以下に、本発明に係る実施形態を図面に基づいて詳細に説明する。なお、この実施形態によりこの発明が限定されるものではない。また、下記実施形態における構成要素には、当業者が置換可能かつ容易なもの、あるいは実質的に同一のものが含まれる。
図1は、本実施形態に係る格納容器保全設備の構成図である。図1において、格納容器100は、原子力設備において、炉心である複数の燃料集合体を密閉状態で収容する原子炉圧力容器101を格納するものである。原子力設備では、原子炉圧力容器101にて加熱された高温・高圧の水の熱を利用して水蒸気(以下、単に蒸気と記載する)を発生させ、この蒸気で格納容器100の外部に設けられた蒸気タービンを駆動して発電に供する。格納容器100は、岩盤などの堅固な地盤上に立設され、鉄筋コンクリートなどにより堅牢に形成されていることで、内部に所定容量の凝縮性ガスである蒸気および空気、放射性希ガスなどの非凝縮性ガスを含むガスを所定圧力の範囲で封じ込めることが可能に構成されている。
本実施形態の格納容器保全設備50は、炉心が損傷して原子炉圧力容器101から溶融炉心が流出する過酷事象であるシビアアクシデント時において格納容器100の安全を確保するものである。格納容器保全設備50は、格納容器圧力検出部1と、フィルタユニット2と、排気配管3と、第一貯留部(希ガス貯留部)11と、第一冷却部12と、第一凝縮水送出部13と、第一貯留部水位検出部14と、第一貯留部圧力検出部15と、第二貯留部(凝縮水貯留部)21と、第二冷却部22と、第二凝縮水送出部23と、第二貯留部水位検出部24と、第二貯留部圧力検出部25と、排気部31と、第一貯留部圧力排出部32と、第二貯留部圧力排出部33と、吸着部34と、を有する。
フィルタユニット2は、本実施形態において格納容器100の内部に設けられている。フィルタユニット2は、ガスに含まれる放射性よう素や粒子状の放射性物質を捕捉するフィルタがケーシングの内部に設けられている。このフィルタユニット2は、ケーシングの内部に格納容器100の内部のガスを通過させることで、フィルタによりガス中の放射性よう素や粒子状の放射性物質を除去する。ただし、キセノン(Xe)やクリプトン(Kr)のような放射性希ガス、蒸気や空気はフィルタで捕捉できないためケーシングを通過する。従って、フィルタユニット2は、放射性よう素や粒子状の放射性物質を捕捉して除去する一方で、凝縮性ガスである蒸気および空気、放射性希ガスなどの非凝縮性ガスを含むガスを通過させる。
排気配管3は、フィルタユニット2に接続され、端部が格納容器100の外部に引き出されて設けられている。排気配管3は、その途中に、格納容器100の内部において排気開閉弁3Aが設けられていると共に、格納容器100の外部に引き出された部分において排気開閉弁3Bが設けられている。排気開閉弁3A,3Bは、開動作により排気配管3を開放し、閉動作により排気配管3を閉塞する。また、排気開閉弁3A,3Bは、自動弁であり、開信号の入力により開動作する一方、閉信号の入力により閉動作する。従って、排気開閉弁3A,3Bが開動作して排気配管3が開放されることで、格納容器100の内部のガスはフィルタユニット2を経て格納容器100の外部に排出される。また、排気開閉弁3A,3Bのいずれかが閉動作して排気配管3が閉塞されることで、格納容器100の内部のガスは格納容器100の外部に排出されず留まる。排気開閉弁3A,3Bは、格納容器100を内部および外部から隔離する隔離弁として機能する。
第一貯留部11は、フィルタユニット2を通過したガスに含まれる放射性希ガスや空気などの非凝縮性ガスを貯留する。第一貯留部11は、第一貯留配管11Aと、第一貯留タンク(希ガス貯留タンク)11Bと、第一貯留開閉弁11Cと、を有している。
第一貯留配管11Aは、排気配管3が格納容器100の外部に引き出された端部に接続されている。第一貯留配管11Aの終端は、第一貯留タンク11Bに接続されている。第一貯留タンク11Bは、容量が変化することのない密閉容器である。
第一貯留開閉弁11Cは、第一貯留配管11Aの途中に設けられ、開動作により第一貯留配管11Aを開放し、閉動作により第一貯留配管11Aを閉塞する。また、第一貯留開閉弁11Cは、自動弁であり、開信号の入力により開動作する一方、閉信号の入力により閉動作する。また、第一貯留開閉弁11Cは、自動弁ではなくてもよい。従って、第一貯留開閉弁11Cが開動作して第一貯留配管11Aが開放されることで、排気配管3を介して格納容器100の内部から排出されたガスが第一貯留タンク11Bに送られる。また、第一貯留開閉弁11Cが閉動作して第一貯留配管11Aが閉塞されることで、排気配管3を介して格納容器100の内部から排出されたガスは第一貯留タンク11Bには送られない。
第一冷却部12は、第一貯留タンク11B内に流入したガスを冷却して該ガスに含まれる蒸気(凝縮性ガス)を凝縮させるものである。第一冷却部12は、循環配管12Aと、熱交換器12Bと、冷却ポンプ12Cと、散水機(散水部)12Dと、第一冷却開閉弁12E,12Fと、を有している。
循環配管12Aは、一端が第一貯留タンク11Bの下部にて第一貯留タンク11Bの内部に接続され、他端が第一貯留タンク11Bの上部にて第一貯留タンク11Bの内部に接続されて、第一貯留タンク11Bを含みループ状に設けられている。
熱交換器12Bは、循環配管12Aの途中に設けられており、冷却水が供給されるケーシングの内部に循環配管12Aの途中に介在された伝熱管が設けられている。熱交換器12Bに供給される冷却水は、例えば、海水や湖水などがあり、図示しない冷却水供給ポンプにより供給されてケーシングの内部を経て海や湖に戻される。なお、熱交換器12Bと熱交換器12Bに供給される冷却水の間に中間冷却のための熱交換器を介在させてもよい。中間冷却のための熱交換器に供給される冷却水は例えば純水などがある。
冷却ポンプ12Cは、循環配管12Aの途中に設けられており、第一貯留タンク11Bの下部に貯留された流体を循環配管12Aにより熱交換器12Bを経由して第一貯留タンク11Bの上部に戻す。従って、第一貯留タンク11Bの下部に貯留された流体は、冷却ポンプ12Cにより循環配管12Aに送られて熱交換器12Bを経由して冷却され第一貯留タンク11Bの上部に戻される。
散水機12Dは、いわゆるシャワーであって、第一貯留タンク11Bの内部の上部に設けられて循環配管12Aの他端に接続されている。従って、冷却ポンプ12Cにより循環配管12Aに送られて第一貯留タンク11Bの上部に戻された流体は、散水機12Dにより第一貯留タンク11Bの下部に向けて散水される。上述したように、第一貯留タンク11Bには、ガス導入部を通じて、格納容器100の内部のガスに含まれる蒸気が送られる。従って、蒸気は、散水機12Dにより散水された流体により凝縮されて凝縮水となる。この凝縮水は、第一貯留タンク11Bの下部に溜められ、冷却ポンプ12Cにより循環配管12Aに送られて熱交換器12Bを経由して冷却され第一貯留タンク11Bの上部に戻される冷却用の流体となる。また、流入した蒸気が凝縮されることにより、第一貯留タンク11B内には、冷却によって凝縮されない非凝縮性ガスである放射性希ガスと空気とが貯留される。
