JP6169863B2 - Ferritic stainless steel for exhaust system members with excellent corrosion resistance - Google Patents
Ferritic stainless steel for exhaust system members with excellent corrosion resistance Download PDFInfo
- Publication number
- JP6169863B2 JP6169863B2 JP2013042938A JP2013042938A JP6169863B2 JP 6169863 B2 JP6169863 B2 JP 6169863B2 JP 2013042938 A JP2013042938 A JP 2013042938A JP 2013042938 A JP2013042938 A JP 2013042938A JP 6169863 B2 JP6169863 B2 JP 6169863B2
- Authority
- JP
- Japan
- Prior art keywords
- corrosion resistance
- content
- stainless steel
- corrosion
- exhaust system
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000007797 corrosion Effects 0.000 title claims description 97
- 238000005260 corrosion Methods 0.000 title claims description 97
- 229910001220 stainless steel Inorganic materials 0.000 title claims description 19
- 229910052718 tin Inorganic materials 0.000 claims description 17
- 229910052799 carbon Inorganic materials 0.000 claims description 14
- 229910052757 nitrogen Inorganic materials 0.000 claims description 14
- 229910052750 molybdenum Inorganic materials 0.000 claims description 13
- 229910052748 manganese Inorganic materials 0.000 claims description 11
- 229910052710 silicon Inorganic materials 0.000 claims description 11
- 229910052759 nickel Inorganic materials 0.000 claims description 9
- 229910052804 chromium Inorganic materials 0.000 claims description 8
- 229910052720 vanadium Inorganic materials 0.000 claims description 7
- 229910052758 niobium Inorganic materials 0.000 claims description 6
- 239000012535 impurity Substances 0.000 claims description 2
- 229910052698 phosphorus Inorganic materials 0.000 claims description 2
- 238000010438 heat treatment Methods 0.000 description 33
- 229910000831 Steel Inorganic materials 0.000 description 26
- 239000010959 steel Substances 0.000 description 26
- 230000000694 effects Effects 0.000 description 16
- 230000000052 comparative effect Effects 0.000 description 11
- 239000000463 material Substances 0.000 description 11
- 230000004580 weight loss Effects 0.000 description 10
- 229910052782 aluminium Inorganic materials 0.000 description 9
- 150000003839 salts Chemical class 0.000 description 9
- 229920006395 saturated elastomer Polymers 0.000 description 8
- 229910045601 alloy Inorganic materials 0.000 description 7
- 239000000956 alloy Substances 0.000 description 7
- 238000000034 method Methods 0.000 description 7
- 239000010935 stainless steel Substances 0.000 description 7
- 229910052802 copper Inorganic materials 0.000 description 6
- 238000005554 pickling Methods 0.000 description 6
- 229910052719 titanium Inorganic materials 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 238000007670 refining Methods 0.000 description 4
- 239000007921 spray Substances 0.000 description 4
- 238000000137 annealing Methods 0.000 description 3
- 230000003647 oxidation Effects 0.000 description 3
- 238000007254 oxidation reaction Methods 0.000 description 3
- 238000003466 welding Methods 0.000 description 3
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000005097 cold rolling Methods 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 238000000227 grinding Methods 0.000 description 2
- 238000005098 hot rolling Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 239000011780 sodium chloride Substances 0.000 description 2
- 239000002436 steel type Substances 0.000 description 2
- 206010070834 Sensitisation Diseases 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 229910001651 emery Inorganic materials 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 238000005204 segregation Methods 0.000 description 1
- 230000008313 sensitization Effects 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
- 229910000859 α-Fe Inorganic materials 0.000 description 1
Images
Landscapes
- Heat Treatment Of Sheet Steel (AREA)
Description
本発明は、自動車および二輪車の排気系部材用の耐食性に優れたフェライト系ステンレス鋼に関する。 The present invention relates to a ferritic stainless steel excellent in corrosion resistance for exhaust system members of automobiles and motorcycles.
自動車および二輪車の排気系部品にはフェライト系ステンレス鋼板・鋼管が多用されてきている。中でもSUH409Lは、Crを11%含有しC,NをTiで固定して溶接部の鋭敏化を防止すると共に優れた加工性を有する鋼種であり、700℃以下で十分な高温特性を有し、排ガス凝縮水腐食および塩害腐食に対してもある程度の抵抗性を発揮する。また、合金元素量が少なく廉価である。このため、種々のフェライト系鋼種の中で最も多く用いられてきている。 Ferritic stainless steel plates and pipes have been widely used for exhaust system parts of automobiles and motorcycles. Among them, SUH409L is a steel type containing 11% Cr, fixing C and N with Ti to prevent sensitization of the welded portion and having excellent workability, and has a sufficiently high temperature characteristic at 700 ° C. or less. It exhibits some resistance to exhaust gas condensate corrosion and salt damage corrosion. In addition, the amount of alloying elements is small and inexpensive. For this reason, it has been most frequently used among various ferritic steel types.
一方、最近では排気系部品の長寿命化の要求が高まってきている。排気系部品の寿命を支配する一因として耐食性が挙げられる。特にSUH409L鋼においては、耐食性に寄与する合金元素がCrのみで含有量が11%と少ないため、排気系部品としての寿命は耐食性に大きく依存する。このため、SUH409Lが適用されてきた排気系部品の長寿命化を確保しようとすればSUS439鋼(17Cr系鋼)などの高級材を適用することになりコスト増を招来することになる。 On the other hand, recently, there is an increasing demand for extending the life of exhaust system parts. One factor that governs the life of exhaust system parts is corrosion resistance. In particular, in the SUH409L steel, the alloy element contributing to corrosion resistance is only Cr and the content is as low as 11%, so the life as an exhaust system part greatly depends on the corrosion resistance. For this reason, if it is intended to ensure the long life of the exhaust system parts to which SUH409L has been applied, a high-grade material such as SUS439 steel (17Cr steel) will be applied, resulting in an increase in cost.
