 1 and 2 were melted. In particular, Sn is set to five levels of 0.005, 0.01, 0.03, 0.10% and 0.30% in order to investigate its effect. The molten steel was hot-rolled to a plate thickness of 4 mm, annealed at 1050° C. for 1 minute, and pickled. Then, cold rolling was performed to a plate thickness of 0.8 mm.

Figure 0006741861
Figure 0006741861

Figure 0006741861
Figure 0006741861

そして、表1,2に示す各組成の鋼板から70mm×70mm及び40mm×40mmの試験片を切り出し、同じ成分組成を有する試験片を重ねてスポット溶接することで、管端増肉パイプの隙間部を模擬したCCT試験片を作製した。スポット溶接条件を調整することで種々の隙間間隔のCCT試験片を作製した。 Then, 70 mm×70 mm and 40 mm×40 mm test pieces were cut out from the steel plates having the respective compositions shown in Tables 1 and 2, and test pieces having the same component composition were overlapped and spot-welded to form a gap portion of the pipe end thickened pipe. A CCT test piece simulating the above was produced. By adjusting the spot welding conditions, CCT test pieces with various gap intervals were produced.

このCCT試験片をJASO−M610−92の自動車部品の外観の腐食試験方法で評価した。サイクル数を100サイクルとし、試験後にスポット溶接部をくり抜いて二枚の板を分け、隙間内の最大孔食深さを評価できるようにした。錆落とし後に隙間上下の試験片の孔食深さをそれぞれ10点測定し、最も深い孔食の値を、その鋼種の最大孔食深さとした。最大孔食深さが500μm未満の試料を“○”(good)と評価し、最大孔食深さが500μm以上の試料を“×”(poor)と評価した。 This CCT test piece was evaluated by the corrosion test method of the appearance of automobile parts of JASO-M610-92. The number of cycles was set to 100 cycles, and after the test, the spot-welded portion was hollowed out to separate the two plates so that the maximum pitting depth in the gap could be evaluated. After the rust was removed, the pitting corrosion depths of the test pieces above and below the gap were measured at 10 points, and the value of the deepest pitting corrosion was taken as the maximum pitting corrosion depth of the steel type. A sample having a maximum pitting depth of less than 500 μm was evaluated as “◯” (good), and a sample having a maximum pitting depth of 500 μm or more was evaluated as “x” (poor).

以下の表3に、表1,2に示す各組成のステンレス鋼の(Cr/(1000Sn))の値(Cr及びSnはそれぞれの元素の含有量(質量%)を示す)の計算結果と、隙間間隔dの値(μm)と、自動車部品の外観の腐食試験方法(JASO−M610−92)による最大孔食深さ(μm)と、その判定結果を併せて示す。Table 3 below shows the calculation results of (Cr 2 /(1000Sn)) values (Cr and Sn represent the content (% by mass) of each element) of the stainless steel of each composition shown in Tables 1 and 2. , The value of the gap distance d (μm), the maximum pitting depth (μm) according to the corrosion test method (JASO-M610-92) for the appearance of automobile parts, and the determination result are also shown.

Figure 0006741861
Figure 0006741861

図3のグラフに示すように、横軸を各試料のCr量(質量%)とし、縦軸を各試料の隙間間隔(d:μm)として、表1〜3に示す結果をプロットした。また、それぞれの試料のSn量を表示した。
図3において、間隔の小さな鎖線はSn量が0.10%の場合のd=Cr/(1000Sn)で表される曲線を示す。Sn量が0.10%の試料No.A4、A6、A10、B5、B7、B10に関して、試料No.A4、A10、A6の隙間間隔dの値はこの間隔の小さな鎖線より上の値となり、試料No.B7、B5、B10の隙間間隔dの値はこの間隔の小さな鎖線より下の値となった。
図3において、実線はSn量が0.030%の場合のd=Cr/(1000Sn)で表される曲線を示す。Sn量が0.030%の試料No.A2、A7、A9、A12、B3、B6、B8、B13、B14に関して、試料No.A7、A2、A9、A12の隙間間隔dの値はこの実線より上の値となり、試料No.B13、B3、B8、B14、B6の隙間間隔dの値はこの実線より下の値となった。
As shown in the graph of FIG. 3, the results shown in Tables 1 to 3 were plotted with the horizontal axis representing the Cr content (mass %) of each sample and the vertical axis representing the gap spacing (d: μm) of each sample. In addition, the Sn amount of each sample is displayed.
In FIG. 3, a chain line with a small interval indicates a curve represented by d=Cr 2 /(1000Sn) when the Sn content is 0.10%. Sample No. with Sn content of 0.10%. Sample No. A4, A6, A10, B5, B7, B10. The value of the gap distance d of A4, A10, and A6 is a value above the chain line with the small distance, and the value of Sample No. The value of the gap distance d of B7, B5, and B10 was a value below the chain line with the small distance.
In FIG. 3, the solid line shows a curve represented by d=Cr 2 /(1000Sn) when the Sn content is 0.030%. Sample No. with Sn content of 0.030%. Sample Nos. A2, A7, A9, A12, B3, B6, B8, B13, and B14. The value of the gap distance d of A7, A2, A9, A12 is a value above this solid line, and the sample No. The value of the gap distance d of B13, B3, B8, B14, and B6 was a value below this solid line.