第一冷却開閉弁12Eは、循環配管12Aにおいて熱交換器12Bよりも他端側(下流側;第一貯留タンク11Bの上部側)に設けられている。また、第一冷却開閉弁12Fは、循環配管12Aにおいて冷却ポンプ12Cよりも一端側(上流側;第一貯留タンク11Bの下部側)に設けられている。これら、第一冷却開閉弁12E,12Fは、開動作により循環配管12Aを開放し、閉動作により循環配管12Aを閉塞する。また、第一冷却開閉弁12E,12Fは、自動弁であり、開信号の入力により開動作する一方、閉信号の入力により閉動作する。また、第一冷却開閉弁12E,12Fは、自動弁ではなくてもよい。従って、第一冷却開閉弁12E,12Fが開動作して循環配管12Aが開放されることで、循環配管12Aを介して第一貯留タンク11Bの内部の凝縮水が循環されつつ熱交換器12Bにより冷却される。また、第一冷却開閉弁12E,12Fが閉動作して循環配管12Aが閉塞されることで、第一貯留タンク11Bの内部の凝縮水は循環や冷却されない。また、第一冷却開閉弁12Eは、熱交換器12Bと第一貯留タンク11Bの上部との間で循環配管12Aを開放または閉塞する。また、第一冷却開閉弁12Fは、第一貯留タンク11Bの下部と冷却ポンプ12Cとの間で循環配管12Aを開放または閉塞する。
第一凝縮水送出部13は、送出配管13Aと、送出ポンプ13Bと、送出開閉弁13C,13Dと、逆止弁13Eと、を有する。送出配管13Aは、一端が第一貯留タンク11Bの下部にて第一貯留タンク11Bの内部に接続され、他端が格納容器100の内部に至り設けられている。
送出ポンプ13Bは、送出配管13Aの途中に設けられており、第一貯留タンク11Bの下部に貯留された凝縮水を送出配管13Aにより格納容器100の内部に送り出す。送出開閉弁13Cは、送出配管13Aにおいて送出ポンプ13Bよりも一端側(第一貯留タンク11B側)に設けられている。また、送出開閉弁13Dは、送出配管13Aにおいて送出ポンプ13Bよりも他端側(格納容器100側)であって格納容器100の外部に並んで設けられている。これら、送出開閉弁13C,13Dは、開動作により送出配管13Aを開放し、閉動作により送出配管13Aを閉塞する。また、送出開閉弁13C,13Dは、自動弁であり、開信号の入力により開動作する一方、閉信号の入力により閉動作する。また、送出開閉弁13Cは、自動弁ではなくてもよい。従って、送出開閉弁13C,13Dが開動作して送出配管13Aが開放されることで、送出配管13Aを介して第一貯留タンク11Bの内部の凝縮水が格納容器100に送り出される。また、送出開閉弁13C,13Dのいずれか1つが閉動作して送出配管13Aが閉塞されることで、第一貯留タンク11Bの内部の凝縮水は格納容器100に送り出されない。送出開閉弁13Cは、第一貯留タンク11Bの下部と送出ポンプ13Bとの間で送出配管13Aを開放または閉塞する。また、送出開閉弁13Dは、送出ポンプ13Bと格納容器100との間で送出配管13Aを開放または閉塞する。送出開閉弁13Dは、最も格納容器100寄りに設けられて格納容器100を外部から隔離する隔離弁として機能する。
逆止弁13Eは、格納容器100の内部において送出配管13Aの他端に接続されている。逆止弁13Eは、送出配管13Aの他端から格納容器100の内部に送り出される凝縮水を格納容器100の内部に流出させるが、格納容器100の内部の流体を送出配管13Aの他端から格納容器100の外部に漏らさない。従って、逆止弁13Eは、格納容器100を内部から隔離する隔離弁として機能する。
第一貯留部水位検出部14は、第一貯留部11における第一貯留タンク11Bに貯留される凝縮水の水位を検出する。第一貯留部圧力検出部15は、第一貯留部11における第一貯留タンク11Bの内部の圧力を検出する。
第二貯留部21は、格納容器100に対して、第一貯留部11と並列に設けられ、第一貯留部11の第一貯留タンク11Bに放射性希ガスの全量が貯留された後に、格納容器100内のガスを受け入れ、このガスに含まれる蒸気を凝縮した凝縮水を貯留するものである。第二貯留部21は、第二貯留配管21Aと、第二貯留タンク(凝縮水貯留タンク)21Bと、第二貯留開閉弁21Cと、を有している。
第二貯留配管21Aは、排気配管3が格納容器100の外部に引き出された端部に対し、第一貯留部11における第一貯留配管11Aと並列に接続されている。すなわち、第二貯留配管21Aは、排気配管3が格納容器100の外部に引き出された端部に対し、第一貯留配管11Aと分岐して接続されている。
第二貯留タンク21Bは、第二貯留配管21Aの終端が接続されている。第二貯留タンク21Bは、容量が変化することのない密閉容器である。
第二貯留開閉弁21Cは、第二貯留配管21Aの途中に設けられ、開動作により第二貯留配管21Aを開放し、閉動作により第二貯留配管21Aを閉塞する。また、第二貯留開閉弁21Cは、自動弁であり、開信号の入力により開動作する一方、閉信号の入力により閉動作する。また、第二貯留開閉弁21Cは、自動弁ではなくてもよい。従って、第二貯留開閉弁21Cが開動作して第二貯留配管21Aが開放されることで、排気配管3を介して格納容器100の内部から排出されたガスが第二貯留タンク21Bに送られる。また、第二貯留開閉弁21Cが閉動作して第二貯留配管21Aが閉塞されることで、排気配管3を介して格納容器100の内部から排出されたガスは第二貯留タンク21Bには送られない。
第二冷却部22は、第二貯留タンク21B内に流入したガスを冷却して該ガスに含まれる蒸気(凝縮性ガス)を凝縮させるものである。第二冷却部22は、循環配管22Aと、熱交換器22Bと、冷却ポンプ22Cと、散水機(散水部)22Dと、第二冷却開閉弁22E,22Fと、を有している。
循環配管22Aは、一端が第二貯留タンク21Bの下部にて第二貯留タンク21Bの内部に接続され、他端が第二貯留タンク21Bの上部にて第二貯留タンク21Bの内部に接続されて、第二貯留タンク21Bを含みループ状に設けられている。本実施形態において、循環配管22Aは、上述した第一冷却部12における循環配管12Aの一部を共有して構成されている。具体的に、循環配管22Aは、循環配管12Aにおいて熱交換器12Bと第一冷却開閉弁12Eとの間に一端が接続されて他端が第二貯留タンク21Bの上部にて第二貯留タンク21Bの内部に接続された冷却配管22Aaを有している。また、循環配管22Aは、一端が第二貯留タンク21Bの下部にて第二貯留タンク21Bの内部に接続されて他端が循環配管12Aにおいて冷却ポンプ12Cと第一冷却開閉弁12Fとの間に接続された冷却配管22Abを有している。すなわち、循環配管22Aは、冷却配管22Aa,22Abを有することで、第一冷却部12における循環配管12Aの一部と熱交換器12Bおよび冷却ポンプ12Cとを共有して構成されている。