そこで、SUH409L鋼の廉価性を活かしつつ耐食性を可及的低コストで向上させる技術が要求されてきている。なお、ここで言う耐食性は実部品相当の加熱処理を施した後の凝縮水あるいは塩害の環境における耐食性であり、加熱しない場合の素材そのものの耐食性とは異なるものである。 Therefore, a technique for improving the corrosion resistance at the lowest possible cost while utilizing the low price of SUH409L steel has been demanded. The corrosion resistance referred to here is the corrosion resistance in the environment of condensed water or salt damage after the heat treatment corresponding to the actual part, and is different from the corrosion resistance of the material itself when not heated.
このような問題に関して、従来、いくつかの類似技術が提示されている。 Several similar techniques have been proposed for such problems.
例えば、特許文献1では、C,NをTiで固定しCrを9.0〜15.0%含有させ、0.10〜0.80%のNi,Cuを含有させて耐食性と加工性を両立させた鋼が開示されている。しかしながら、Niは、高価な合金元素なので使用するにしても極微量に留めるべきである。 For example, in Patent Document 1, C and N are fixed with Ti, Cr is contained in 9.0 to 15.0%, and Ni and Cu are contained in 0.10 to 0.80% to achieve both corrosion resistance and workability. Disclosed steel is disclosed. However, since Ni is an expensive alloy element, it should be kept in a very small amount even if it is used.
また、特許文献2では、C,NをNb,Tiで固定しCrを11.0〜15.0%含有させ、0.6%以下のNiと1.0%以下のVを含有させて造管性、耐粒界腐食性、高温強度を確保した鋼が開示されている。しかしながら、ここでもNi、Vといった高価な合金元素が使用され、さらに高温強度確保のためにNbも含有されるため、本発明が目指すような優れたコスト・パフォーマンスを得るのは困難であるとの問題がある。 In Patent Document 2, C and N are fixed with Nb and Ti, Cr is contained at 11.0 to 15.0%, Ni is 0.6% or less, and V is 1.0% or less. Steels that ensure pipe properties, intergranular corrosion resistance, and high-temperature strength are disclosed. However, expensive alloy elements such as Ni and V are used here, and Nb is also contained for securing high-temperature strength. Therefore, it is difficult to obtain excellent cost performance as the present invention aims. There's a problem.
また、特許文献3では、C,NをTiで固定しCrを10〜14%含有させ、適量のS(C含有量の0.5倍以上、0.010%以下かつ0.0030%以上)を含有させて耐食性と加工性を両立させた鋼が開示されている。前記の2つの技術に比べるとコスト・パフォーマンスに優れる。しかしながら、Sを現状の精錬レベルより多く含有させるため、S系介在物起因の耐食性劣化が懸念されるという問題がある。 In Patent Document 3, C and N are fixed with Ti and Cr is contained in an amount of 10 to 14%, and an appropriate amount of S (0.5 times the C content, 0.010% or less and 0.0030% or more). Steel that contains both corrosion resistance and workability is disclosed. Compared to the above two technologies, it is excellent in cost performance. However, since S is contained in a larger amount than the current refining level, there is a problem that corrosion resistance deterioration due to S-based inclusions is a concern.
なお、これら類似技術は、本発明で取り扱う加熱後耐食性を充分に評価していない。 These similar techniques do not sufficiently evaluate the corrosion resistance after heating handled in the present invention.
一方、本発明の省合金という趣旨に近い点で興味深いところでは、従来は殆ど注目されていなかったSn,Sbを合金元素として極く微量だけ含有させることによって鋼材の特性を向上させる技術が開示されている。 On the other hand, a technique that improves the properties of steel materials by containing only a very small amount of Sn and Sb, which has not been attracting much attention as an alloy element, is disclosed in an interesting point close to the purpose of the present invention. ing.
例えば、特許文献4では、0.02〜0.2%のSbを含有させることによって耐酸化性を向上させたフェライト系ステンレス鋼が提示されている。特許文献5では、0.005〜0.10%のSn、Sbの1種以上含有させることでPの粒界偏析を防止して硫酸酸洗時の粒界腐食に起因する表面キズが無いフェライト系ステンレス鋼板が提示されている。また、特許文献6では、フェライト系ステンレス鋼の高温強度を向上させる目的で0.05〜2%のSnを含有させた鋼が提示されている。 For example, Patent Document 4 proposes a ferritic stainless steel in which oxidation resistance is improved by containing 0.02 to 0.2% of Sb. In Patent Document 5, ferrite containing no surface scratches caused by intergranular corrosion during sulfuric acid pickling is prevented by containing at least one of 0.005 to 0.10% of Sn and Sb to prevent P grain boundary segregation. Stainless steel sheet is presented. Patent Document 6 proposes steel containing 0.05 to 2% Sn for the purpose of improving the high temperature strength of ferritic stainless steel.
しかしながら、これらの技術は本発明で取り扱う加熱後耐食性を論じたものではない。 However, these techniques do not discuss post-heat corrosion resistance handled in the present invention.
本発明は、SUH409L鋼の廉価性を活かしつつ耐食性を可及的低コストで向上させる11Cr系ステンレス鋼の提供を目的とするものである。 The object of the present invention is to provide 11Cr stainless steel that improves the corrosion resistance at the lowest possible cost while utilizing the low price of SUH409L steel.