図3において、間隔の大きな鎖線はSn量が0.010%の場合のd=Cr/(1000Sn)で表される曲線を示す。Sn量が0.010%の試料No.A1、A3、A13、B1、B2、B11に関して、試料No.A1、A13、A3の隙間間隔dの値はこの間隔の大きな鎖線より上の値となり、試料No.B1、B2、B11の隙間間隔dの値はこの間隔の大きな鎖線より下の値となった。
図3において、太い実線はSn量が0.005%の場合のd=Cr/(1000Sn)で表される曲線を示す。Sn量が0.005%の試料No.A5、A8、A11、B4、B9、B12に関して、試料No.A5、A8、A11の隙間間隔dの値はこの太い実線より上の値となり、試料No.B4、B9、B12の隙間間隔dの値はこの太い実線より下の値となった。
In FIG. 3, a chain line having a large interval represents a curve represented by d=Cr 2 /(1000Sn) when the Sn content is 0.010%. Sample No. with Sn content of 0.010%. Sample Nos. A1, A3, A13, B1, B2, and B11 were used. The value of the gap distance d of A1, A13, and A3 is a value above the chain line with the large distance, and the sample No. The value of the gap distance d between B1, B2, and B11 was a value below the chain line with the large distance.
In FIG. 3, a thick solid line indicates a curve represented by d=Cr 2 /(1000Sn) when the Sn content is 0.005%. Sample No. with Sn content of 0.005%. Sample Nos. A5, A8, A11, B4, B9, and B12 were used. The value of the gap distance d of A5, A8, and A11 is a value above this thick solid line, and the sample No. The value of the gap distance d of B4, B9, and B12 was below the thick solid line.

本発明例の試料No.A1〜A14では、最大孔食深さが500μm未満であったが、比較例の試料No.B1〜B14では、最大孔食深さが500μm以上であった。
従って、図3に示す結果から、本実施形態のフェライト系ステンレス鋼管からなる管端増肉構造体では、隙間間隔d(μm)が、d≧Cr/(1000Sn)(式中のCr及びSnはそれぞれの元素の含有量(質量%)を示す)の関係を満たすことで、最大孔食深さの小さい管端増肉構造体を提供できることがわかる。
また、図3に示したように、本実施形態に係るフェライト系ステンレス鋼管では、母材Cr量が増加するほど、隙間環境での孔食深さは増加することがわかる。そして、本実施形態に係るフェライト系ステンレス鋼管では、Snを添加することで臨界隙間間隔が小さくなることがわかる。
Sample No. of the present invention example. In each of A1 to A14, the maximum pitting corrosion depth was less than 500 μm, but the sample No. In B1 to B14, the maximum pitting corrosion depth was 500 μm or more.
Therefore, from the results shown in FIG. 3, in the pipe end thickened structure made of the ferritic stainless steel pipe of the present embodiment, the gap distance d (μm) is d≧Cr 2 /(1000Sn) (Cr and Sn in the formula). Shows the content (mass %) of each element), it is understood that a pipe end thickened structure having a small maximum pitting depth can be provided.
Further, as shown in FIG. 3, in the ferritic stainless steel pipe according to the present embodiment, it is understood that the pitting corrosion depth in the crevice environment increases as the base material Cr amount increases. Then, in the ferritic stainless steel pipe according to the present embodiment, it is found that the addition of Sn reduces the critical gap distance.