熱交換器22Bは、循環配管22Aの途中に設けられており、冷却水が供給されるケーシングの内部に循環配管22Aの途中に介在された伝熱管が設けられている。熱交換器22Bに供給される冷却水は、例えば、海水や湖水などがあり、図示しない冷却水供給ポンプにより供給されてケーシングの内部を経て海や湖に戻される。この熱交換器22Bは、上述したように第一冷却部12における熱交換器12Bを共有して構成されている。なお、熱交換器22Bと熱交換器22Bに供給される冷却水の間に中間冷却のための熱交換器を介在させてもよい。中間冷却のための熱交換器に供給される冷却水は例えば純水などがある。
冷却ポンプ22Cは、循環配管22Aの途中に設けられており、第二貯留タンク21Bの下部に貯留された流体を循環配管22Aにより熱交換器22Bを経由して第二貯留タンク21Bの上部に戻す。従って、第二貯留タンク21Bの下部に貯留された流体は、冷却ポンプ22Cにより循環配管22Aに送られて熱交換器22Bを経由して冷却され第二貯留タンク21Bの上部に戻される。この冷却ポンプ22Cは、上述したように第一冷却部12における冷却ポンプ12Cを共有して構成されている。
散水機22Dは、いわゆるシャワーであって、第二貯留タンク21Bの内部の上部に設けられて循環配管22A(冷却配管22Aa)の他端に接続されている。従って、冷却ポンプ22Cにより循環配管22Aに送られて第二貯留タンク21Bの上部に戻された流体は、散水機22Dにより第二貯留タンク21Bの下部に向けて散水される。上述したように、第二貯留タンク21Bには、ガス導入部を通じて、格納容器100の内部のガスに含まれる蒸気が送られる。従って、蒸気は、散水機22Dにより散水された流体により凝縮されて凝縮水となる。この凝縮水は、第二貯留タンク21Bの下部に溜められ、冷却ポンプ22Cにより循環配管22Aに送られて熱交換器22Bを経由して冷却され第二貯留タンク21Bの上部に戻される冷却用の流体となる。
第二冷却開閉弁22Eは、循環配管22Aにおいて熱交換器22Bよりも他端側(下流側;第二貯留タンク21Bの上部側)となる冷却配管22Aaに設けられている。また、第二冷却開閉弁22Fは、循環配管22Aにおいて冷却ポンプ22Cよりも一端側(上流側;第二貯留タンク21Bの下部側)となる冷却配管22Abに設けられている。これら、第二冷却開閉弁22E,22Fは、開動作により循環配管22Aを開放し、閉動作により循環配管22Aを閉塞する。また、第二冷却開閉弁22E,22Fは、自動弁であり、開信号の入力により開動作する一方、閉信号の入力により閉動作する。また、第二冷却開閉弁22E,22Fは、自動弁ではなくてもよい。従って、第二冷却開閉弁22E,22Fが開動作して循環配管22Aが開放されることで、循環配管22Aを介して第二貯留タンク21Bの内部の凝縮水が循環されつつ熱交換器22Bにより冷却される。また、第二冷却開閉弁22E,22Fが閉動作して循環配管22Aが閉塞されることで、第二貯留タンク21Bの内部の凝縮水は循環や冷却されない。また、第二冷却開閉弁22Eは、熱交換器22Bと第二貯留タンク21Bの上部との間で循環配管22Aを開放または閉塞する。また、第二冷却開閉弁22Fは、第二貯留タンク21Bの下部と冷却ポンプ22Cとの間で循環配管22Aを開放または閉塞する。
第二凝縮水送出部23は、送出配管23Aと、送出ポンプ23Bと、送出開閉弁23C,23Dと、逆止弁23Eと、を有する。送出配管23Aは、一端が第二貯留タンク21Bの下部にて第二貯留タンク21Bの内部に接続され、他端が格納容器100の内部に至り設けられている。本実施形態において、送出配管23Aは、上述した第一凝縮水送出部13における送出配管13Aの一部を共有して構成されている。具体的に、送出配管23Aは、一端が第二貯留タンク21Bの下部にて第二貯留タンク21Bの内部に接続され、他端が送出配管13Aにおいて送出ポンプ13Bと送出開閉弁13Cとの間に接続された接続送出配管23Aaを有している。すなわち、送出配管23Aは、接続送出配管23Aaを有することで、第一凝縮水送出部13における送出配管13Aの一部と送出ポンプ13Bと送出開閉弁13Dと逆止弁13Eとを共有して構成されている。
送出ポンプ23Bは、送出配管23Aの途中に設けられており、第二貯留タンク21Bの下部に貯留された凝縮水を送出配管23Aにより格納容器100の内部に送り出す。この送出ポンプ23Bは、上述したように第一凝縮水送出部13における送出ポンプ13Bを共有して構成されている。
送出開閉弁23Cは、送出配管23Aにおいて送出ポンプ23Bよりも一端側(第二貯留タンク21B側)に設けられている。また、送出開閉弁23Dは、送出配管23Aにおいて送出ポンプ23Bよりも他端側(格納容器100側)であって格納容器100の外部に並んで設けられている。これら、送出開閉弁23C,23Dは、開動作により送出配管23Aを開放し、閉動作により送出配管23Aを閉塞する。また、送出開閉弁23C,23Dは、自動弁であり、開信号の入力により開動作する一方、閉信号の入力により閉動作する。また、送出開閉弁23Cは、自動弁ではなくてもよい。従って、送出開閉弁23C,23Dが開動作して送出配管23Aが開放されることで、送出配管23Aを介して第二貯留タンク21Bの内部の凝縮水が格納容器100に送り出される。また、送出開閉弁23C,23Dのいずれか1つが閉動作して送出配管23Aが閉塞されることで、第二貯留タンク21Bの内部の凝縮水は格納容器100に送り出されない。送出開閉弁23Cは、第二貯留タンク21Bの下部と送出ポンプ23Bとの間で送出配管23Aを開放または閉塞する。また、送出開閉弁23Dは、送出ポンプ23Bと格納容器100との間で送出配管23Aを開放または閉塞する。送出開閉弁23Dは、最も格納容器100寄りに設けられて格納容器100を外部から隔離する隔離弁として機能する。送出開閉弁23Dは、上述したように、第一凝縮水送出部13における送出開閉弁13Dを共有して構成されている。
逆止弁23Eは、格納容器100の内部において送出配管23Aの他端に接続されている。逆止弁23Eは、送出配管23Aの他端から格納容器100の内部に送り出される凝縮水を格納容器100の内部に流出させるが、格納容器100の内部の流体を送出配管23Aの他端から格納容器100の外部に漏らさない。従って、逆止弁23Eは、格納容器100を内部から隔離する隔離弁として機能する。逆止弁23Eは、上述したように、第一凝縮水送出部13における逆止弁13Eを共有して構成されている。