本発明者らは、種々のステンレス鋼材について多くの塩害腐食試験、凝縮水腐食試験を行ってきた。その結果、腐食試験前に加熱処理を施すことによって不働態皮膜がFeリッチの酸化皮膜に変質するため、加熱処理を施さない場合には耐食性に影響を与えないSi、Mn、Alが加熱後耐食性を向上させる作用があること、Snが強力な加熱後耐食性向上元素であるとの知見を得た。さらに、Snの耐食性向上効果はMoとの共存によって増幅され、この効果の程度はMo含有量に依存することを知見した。 The present inventors have conducted many salt corrosion tests and condensed water corrosion tests on various stainless steel materials. As a result, the heat treatment before the corrosion test transforms the passive film into an Fe-rich oxide film, so that if it is not heat treated, it will not affect the corrosion resistance. It has been found that Sn has a function of improving the corrosion resistance, and that Sn is a powerful element for improving corrosion resistance after heating. Furthermore, it was found that the corrosion resistance improvement effect of Sn is amplified by coexistence with Mo, and the degree of this effect depends on the Mo content.
本発明は前記知見に基づいて構成したものであり、その要旨は以下の通りである。
(1)質量%で、C:0.0150%以下、Si:0.20〜0.70%、Mn:0.20〜0.60%、P:0.050%以下、S:0.0100%以下、N:0.0150%以下、Al:0.010〜0.20%、Cr:10.50〜11.50%、Mo:0.02〜0.20%、およびSn:0.005〜0.050%を含有し、さらにTi:0.030〜0.30%およびNb:0.030〜0.50%の1種または2種を含有し、かつ(1)式で定義するA値が0.00065%2以上であることを満たし、残部がFeおよび不可避的不純物より成ることを特徴とする耐食性に優れた排気系部材用フェライト系ステンレス鋼。
A=[Mo]×[Sn] −−−−−−−(1)
ここで[Mo]、[Sn]は、それぞれMo、Snの質量%としての含有量である。
(2)質量%で、らにCu:0.01〜0.10%、Ni:0.02〜0.20%、V:0.01〜0.10%の1種または2種以上を含有することを特徴とする前記(1)に記載の耐食性に優れた排気系部材用フェライト系ステンレス鋼。
(3)質量%で、さらにB:0.0002〜0.0050%を含有することを特徴とする前記(1)または(2)に記載の耐食性に優れた排気系部材用フェライト系ステンレス鋼。
The present invention is configured based on the above findings, and the gist thereof is as follows.
(1) By mass%, C: 0.0150% or less, Si: 0.20 to 0.70 %, Mn: 0.20 to 0.60 %, P: 0.050% or less, S: 0.0100 % or less, N: 0.0150% or less, Al: 0.010~0.20%, Cr: 10.50 ~ 11.50%, Mo: 0.02~0.20%, and Sn: 0.005 A containing 0.5 to 0.050%, further containing one or two of Ti: 0.030 to 0.30% and Nb: 0.030 to 0.50%, and defined by the formula (1) A ferritic stainless steel for exhaust system members excellent in corrosion resistance, characterized in that the value is 0.00065% 2 or more, and the balance consists of Fe and inevitable impurities.
A = [Mo] × [Sn] ------- (1)
Here, [Mo] and [Sn] are contents as mass% of Mo and Sn, respectively.
(2) In mass%, Cu: 0.01 to 0.10%, Ni: 0.02 to 0.20%, V: 0.01 to 0.10%, or one or more The ferritic stainless steel for exhaust system members having excellent corrosion resistance as described in (1) above.
(3) Ferritic stainless steel for exhaust system members having excellent corrosion resistance as described in (1) or (2) above, further containing B: 0.0002 to 0.0050% by mass%.
本発明によって、SUH409L鋼の廉価性を活かしつつ耐食性を向上させた11%Cr系ステンレス鋼が得られるので、産業上の効果は大きい。 According to the present invention, 11% Cr stainless steel having improved corrosion resistance while utilizing the low cost of SUH409L steel can be obtained, so that the industrial effect is great.
本発明の形態について、より具体的に説明する。 The embodiment of the present invention will be described more specifically.
本発明者らは、先ず、実際の塩害環境を模擬する複合サイクル腐食試験(塩水噴霧:5%NaCl噴霧35℃×2Hr、乾燥:相対湿度20%、60℃×4Hr、湿潤:相対湿度90%、50℃×2Hrの繰り返し)において、耐食性を支配するCrの含有量を変化させた鋼を用いて、400℃×8Hrの加熱処理有無による耐食性への影響を調査した。 First, the present inventors have conducted a combined cycle corrosion test that simulates an actual salt damage environment (salt spray: 5% NaCl spray 35 ° C. × 2 Hr, dry: relative humidity 20%, 60 ° C. × 4 Hr, wet: relative humidity 90%. , 50 ° C. × 2 Hr repetition), the influence on the corrosion resistance due to the presence or absence of the heat treatment at 400 ° C. × 8 Hr was investigated using the steel in which the Cr content governing the corrosion resistance was changed.
その結果、加熱処理有無にかかわらずCrは耐食性向上元素であるが、加熱処理なしの場合より加熱処理有りの場合の方がCrの腐食低減効果が大きかった。これは、加熱処理によって表面に酸化層が形成され、この酸化膜によって腐食特性が影響されることを意味する。すなわち、酸化膜形成後の加熱後耐食性は不働態皮膜状態の母材の耐食性とは異なるものであると言える。 As a result, Cr is an element for improving corrosion resistance regardless of the presence or absence of heat treatment, but the effect of reducing Cr corrosion was greater when heat treatment was performed than when heat treatment was not performed. This means that an oxide layer is formed on the surface by the heat treatment, and the corrosion characteristics are affected by this oxide film. That is, it can be said that the corrosion resistance after heating after the formation of the oxide film is different from the corrosion resistance of the base material in the passive film state.