(実施例2)
表1,2に示す組成の鋼板を用いて、TIG溶接により直径60mmの鋼管(パイプ)を作製した。スピニング加工により、鋼管の端部を内側に180°折り返して長さ50mmの管端増肉部を作製した。以上により、直径が60mm、内側に折り返した端部(管端増肉部)の長さが50mmの管端増肉パイプを作製した。そして、折り返し部から60mmの長さで管端増肉パイプを切断した。
なお、管端増肉部における隙間部の隙間間隔は、スピニング加工の条件を調整することで種々の値とした。
(Example 2)
Steel pipes having a diameter of 60 mm were manufactured by TIG welding using the steel plates having the compositions shown in Tables 1 and 2. By spinning, the end of the steel pipe was folded back inward by 180° to produce a pipe end thickened portion having a length of 50 mm. As described above, a pipe end thickened pipe having a diameter of 60 mm and a length of the end portion (pipe end thickened portion) folded back inward was 50 mm was produced. Then, the pipe end thickened pipe was cut at a length of 60 mm from the folded portion.
In addition, the gap distance of the gap portion in the pipe end thickened portion was set to various values by adjusting the conditions of the spinning process.

同じ鋼板を用いて直径62mmの単管パイプを作製した。管端増肉パイプの管端増肉部の外側に、同じ鋼板から製造された単管パイプを重ねあわせ、管端増肉パイプの内側に折り返した端部(管端増肉部)が溶接部となるように種々の方法(TIG溶接、ミグ溶接、マグ溶接、又はレーザー溶接)で溶接を行った。以上により、全長が100mmであり、単管部(単管パイプ)と管端増肉部との溶接部が中央に位置するCCT試験片を作製した。
各種の溶接の際、電流量を調節して溶接部の溶け込み深さを調整し、溶け込み深さの耐食性への影響を調べた。またシールドガスを用いる溶接の場合、様々なシールドガスを用いて溶接を行い、シールドガスの耐食性への影響も調べた。
なお、最大溶け込み深さは、以下の方法により測定した。同一の条件で溶接を施し、CCT試験片を別途、作製した。溶接部の断面を観察し、溶接部において、最も深くまで溶解した箇所を最大溶け込み部とし、その深さを最大溶け込み深さとした。詳細には、管端増肉パイプの端部(管端増肉部)の外周面と単管パイプとを重ねあわせ、管端増肉パイプの端部(管端増肉部)の外周面側に電極/アークを近づけて溶接を行った。このため、管端増肉パイプの端部(管端増肉部)の外周面が、電極/アーク側の面となり、管端増肉パイプの端部(管端増肉部)の内周面が、電極/アーク側の面の反対側の面(裏面)となる。管端増肉パイプの端部(管端増肉部)の外周面から最大溶け込み部までの距離(深さ)が最大溶け込み深さである。
A single pipe having a diameter of 62 mm was produced using the same steel plate. A single pipe made of the same steel plate is laid on the outside of the pipe end thickening pipe, and the end (pipe end thickening part) that is folded back inside the pipe end thickening pipe is the welded part. Welding was performed by various methods (TIG welding, MIG welding, mag welding, or laser welding) so that From the above, a CCT test piece having a total length of 100 mm and having a welded portion between the single pipe portion (single pipe pipe) and the pipe end thickened portion at the center was produced.
During various weldings, the amount of current was adjusted to adjust the penetration depth of the weld, and the effect of the penetration depth on corrosion resistance was investigated. In addition, in the case of welding using shielding gas, welding was performed using various shielding gases, and the effect of shielding gas on corrosion resistance was also investigated.
The maximum penetration depth was measured by the following method. Welding was performed under the same conditions, and a CCT test piece was separately prepared. The cross section of the welded portion was observed, and the deepest melted portion in the welded portion was defined as the maximum penetration portion, and the depth was defined as the maximum penetration depth. Specifically, the outer peripheral surface of the end portion of the pipe end thickening pipe (pipe end thickening portion) and the single pipe pipe are overlapped, and the outer peripheral surface side of the end portion of the pipe end thickening pipe (pipe end thickening portion) Welding was performed by bringing the electrode/arc close to. Therefore, the outer peripheral surface of the end portion of the pipe end thickening pipe (pipe end thickening portion) becomes the surface on the electrode/arc side, and the inner peripheral surface of the end portion of the pipe end thickening pipe (pipe end thickening portion) Is the surface (rear surface) opposite to the surface on the electrode/arc side. Pipe end thickening The maximum penetration depth is the distance (depth) from the outer peripheral surface of the end of the pipe (pipe end thickening part) to the maximum penetration part.