第二貯留部水位検出部24は、第二貯留部21における第二貯留タンク21Bに貯留される凝縮水の水位を検出する。第二貯留部圧力検出部25は、第二貯留部21における第二貯留タンク21Bの内部の圧力を検出する。
排気部31は、分岐排気配管31Aと、排気筒31Bと、分岐排気開閉弁31Cと、絞弁31Dと、放射線検出部31Eと、を有している。分岐排気配管31Aは、排気配管3の端部に分岐して設けられている。具体的に、分岐排気配管31Aは、排気配管3において、排気開閉弁3Bと、第一貯留部11の第一貯留配管11Aおよび第二貯留部21の第二貯留配管21Aが接続されている部分との間に分岐して設けられている。なお、分岐排気配管31Aは、第一貯留部11の第一貯留配管11Aにおいて、排気配管3に接続されている部分と、第一貯留開閉弁11Cとの間に分岐して設けられていてもよい。すなわち、分岐排気配管31Aは、少なくとも第一貯留部11の第一貯留タンク11Bに接続できるように設けられている。
排気筒31Bは、いわゆる煙突であり、分岐排気配管31Aの先端(終端)に設けられている。分岐排気開閉弁31Cは、分岐排気配管31Aの途中に設けられ、開動作により分岐排気配管31Aを開放し、閉動作により分岐排気配管31Aを閉塞する。また、分岐排気開閉弁31Cは、自動弁であり、開信号の入力により開動作する一方、閉信号の入力により閉動作する。また、分岐排気開閉弁31Cは、自動弁ではなくてもよい。従って、分岐排気開閉弁31Cが開動作して分岐排気配管31Aが開放されることで、分岐排気配管31Aを介して排気配管3側と排気筒31Bとが連通する。また、分岐排気開閉弁31Cが閉動作して分岐排気配管31Aが閉塞されることで、分岐排気配管31Aを介して排気配管3側と排気筒31Bとが連通しない。
絞弁31Dは、分岐排気配管31Aの途中に設けられた、例えば、オリフィスからなり、分岐排気配管31Aを通過する流体の流量を抑制する。絞弁31Dは、分岐排気配管31Aにおいて、排気配管3に接続されている部分と、分岐排気開閉弁31Cとの間に設けられている。なお、絞弁31Dは、分岐排気配管31Aにおいて、排気筒31Bと、分岐排気開閉弁31Cとの間に設けられていてもよい。放射線検出部31Eは、分岐排気配管31Aの途中に設けられ、分岐排気配管31Aを通過する流体の放射線量を検出する。放射線検出部31Eは、分岐排気配管31Aにおいて、排気筒31Bと、分岐排気開閉弁31Cとの間に設けられている。
第一貯留部圧力排出部32は、第一貯留タンク(希ガス貯留タンク)11Bの過圧を防止するための回路であり、圧力逃がし弁32Aと、圧力逃がし配管32Bと、噴出配管(出口)32Cと、を有する。圧力逃がし弁32Aは、いわゆる機械式の安全弁であり、図示は省略したが、第一貯留タンク11Bと圧力逃がし配管32Bとを連通する開口の周囲に形成される弁座と、この弁座に当接自在に配置されて開口を開閉する弁体と、この弁体を弁座に押し付ける方向に付勢するばね体(付勢部材)等を備えて構成される。第一貯留タンク11Bの内圧が上昇すると、この内圧がばね体の付勢力に抗って弁体を開く方向に作用する。内圧が付勢力よりも大きくなると、弁体が弁座から離間して開弁することにより、第一貯留タンク11B内のガスが開口を通じて、圧力逃がし配管32Bに排出される。一方、内圧が付勢力よりも小さくなると、ばね体の付勢力が弁体を閉じる方向に作用する。これにより、弁体が弁座に押し付けられることで閉弁することにより、第一貯留タンク11Bから圧力逃がし配管32Bへのガスの排出が終了する。ばね体の付勢力は、例えば、第一貯留タンク11Bの許容上限圧力値に設定されており、第一貯留タンク11Bの内圧は、この許容上限圧力値以下に保たれる。
圧力逃がし配管32Bは、圧力逃がし弁32Aを介して、第一貯留タンク11Bと第二貯留タンク(凝縮水貯留タンク)21Bとを接続している。このため、圧力逃がし弁32Aを通じて第一貯留タンク11Bから排出されたガスは、圧力逃がし配管32Bにより、第二貯留タンク21Bに送られる。
噴出配管32Cは、圧力逃がし配管32Bの出口として機能する配管である。噴出配管32Cは、管壁に複数の孔部32C1を備えた多孔配管で構成され、本実施形態では、第二貯留タンク21Bに貯留された水(凝縮水)の液相に配置される。
第二貯留部圧力排出部33は、第二貯留タンク(凝縮水貯留タンク)21Bの過圧を防止するための回路であり、圧力逃がし弁33Aと、圧力逃がし配管33Bと、を有する。圧力逃がし弁33Aは、上述した第一貯留部圧力排出部32の圧力逃がし弁32Aと同様に、いわゆる機械式の安全弁である。圧力逃がし弁33Aの構成は、圧力逃がし弁32Aと同等であるので説明を省略する。圧力逃がし配管33Bは、圧力逃がし弁33Aを介して、第二貯留タンク21Bと吸着部34とを接続している。このため、圧力逃がし弁33Aを通じて第二貯留タンク21Bから排出されたガスは、圧力逃がし配管33Bにより、吸着部34に送られる。
吸着部34は、第二貯留部圧力排出部33の圧力逃がし弁33Aが作動(開弁)した際の安全装置として機能するものである。吸着部34は、圧力逃がし配管33Bを通じて流入したガスから放射性希ガスを吸着する吸着装置34Aと、該ガス中の水分を捕捉する除湿装置34Bとを有する。キセノン(Xe)やクリプトン(Kr)のような希ガスは、活性炭に吸着されることが知られている。このため、吸着装置34Aは、ケーシングの内部に活性炭(チャコールフィルタ)を備え、この活性炭を通過する際に放射性希ガスが吸着される。また、活性炭は、湿度(水分)によって、吸着性能が低減するため、吸着装置34Aの上流側(入口側)に除湿装置34Bが設けられている。この除湿装置34Bは、例えば、ケーシングの内部にシリカゲルなどの吸湿材を収容し、この吸湿材がガス中の湿度(水分)を除去する。また、除湿装置34Bは、冷媒を圧縮、凝縮、膨張、蒸発の冷凍サイクルで循環させる冷凍装置を備え、ケーシングの内部に冷凍装置の蒸発器を配置する構成としてもよい。この構成では、蒸発器において、圧力逃がし配管33Bを通じて流入するガスと冷媒との熱交換によりガスが冷却される。このため、ガスに含まれる水分が凝縮することで、結果としてガス中の湿度(水分)を除去することができる。
図2は、本実施形態に係る格納容器保全設備の制御系のブロック図である。上述した構成の格納容器保全設備50は、制御部41により統括して制御される。制御部41は、CPU(Central Processing Unit)のようなマイクロプロセッサ、ROMやRAMのようなメモリおよびストレージを含む。制御部41は、図2に示すように、格納容器圧力検出部1、第一貯留部水位検出部14、第一貯留部圧力検出部15、第二貯留部水位検出部24、第二貯留部圧力検出部25、放射線検出部31Eからの検出の信号を入力することで、熱交換器12B,22Bの冷却水供給ポンプ、第一冷却開閉弁12E,12F、冷却ポンプ12C,22C、排気開閉弁3A,3B、第一貯留開閉弁11C、送出開閉弁13C、送出開閉弁13D,23D、送出ポンプ13B,23B、第二冷却開閉弁22E,22F、第二貯留開閉弁21C、送出開閉弁23C、分岐排気開閉弁31Cを駆動する信号を出力する。