同様の方法で、Si、Mn、Alの含有量を変化させた鋼について加熱処理有無による耐食性への影響を調査した。その結果、加熱処理がなければSi、Mn、Alは腐食に影響を与えない元素であるが、加熱処理を施す場合には耐食性を向上させる元素であることがわかった。このことからも、酸化膜形成後の加熱後耐食性は不働態皮膜状態の母材の耐食性とは異なるものであると言える。Si,Mn、Alが加熱後耐食性に影響する理由は、表面酸化膜の緻密性・保護性にSi、Mn、Alが寄与するためと推察する。 By the same method, the influence on the corrosion resistance by the presence or absence of heat treatment was investigated for the steel in which the contents of Si, Mn, and Al were changed. As a result, it was found that Si, Mn, and Al are elements that do not affect corrosion without heat treatment, but are elements that improve corrosion resistance when heat treatment is performed. From this, it can be said that the corrosion resistance after heating after the formation of the oxide film is different from the corrosion resistance of the base material in the passive film state. The reason why Si, Mn, and Al affect the corrosion resistance after heating is presumed to be that Si, Mn, and Al contribute to the denseness and protection of the surface oxide film.
また、Snについても調査した結果、Moの共存によって0.005〜0.050%の極微量で耐食性を大幅に向上させることがわかった。 Moreover, as a result of investigating Sn, it was found that the coexistence of Mo significantly improves the corrosion resistance with a very small amount of 0.005 to 0.050%.
調査結果の一例を図1に示す。図1は、11%CrベースでMo、Sn含有量を変化させた候補材の腐食減量をSUH409L鋼の腐食減量に対する比として表わしたものであり、SUH409L鋼の腐食減量の2/3(すなわち耐食性が1.5倍)をしきい値として「○」印と「×」印で層別して候補材の耐食性をプロットしたものである。これより、MoとSnには相互作用があり、Mo含有量0.02%以上の領域において加熱後耐食性はMoとSnの含有量の積に依存することが判明した。このことは(1)式で定義されるA値をもって定量化された。
A=[Mo]×[Sn] −−−−−−−(1)
ここで[Mo]、[Sn]は、それぞれMo、Snの質量%としての含有量であり、図1中の曲線がA=0.00065を示す曲線であり、A値が0.00065%2以上となることによって優れた耐食性が得られる。
An example of the survey results is shown in FIG. FIG. 1 shows the corrosion weight loss of a candidate material in which the Mo and Sn contents are changed based on 11% Cr as a ratio to the corrosion weight loss of SUH409L steel, and 2/3 of the corrosion weight loss of SUH409L steel (that is, corrosion resistance). Is a value obtained by plotting the corrosion resistance of candidate materials by layering them with “◯” and “×” marks. From this, it was found that Mo and Sn interact, and that the corrosion resistance after heating depends on the product of the contents of Mo and Sn in the region where the Mo content is 0.02% or more. This was quantified with the A value defined by equation (1).
A = [Mo] × [Sn] ------- (1)
Here, [Mo] and [Sn] are contents in terms of mass% of Mo and Sn, respectively, the curve in FIG. 1 is a curve showing A = 0.00065, and the A value is 0.00065% 2 The above results in excellent corrosion resistance.
また、Si,Mn,Al,Mo,Snは含有させ過ぎても加熱後耐食性は飽和することもわかり、これら合金元素の含有量は適正範囲が存在することが明らかとなった。 It was also found that the corrosion resistance after heating was saturated even if Si, Mn, Al, Mo, and Sn were excessively contained, and it became clear that the content of these alloy elements had an appropriate range.
次に、塩害腐食試験に用いた鋼についてJASO M911−Aによる凝縮水腐食試験を行い400℃×8Hrの加熱処理有無の影響を調査した。その結果、加熱後の凝縮水耐食性に及ぼすSi、Mn、Alの影響およびSnとMoの相互作用は、前記した加熱後塩害耐食性の場合と同様であった。 Next, the condensed water corrosion test by JASO M911-A was performed about the steel used for the salt damage corrosion test, and the influence of 400 degreeC x 8 Hr heat processing presence or absence was investigated. As a result, the influence of Si, Mn, and Al on the condensed water corrosion resistance after heating and the interaction between Sn and Mo were the same as in the case of the salt corrosion resistance after heating described above.
以上より、極微量のSnを微量Mo共存のもとに含有させると共にSi、Mn、Al含有量を調整することにより、SUH409L鋼の耐食性を支配するCrの含有量を増加させることなく加熱後耐食性を大幅向上させることが可能となる。なお、ここで含有させるSn,Moの量は極微量であるため廉価性を大幅に損ねることにはならない。また、Cu,Ni,Vを極微量の範囲で含有させて、さらなる耐食性向上を追求することもできる。 From the above, by adding a very small amount of Sn in the presence of a small amount of Mo and adjusting the Si, Mn, and Al contents, the corrosion resistance after heating without increasing the Cr content that dominates the corrosion resistance of SUH409L steel. Can be greatly improved. In addition, since the quantity of Sn and Mo contained here is very small amount, it will not impair a low price significantly. Moreover, Cu, Ni, and V can be contained in a very small range, and further improvement in corrosion resistance can be pursued.
以下、本発明における合金元素の作用とその含有量の限定理由ついて詳述する。断りがない限り、%は質量%を意味する。 Hereinafter, the effect | action of the alloy element in this invention and the reason for limitation of the content are explained in full detail. Unless otherwise indicated,% means mass%.