このCCT試験片をJASO−M610−92の自動車部品の外観の腐食試験方法で評価した。サイクル数を100サイクルとし、試験後に溶接部を切断して管端増肉部の二枚の板を分け、隙間内の最大孔食深さを評価できるようにした。錆落とし後に隙間上下の試験片の孔食深さをそれぞれ10点測定し、最も深い孔食の値を、その鋼種の最大孔食深さとした。最大孔食深さが500μm未満の試料を“○”(good)と評価し、最大孔食深さが500μm以上の試料を“×”(poor)と評価した。 This CCT test piece was evaluated by the corrosion test method of the appearance of automobile parts of JASO-M610-92. The number of cycles was set to 100 cycles, and after the test, the welded portion was cut to divide the two plates of the pipe end thickened portion so that the maximum pitting depth in the gap could be evaluated. After the rust was removed, the pitting corrosion depths of the test pieces above and below the gap were measured at 10 points, and the value of the deepest pitting corrosion was taken as the maximum pitting corrosion depth of the steel type. A sample having a maximum pitting depth of less than 500 μm was evaluated as “◯” (good), and a sample having a maximum pitting depth of 500 μm or more was evaluated as “x” (poor).

表4に、表1,2に示す各組成のステンレス鋼を用いて作製した試験片の溶接部の溶け込み深さと、溶接シールドガスと、自動車部品の外観の腐食試験方法(JASO−M610−92)による最大孔食深さ(μm)と、その判定結果を併せて示す。 In Table 4, the penetration depth of the welded portion of the test piece produced using the stainless steel of each composition shown in Tables 1 and 2, the welding shield gas, and the corrosion test method for the external appearance of automobile parts (JASO-M610-92) The maximum pitting depth (μm) and the determination result are also shown.

Figure 0006741861
Figure 0006741861

管端増肉パイプの単管部の板厚をtとすると、表4の結果から、溶接部の溶け込み深さが0.3t未満または2.0t超となった場合、最大孔食深さが500μm以上となることが分かる。また溶接時のシールドガスにCOまたはOが5体積%超の量で含有されている場合、最大孔食深さが500μm以上となることが分かる。Assuming that the plate thickness of the single pipe portion of the pipe end thickened pipe is t, from the results of Table 4, when the penetration depth of the welded portion is less than 0.3 t or exceeds 2.0 t, the maximum pitting depth is It can be seen that the thickness is 500 μm or more. It is also found that the maximum pitting corrosion depth is 500 μm or more when the shielding gas at the time of welding contains CO 2 or O 2 in an amount of more than 5% by volume.

本実施形態によれば、耐隙間部塩害性に優れたフェライト系ステンレス鋼管を提供することが可能である。また、本実施形態を適用した鋼管を、特に自動車、二輪用部品として使用することによって薄肉化が可能となり、効率的な部品製造および燃費向上が可能となる。
即ち、本実施形態は産業上極めて有益である。
According to this embodiment, it is possible to provide a ferritic stainless steel pipe having excellent resistance to salt damage in the gap. Further, by using the steel pipe to which the present embodiment is applied, in particular, as a part for automobiles and motorcycles, it is possible to reduce the thickness, and it is possible to efficiently manufacture parts and improve fuel efficiency.
That is, this embodiment is extremely useful industrially.

A:継ぎ手、1:管端増肉構造体、1a:管端増肉部、1b:隙間部、2:鋼管、3:溶接部。 A: joint, 1: pipe end thickened structure, 1a: pipe end thickened part, 1b: gap part, 2: steel pipe, 3: welded part.