以下、図3〜図9の本実施形態に係る格納容器保全設備の動作図を参照し、制御部41による格納容器保全設備50の動作手順を説明する。
事故前においては、図3に示すように、制御部41は、熱交換器12B,22Bの冷却水供給ポンプ、冷却ポンプ12C,22C、送出ポンプ13B,23Bを停止する信号を出力しており、かつ第一冷却開閉弁12E,12F、排気開閉弁3A,3B、第一貯留開閉弁11C、送出開閉弁13C、送出開閉弁13D,23D、第二冷却開閉弁22E,22F、第二貯留開閉弁21C、送出開閉弁23C、分岐排気開閉弁31Cを閉動作する閉信号を出力している。
原子炉の炉心が損傷するようなシビアアクシデントの事故が発生した場合、炉心損傷後は格納容器100の内部に冷却水を供給するような格納容器100を防護する複数の対策を講じる。しかし、複数の格納容器防護対策を実施しても事象進展を止められず、格納容器100の内部の圧力が設計の限界圧力近くに到達する。
従って、シビアアクシデントの事故時において、制御部41は、熱交換器12Bに冷却水を供給するため冷却水供給ポンプを駆動させる駆動信号を出力する。また、制御部41は、第一貯留タンク11Bの水を循環させるため第一冷却開閉弁12E,12Fを開動作させる開信号を出力する。また、制御部41は、冷却ポンプ12Cを駆動する駆動信号を出力する。すなわち、図4に示すように、第一冷却部12において、第一貯留タンク11Bを含むループ状の循環配管12Aに、第一貯留タンク11Bの下部に貯留された水が循環し、熱交換器12Bを経由して冷却されて第一貯留タンク11Bの上部に戻される。
その後、格納容器圧力検出部1により検出する格納容器100の内部の圧力が設計の限界圧力となった場合、制御部41は、排気開閉弁3A,3B、第一貯留開閉弁11Cを開動作させる開信号を出力する。すなわち、図5に示すように、フィルタユニット2を通過して放射性よう素や粒子状の放射性物質が除去された格納容器100の内部のガス(凝縮性ガスである蒸気、および、非凝縮性ガスである空気や放射性希ガスなどを含むガス)が第一貯留タンク11Bに送られる。そして、第一貯留タンク11Bの内部では、空気、放射性希ガスなどの非凝縮性ガスが貯留される一方、第一冷却部12により循環する水で蒸気が冷却されて凝縮された凝縮水として溜まる。
第一貯留タンク11Bに蒸気を受け入れている際、凝縮した水分でタンク水位が上昇する。よって、第一貯留部水位検出部14により検出する第一貯留タンク11Bに貯留される凝縮水の水位が所定水位を超えた場合、制御部41は、第一凝縮水送出部13の送出開閉弁13C,13Dを開動作させる開信号を出力する。また、制御部41は、第一凝縮水送出部13の送出ポンプ13Bを駆動させる信号を出力する。すなわち、図6に示すように、第一貯留タンク11Bに貯留される凝縮水が格納容器100に送り出される。また、第一貯留部水位検出部14により検出する第一貯留タンク11Bに貯留される凝縮水の水位が所定水位まで下がった場合、制御部41は、第一凝縮水送出部13の送出ポンプ13Bを停止させる信号を出力し、送出開閉弁13C,13Dを閉動作させる閉信号を出力する(図5に示す動作に戻る)。この動作を繰り返すことで、第一貯留タンク11Bに貯留される凝縮水の水位を所定水位に維持する。
第一貯留タンク11Bは、最初大気圧であるが、非凝縮性ガスを貯留するに伴い圧力が上昇する。よって、第一貯留部圧力検出部15により検出する第一貯留タンク11Bの内部の圧力が、格納容器圧力検出部1により検出する格納容器100の内部の圧力とほぼ同じになり、格納容器100の内部の圧力と第一貯留タンク11Bの内部の圧力とが均圧した場合、格納容器100で発生した放射性希ガスは、全量が第一貯留タンク11Bに送られて貯留されたものとみなす(比較的事故初期において放射性希ガスは格納容器100の内部に全量放出される)。この場合、制御部41は、第一貯留開閉弁11Cを閉動作させる閉信号を出力する。すなわち、格納容器100から第一貯留タンク11Bへのガスの送りを停止する。
格納容器100で発生した非凝縮性ガスの全量を第一貯留タンク11Bに送っても、凝縮性ガスである蒸気の発生により格納容器100の内部の圧力は限界圧力は超えないものの上昇する。よって、第一貯留開閉弁11Cを閉動作させる閉信号を出力して格納容器100から第一貯留タンク11Bへのガスの送りを停止した後、制御部41は、熱交換器22Bに冷却水を供給するため冷却水供給ポンプを駆動させる駆動信号を出力する(熱交換器22Bが熱交換器12Bを共有する場合は熱交換器12Bに駆動信号を出力しているため不要)。また、制御部41は、第一貯留タンク11Bの水の循環を停止させるため冷却ポンプ12Cを停止させる停止信号を出力し、第一冷却開閉弁12E,12Fを閉動作させる閉信号を出力する。また、制御部41は、第二貯留タンク21Bの水を循環させるため第二冷却開閉弁22E,22Fを開動作させる開信号を出力する。また、制御部41は、冷却ポンプ22Cを駆動する駆動信号を出力する(冷却ポンプ22Cが冷却ポンプ12Cを共有する場合は冷却ポンプ12Cに駆動信号を出力しているため不要)。また、制御部41は、第二貯留開閉弁21Cを開動作させる開信号を出力する。すなわち、図7に示すように、フィルタユニット2を通過して放射性よう素や粒子状の放射性物質が除去された格納容器100の内部のガス(凝縮性ガスである蒸気および非凝縮性ガスである空気を含むガス)が第二貯留タンク21Bに送られる。この場合、格納容器100で発生した放射性希ガスの全量が第一貯留タンク11Bに送られて貯留されているため、基本的に第二貯留タンク21Bに放射性希ガスは送られない。さらに、図7に示すように、第二冷却部22において、第二貯留タンク21Bを含むループ状の循環配管22Aに、第二貯留タンク21Bの下部に貯留された水が循環し、熱交換器22Bを経由して冷却されて第二貯留タンク21Bの上部に戻される。このため、第二貯留タンク21Bの内部では、空気が貯留される一方、第二冷却部22により循環する水で蒸気が冷却されて凝縮された凝縮水として溜まる。これにより、格納容器100の圧力を低減させる。
ここで、第一貯留開閉弁11Cは格納容器100から第一貯留タンク11Bへのガスの送りを開閉し、第二貯留開閉弁21Cは格納容器100から第二貯留タンク21Bへのガスの送りを開閉しており、これら第一貯留開閉弁11Cおよび第二貯留開閉弁21Cの開閉により格納容器100のガスの送りを第一貯留タンク11Bや第二貯留タンク21Bに切り換えることができる。従って、本実施形態の格納容器保全設備50では、第一貯留開閉弁11Cおよび第二貯留開閉弁21Cは、格納容器100のガスの送りを第一貯留タンク11Bや第二貯留タンク21Bに切り換える切換部として構成されている。