C、N:CおよびNは、溶接熱影響部における粒界腐食の原因となる元素であり、加熱後耐食性を劣化させる。また、加工性を劣化させる。このため、C,Nの含有量は可及的低レベルに制限すべきであり、C、Nの上限は0.0150%とするのが必要であり、望ましは0.0100%である。一方、含有量の下限は、現状の精錬技術において工業的に到達し得るレベルとしてC,N共に0.0020%とすると好ましい。 C, N: C and N are elements that cause intergranular corrosion in the weld heat affected zone, and deteriorate the corrosion resistance after heating. Moreover, workability is deteriorated. For this reason, the content of C and N should be limited to the lowest possible level, and the upper limit of C and N needs to be 0.0150%, preferably 0.0100%. On the other hand, the lower limit of the content is preferably 0.0020% for both C and N as a level that can be reached industrially in the current refining technology.
Si:Siは加熱後耐食性を向上させる作用を有するために0.20%以上を含有させるが、多量に含有させても効果は飽和するため上限を0.70%に制限する。加工性も考慮すれば、望ましくはSi含有量を0.60%以下とするのが良い。 Si: Si has an effect of improving the corrosion resistance after heating, so 0.20% or more is contained, but even if contained in a large amount, the effect is saturated, so the upper limit is limited to 0.70%. In consideration of workability, the Si content is desirably 0.60% or less.
Mn:Mnも加熱後耐食性を向上させる作用を有するので、0.20%以上を含有させるが、多量に含有させても効果は飽和するため上限を0.60%に制限する。加工性も考慮すれば、望ましくはMn含有量を0.40%以下とするのがよい。 Mn: Since Mn also has an effect of improving the corrosion resistance after heating, it is contained in an amount of 0.20% or more. However, even if contained in a large amount, the effect is saturated, so the upper limit is limited to 0.60%. Considering workability, the Mn content is desirably 0.40% or less.
P:加工性を劣化させる元素である。このため、Pの含有量は可及的低レベルが望ましい。許容可能な含有量の上限を0.050%とする。望ましいPの上限値は0.030%である。一方、含有量の下限は現状の精錬技術において工業的に到達し得るレベルとして0.010%とすると好ましい。 P: An element that deteriorates workability. For this reason, the P content is desirably as low as possible. The upper limit of the allowable content is 0.050%. A desirable upper limit of P is 0.030%. On the other hand, the lower limit of the content is preferably 0.010% as a level that can be industrially reached in the current refining technology.
S:耐食性を劣化させる元素であるため、Sの含有量は可及的低レベルが望ましい。許容可能な含有量の上限を0.0100%とする。望ましいS含有量の上限値は0.0050%であり、さらに望ましくは0.0030%である。一方、含有量の下限は現状の精錬技術において工業的に到達し得るレベルとして0.0005%とすると好ましい。 S: Since it is an element that deteriorates corrosion resistance, the S content is desirably as low as possible. The upper limit of the allowable content is 0.0100%. A desirable upper limit of the S content is 0.0050%, and more desirably 0.0030%. On the other hand, the lower limit of the content is preferably 0.0005% as a level that can be achieved industrially in the current refining technology.
Cr:加熱後耐食性を確保する基本的元素であり適量の含有が必須であり10.50%以上を含有させるが、多量に含有させても効果は飽和するため上限を11.50%に制限する。コストも考慮すれば望ましくはCr含有量を11.40%以下とするのが良い。 Cr: A basic element that ensures corrosion resistance after heating. An appropriate amount is essential and is contained in an amount of 10.50% or more, but even if it is contained in a large amount, the effect is saturated, so the upper limit is limited to 11.50%. . Considering the cost, the Cr content is preferably 11.40% or less.
Al:Alは脱酸元素として有用であると共に加熱後耐食性を向上させる作用を有するので0.010%以上を含有させるが、多量に含有させても加熱後耐食性は飽和するので上限を0.20%に制限するのがよい。 Al: Al is useful as a deoxidizing element and has the effect of improving the corrosion resistance after heating, so it is contained in an amount of 0.010% or more. % Should be limited.
本発明は、TiとNbの1種または2種を下記のとおり含有する。 The present invention contains one or two of Ti and Nb as follows.
Ti:TiはC,Nを炭窒化物として固定して粒界腐食を抑制する作用を有する。このため0.03%を下限として含有させるが、過剰に含有させても効果は飽和するため、含有量の上限を0.30%とする。なお、Tiの適正含有量としてC,N合計含有量の5倍量以上かつ30倍量以下が望ましい。 Ti: Ti has the action of fixing C and N as carbonitrides and suppressing intergranular corrosion. For this reason, 0.03% is contained as the lower limit. However, since the effect is saturated even if it is contained excessively, the upper limit of the content is made 0.30%. In addition, the proper content of Ti is preferably 5 times or more and 30 times or less the total content of C and N.
Nb:Tiと同様に、NbはC,Nを炭窒化物として固定して粒界腐食を抑制する作用を有するので0.03%を下限として含有させるが、過剰に含有させても効果は飽和するため含有量の上限を0.50%とする。 Similar to Nb: Ti, Nb has the effect of fixing C and N as carbonitrides to suppress intergranular corrosion, so 0.03% is included as the lower limit, but the effect is saturated even if included excessively Therefore, the upper limit of the content is 0.50%.
Mo:MoはSnとの共存において微量の含有で加熱後耐食性を向上させる作用を奏するため0.02%を下限として含有させるが、多く含有させても効果は飽和するため含有量の上限を0.20%に制限する。 Mo: Mo contains 0.02% as the lower limit in order to improve the corrosion resistance after heating in the presence of a small amount in the coexistence with Sn. Limit to 20%.