Claims (8)

質量%で
C:0.001〜0.100%、
Si:0.01〜2.00%、
Mn:0.01〜2.00%、
P:0.001〜0.05%、
S:0.0001〜0.005%、
Cr:10.5〜20.0%、
Sn:0.001〜0.600%、
Ti:0.001〜1.000%、
Al:0.001〜0.100%、
N:0.001〜0.02%を含有し、残部がFeおよび不可避的不純物であり、
管端部に管端増肉部を具備し、前記管端部に形成される隙間間隔d(μm)は、d≧Cr/(1000Sn)(式中のCr及びSnはそれぞれの元素の含有量(質量%)を示す)の関係を満たすことを特徴とする隙間部の耐塩害性に優れたフェライト系ステンレス鋼管。
C: 0.001 to 0.100% by mass%,
Si: 0.01 to 2.00%,
Mn: 0.01 to 2.00%,
P: 0.001-0.05%,
S: 0.0001 to 0.005%,
Cr: 10.5 to 20.0%,
Sn: 0.001 to 0.600%,
Ti: 0.001-1.000%,
Al: 0.001 to 0.100%,
N: 0.001 to 0.02% is contained, and the balance is Fe and inevitable impurities,
The tube end thickened portion is provided at the tube end, and the gap interval d (μm) formed at the tube end is d≧Cr 2 /(1000Sn) (Cr and Sn in the formula are the contents of the respective elements). A ferritic stainless steel pipe having excellent salt damage resistance in the gap, which is characterized by satisfying the relationship of (amount (mass %)).
さらに質量%で
Ni:0.1〜1.0%、
Mo:0.1〜3.0%、
Cu:0.10〜3.00%、
B:0.0001〜0.0050%、
Nb:0.001〜0.300%、
W:0.001〜1.00%、
V:0.001〜0.50%、
Sb:0.001〜0.100%、
Co:0.001〜0.500%、
のうち何れか1種または2種以上を含有することを特徴とする請求項1に記載の隙間部の耐塩害性に優れたフェライト系ステンレス鋼管。
Further, in mass%, Ni: 0.1 to 1.0%,
Mo: 0.1-3.0%,
Cu: 0.10 to 3.00%,
B: 0.0001 to 0.0050%,
Nb: 0.001 to 0.300%,
W: 0.001-1.00%,
V: 0.001 to 0.50%,
Sb: 0.001 to 0.100%,
Co: 0.001 to 0.500%,
The ferritic stainless steel pipe excellent in salt damage resistance of the gap portion according to claim 1, containing any one kind or two kinds or more thereof.
さらに質量%で
Ca:0.0001〜0.0050%、
Mg:0.0001〜0.0050%、
Zr:0.0001〜0.0300%、
Ga:0.0001〜0.0100%、
Ta:0.001〜0.050%、
REM:0.001〜0.100%、
のうち何れか1種または2種以上を含有することを特徴とする請求項1または2に記載の隙間部の耐塩害性に優れたフェライト系ステンレス鋼管。
Further, in mass% Ca: 0.0001 to 0.0050%,
Mg: 0.0001 to 0.0050%,
Zr: 0.0001 to 0.0300%,
Ga: 0.0001 to 0.0100%,
Ta: 0.001 to 0.050%,
REM: 0.001 to 0.100%,
The ferritic stainless steel pipe having excellent salt damage resistance in the gap according to claim 1 or 2, containing any one or more of the above.
管端増肉構造体に用いられることを特徴とする請求項1〜3のいずれか一項に記載の隙間部の耐塩害性に優れたフェライト系ステンレス鋼管。 The ferritic stainless steel pipe having excellent salt damage resistance in the gap according to any one of claims 1 to 3, which is used for a pipe end thickened structure. 請求項1〜4のいずれか一項に記載のフェライト系ステンレス鋼管からなることを特徴とする管端増肉構造体。 A pipe end thickened structure comprising the ferritic stainless steel pipe according to any one of claims 1 to 4. 請求項1〜4のいずれか一項に記載のフェライト系ステンレス鋼管からなる管端増肉部を有することを特徴とする溶接継ぎ手。 A welded joint having a pipe end thickened portion made of the ferritic stainless steel pipe according to any one of claims 1 to 4. 前記管端増肉部に溶接で接合された構造体をさらに有し、
前記フェライト系ステンレス鋼管の単管部の板厚をtとすると、溶接部のうち、前記フェライト系ステンレス鋼管側の最大溶け込み深さが0.3t〜2.0tであることを特徴とする請求項6に記載の溶接継ぎ手。
Further having a structure joined by welding to the pipe end thickened portion,
The maximum penetration depth of the welded portion on the side of the ferritic stainless steel pipe is 0.3t to 2.0t, where t is the plate thickness of the single pipe portion of the ferritic stainless steel pipe. The welding joint according to item 6.
請求項7に記載の溶接継ぎ手を有することを特徴とする溶接構造体。 A welded structure comprising the welded joint according to claim 7.
JP2019509936A 2017-03-30 2018-03-27 Ferritic stainless steel pipe with excellent salt damage resistance in the gap, pipe end thickening structure, welded joint, and welded structure Active JP6741861B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2017069284 2017-03-30
JP2017069284 2017-03-30
PCT/JP2018/012598 WO2018181401A1 (en) 2017-03-30 2018-03-27 Ferritic stainless steel pipe having excellent salt tolerance in gap, pipe-end-thickened structure, welding joint, and welded structure