第二貯留タンク21Bに蒸気を受け入れている際、凝縮した水分でタンク水位が上昇する。よって、第二貯留部水位検出部24により検出する第二貯留タンク21Bに貯留される凝縮水の水位が所定水位を超えた場合、制御部41は、第二凝縮水送出部23の送出開閉弁23C,23Dを開動作させる開信号を出力する。また、制御部41は、第二凝縮水送出部23の送出ポンプ23Bを駆動させる信号を出力する。すなわち、図8に示すように、第二貯留タンク21Bに貯留される凝縮水が格納容器100に送り出される。また、第二貯留部水位検出部24により検出する第二貯留タンク21Bに貯留される凝縮水の水位が所定水位まで下がった場合、制御部41は、第二凝縮水送出部23の送出ポンプ23Bを停止させる信号を出力し、送出開閉弁23C,23Dを閉動作させる閉信号を出力する(図7に示す動作に戻る)。この動作を繰り返すことで、第二貯留タンク21Bに貯留される凝縮水の水位を所定水位に維持する。
第二貯留タンク21Bは、最初大気圧であるが、非凝縮性ガスである空気を貯留するに伴い圧力が上昇する。よって、制御部41は、第二貯留部圧力検出部25により検出する第二貯留タンク21Bの内部の圧力を管理する。そして、制御部41は、格納容器圧力検出部1により検出する格納容器100の内部の圧力の上昇が抑えられた場合、制御部41は、開動作中の全ての開閉弁を閉作動する閉信号を出力すると共に、稼働中の全てのポンプを停止させる信号を出力する(図3に示す状態に戻す)。
その後、第一貯留タンク11Bに貯留した放射性希ガスのうち、キセノンは半減期が短く、線量が高いので、1年以上減衰させ、無害化する。クリプトンはキセノンほど線量が高くないが、半減期が長いことから長期間、第一貯留タンク11Bに貯留した状態で減衰させる。クリプトンを数年程度減衰させた後、放射線量を監視しながら第一貯留タンク11Bに貯留したガスを管理放出する。この場合、制御部41は、図3に示す状態から、第一貯留開閉弁11Cおよび分岐排気開閉弁31Cを開動作する開信号を出力する。すなわち、図9に示すように、大気圧よりも内部が高い圧力の第一貯留タンク11Bに貯留されたガスが、第一貯留配管11Aから排気配管3の一部を経て分岐排気配管31Aに至り絞弁31Dにて流量を抑制されつつ排気筒31Bから大気に放出される。ただし、公衆被曝に影響しないように、放射線検出部31Eにより検出される放射線量が影響のない範囲でなければ、制御部41は、第一貯留開閉弁11Cおよび分岐排気開閉弁31Cを閉動作する閉信号を出力することで、図3に示す状態に戻しガスの放出を止める。
次に、上述した格納容器保全設備50の動作において、格納容器100のガスを第一貯留タンク11Bへ送っている際に、第一貯留タンク11Bの内圧が急激に上昇した場合の動作について説明する。図10は、第一貯留タンクの内圧が許容上限圧力値を超えた場合の動作を説明する図であり、図11は、第二貯留タンクの内圧が許容上限圧力値を超えた場合の動作を説明する図である。
図10に示すように、格納容器100の内部のガス(凝縮性ガスである蒸気、および、非凝縮性ガスである空気や放射性希ガスなどを含むガス)は、上述のように、第一貯留配管11Aおよび第一貯留開閉弁11Cを通じて、第一貯留タンク11Bに送られる。第一貯留タンク11Bの内部では、空気、放射性希ガスなどの非凝縮性ガスが貯留される一方、散水機12Dからの散水によって蒸気が凝縮されて凝縮水Wとして溜まる。蒸気を凝縮することで、第一貯留タンク11B内の内圧が急激に上昇することを抑制している。
ここで、例えば、散水機12Dの散水不良などの事情により、第一貯留タンク11Bの内圧が急激に上昇することが想定される。この場合、第一貯留タンク11Bの内圧が所定の許容上限圧力値よりも大きくなった場合、第一貯留タンク11Bの圧力逃がし弁32Aが作動(開弁)して、第一貯留タンク11B内のガスが排出される。本実施形態では、圧力逃がし弁32Aは、機械式の安全弁であるため、万一、停電などで電力供給が遮断された場合でも確実に作動して第一貯留タンク11Bの破損を防止する。第一貯留タンク11Bから排出されたガスは、圧力逃がし配管32Bおよび噴出配管32Cを通じて、第二貯留タンク21Bに送られる。これにより、ガスに含まれる放射性希ガスが大気に放出されることを防止できる。また、格納容器100から第一貯留タンク11Bへガスが送られる際には、第二貯留開閉弁21Cは閉じられており、第二貯留タンク21B内は大気圧となっている。このため、第一貯留タンク11Bから排出された高圧のガスを第二貯留タンク21B内に受け入れることができる。この場合、制御部41は、第二冷却開閉弁22E,22F(図7など参照)を開いて、散水機22Dから散水を行い、第二貯留タンク21Bに送られたガスの蒸気を凝縮させることが好ましい。
また、本実施形態では、噴出配管32Cは、管壁に小さな孔部32C1が多数形成された多孔配管であり、噴出配管32Cは、第二貯留タンク21B内の凝縮水Wの液相51に配置されている。このため、第二貯留タンク21Bに流入したガスは、噴出配管32Cの孔部32C1を通じて、凝縮水W中に噴出される。このため、噴出されたガスの圧力は、凝縮水Wの静水頭で吸収される。さらに、第二貯留タンク21B内の気相52の圧力緩衝作用により、第二貯留タンク21B内に流入したガスによる圧力変動を抑制できる。
ここで、第一貯留タンク11Bから第二貯留タンク21Bへ高圧のガスの流入が継続すると、第二貯留タンク21Bの内圧が上昇し、第二貯留タンク21Bの内圧が所定の許容上限圧力値よりも大きくなる可能性もある。第二貯留タンク21Bの内圧が所定の許容上限圧力値よりも大きくなった場合、図11に示すように、第二貯留タンク21Bの圧力逃がし弁33Aが作動(開弁)して、第二貯留タンク21B内のガスが排出される。本実施形態では、圧力逃がし弁33Aは、機械式の安全弁であるため、万一、停電などで電力供給が遮断された場合でも確実に作動して第二貯留タンク21Bの破損を防止する。第二貯留タンク21Bから排出されたガスは、圧力逃がし配管33Bを通じて、除湿装置34Bに送られ、この除湿装置34Bでガス中の水分が捕捉されて除湿される。除湿後のガスは、吸着装置34Aに送られ、この吸着装置34Aで流入したガスから放射性希ガスを吸着して除去する。そして、放射性希ガスが除去されたガスが大気に放出される。