Sn:SnはMoとの共存において極微量で加熱後耐食性を改善する元素として有用であり含有させる場合の下限量を0.005%とする。一方、Snは粒界に偏析して熱間加工性を劣化させる懸念もある。多く含有させても効果は飽和するため含有量の上限を0.050%に制限する。好ましくは,0.010%超である.また上限値は0.050%未満が好ましい。 Sn: Sn is useful as an element that improves the corrosion resistance after heating in an extremely small amount in the coexistence with Mo, and the lower limit when it is contained is 0.005%. On the other hand, there is a concern that Sn segregates at grain boundaries and degrades hot workability. Even if a large amount is contained, the effect is saturated, so the upper limit of the content is limited to 0.050%. Preferably, it exceeds 0.010%. The upper limit is preferably less than 0.050%.
A値:Ni、Snの含有量から算出され、前記(1)式で規定するA値は耐酸化性の指標であり、目標とする耐酸化性を得るには0.00065%2以上を確保することが必要である。 A value: Calculated from the contents of Ni and Sn, and the A value defined by the above formula (1) is an index of oxidation resistance. To obtain the target oxidation resistance, 0.00065% 2 or more is secured. It is necessary to.
Cu,Ni,V:省合金、低コストの観点からは逆行するが、究極の加熱後耐食性の向上を求めて、耐食性向上に有用なCu、Ni,Vの1種または2種以上を微量含有させても良い。Niの含有量の下限は0.02%とし、上限は0.20%とするのが良い。Cu,Vの含有量の下限は0.01%とし、上限は0.10%とするのが良い。 Cu, Ni, V: Reversed from the viewpoints of alloy saving and low cost, but in search of the ultimate improvement in corrosion resistance after heating, containing trace amounts of one or more of Cu, Ni, V useful for improving corrosion resistance You may let them. The lower limit of the Ni content is preferably 0.02%, and the upper limit is preferably 0.20%. The lower limit of the Cu and V contents is preferably 0.01%, and the upper limit is preferably 0.10%.
B:BはSn添加による粒界強度低下対策として有用な元素であり、加熱後耐食性には影響を与えない元素である。このため0.0002%を下限として含有させても良いが、0.0050%を超えるとかえって熱間加工性が劣化するなどの問題が生じるので、上限を0.0050%とするのが良い。 B: B is an element useful as a measure for reducing the grain boundary strength due to the addition of Sn, and is an element that does not affect the corrosion resistance after heating. For this reason, 0.0002% may be contained as a lower limit, but if it exceeds 0.0050%, problems such as deterioration of hot workability occur, so the upper limit is preferably made 0.0050%.
これら組成のフェライト系ステンレス鋼は、転炉や電気炉などで溶製、精錬された鋼片を熱間圧延、酸洗、冷延、焼鈍、仕上酸洗等を施す通常の排気系部材用ステンレス鋼板の製造方法によって鋼板として製造される。また、この鋼板を素材として電気抵抗溶接、TIG溶接、レーザー溶接などの通常の排気系部材用ステンレス鋼管の製造方法によって溶接管として製造される。 Ferritic stainless steel of these compositions is a stainless steel for ordinary exhaust system members that is subjected to hot rolling, pickling, cold rolling, annealing, finishing pickling, etc. on steel pieces that have been melted and refined in converters, electric furnaces, etc. It is manufactured as a steel plate by the manufacturing method of a steel plate. Moreover, it manufactures as a welded pipe by the manufacturing method of the normal stainless steel pipe for exhaust system members, such as electrical resistance welding, TIG welding, and laser welding, using this steel plate as a raw material.
実施例に基づいて、本発明をより詳細に説明する。 The invention is explained in more detail on the basis of examples.
表1、2に示す組成のステンレス鋼を150kg真空溶解炉で溶製し、50kg鋼塊に鋳造した後、熱延−研削−冷延−焼鈍−仕上酸洗の工程を通して板厚1.2mmの鋼板を作製した。熱延板の作製条件としては、素材厚み:90mm、加熱温度:1160℃、9パスで板厚3.2mmまで圧延、仕上温度:850℃、巻取温度:600℃とした。冷延板の作製条件としては、熱延板を研削した後の素材厚:2.8mm、仕上厚:1.2mmとした。焼鈍条件としては、880℃×60秒、空冷とした。仕上酸洗は、硝ふっ酸酸洗とした。 A stainless steel having the composition shown in Tables 1 and 2 was melted in a 150 kg vacuum melting furnace and cast into a 50 kg steel ingot, and then a sheet thickness of 1.2 mm was obtained through the steps of hot rolling, grinding, cold rolling, annealing and finishing pickling. A steel plate was produced. The production conditions for the hot-rolled sheet were as follows: material thickness: 90 mm, heating temperature: 1160 ° C., rolling to 9 mm in 9 passes, finishing temperature: 850 ° C., winding temperature: 600 ° C. The production conditions for the cold-rolled sheet were a material thickness after grinding the hot-rolled sheet: 2.8 mm and a finished thickness: 1.2 mm. The annealing conditions were 880 ° C. × 60 seconds and air cooling. The finish pickling was nitric hydrofluoric acid pickling.
この鋼板より腐食試験片を採取し試験面を#600エメリー研磨して、塩害環境を模擬した複合サイクル腐食試験(塩水噴霧:5%NaCl噴霧35℃×2Hr、乾燥:相対湿度20%、60℃×4Hr、湿潤:相対湿度90%、50℃×2Hrの繰り返し)およびJASO M911−Aに規定された凝縮水腐食試験を行った。いずれの試験においても、供試前に大気炉中で400℃×8Hrの加熱処理を施した。腐食試験終了後のサンプルは、脱錆処理を施した後、重量法によって腐食減量を求めた。 Corrosion test pieces were collected from this steel plate, and the test surface was polished by # 600 emery to simulate a combined cycle corrosion test simulating a salt damage environment (salt spray: 5% NaCl spray 35 ° C. × 2 Hr, dry: relative humidity 20%, 60 ° C. × 4Hr, wet: 90% relative humidity, 50 ° C. × 2Hr repetition) and a condensed water corrosion test specified in JASO M911-A. In any test, a heat treatment of 400 ° C. × 8 Hr was performed in an atmospheric furnace before the test. The sample after the corrosion test was subjected to derusting treatment, and then the weight loss was determined by the gravimetric method.