Publications (2)

Publication Number Publication Date
JPWO2018181401A1 JPWO2018181401A1 (en) 2020-03-26
JP6741861B2 true JP6741861B2 (en) 2020-08-19

Family

ID=63676268

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019509936A Active JP6741861B2 (en) 2017-03-30 2018-03-27 Ferritic stainless steel pipe with excellent salt damage resistance in the gap, pipe end thickening structure, welded joint, and welded structure

Country Status (7)

Country Link
US (1) US11215299B2 (en)
JP (1) JP6741861B2 (en)
KR (1) KR102272169B1 (en)
CN (1) CN110446799B (en)
CA (1) CA3056054C (en)
MX (1) MX2019011367A (en)
WO (1) WO2018181401A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI801538B (en) * 2018-03-27 2023-05-11 日商日鐵不銹鋼股份有限公司 Ferritic stainless steel, method for producing the same, ferritic stainless steel sheet, method for producing the same, and members for fuel cell
JP7094188B2 (en) * 2018-09-28 2022-07-01 日鉄ステンレス株式会社 Stainless steel pipe, pipe end thickening structure and welded structure
JP7213650B2 (en) * 2018-09-28 2023-01-27 日鉄ステンレス株式会社 Ferritic stainless steel pipe, pipe end thickened structure and welded structure
KR102255119B1 (en) * 2019-09-17 2021-05-24 주식회사 포스코 LOW-Cr FERRITIC STAINLESS STEEL WITH IMPROVED EXPANABILITY AND MANUFACTURING METHOD THEREOF
KR20210125669A (en) * 2020-04-09 2021-10-19 현대자동차주식회사 Piping system for air conditioner
CN114457289A (en) * 2022-01-27 2022-05-10 上海大学 Tin-containing heat-resistant ferrite stainless steel alloy material for nuclear energy and preparation method thereof
KR102410654B1 (en) 2022-03-04 2022-06-22 유성목 Input Device For Virtual Reality And Augmented Reality

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4727601Y1 (en) 1967-03-08 1972-08-22
HU167950B (en) 1973-07-26 1976-01-28
JPS606660B2 (en) 1977-02-14 1985-02-19 帝人株式会社 Method for manufacturing sterile artificial organs
JP2004255414A (en) 2003-02-26 2004-09-16 Sango Co Ltd Welded steel tube for folding inversion working
JP4727601B2 (en) * 2007-02-06 2011-07-20 新日鐵住金ステンレス株式会社 Ferritic stainless steel with excellent crevice corrosion resistance
JP5297713B2 (en) 2008-07-28 2013-09-25 新日鐵住金ステンレス株式会社 Alloy-saving ferritic stainless steel for automobile exhaust system members with excellent corrosion resistance after heating
JP5320034B2 (en) 2008-11-14 2013-10-23 新日鐵住金ステンレス株式会社 Mo-type ferritic stainless steel for automotive exhaust system parts with excellent corrosion resistance after heating
JP2010234406A (en) 2009-03-31 2010-10-21 Sc Pipe Solutions Co Ltd Method of working pipe
JP5586279B2 (en) 2010-03-15 2014-09-10 新日鐵住金ステンレス株式会社 Ferritic stainless steel for automotive exhaust system parts
JP2012012005A (en) * 2010-06-03 2012-01-19 Nippon Steel & Sumikin Stainless Steel Corp Oil feeding pipe and method of manufacturing the same
CN103608479B (en) * 2011-06-16 2016-09-07 新日铁住金不锈钢株式会社 Ferrite series stainless steel plate that wrinkle resistance is excellent and manufacture method thereof
JP5932302B2 (en) 2011-11-14 2016-06-08 フタバ産業株式会社 Tube end forming method
JP6006660B2 (en) 2013-02-26 2016-10-12 新日鐵住金ステンレス株式会社 Alloy-saving ferritic stainless steel with excellent oxidation resistance and corrosion resistance for automotive exhaust system parts
JP6169863B2 (en) 2013-03-05 2017-07-26 新日鐵住金ステンレス株式会社 Ferritic stainless steel for exhaust system members with excellent corrosion resistance
KR20160105869A (en) 2014-01-08 2016-09-07 제이에프이 스틸 가부시키가이샤 Ferritic stainless steel and method for producing same
JP6354281B2 (en) 2014-04-21 2018-07-11 新日鐵住金株式会社 Ferritic heat resistant steel pipe
MX2017010253A (en) 2015-02-10 2017-11-28 Nippon Steel & Sumikin Sst Inexpensive automobile component and oil feed pipe having excellent salt corrosion resistance.
JP6541992B2 (en) 2015-03-12 2019-07-10 日鉄ステンレス株式会社 Automotive parts and automotive fueling pipes excellent in puncture resistance utilizing painting and sacrificial corrosion protection effect
JP6598478B2 (en) 2015-03-12 2019-10-30 日鉄ステンレス株式会社 Oil supply pipe for automobiles with excellent salt damage resistance and reduced external appearance deterioration