本構成では、第一貯留タンク11Bの圧力逃がし弁32Aが作動(開弁)した場合、第一貯留タンク11B内のガスを第二貯留タンク21Bに排出している。ここで、圧力逃がし弁32Aの下流側に放射性希ガスを吸着する吸着部を設ける構成も考えられる。しかし、第一貯留タンク11Bから排出されるガスは、第二貯留タンク21Bから排出されるガスに比べて高圧であるため大容量となる。このため、第一貯留タンク11Bから排出されるガスの全量を処理できる吸着部を設けるには大容量の吸着装置(活性炭)が必要となる。これに対して、本構成では、第一貯留タンク11B内のガスを第二貯留タンク21Bに排出し、第二貯留タンク21Bの圧力逃がし弁33Aが作動(開弁)した場合に吸着装置34Aに送っている。第二貯留タンク21Bの圧力逃がし弁が作動する場合は、第一貯留タンク11Bで格納容器100の内部のガスを貯留した後であり、排出ガスの圧力及び流量も低下しているため、第一貯留タンク11Bに設けるよりも小容量の吸着装置34Aを設ければよく、装置構成の簡素化を実現できる。
この構成では、第一貯留タンク11Bの圧力逃がし弁32Aが作動することにより、第一貯留タンク11Bおよび第二貯留タンク21Bに放射性希ガスを含む非凝縮性ガスが貯留される。このため、第一貯留タンク11Bおよび第二貯留タンク21Bに放射性希ガスを貯留した状態で長期間減衰させ、放射線量を監視しながら第一貯留タンク11Bおよび第二貯留タンク21Bに貯留したガスを排気筒31Bから大気に管理放出する。
次に、変形例について説明する。図12は、変形例に係る第一貯留タンクと第二貯留タンクの内部構造を示す図である。上記した実施形態では、第一貯留タンク11B、第二貯留タンク21Bには、それぞれ第一貯留配管11A、第二貯留配管21Aが接続されてガスが流入する構成となっている。この構成では、第一貯留配管11A、第二貯留配管21Aを通じて、第一貯留タンク11B、第二貯留タンク21Bにそれぞれ集中して流入したガスが、温度差により偏って流れる偏流を発生させる。このため、散水機12D,22Dにより上方から散水したとしても、偏流によって散水が部分的に阻害され、流入したガス中の蒸気を効率良く冷却できないといった問題が想定される。
このため、図12に示す変形例では、第一貯留タンク11Bは、第一貯留タンク11B内にガスを分散させて導入する第一ガス導入部60を備え、第二貯留タンク21Bは、第二貯留タンク21B内にガスを分散させて導入する第二ガス導入部(ガス導入部)70を備えている。第一ガス導入部60は、ヘッダ61と、このヘッダ61に接続される多孔配管62とを備える。ヘッダ61は、第一貯留配管11Aを通じて供給されたガスを一時的に貯留して圧力の変動を抑える。多孔配管62は、管壁に複数の小径の孔部63を備え、本実施形態では第一貯留タンク11Bの凝縮水Wの液相53に配置されている。第二ガス導入部70は、ヘッダ71と、このヘッダ71に接続される多孔配管72とを備える。ヘッダ71は、第二貯留配管21Aを通じて供給されたガスを一時的に貯留して圧力の変動を抑える。多孔配管72は、管壁に複数の小径の孔部73を備え、本実施形態では第二貯留タンク21Bの凝縮水Wの液相51に配置されている。
この構成では、第一ガス導入部60および第二ガス導入部70は、それぞれ多孔配管62,72の孔部63,73を通じて、ガスをタンク内に分散して導入するため、タンク内での偏流を抑え、流入したガス中の蒸気を効率良く冷却することができる。また、第一ガス導入部60および第二ガス導入部70は、多孔配管62,72が凝縮水Wの液相53,51に配置されているため、流入したガス中の蒸気をより効率良く冷却することができる。
このような構成において、第一貯留タンク11Bは、圧力逃がし弁32Aと、圧力逃がし配管32Bとを備え、この圧力逃がし配管32Bの終端を、第二ガス導入部70と、切換部としての第二貯留開閉弁21Cとの間の第二貯留配管21A(排気配管3)に接続している。このため、第一貯留タンク11Bの圧力逃がし弁32Aが作動(開弁)して、第一貯留タンク11B内のガスが排出された場合、このガスは、圧力逃がし配管32Bを介して第二ガス導入部70に導かれ、第二ガス導入部70の多孔配管72の孔部73を通じて、第二貯留タンク21Bの凝縮水Wの液相51に排出される。この構成では、フィルタユニット2を通過したガス、および、第一貯留タンク11Bから圧力逃がし弁32Aを介して排出されたガスを、第二ガス導入部70を通じて第二貯留タンク21B内に導入でき、第二ガス導入部70を共通化することができる。このため、格納容器保全設備50の装置構成の簡素化を実現できる。また、第一貯留タンク11Bから圧力逃がし弁32Aを介して排出された放射性希ガスを含むガスを受ける場合、第二貯留開閉弁21Cは閉じられているため、放射性希ガスを含むガスが第二貯留タンク21B以外に排出されることを防止できる。
この変形例では、多孔配管62,72を凝縮水Wの液相53,51に配置しているが、ガスをタンク内に分散して導入できるのであれば、多孔配管62,72を凝縮水Wの水面よりも上方の気相54,52に配置してもよい。また、多孔配管62,72の本数や、配置構成、孔部63,73などはタンク内にガスを略均等に分散できる範囲で変更してもよい。
さて、上述した動作において、第一貯留タンク11Bへのガスの送りを停止する場合、格納容器100の内部の圧力と第一貯留タンク11Bの内部の圧力とが均圧したことを格納容器100で発生した放射性希ガスの全量が第一貯留タンク11Bに送られて貯留されたものとみなすとしている。このための構成について説明する。
図13は、本実施形態に係る格納容器保全設備における第一貯留部の容量を設定するための説明図である。図14は、本実施形態に係る格納容器保全設備における第一貯留部の容量を設定するためのグラフである。
放射性希ガスのキセノンやクリプトンは燃料ウランの核分裂に伴い発生するもので、燃料損傷してから比較的短時間の間に放射性希ガス全量が放出される。放射性希ガスは、格納容器100の内部の空気と格納容器100の内部で発生する蒸気に完全混合していると考えられ、空気、放射性希ガスなどの非凝縮性ガスは発生し続ける蒸気に随伴される形で第一貯留タンク11Bに貯留される。格納容器100の容量の全量の非凝縮性ガスが第一貯留タンク11Bに貯留されると、非凝縮性ガス中に分散していた放射性希ガスも一緒に第一貯留タンク11Bに貯留されるものとして第一貯留タンク11Bの容量を設計する。
第一貯留タンク11Bは、格納容器100の全容量の非凝縮性ガスを貯留するのに必要な容量に設計される。第一貯留タンク11Bに貯留する非凝縮性ガスの容積は、格納容器100の内部の圧力で圧縮されるが、この容積は事故前の温度(室温)、圧力(大気圧)、容積(格納容器100の容積と第一貯留タンク11Bの容積)と事故後の温度(飽和蒸気温度)、圧力(格納容器100の設計値圧力)、容積(第一貯留タンク11Bの容積)によりボイル・シャルルの法則(PV/T=一定)から要求が満たされる。具体的には、格納容器100の容量は定数なので、事故後の格納容器100の内部の圧力(設計値圧力)を設定すれば、必要な第一貯留タンク11Bの容量を求めることができる。