試験結果を表1、2に示す。表2において、本発明範囲外の数値にアンダーラインを付している。表2における比較例No.101がSUH409L鋼であり比較基準である。加熱後耐食性は、候補材の腐食減量と比較例No.101の腐食減量の比としても表わした。なお、本発明では、SUH409L鋼に対して少なくとも1.5倍以上の耐食性向上効果を目指し、腐食減量比として0.66未満を得ることを目標とした。 The test results are shown in Tables 1 and 2. In Table 2, numerical values outside the scope of the present invention are underlined. Comparative Example No. 2 in Table 2 101 is SUH409L steel, which is a reference for comparison. Corrosion resistance after heating is determined by comparing the weight loss of the candidate material with that of Comparative Example No. It was also expressed as the ratio of 101 weight loss. In the present invention, with the aim of improving the corrosion resistance by at least 1.5 times that of SUH409L steel, the aim was to obtain a corrosion weight loss ratio of less than 0.66.
比較例No.102はMo含有量とA値が本発明範囲の下限を外れており、比較例No.103〜105はA値が本発明範囲の下限を外れているため満足すべき耐食性向上効果が得られていない。比較例No.106〜108はSn含有量とA値が本発明範囲の下限を外れているため耐食性は満足すべきレベルに達しない。 Comparative Example No. No. 102 has a Mo content and an A value that are outside the lower limits of the range of the present invention. In 103-105, since the A value is outside the lower limit of the range of the present invention, a satisfactory corrosion resistance improvement effect is not obtained. Comparative Example No. Nos. 106 to 108 have a Sn content and an A value that are outside the lower limit of the range of the present invention, so that the corrosion resistance does not reach a satisfactory level.
比較例No.109は、Mo含有量が本発明範囲の上限を超えており、耐食性は十分であるが、よりMo含有量の少ない本発明No.7と同等レベルの腐食減量比に過ぎず、敢えて多量に含有させる必要がない。 Comparative Example No. No. 109, the Mo content exceeds the upper limit of the range of the present invention, and the corrosion resistance is sufficient, but the present invention No. 109 having a lower Mo content. It is only a corrosive weight loss ratio equivalent to 7, and it is not necessary to dare to contain a large amount.
比較例No.110は、Sn含有量が本発明範囲の上限を超えており、耐食性は十分であるが、よりSn含有量の少ない本発明No.2と同等レベルの腐食減量比に過ぎず、敢えて多量に含有させる必要がない。 Comparative Example No. No. 110, the Sn content exceeds the upper limit of the range of the present invention, and the corrosion resistance is sufficient, but the present invention No. 110 having a smaller Sn content. It is only a corrosion weight loss ratio of the same level as 2, and it is not necessary to intentionally contain a large amount.
比較例No.111はCr含有量が本発明範囲の下限を外れており耐食性はSUH409Lより劣る。 Comparative Example No. No. 111 has a Cr content outside the lower limit of the range of the present invention, and the corrosion resistance is inferior to SUH409L.
比較例No.112は、Cr含有量が本発明範囲の上限を超えており、耐食性は十分であるが、よりCr含有量の少ない本発明No.33、34と同等レベルの腐食減量比に過ぎず、敢えて多量に含有させる必要がない。 Comparative Example No. No. 112 has a Cr content exceeding the upper limit of the range of the present invention, and the corrosion resistance is sufficient, but the present invention No. 112 having a lower Cr content. It is only a corrosion weight loss ratio of the same level as 33 and 34, and it is not necessary to dare to contain a large amount.
比較例No.113はSi含有量が本発明範囲の下限を外れており、比較例No.115はMn含有量が本発明範囲の下限を外れており、比較例No.117はAl含有量が本発明範囲の下限を外れており、それぞれ耐食性は満足すべきレベルに達していない。一方、比較例No.114はSi含有量が本発明範囲の上限を超え、比較例No.116はMn含有量が本発明範囲の上限を超え、比較例No.118はAl含有量が本発明範囲の上限を超えているが、耐食性は飽和しておりSi,Mn,Al含有量がこれらより少ない本発明No.14と同レベルに留まっている。 Comparative Example No. No. 113 has a Si content outside the lower limit of the range of the present invention. No. 115 has a Mn content outside the lower limit of the range of the present invention. In 117, the Al content is outside the lower limit of the range of the present invention, and the corrosion resistance does not reach a satisfactory level. On the other hand, Comparative Example No. No. 114 has a Si content exceeding the upper limit of the range of the present invention. No. 116 has a Mn content exceeding the upper limit of the range of the present invention. No. 118, although the Al content exceeds the upper limit of the range of the present invention, the corrosion resistance is saturated and the Si, Mn, Al content is less than these. It stays at the same level as 14.
比較例No,119、120は、それぞれTi,Nbの含有量が本発明範囲を外れているため満足すべき耐食性は得られない。 In Comparative Examples No. 119 and 120, the contents of Ti and Nb are out of the scope of the present invention, so that satisfactory corrosion resistance cannot be obtained.
一方、本発明No.1〜34は、Si,Mn,Al,Mo,Snの含有量およびA値が本発明の範囲内にあり、満足すべき加熱後耐食性が得られた。 On the other hand, the present invention No. In Nos. 1 to 34, the contents of Si, Mn, Al, Mo, and Sn and the A value were within the scope of the present invention, and satisfactory corrosion resistance after heating was obtained.