Also Published As

Publication number Publication date
CN110446799A (en) 2019-11-12
US11215299B2 (en) 2022-01-04
KR102272169B1 (en) 2021-07-05
KR20190122735A (en) 2019-10-30
JPWO2018181401A1 (en) 2020-03-26
CA3056054A1 (en) 2018-10-04
MX2019011367A (en) 2019-11-18
WO2018181401A1 (en) 2018-10-04
CA3056054C (en) 2022-08-30
CN110446799B (en) 2021-04-02
US20210140569A1 (en) 2021-05-13

Similar Documents

Publication Publication Date Title
JP6741861B2 (en) Ferritic stainless steel pipe with excellent salt damage resistance in the gap, pipe end thickening structure, welded joint, and welded structure
JP5050863B2 (en) Ferritic stainless steel sheet for water heaters
JP6206624B1 (en) Ferritic stainless steel sheet
WO2012018074A1 (en) Ferritic stainless steel
JP6576675B2 (en) Combination structure of automotive exhaust system parts and automotive exhaust system parts
JP5234214B2 (en) Ferritic stainless steel
JP2011190524A (en) Ferritic stainless steel having excellent oxidation resistance, secondary processing brittleness resistance and weld zone toughness
US10415126B2 (en) Ferritic stainless steel
JPWO2013099132A1 (en) Ferritic stainless steel
US10400318B2 (en) Ferritic stainless steel
JP2009091654A (en) Ferritic stainless steel having excellent weldability
WO2014064920A1 (en) Ferrite stainless steel and manufacturing method therefor
JP2019178364A (en) Ferritic stainless steel excellent in salt damage corrosion resistance
JP3322097B2 (en) High strength, high corrosion resistant ferritic steel welding material with excellent weldability
JP5937861B2 (en) Heat-resistant ferritic stainless steel sheet with excellent weldability
JP2021161470A (en) Ferritic stainless steel sheet and welded structure
JP6814678B2 (en) Ferritic stainless steel pipes for thickening pipe ends and ferritic stainless steel pipes for automobile exhaust system parts
JP7213650B2 (en) Ferritic stainless steel pipe, pipe end thickened structure and welded structure
WO2018147149A1 (en) Ferritic stainless steel sheet
JP3937369B2 (en) Processing method of ferritic stainless steel pipe
JP3591486B2 (en) High Cr ferritic heat resistant steel
JP7094188B2 (en) Stainless steel pipe, pipe end thickening structure and welded structure
JP7296705B2 (en) Ferritic stainless steel pipe, pipe end thickened structure and welded structure
JP2000144336A (en) Hich corrosion resistance chromium-containing steel excellent in oxidation resistance and intergranular corrosion resistance
JP2622516B2 (en) Welding material for heat resistant steel with excellent creep strength

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190910

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200630

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200727

R150 Certificate of patent or registration of utility model

Ref document number: 6741861

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250