本実施形態の格納容器保全設備50では、図13に示すように、事故前の原子炉定常運転において、格納容器100は、内部の圧力P0は大気圧相当の0.1013MPa(a)、容量V0がV0m3(原子力設備によって異なる)、内部の温度T0をT0℃とする。この場合、第一貯留タンク11Bは、内部の圧力P1が大気圧相当の0.1013MPa(a)であり、容量V1がV1m3、内部の温度T1をT1℃とする。そして、シビアアクシデントの事故後において、格納容器100は、内部の圧力P’0を設計値としてP’0MPa(a)、容量V’0は変わらずV0m3、内部の温度T’0をT’0℃とする。この場合、第一貯留タンク11Bは、内部の圧力P’1をP’1MPa(a)、容量V’1を変わらずV1m3、内部の温度T’1をT’1℃とする。
このことから、事故前後でボイル・シャルルの法則より下記(1)式の関係となる。
(P0・V0/T0)+(P1・V1/T1)=P’1・V’1/T’1…(1)
(1)式の左式が事故前の格納容器100と第一貯留タンク11BのPV/Tを表し、右式が事故後の格納容器100の内部の非凝縮性ガスが第一貯留タンク11Bに移動した後のPV/Tを表す。なお、第一貯留タンク11Bの容量としては非凝縮性ガス以外に貯留する凝縮水量および水循環に必要な水量を上乗せする必要がある。
(1)式において、P0=P1、T0=T1、V1=V’1を代入すると(2)式となる。
V1=P0・V0・T’1/(P’1・T0−P0・T’1)…(2)
(2)式に上述した数値を代入すると、V1=0.1013×V0×(273+T’1)/(P’1×(273+T0)−0.1013×(273+T’1))となり、第一貯留タンク11Bの容量V1は、格納容器100の容量V0を代入し、初期の内部温度T0および貯留後の温度T’1を設定することで、事故後の第一貯留タンク11Bの圧力P’1によって決まる。第一貯留タンク11Bの圧力P’1と容量V1の関係は、図14に示すように設計すると、第一貯留タンク11Bの圧力P’1に応じた必要容量V1を求めることができる。このように第一貯留タンク11Bの容量V1を設計することで、第一貯留タンク11Bへのガスの送りを停止する場合、格納容器100の内部の圧力と第一貯留タンク11Bの内部の圧力とが均圧したことを格納容器100で発生した非凝縮性ガスの全量が第一貯留タンク11Bに送られて貯留されたものとみなすことができる。
なお、第一貯留タンク11Bは、上述のごとく求めた容量V1のものを1つ備えていてもよいが、容量V1をいくつかに分けて複数として、これを並列に接続してもよい。格納容器100から複数の第一貯留タンク11Bへのガスの供給は、複数の第一貯留タンク11Bに同時に行ってもよく、各第一貯留タンク11Bに順に行ってもよい。
以上、説明したように、本実施形態の格納容器保全設備50は、炉心を収容する原子炉圧力容器101を気密状態で格納する格納容器100の内部のガスから放射性よう素や粒子状の放射性物質を除去するフィルタユニット2と、フィルタユニット2に接続されて格納容器100の外部に引き出されて設けられた排気配管3と、格納容器100の外部で排気配管3に接続され、ガス中の放射性希ガスを貯留する第一貯留タンク11Bと、第一貯留タンク11Bと並列して格納容器100の外部で排気配管3に接続され、ガス中の蒸気を凝縮させた凝縮水を貯留する第二貯留タンク21Bと、フィルタユニット2を通過したガスの送り先を第一貯留タンク11Bまたは第二貯留タンク21Bに切り換える切換部としての第一貯留開閉弁11C、第二貯留開閉弁21Cと、第一貯留タンク11Bに設けられ、該第一貯留タンク11Bの内圧が所定値以上に上昇した際に開弁する圧力逃がし弁32Aと、圧力逃がし弁32Aに接続される圧力逃がし配管32Bと、圧力逃がし配管32Bの出口としての噴出配管32Cとを備え、この噴出配管32Cを第二貯留タンク21Bの内部に設けたものである。
この構成によれば、第一貯留タンク11Bには、該第一貯留タンク11Bの内圧が所定値以上に上昇した際に開弁する圧力逃がし弁32Aと、圧力逃がし弁32Aに接続される圧力逃がし配管32Bと、圧力逃がし配管32Bの出口としての噴出配管32Cとを備え、この噴出配管32Cを第二貯留タンク21Bの内部に設けたため、第一貯留タンク11Bの内圧が上昇して圧力逃がし弁32Aが開弁した場合であっても、第一貯留タンク11Bから排出された放射性希ガスを含むガスは、圧力逃がし配管32B、噴出配管32Cを通じて、第二貯留タンク21Bに流入される。従って、放射性希ガスが大気に放出されることを防止できる。
また、本実施形態によれば、圧力逃がし配管32Bの出口としての噴出配管32Cは、第二貯留タンク21Bに貯留された凝縮水Wの液相51に設けられるため、第二貯留タンク21Bに放射性希ガスを含むガスが流入した際に、この流入したガスの圧力を第二貯留タンク21Bに貯留された凝縮水Wの静水頭で吸収することができる。さらに、第二貯留タンク21B内の気相52が圧力緩衝作用を生じることにより、流入したガスによる圧力変動を抑制できる。
また、本実施形態によれば、格納容器保全設備50は、第二貯留タンク21Bの内部にガスを分散させて導入する第二ガス導入部70を備え、圧力逃がし配管32Bの終端(出口)は、第二ガス導入部70と切換部としての第二貯留開閉弁21Cとの間の第二貯留配管21A(排気配管3)に接続されているため、フィルタユニット2を通過したガス、及び、第一貯留タンク11Bから圧力逃がし弁32Aを介して排出された放射性希ガスを含むガスを、第二貯留タンク21B内に導入する際に、第二ガス導入部70を共通化することができる。このため、格納容器保全設備50の装置構成の簡素化を実現できる。
また、本実施形態によれば、第二貯留タンク21Bは、該第二貯留タンク21Bの内圧が所定値以上に上昇した際に開弁する圧力逃がし弁33Aを備えるため、第二貯留タンク21Bの内圧が急激に上昇しても該第二貯留タンク21Bの破損を防止できる。
また、本実施形態によれば、第二貯留タンク21Bの圧力逃がし弁33Aの下流側には、放射性希ガスを吸着する吸着部34が設けられるため、第二貯留タンク21Bに放射性希ガスを含むガスが流入したことに伴い、第二貯留タンク21Bの圧力逃がし弁33Aが開弁した場合であっても、第二貯留タンク21Bから排出される放射性希ガスは、吸着部34によって吸着されるため、該放射性希ガスが大気に放出されることを防止できる。
以上、本発明の一実施形態について説明したが、上記実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。例えば、本実施形態では、圧力逃がし配管32Bの出口としての噴出配管32Cは、第二貯留タンク21Bの凝縮水Wの液相51に配置する構成が好適ではあるが、第二貯留タンク21B内に配置されていれば、第二貯留タンク21Bの気相に配置してもよい。