Claims (3)
A=[Mo]×[Sn] −−−−−−−(1)
ここで[Mo]、[Sn]は、それぞれMo、Snの質量%としての含有量である。 In mass%, C: 0.0150% or less, Si: 0.20 to 0.70 %, Mn: 0.20 to 0.60 %, P: 0.050% or less, S: 0.0100% or less, N: 0.0150% or less, Al: 0.010~0.20%, Cr: 10.50 ~ 11.50%, Mo: 0.02~0.20%, and Sn: 0.005 to 0. 050% is contained, Ti: 0.030 to 0.30% and Nb: 0.030 to 0.50% are contained, or A value defined by the formula (1) is 0 000665% A ferritic stainless steel for exhaust system members excellent in corrosion resistance, characterized in that it is 2 or more and the balance is made of Fe and inevitable impurities.
A = [Mo] × [Sn] ------- (1)
Here, [Mo] and [Sn] are contents as mass% of Mo and Sn, respectively.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013042938A JP6169863B2 (en) | 2013-03-05 | 2013-03-05 | Ferritic stainless steel for exhaust system members with excellent corrosion resistance |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013042938A JP6169863B2 (en) | 2013-03-05 | 2013-03-05 | Ferritic stainless steel for exhaust system members with excellent corrosion resistance |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2014169491A JP2014169491A (en) | 2014-09-18 |
JP6169863B2 true JP6169863B2 (en) | 2017-07-26 |
Family
ID=51692065
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013042938A Active JP6169863B2 (en) | 2013-03-05 | 2013-03-05 | Ferritic stainless steel for exhaust system members with excellent corrosion resistance |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6169863B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101726075B1 (en) | 2015-11-06 | 2017-04-12 | 주식회사 포스코 | Low-chromium ferritic stainless steel having excellent corrosion resistant and method for manufacturing the same |
WO2018181401A1 (en) | 2017-03-30 | 2018-10-04 | 新日鐵住金ステンレス株式会社 | Ferritic stainless steel pipe having excellent salt tolerance in gap, pipe-end-thickened structure, welding joint, and welded structure |
JP7186601B2 (en) * | 2018-12-21 | 2022-12-09 | 日鉄ステンレス株式会社 | Cr-based stainless steel used as a metal material for high-pressure hydrogen gas equipment |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3942934B2 (en) * | 2002-03-29 | 2007-07-11 | 日新製鋼株式会社 | Manufacturing method of stainless steel molded products with excellent shape accuracy |
JP2009256787A (en) * | 2008-03-27 | 2009-11-05 | Nippon Steel & Sumikin Stainless Steel Corp | Martensitic stainless steel for disk brake with excellent non-rusting property |
JP5780716B2 (en) * | 2010-07-01 | 2015-09-16 | 日新製鋼株式会社 | Ferritic stainless steel with excellent oxidation resistance and secondary workability |
JP5745345B2 (en) * | 2011-06-16 | 2015-07-08 | 新日鐵住金ステンレス株式会社 | Ferritic stainless steel sheet excellent in hot workability and weather resistance and manufacturing method thereof |
-
2013
- 2013-03-05 JP JP2013042938A patent/JP6169863B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2014169491A (en) | 2014-09-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5297713B2 (en) | Alloy-saving ferritic stainless steel for automobile exhaust system members with excellent corrosion resistance after heating | |
JP5320034B2 (en) | Mo-type ferritic stainless steel for automotive exhaust system parts with excellent corrosion resistance after heating | |
JP5586279B2 (en) | Ferritic stainless steel for automotive exhaust system parts | |
JP6190873B2 (en) | Heat resistant austenitic stainless steel sheet | |
TWI399443B (en) | Heat-resistant fat iron-based stainless steel | |
JP5885884B2 (en) | Ferritic stainless hot-rolled steel sheet, manufacturing method thereof, and steel strip | |
TWI504763B (en) | High-heat-resistant fat iron-based stainless steel plate | |
JP6006660B2 (en) | Alloy-saving ferritic stainless steel with excellent oxidation resistance and corrosion resistance for automotive exhaust system parts | |
JP5780716B2 (en) | Ferritic stainless steel with excellent oxidation resistance and secondary workability | |
JP5918796B2 (en) | Ferritic stainless hot rolled steel sheet and steel strip with excellent toughness | |
JP6434059B2 (en) | Ferritic stainless hot-rolled steel sheet and strip for automobile flanges with excellent face sealability, and methods for producing them | |
JP6112273B1 (en) | Ferritic stainless hot-rolled steel sheet, hot-rolled annealed sheet, and methods for producing them | |
JP2011179088A (en) | Ferritic stainless steel having excellent oxidation resistance, secondary working brittleness resistance and weldability | |
WO2014087648A1 (en) | Ferritic stainless steel sheet | |
KR101485641B1 (en) | Ferritic stainless steel for automotive exhaust system with excellent corrosion resistance for water condensation and formability and the method of manufacturing the same | |
CN104364404A (en) | Ferritic stainless steel | |
JP6169863B2 (en) | Ferritic stainless steel for exhaust system members with excellent corrosion resistance | |
JP5836619B2 (en) | Duplex stainless steel with good acid resistance | |
JP7022634B2 (en) | Ferritic stainless steel sheets with excellent high-temperature salt damage resistance and automobile exhaust system parts | |
JP5556951B2 (en) | Ferritic stainless steel | |
JP7019482B2 (en) | Ferritic stainless steel sheets with excellent high-temperature salt damage resistance and automobile exhaust system parts | |
JP7465955B2 (en) | Low Cr ferritic stainless steel sheet with improved pipe expansion workability and its manufacturing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20150410 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20151111 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20161115 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20161209 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20170606 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20170629 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6169863 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R371 | Transfer withdrawn |
Free format text: JAPANESE INTERMEDIATE CODE: R371 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |