JP6741424B2 - Vibration control device and building vibration control structure - Google Patents

Vibration control device and building vibration control structure Download PDF

Info

Publication number
JP6741424B2
JP6741424B2 JP2015255397A JP2015255397A JP6741424B2 JP 6741424 B2 JP6741424 B2 JP 6741424B2 JP 2015255397 A JP2015255397 A JP 2015255397A JP 2015255397 A JP2015255397 A JP 2015255397A JP 6741424 B2 JP6741424 B2 JP 6741424B2
Authority
JP
Japan
Prior art keywords
substrate
vibration damping
plate
holding
connecting plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015255397A
Other languages
Japanese (ja)
Other versions
JP2017115553A (en
Inventor
尚哉 後藤
尚哉 後藤
泰志 山▲崎▼
泰志 山▲崎▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
3M Innovative Properties Co
Original Assignee
3M Innovative Properties Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 3M Innovative Properties Co filed Critical 3M Innovative Properties Co
Priority to JP2015255397A priority Critical patent/JP6741424B2/en
Publication of JP2017115553A publication Critical patent/JP2017115553A/en
Application granted granted Critical
Publication of JP6741424B2 publication Critical patent/JP6741424B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Vibration Prevention Devices (AREA)
  • Vibration Dampers (AREA)

Description

本発明は、建物に生じた振動を抑制する制振装置に関する。本発明はまた、制振装置を備えた建物の制振構造に関する。 The present invention relates to a vibration damping device that suppresses vibration generated in a building. The present invention also relates to a building vibration damping structure including a vibration damping device.

互いに間隔を空けて配置される一対の架構部材(柱や梁)を含む建物の構造体に設置される制振装置において、振動エネルギー吸収材として摩擦材と粘弾性材との双方を用いる複合型の制振装置が知られている。例えば特許文献1には、建築物の振動を減衰する間柱型の減衰装置であって、上方部材に取り付けられた第1の板材と、下方部材に取り付けられた第2の板材と、第1の板材と第2の板材との間に設けられた第3の板材と、第1及び第2の板材の一方と第3の板材の一方の面との間に設けられた粘弾性ダンパーと、第1及び第2の板材の他方と第3の板材の他方の面との間に設けられた摩擦ダンパーとを備える減衰装置が記載されている。この減衰装置では、粘弾性ダンパーと摩擦ダンパーとが第3の板材の異なる面に設けられているから、粘弾性ダンパーと摩擦ダンパーとの間の接続部分に負荷が生じにくく、減衰装置の変形を防止できる、と記載されている。 In a vibration damping device installed in a structure of a building including a pair of frame members (columns and beams) spaced apart from each other, a composite type using both a friction material and a viscoelastic material as a vibration energy absorbing material. Damping devices are known. For example, Patent Document 1 discloses a stud type damping device for damping vibration of a building, which includes a first plate member attached to an upper member, a second plate member attached to a lower member, and a first plate member. A third plate member provided between the plate member and the second plate member; a viscoelastic damper provided between one of the first and second plate members and one surface of the third plate member; A damping device is described that includes a friction damper provided between the other of the first and second plate members and the other surface of the third plate member. In this damping device, since the viscoelastic damper and the friction damper are provided on different surfaces of the third plate member, it is difficult for load to be generated in the connecting portion between the viscoelastic damper and the friction damper, and the damping device is not deformed. It can be prevented.

また特許文献2には、建築物に設置されて地震による振動エネルギーを吸収する壁型の制震ダンパーであって、一対の第一鋼板と第一鋼板同士の間で固定状態に設けられた第二鋼板との間に挟持される第一粘弾性体と、一対の第一鋼板と第二鋼板との間に摩擦材が配され、第二鋼板の側面に対して平行に摺動するすべり機構と、一対の第一鋼板を挟持させるように設けた一対の第三鋼板と第一鋼板との間に挟持される第二粘弾性体とを備える制震ダンパーが記載されている。第一粘弾性体及びすべり機構は上階梁に接続され、第二粘弾性体は下階梁に接続される。すべり機構は上階梁に近接して配置され、その下方に第一粘弾性体及び第二粘弾性体が配置される。 Further, Patent Document 2 discloses a wall-type vibration damping damper installed in a building to absorb vibration energy caused by an earthquake, which is provided in a fixed state between a pair of first steel plates and first steel plates. A first viscoelastic body sandwiched between two steel plates, and a friction material disposed between a pair of first steel plate and second steel plate, and a sliding mechanism that slides in parallel to the side surface of the second steel plate. And a second viscoelastic body sandwiched between the pair of third steel plates provided so as to sandwich the pair of first steel plates and the first steel plate. The first viscoelastic body and the sliding mechanism are connected to the upper girder, and the second viscoelastic body is connected to the lower girder. The sliding mechanism is arranged close to the upper floor beam, and the first viscoelastic body and the second viscoelastic body are arranged below the sliding mechanism.

特開2009−228834号公報(段落0013、段落0014、図3)JP-A-2009-228834 (paragraph 0013, paragraph 0014, FIG. 3) 特開2007−247278号公報(段落0005、段落0011、段落0012、図1)JP-A-2007-247278 (paragraph 0005, paragraph 0011, paragraph 0012, FIG. 1)

複合型の制振装置において、構造体に設置したときの専有空間を削減すること、制振性能の信頼性及び再現性を向上させること、要求される制振性能に応じて振動エネルギー吸収材の表面積を容易に増減できること等が望まれている。 In the composite type vibration damping device, reduce the space occupied when installed in the structure, improve the reliability and reproducibility of the vibration damping performance, and adjust the vibration energy absorbing material according to the required vibration damping performance. It is desired that the surface area can be easily increased or decreased.

本発明の一態様は、互いに間隔を空けて配置される一対の架構部材を含む構造体に設置される制振装置であって、第1の架構部材に取り付けられる第1基板と、第2の架構部材に取り付けられ、第1基板に隣接して配置される第2基板であって、第1の架構部材と第2の架構部材との相対移動に伴い、第1基板に対して面内方向かつ横方向へ変位する第2基板と、第1基板に設けられる第1面と、第2基板に設けられ、第1面と同じ側を向く第2面と、第1基板及び第2基板に重ね合わされ、第1面及び第2面に対向する保持面を有する保持板と、第1面と保持面との間に挟持される粘弾性材と、第2面と保持面との間に挟持され、粘弾性材に対し第1基板と第2基板との相対変位の方向の片側に配置される摩擦材と、を具備し、第1基板は、第1の架構部材に支持される第1支持板と、第1支持板に連結され、第1面を有する第1連結板とを備え、第2基板は、第2の架構部材に支持される第2支持板と、第2支持板に連結され、第2面を有する第2連結板とを備え、第1支持板と第2支持板とは、上記相対変位の方向に直交する方向へ並んで配置され、第1連結板と第2連結板とは、上記相対変位の方向へ並んで配置される、制振装置である。 One embodiment of the present invention is a vibration damping device installed in a structure including a pair of frame members spaced apart from each other, the first substrate being attached to the first frame member, and the second substrate. A second substrate attached to the frame member and arranged adjacent to the first substrate, the in-plane direction with respect to the first substrate with the relative movement of the first frame member and the second frame member. And a second substrate that is laterally displaced, a first surface provided on the first substrate, a second surface provided on the second substrate and facing the same side as the first surface, and a first substrate and a second substrate. A holding plate that is superposed and has a holding surface facing the first surface and the second surface, a viscoelastic material that is held between the first surface and the holding surface, and a holding plate that is held between the second surface and the holding surface. And a friction material disposed on one side in the direction of relative displacement of the first substrate and the second substrate with respect to the viscoelastic material , the first substrate being supported by the first frame member. The second substrate includes a support plate and a first connection plate connected to the first support plate and having a first surface. The second substrate is a second support plate supported by the second frame member and a second support plate. A second connecting plate having a second surface, the first supporting plate and the second supporting plate being arranged side by side in a direction orthogonal to the direction of the relative displacement, and the first connecting plate and the second connecting plate. The connecting plate is a vibration damping device arranged side by side in the direction of the relative displacement .

本発明の他の態様は、互いに間隔を空けて配置される第1及び第2の架構部材と、第1の架構部材と第2の架構部材との間に設置される複数の制振装置とを具備する、建物の制振構造であって、複数の制振装置の各々は、第1の架構部材に取り付けられる第1基板と、第2の架構部材に取り付けられ、第1基板に隣接して配置される第2基板であって、第1の架構部材と第2の架構部材との相対移動に伴い、第1基板に対して面内方向かつ横方向へ変位する第2基板と、第1基板に設けられる第1面と、第2基板に設けられ、第1面と同じ側を向く第2面と、第1基板及び第2基板に重ね合わされ、第1面及び第2面に対向する保持面を有する保持板と、第1面と保持面との間に挟持される粘弾性材と、第2面と保持面との間に挟持され、粘弾性材に対し第1基板と第2基板との相対変位の方向の片側に配置される摩擦材とを具備し、複数の制振装置は、上記相対変位の方向へ互いに並んで設置される、建物の制振構造である。 Another aspect of the present invention is to provide first and second frame members spaced apart from each other, and a plurality of vibration damping devices installed between the first frame member and the second frame member. A vibration damping structure for a building, comprising: a plurality of vibration damping devices, each of the plurality of vibration damping devices being attached to a first frame member and a second frame member and being adjacent to the first substrate. A second substrate that is arranged in a horizontal direction and that is displaced in the in-plane direction and the lateral direction with respect to the first substrate with the relative movement of the first frame member and the second frame member. The first surface provided on one substrate, the second surface provided on the second substrate and facing the same side as the first surface, and the first surface and the second substrate are overlapped with each other and face the first surface and the second surface. A holding plate having a holding surface, a viscoelastic material sandwiched between the first surface and the holding surface, and a viscoelastic material sandwiched between the second surface and the holding surface. A plurality of vibration damping devices, which are provided on one side in the direction of relative displacement with respect to the two substrates, are arranged side by side in the direction of relative displacement, and are a building vibration damping structure.

一態様に係る制振装置は、第1基板と第2基板とが互いに面内方向かつ横方向へ変位するものであるから、一対の架構部材を含む建物の構造体に、壁型又は間柱型の制振装置として設置できる。一般に壁型又は間柱型の制振装置は、構造体の中で斜めに配置されるブレース型の制振装置に比べて、制振装置を内蔵した建物の外壁等に開口部を設け易くなる利点がある。しかも本態様の制振装置では、粘弾性材と摩擦材とが互いに対し、第1基板と第2基板との相対変位の方向の片側に配置されるから、この相対変位の方向における制振装置の外形寸法を縮小でき、以て、制振装置を構造体に設置したときの専有空間を削減することができる。さらに、粘弾性材と摩擦材とが第1基板と第2基板との相対変位の方向へ互いに並んで配置されるから、粘弾性材及び摩擦材がそれぞれの特性に従って制振動作するときのモーメントの発生が回避され、粘弾性材と摩擦材との間で第1基板、第2基板及び保持板に生じる曲げモーメントが低減される。その結果、制振装置の制振性能の信頼性及び再現性が向上する。 In the vibration damping device according to one aspect, since the first substrate and the second substrate are displaced in the in-plane direction and the lateral direction with respect to each other, a wall-type or stud-type is added to the structure of the building including the pair of frame members. It can be installed as a vibration control device. In general, a wall-type or stud-type vibration control device has an advantage that it is easier to provide an opening in an outer wall of a building having a built-in vibration control device, as compared with a brace-type vibration control device diagonally arranged in a structure. There is. Moreover, in the vibration damping device of this aspect, since the viscoelastic material and the friction material are arranged on one side in the direction of relative displacement between the first substrate and the second substrate with respect to each other, the vibration damping device in the direction of this relative displacement. It is possible to reduce the outer dimensions of the device, and thus reduce the space occupied when the vibration damping device is installed in the structure. Further, since the viscoelastic material and the friction material are arranged side by side in the direction of relative displacement between the first substrate and the second substrate, the moment when the viscoelastic material and the friction material perform damping operation according to their respective characteristics. Is avoided, and the bending moment generated in the first substrate, the second substrate and the holding plate between the viscoelastic material and the friction material is reduced. As a result, the reliability and reproducibility of the vibration damping performance of the vibration damping device are improved.

また本態様に係る制振装置は、いずれも同じ側を向く第1面及び第2面と、それら第1面及び第2面に対向する保持面との間に、粘弾性材及び摩擦材を挟持する構成であるから、装置全体の薄型化を促進できる。しかも、保持面を有する保持板を、粘弾性材及び摩擦材に対し制振装置の厚み方向の外側に配置できるので、保持板のさらに外側に、粘弾性材及び摩擦材を追加して配置することが容易である。したがって本態様の制振装置では、要求される制振性能に応じて振動エネルギー吸収材の表面積を容易に増減できる。 Further, in the vibration damping device according to the present aspect, a viscoelastic material and a friction material are provided between the first surface and the second surface facing the same side and the holding surface facing the first surface and the second surface. Since the structure is sandwiched, it is possible to promote the thinning of the entire device. Moreover, since the holding plate having the holding surface can be arranged outside the viscoelastic material and the friction material in the thickness direction of the vibration damping device, the viscoelastic material and the friction material are additionally arranged outside the holding plate. It's easy to do. Therefore, in the vibration damping device of this aspect, the surface area of the vibration energy absorbing material can be easily increased or decreased according to the required vibration damping performance.

他の態様に係る建物の制振構造は、一態様に係る制振装置を備えたことにより、制振性能の信頼性及び再現性に優れ、かつ建物の要求に応じた制振性能を発揮できる。また、第1及び第2の架構部材を含む構造体の中での制振装置の専有空間を削減できるので、制振構造を備えた建物の外壁等に所望の形状や寸法の開口部(ドア、窓等)を設けることが容易である。 The building vibration damping structure according to another aspect is provided with the vibration damping device according to one aspect, so that the damping performance is excellent in reliability and reproducibility, and can exhibit the vibration damping performance according to the requirements of the building. .. Further, since the space occupied by the vibration damping device in the structure including the first and second frame members can be reduced, an opening (door) having a desired shape and size can be formed on the outer wall of the building having the vibration damping structure. , Windows, etc.) are easy to provide.

一実施形態による制振装置の分解斜視図である。It is an exploded perspective view of a damping device by one embodiment. 他の実施形態による制振装置の斜視図である。FIG. 8 is a perspective view of a vibration damping device according to another embodiment. 図2の制振装置の分解斜視図である。FIG. 3 is an exploded perspective view of the vibration damping device of FIG. 2. 図2の線IV−IVに沿った断面図である。FIG. 4 is a sectional view taken along the line IV-IV in FIG. 2. 図2の線V−Vに沿った断面図である。FIG. 5 is a cross-sectional view taken along the line VV of FIG. 2. 図2の線VI−VIに沿った断面図である。FIG. 6 is a cross-sectional view taken along the line VI-VI of FIG. 2. 図2の線VII−VIIに沿った断面図である。FIG. 7 is a sectional view taken along the line VII-VII in FIG. 2. 図7に対応する断面図で、第1及び第2基板の相対変位量が小さい状態を示す図である。FIG. 8 is a cross-sectional view corresponding to FIG. 7, showing a state where the relative displacement amounts of the first and second substrates are small. 図7に対応する断面図で、第1及び第2基板の相対変位量が大きい状態を示す図である。FIG. 8 is a cross-sectional view corresponding to FIG. 7, showing a state where the relative displacement amounts of the first and second substrates are large. 図2の制振装置の変形例を示す断面図である。It is sectional drawing which shows the modification of the damping device of FIG. 図2の制振装置の他の変形例を示す断面図である。It is sectional drawing which shows the other modification of the damping device of FIG. 図2の制振装置のさらに他の変形例を示す断面図である。It is sectional drawing which shows the further another modified example of the damping device of FIG. 一実施形態による建物の制振構造の正面図である。It is a front view of the damping structure of a building by one embodiment. 他の実施形態による建物の制振構造の正面図である。It is a front view of the damping structure of a building by other embodiments. 図12の制振構造の変形例を示す正面図である。It is a front view which shows the modification of the damping structure of FIG.

以下、添付図面を参照して、本発明の実施の形態を詳細に説明する。全図面に渡り、対応する構成要素には共通の参照符号を付す。
図1は、一実施形態による制振装置10を示す。制振装置10は、互いに間隔を空けて配置される一対の架構部材(図示せず)を含む建物の構造体に設置され、地震や強風等に起因して建物に生じる振動を抑制するものである。後述するように制振装置10は、振動エネルギー吸収材として粘弾性材と摩擦材との双方を用いる複合型の構成を有する。また、建物の構造体を構成する架構部材は柱や梁であって、制振装置10は、一対の梁の間又は一対の柱の間に架設される壁型又は間柱型の構成を有する。
Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. Corresponding components are designated by common reference numerals throughout the drawings.
FIG. 1 shows a vibration damping device 10 according to one embodiment. The vibration damping device 10 is installed in a structure of a building including a pair of frame members (not shown) that are spaced apart from each other, and suppresses vibration generated in the building due to an earthquake, a strong wind, or the like. is there. As will be described later, the vibration damping device 10 has a composite structure in which both a viscoelastic material and a friction material are used as vibration energy absorbing materials. Further, the frame members constituting the structure of the building are columns and beams, and the vibration damping device 10 has a wall-type or stud-type configuration installed between a pair of beams or between a pair of columns.

図1に示すように、制振装置10は、第1の架構部材(図示しない梁又は柱)に取り付けられる第1基板12と、第2の架構部材(図示しない梁又は柱)に取り付けられ、第1基板12に隣接して配置される第2基板14と、第1基板12及び第2基板14に重ね合わされる保持板16とを備える。この実施形態では、第1基板12は、第1の架構部材に支持される第1支持板18と、第1支持板18に連結される第1連結板20とを備える。また第2基板14は、第2の架構部材に支持される第2支持板22と、第2支持板22に連結される第2連結板24とを備える。 As shown in FIG. 1, the vibration damping device 10 is attached to a first frame member (beam or column not shown) and a first substrate 12 and a second frame member (beam or column not shown), A second substrate 14 disposed adjacent to the first substrate 12 and a holding plate 16 that is superposed on the first substrate 12 and the second substrate 14 are provided. In this embodiment, the first substrate 12 includes a first support plate 18 supported by the first frame member and a first connection plate 20 connected to the first support plate 18. The second substrate 14 also includes a second support plate 22 supported by the second frame member and a second connection plate 24 connected to the second support plate 22.

第1支持板18及び第2支持板22は、H形鋼等の鋼材の形状を有することができ、所望の剛性を有する金属等の素材から形成できる。第1連結板20及び第2連結板24は、一般的な鋼板やステンレス鋼板(SUS板)等の板材の形状を有することができ、所望の剛性を有する金属等の素材から形成できる。特に第2連結板24は、後述する摩擦材との摩擦面を提供する観点で、SUS板から形成されることが好ましい。第1支持板18と第1連結板20とは、ボルト/ナット等の一般的な固定手段によって互いに固定される。図1は簡略化のため、使用される複数のボルトのうちの2つのボルト26を示す。同様に、第2支持板22と第2連結板24とは、ボルト/ナット等の一般的な固定手段によって互いに固定される。図1は簡略化のため、使用される複数のボルトのうちの2つのボルト28を示す。なお第1基板12及び第2基板14の構成は、上記構成に限定されず、第1支持板18と第1連結板20とが同一素材で一体成形されたり別素材で成形され溶接等で一体化されたりしたものであってもよいし、また第2支持板22と第2連結板24とが同一素材で一体成形されたり別素材で成形され溶接等で一体化されたりしたものであってもよい。 The first support plate 18 and the second support plate 22 may have a shape of steel material such as H-section steel, and may be formed from a material such as metal having desired rigidity. The first connecting plate 20 and the second connecting plate 24 can have a plate shape such as a general steel plate or a stainless steel plate (SUS plate), and can be formed from a material such as a metal having a desired rigidity. In particular, the second connecting plate 24 is preferably formed of a SUS plate from the viewpoint of providing a friction surface with a friction material described later. The first support plate 18 and the first connecting plate 20 are fixed to each other by a general fixing means such as a bolt/nut. FIG. 1 shows two bolts 26 of the bolts used for simplicity. Similarly, the second support plate 22 and the second connecting plate 24 are fixed to each other by a general fixing means such as a bolt/nut. FIG. 1 shows two bolts 28 of the bolts used for simplicity. The configurations of the first substrate 12 and the second substrate 14 are not limited to the above configurations, and the first support plate 18 and the first connecting plate 20 may be integrally formed of the same material or formed of different materials and integrated by welding or the like. The second support plate 22 and the second connecting plate 24 may be integrally formed of the same material or may be formed of different materials and integrated by welding or the like. Good.

図1に示すように、第1支持板18の横方向(図のX方向)の寸法は第2支持板22の横方向(図のX方向)の寸法と略同一である一方、第1支持板18の縦方向(図のZ方向)の寸法は第2支持板22の縦方向(図のZ方向)の寸法よりも小さい。また、第1支持板18の厚み(図のY方向の寸法)及び横断面形状は、第2支持板22の厚み(図のY方向の寸法)及び横断面形状と略同一である。第1支持板18と第2支持板22とは、いずれも同じ方向(Y方向)を向く略平坦な主面18a、22aを有し、それら主面18a、22aを実質的同一の仮想平面上に配置した状態で、縦方向(Z方向)へ互いに並んで配置される。 As shown in FIG. 1, the dimension of the first support plate 18 in the lateral direction (X direction in the drawing) is substantially the same as the dimension of the second support plate 22 in the lateral direction (X direction in the drawing), while The dimension of the plate 18 in the vertical direction (Z direction in the drawing) is smaller than the dimension of the second support plate 22 in the vertical direction (Z direction in the drawing). Further, the thickness (dimension in the Y direction in the drawing) and the cross-sectional shape of the first support plate 18 are substantially the same as the thickness (dimension in the Y direction in the drawing) and the cross-sectional shape of the second support plate 22. Both the first support plate 18 and the second support plate 22 have substantially flat main surfaces 18a and 22a facing the same direction (Y direction), and the main surfaces 18a and 22a are substantially on the same virtual plane. In the state of being arranged in the vertical direction (Z direction).

図1に示すように、第1連結板20は、第1支持板18の主面18aに置かれる連結部分20aと、連結部分20aから主面18aの外方へ延長される延長部分20bとを一体に有する。第2連結板24は、その全体が、第2支持板22の主面22aに置かれる。第1連結板20の延長部分20bは、第2支持板22の主面22aに置かれて、第2連結板24に対し横方向(X方向)へ並んで配置される。 As shown in FIG. 1, the first connecting plate 20 includes a connecting portion 20a placed on the main surface 18a of the first support plate 18 and an extending portion 20b extending from the connecting portion 20a to the outside of the main surface 18a. Have one. The entire second connecting plate 24 is placed on the main surface 22 a of the second supporting plate 22. The extension portion 20b of the first connecting plate 20 is placed on the main surface 22a of the second supporting plate 22 and is arranged side by side in the lateral direction (X direction) with respect to the second connecting plate 24.

第1基板12には、外側を向く第1面30が設けられ、第2基板14には、第1面30と同じ外側を向く第2面32が設けられる。第1面30と第2面32とは、いずれも平坦で互いに略平行に配置される。また第1面30と第2面32とは、互いに同一の仮想平面上に配置されるか、或いは、僅かな高さの差を有する二つの仮想平面上にそれぞれ配置される。図1の実施形態では、第1連結板20の延長部分20bに、第1支持板18の主面18aと同じ方向(Y方向)を向く第1面30が設けられ、第2連結板24に、第2支持板22の主面22aと同じ方向(Y方向)を向く第2面32が設けられる。第1面30と第2面32とは、横方向(X方向)へ互いに並んで配置される。 The first substrate 12 is provided with a first surface 30 that faces the outside, and the second substrate 14 is provided with a second surface 32 that faces the same outside as the first surface 30. The first surface 30 and the second surface 32 are both flat and arranged substantially parallel to each other. Further, the first surface 30 and the second surface 32 are arranged on the same virtual plane, or are respectively arranged on two virtual planes having a slight height difference. In the embodiment of FIG. 1, the extended portion 20 b of the first connecting plate 20 is provided with the first surface 30 facing the same direction (Y direction) as the main surface 18 a of the first supporting plate 18, and the second connecting plate 24 is provided. The second surface 32 facing the same direction (Y direction) as the main surface 22a of the second support plate 22 is provided. The first surface 30 and the second surface 32 are arranged side by side in the lateral direction (X direction).

制振装置10を設置する構造体の一対の架構部材が上下の梁の場合、通常、第1基板12は上の梁に直接又は間接に取り付けられ、第2基板14は下の梁に直接又は間接に取り付けられる。或いは、第1基板12を下の梁に取り付け、第2基板14を上の梁に取り付けることもできる。また、制振装置10を設置する構造体の一対の架構部材が左右の柱の場合、第1基板12は一方の柱に直接又は間接に取り付けられ、第2基板14は他方の柱に直接又は間接に取り付けられる。いずれの場合も、第1基板12と第2基板14とは、第1の架構部材(梁又は柱)と第2の架構部材(梁又は柱)との、両者の長手方向への相対移動に伴い、互いに面内方向(第1面30及び第2面32に平行な方向)かつ横方向(X方向)へ変位することができるように構成される。 When the pair of frame members of the structure in which the vibration damping device 10 is installed are upper and lower beams, usually, the first substrate 12 is directly or indirectly attached to the upper beam, and the second substrate 14 is directly or indirectly attached to the lower beam. It is attached indirectly. Alternatively, the first substrate 12 can be attached to the lower beam and the second substrate 14 can be attached to the upper beam. When the pair of frame members of the structure in which the vibration damping device 10 is installed are left and right columns, the first substrate 12 is directly or indirectly attached to one column and the second substrate 14 is directly or indirectly attached to the other column. It is attached indirectly. In either case, the first substrate 12 and the second substrate 14 are relatively movable in the longitudinal direction between the first frame member (beam or column) and the second frame member (beam or column). Accordingly, it is configured to be able to be displaced in the in-plane direction (direction parallel to the first surface 30 and the second surface 32) and the lateral direction (X direction).

この構成により、図1の実施形態では、第1支持板18と第2支持板22とは、第1基板12と第2基板14との上記した相対変位の方向に直交する方向(Z方向)へ並んで配置されることになる。また、第1連結板20の延長部分20b(第1面30)と第2連結板24(第2面32)とは、第1基板12と第2基板14との上記した相対変位の方向(X方向)へ並んで配置されることになる。なお本願において、第1基板12と第2基板14との相対変位の方向を表す「横方向」とは、第1支持板18と第2支持板22とが互いに向かい合った状態で一方が他方に対し左右に位置ずれを生ずる方向を意味するものであり、第1支持板18と第2支持板22とが互いに接近又は離反するような変位方向とは異なるものである。 With this configuration, in the embodiment of FIG. 1, the first support plate 18 and the second support plate 22 are in a direction (Z direction) orthogonal to the above-described relative displacement direction between the first substrate 12 and the second substrate 14. Will be arranged side by side. Further, the extension portion 20b (first surface 30) of the first connecting plate 20 and the second connecting plate 24 (second surface 32) are disposed in the above-described relative displacement direction of the first substrate 12 and the second substrate 14 ( They will be arranged side by side in the (X direction). In the present application, the “lateral direction” indicating the direction of relative displacement between the first substrate 12 and the second substrate 14 means that one side is the other side when the first support plate 18 and the second support plate 22 face each other. On the other hand, it means a direction in which a lateral displacement occurs, which is different from the displacement direction in which the first support plate 18 and the second support plate 22 approach or separate from each other.

保持板16は、一般的な鋼板等の板材の形状を有することができ、所望の剛性を有する金属等の素材から形成できる。保持板16は、第1基板12の第1面30及び第2基板14の第2面32に対向する平坦な保持面34を有する。図1では保持面34は見えないが、保持面34の反対側で外側を向く面36を見ることができ、保持面34は面36と同一の輪郭を有するものである。図1の実施形態では、保持板16は、第1連結板20の延長部分20bと第2連結板24とに重ね合わせて配置される形状を有し、第1面30を実質的に覆い隠す第1保持部分16aと、第2面32を実質的に覆い隠す第2保持部分16bとを一体に有する。 The holding plate 16 can have a plate shape such as a general steel plate, and can be formed from a material such as metal having desired rigidity. The holding plate 16 has a flat holding surface 34 that faces the first surface 30 of the first substrate 12 and the second surface 32 of the second substrate 14. Although the retaining surface 34 is not visible in FIG. 1, the outwardly facing surface 36 on the opposite side of the retaining surface 34 can be seen, the retaining surface 34 having the same contour as the surface 36. In the embodiment of FIG. 1, the holding plate 16 has a shape arranged to overlap the extension portion 20 b of the first connecting plate 20 and the second connecting plate 24, and substantially covers the first surface 30. It integrally has a first holding portion 16a and a second holding portion 16b that substantially covers the second surface 32.

制振装置10は、振動エネルギー吸収材として、第1基板12の第1面30と保持板16の保持面34との間に挟持される粘弾性材38と、第2基板14の第2面32と保持板16の保持面34との間に挟持される摩擦材40とを備える。粘弾性材38と摩擦材40とは、互いに対し、第1基板12と第2基板14との上記した相対変位の方向(X方向)の片側に配置される。 The vibration damping device 10 includes a viscoelastic material 38 sandwiched between the first surface 30 of the first substrate 12 and the holding surface 34 of the holding plate 16 and a second surface of the second substrate 14 as a vibration energy absorbing material. The friction material 40 is sandwiched between 32 and the holding surface 34 of the holding plate 16. The viscoelastic material 38 and the friction material 40 are arranged on one side in the relative displacement direction (X direction) of the first substrate 12 and the second substrate 14 with respect to each other.

粘弾性材38は、第1面30と保持面34との間に介在する薄板状の形状を有する。制振装置10を設置する構造体に振動が生じたときに、粘弾性材38は、それ自体が面内方向へ剪断変形して分子間摩擦を生じることにより振動エネルギーを熱エネルギーに変換し、以て振動エネルギーを吸収する。粘弾性材38は、要求される制振性能に応じた表面積や厚みを有することができ、例えば、アクリル系ポリマー(例えばポリ(メタ)アクリレート、アクリル酸、アクリルアミド等の共重合体)、ウレタン系ポリマー(例えばポリエーテルウレタン、ポリエステルウレタン等)、オレフィン系ポリマー、シリコーン系ポリマー(例えばメチルビニルシリコーン)、塩化ビニル系ポリマー、ブタン系ゴム、ブチル系ゴム等を用いることができる。 The viscoelastic material 38 has a thin plate-like shape interposed between the first surface 30 and the holding surface 34. When vibration occurs in the structure in which the vibration damping device 10 is installed, the viscoelastic material 38 itself undergoes shear deformation in the in-plane direction to generate intermolecular friction, thereby converting vibration energy into heat energy, Therefore, the vibration energy is absorbed. The viscoelastic material 38 can have a surface area and a thickness according to the required vibration damping performance. For example, an acrylic polymer (for example, a copolymer of poly(meth)acrylate, acrylic acid, acrylamide, etc.), a urethane-based material. Polymers (for example, polyether urethane, polyester urethane, etc.), olefin polymers, silicone polymers (for example, methyl vinyl silicone), vinyl chloride polymers, butane rubber, butyl rubber and the like can be used.

摩擦材40は、第2面32と保持面34との間に介在する薄板状の形状を有する。制振装置10を設置する構造体に振動が生じたときに、摩擦材40は、主として第2面32に対し摺動して摩擦抵抗を生じることにより振動エネルギーを熱エネルギーに変換し、以て振動エネルギーを吸収する。摩擦材40は、要求される制振性能に応じた表面積を有することができ、例えば、熱硬化型樹脂を結合材として、アラミド繊維、ガラス繊維、ビニロン繊維等の繊維材料や、カシューダスト等の摩擦調整材、硫酸バリウム等の充填剤等を添加したもの等から作製できる。 The friction material 40 has a thin plate shape interposed between the second surface 32 and the holding surface 34. When vibration occurs in the structure in which the vibration damping device 10 is installed, the friction material 40 mainly slides on the second surface 32 to generate friction resistance, thereby converting the vibration energy into heat energy. Absorb vibration energy. The friction material 40 can have a surface area corresponding to the required vibration damping performance. For example, a thermosetting resin as a binder, a fiber material such as aramid fiber, glass fiber, vinylon fiber, or cashew dust can be used. It can be manufactured from a material such as a friction modifier and a filler such as barium sulfate added.

粘弾性材38は、それ自体が有する粘着力により、第1面30及び保持面34に固着する。したがって保持板16は、粘弾性材38の粘着力により、第1基板12(第1連結板20)に取り付けられる。この状態で保持板16は、粘弾性材38の粘弾性範囲において、第1基板12(第1連結板20)に対し移動できる。 The viscoelastic material 38 is fixed to the first surface 30 and the holding surface 34 by the adhesive force of itself. Therefore, the holding plate 16 is attached to the first substrate 12 (first connecting plate 20) by the adhesive force of the viscoelastic material 38. In this state, the holding plate 16 can move with respect to the first substrate 12 (first connecting plate 20) within the viscoelastic range of the viscoelastic material 38.

保持板16はさらに、保持面34と第1面30との間に粘弾性材38を挟持した状態で、ボルト(すなわち締結部材)42を用いて、第1基板12(第1連結板20)に取り付けられる。図1は簡略化のため、保持板16の第1保持部分16aを第1連結板20に取り付ける複数のボルト42のうちの2つのボルト42を示す。第1基板12(第1連結板20)には、それぞれにボルト42を挿通する複数の長穴44が形成される。また図示しないが、第2基板14(第2支持板22)には、第1基板12の長穴44に対応する位置に、それぞれにボルト42を挿通する複数の穴(長穴44よりも大きな開口部)が形成される。複数の長穴44は、それぞれの長軸を、第1基板12と第2基板14との前述した相対変位の方向(X方向)に向けて形成される。 The holding plate 16 further uses a bolt (that is, a fastening member) 42 in a state where the viscoelastic material 38 is sandwiched between the holding surface 34 and the first surface 30, and the first substrate 12 (first connecting plate 20). Attached to. For simplification, FIG. 1 shows two bolts 42 of the plurality of bolts 42 for attaching the first holding portion 16 a of the holding plate 16 to the first connecting plate 20. A plurality of elongated holes 44 through which the bolts 42 are inserted are formed in the first substrate 12 (first connecting plate 20). Although not shown, the second substrate 14 (second support plate 22) has a plurality of holes (larger than the elongated holes 44) into which the bolts 42 are inserted at positions corresponding to the elongated holes 44 of the first substrate 12, respectively. An opening) is formed. The plurality of long holes 44 are formed with their long axes directed toward the above-described relative displacement direction (X direction) between the first substrate 12 and the second substrate 14.

各ボルト42は、保持板16の穴46、第1基板12(第1連結板20)の長穴44、及び第2基板14(第2支持板22)の穴(図示せず)を貫通して、第2基板14の裏側で、図示しないナットに螺合する。この状態で保持板16は、個々のボルト42が対応の長穴44の長軸方向の端縁に係合する位置を限界として、第1基板12(第1連結板20)に対し、第1基板12と第2基板14との前述した相対変位の方向(X方向)へ往復移動できる。粘弾性材38は、保持板16が第1基板12(第1連結板20)に対しX方向へ移動する間、この移動を阻止しようとする力を粘弾性材38自体に生じる。保持板16が第1基板12に対してX方向へ移動するときの、粘弾性材38の剪断変形が粘弾性範囲に収まるように、長穴44の長軸方向の寸法を設定することにより、粘弾性材38の塑性変形(つまり粘弾性範囲に収まらない変形)や破断を防止することができる。 Each bolt 42 penetrates a hole 46 of the holding plate 16, a long hole 44 of the first substrate 12 (first connecting plate 20), and a hole (not shown) of the second substrate 14 (second support plate 22). Then, the back side of the second substrate 14 is screwed into a nut (not shown). In this state, the holding plate 16 is set to the first substrate 12 (first connecting plate 20) with respect to the first substrate 12 (first connecting plate 20) at the limit of the position where each bolt 42 engages with the edge of the corresponding long hole 44 in the long axis direction. The substrate 12 and the second substrate 14 can reciprocate in the above-described relative displacement direction (X direction). While the holding plate 16 moves in the X direction with respect to the first substrate 12 (first connecting plate 20), the viscoelastic material 38 exerts a force on the viscoelastic material 38 itself to prevent this movement. By setting the dimension of the long hole 44 in the long axis direction so that the shear deformation of the viscoelastic material 38 when the holding plate 16 moves in the X direction with respect to the first substrate 12 falls within the viscoelastic range, It is possible to prevent plastic deformation (that is, deformation that does not fall within the viscoelastic range) or breakage of the viscoelastic material 38.

なお図1の実施形態では、寸法の異なる3枚の粘弾性材38が、ボルト42との干渉を回避する位置で第1面30と保持面34との間に挟持されている。しかしこれに限定されず、ボルト42との干渉を回避し得る形状を有する1枚の大判の粘弾性材38を、第1面30と保持面34との間に挟持する構成とすることもできる。 In the embodiment shown in FIG. 1, three viscoelastic members 38 having different sizes are sandwiched between the first surface 30 and the holding surface 34 at a position where interference with the bolt 42 is avoided. However, the present invention is not limited to this, and a single large-sized viscoelastic material 38 having a shape capable of avoiding interference with the bolt 42 may be sandwiched between the first surface 30 and the holding surface 34. ..

保持板16はさらに、保持面34と第2面32との間に摩擦材40を挟持した状態で、ボルト(すなわち締結部材)48を用いて、第2基板14(第2連結板24)に取り付けられる。図1は簡略化のため、保持板16の第2保持部分16bを第2連結板24に取り付ける複数のボルト48のうちの2つのボルト48を示す。第2基板14(第2連結板24)には、それぞれにボルト48を挿通する複数の長穴50が形成される。また図示しないが、第2基板14(第2支持板22)には、長穴50に対応する位置に、それぞれにボルト48を挿通する複数の穴(長穴50と同一形状か長穴50よりも大きな開口部)が形成される。複数の長穴50は、それぞれの長軸を、第1基板12と第2基板14との前述した相対変位の方向(X方向)に向けて形成される。 The holding plate 16 is further attached to the second substrate 14 (second connecting plate 24) using bolts (that is, fastening members) 48 with the friction material 40 being sandwiched between the holding surface 34 and the second surface 32. It is attached. For simplification, FIG. 1 shows two bolts 48 of the plurality of bolts 48 for attaching the second holding portion 16 b of the holding plate 16 to the second connecting plate 24. A plurality of elongated holes 50 through which the bolts 48 are inserted are formed in the second substrate 14 (second connecting plate 24). Although not shown, the second substrate 14 (second support plate 22) has a plurality of holes (the same shape as the elongated holes 50 or the elongated holes 50) through which the bolts 48 are inserted at positions corresponding to the elongated holes 50. A large opening) is formed. The plurality of long holes 50 are formed with their long axes oriented in the above-described relative displacement direction (X direction) between the first substrate 12 and the second substrate 14.

摩擦材40には、それぞれにボルト48を挿通する複数の穴52が形成される。摩擦材40は、個々の穴52を貫通するボルト48に、穴52の縁で係合する。各ボルト48は、保持板16の穴54、摩擦材40の穴52、第2基板14(第2連結板24)の長穴50、及び第2基板14(第2支持板22)の穴(図示せず)を貫通して、第2基板14の裏側で、図示しないナットに螺合する。この状態で保持板16は、第2基板14(第2連結板24)に対し、第1基板12と第2基板14との前述した相対変位の方向(X方向)へ往復移動できる。第2基板14に対する保持板16の最大移動距離は、個々のボルト48が対応の長穴50の長軸方向の端縁に係合する位置を移動限界として設定できる。 A plurality of holes 52 through which the bolts 48 are inserted are formed in the friction material 40. The friction material 40 engages the bolts 48 passing through the individual holes 52 at the edges of the holes 52. Each bolt 48 has a hole 54 in the holding plate 16, a hole 52 in the friction material 40, an elongated hole 50 in the second substrate 14 (second connecting plate 24), and a hole in the second substrate 14 (second support plate 22) ( (Not shown), and is screwed into a nut (not shown) on the back side of the second substrate 14. In this state, the holding plate 16 can reciprocate in the above-described relative displacement direction (X direction) between the first substrate 12 and the second substrate 14 with respect to the second substrate 14 (second connecting plate 24). The maximum movement distance of the holding plate 16 with respect to the second substrate 14 can be set as a movement limit at the position where each bolt 48 engages with the edge of the corresponding elongated hole 50 in the long axis direction.

第1基板12と第2基板14とのX方向への相対変位に伴い、第1連結板20の延長部分20bと第2連結板24とは互いに接近又は離反する方向へ変位する。粘弾性材38が剪断変形していない初期状態では、図1に示すように、第1連結板20の延長部分20bと第2連結板24との間に所定のX方向寸法を有する隙間が形成される。またこの初期状態で、保持板16を第1連結板20に取り付ける複数のボルト42の各々は、第1連結板20の対応の長穴44の長軸方向略中央に位置し、保持板16を第2連結板24に取り付ける複数のボルト48の各々は、第2連結板24の対応の長穴50の長軸方向略中央に位置する。この構成において、初期状態における第1連結板20の延長部分20bと第2連結板24との隙間のX方向寸法は、初期状態から個々のボルト42が対応の長穴44の長軸方向の一方の端縁に係合するまでの、第1基板12に対する保持板16の移動距離と、初期状態から個々のボルト48が対応の長穴50の長軸方向の一方の端縁に係合するまでの、第2基板14に対する保持板16の移動距離との合計よりも、小さく設定することができる。このような寸法設定によれば、第1連結板20の延長部分20bと第2連結板24とが互いに接近する方向へ第1基板12と第2基板14とが相対変位するときに、全てのボルト42、48が対応の長穴44、50の長軸方向端縁に係合してしまう前に、第1連結板20の延長部分20bと第2連結板24とが互いに当接するので、ボルト42、48の外面及び長穴44、50の端縁への応力集中に起因してボルト42、48や第1連結板20、第2連結板24に生じ得る損傷を防止できる。しかしこれに限定されず、上記した隙間のX方向寸法を、上記した保持板16の移動距離の合計と同一に設定したり、上記した保持板16の移動距離の合計よりも大きく設定したりすることもできる。 With the relative displacement of the first substrate 12 and the second substrate 14 in the X direction, the extension portion 20b of the first connecting plate 20 and the second connecting plate 24 are displaced in a direction toward or away from each other. In the initial state where the viscoelastic material 38 is not sheared and deformed, as shown in FIG. 1, a gap having a predetermined X-direction dimension is formed between the extended portion 20b of the first connecting plate 20 and the second connecting plate 24. To be done. Further, in this initial state, each of the plurality of bolts 42 for attaching the holding plate 16 to the first connecting plate 20 is located substantially in the center of the corresponding long hole 44 of the first connecting plate 20 in the longitudinal direction, and Each of the plurality of bolts 48 attached to the second connecting plate 24 is located substantially in the center of the corresponding elongated hole 50 of the second connecting plate 24 in the long axis direction. In this configuration, the size of the gap between the extended portion 20b of the first connecting plate 20 and the second connecting plate 24 in the initial state is one in the longitudinal direction of the elongated hole 44 corresponding to each bolt 42 from the initial state. Of the movement of the holding plate 16 with respect to the first substrate 12 until it engages with the end edge of the first substrate 12, and from the initial state until each bolt 48 engages with one end of the corresponding slot 50 in the longitudinal direction. Can be set smaller than the total of the moving distance of the holding plate 16 with respect to the second substrate 14. According to such dimension settings, when the first substrate 12 and the second substrate 14 are relatively displaced in the direction in which the extension portion 20b of the first connecting plate 20 and the second connecting plate 24 approach each other, Since the extended portion 20b of the first connecting plate 20 and the second connecting plate 24 come into contact with each other before the bolts 42, 48 engage with the longitudinal ends of the corresponding elongated holes 44, 50, the bolts 42, 48 contact each other. It is possible to prevent possible damage to the bolts 42, 48 and the first connecting plate 20 and the second connecting plate 24 due to stress concentration on the outer surfaces of the 42, 48 and the edges of the elongated holes 44, 50. However, the present invention is not limited to this, and the X-direction dimension of the above-described gap is set to be the same as the total moving distance of the holding plate 16 described above, or set to be larger than the total moving distance of the holding plate 16 described above. You can also

制振装置10では、摩擦材40と保持面34との間の摩擦係数が摩擦材40と第2面32との間の摩擦係数よりも大きくなるように、摩擦材40、保持板16及び第2基板14(第2連結板24)の素材や表面構造が設定される。その結果、ボルト48の締め付けにより保持板16を第2基板14(第2連結板24)に向けて適当な力で押し付けた状態で、摩擦材40は、ボルト48に係合したまま、保持板16と一体的に第2基板14(第2連結板24)に対し、第1基板12と第2基板14との前述した相対変位の方向(X方向)へ移動できる。摩擦材40は、保持板16と一体的にX方向へ移動する間、この移動を阻止しようとする動摩擦力を第2面32に対して生じる。 In the vibration damping device 10, the friction material 40, the holding plate 16 and the first friction member 40 and the holding surface 34 are arranged so that the friction coefficient between the friction material 40 and the holding surface 34 becomes larger than the friction coefficient between the friction material 40 and the second surface 32. The material and surface structure of the second substrate 14 (second connecting plate 24) are set. As a result, in the state where the holding plate 16 is pressed against the second base plate 14 (second connecting plate 24) by an appropriate force by tightening the bolt 48, the friction material 40 remains engaged with the bolt 48 and the holding plate 16 is held. It is possible to move the first substrate 12 and the second substrate 14 integrally with the second substrate 14 (the second connecting plate 24) in the direction of the relative displacement (X direction) described above. While the friction material 40 moves in the X direction integrally with the holding plate 16, a dynamic frictional force that tends to prevent this movement is generated on the second surface 32.

なお図1の実施形態では、各々が1つのボルト48に係合する6枚の摩擦材40が、第2面32と保持面34との間に挟持されている。しかしこれに限定されず、各々が複数のボルト48に係合する所望個数の摩擦材40を、第2面32と保持面34との間に挟持する構成とすることもできる。 In the embodiment of FIG. 1, six friction members 40, each of which engages with one bolt 48, are sandwiched between the second surface 32 and the holding surface 34. However, the present invention is not limited to this, and a desired number of friction members 40 that engage with the plurality of bolts 48 may be sandwiched between the second surface 32 and the holding surface 34.

一対の梁及び一対の柱を有する建物の構造体に振動が生じたときには、左右の柱が互いに同期して同一方向へ傾くように変位するとともに、上下の梁が互いに長手方向へずれるように変位する。左右の柱は、傾きを生じるに従って互いに長手方向へずれるようにも変位する。制振装置10は、第1基板12と第2基板14との前述した相対変位の方向(X方向)が、一対の梁の長手方向又は一対の柱の長手方向に合致するように方向付けされて、構造体に設置される。このような設置方法により、制振装置10は、一対の梁の間又は一対の柱の間に架設される壁型又は間柱型のものとなる。 When vibration occurs in a structure of a building with a pair of beams and a pair of columns, the left and right columns are displaced in synchronization with each other so that they tilt in the same direction, and the upper and lower beams are displaced so as to be displaced from each other in the longitudinal direction. To do. The left and right columns are displaced so as to be displaced from each other in the longitudinal direction as the tilt occurs. The vibration damping device 10 is oriented such that the relative displacement direction (X direction) of the first substrate 12 and the second substrate 14 described above matches the longitudinal direction of the pair of beams or the longitudinal direction of the pair of columns. Installed in the structure. With such an installation method, the vibration damping device 10 becomes a wall type or a stud type that is installed between a pair of beams or between a pair of columns.

第1及び第2の架構部材が上下の梁である場合、それら梁が振動に起因して長手方向への相対変位を生じると、第1基板12と第2基板14とは、個々のボルト42、48と対応の長穴44、50との相互案内作用の下で、前述した相対変位の方向(X方向)に相当する実質的水平方向へ互いに変位する。また、第1及び第2の架構部材が左右の柱である場合、それら柱が振動に起因して長手方向への相対変位を生じると、第1基板12と第2基板14とは、個々のボルト42、48と対応の長穴44、50との相互案内作用の下で、前述した相対変位の方向(X方向)に相当する実質的鉛直方向へ互いに変位する。 When the first and second frame members are upper and lower beams, when the beams cause relative displacement in the longitudinal direction due to vibration, the first substrate 12 and the second substrate 14 are separated from each other by the bolts 42. , 48 and the corresponding elongated holes 44, 50 are displaced relative to each other in a substantially horizontal direction corresponding to the above-described relative displacement direction (X direction). Further, when the first and second frame members are left and right columns, when the columns cause relative displacement in the longitudinal direction due to vibration, the first substrate 12 and the second substrate 14 are separated from each other. Under the mutual guiding action of the bolts 42, 48 and the corresponding elongated holes 44, 50, the bolts 42, 48 are displaced in a substantially vertical direction corresponding to the above-described relative displacement direction (X direction).

第1基板12と第2基板14とに振動によって相対変位の方向へ加わる外力の大きさや速度が比較的小さいときは、摩擦材40と第2面32との間の静止摩擦力により、保持板16は摩擦材40を介して第2基板14と一体的に第1基板12に対しX方向へ移動する(すなわち第1基板12は第2基板14及び保持板16に対し逆X方向へ移動する)。それに伴い、保持面34と第1面30との間に挟持された粘弾性材38が剪断変形して振動エネルギーを熱エネルギーに変換し、振動エネルギーを吸収することにより制振作用を発揮する。 When the magnitude and speed of the external force applied to the first substrate 12 and the second substrate 14 in the relative displacement direction by vibration are relatively small, the holding plate is generated by the static friction force between the friction material 40 and the second surface 32. 16 moves in the X direction relative to the first substrate 12 integrally with the second substrate 14 via the friction material 40 (that is, the first substrate 12 moves in the opposite X direction with respect to the second substrate 14 and the holding plate 16). ). Along with this, the viscoelastic material 38 sandwiched between the holding surface 34 and the first surface 30 undergoes shear deformation to convert the vibration energy into heat energy, and absorbs the vibration energy, thereby exerting a damping effect.

第1基板12と第2基板14とに振動によって相対変位の方向へ加わる外力の大きさや速度が増加し、保持板16を第2基板14に対して移動させようとする力が摩擦材40と第2面32との間の最大静止摩擦力を超えると、保持板16は、粘弾性材38を剪断変形させながら、摩擦材40及び第1基板12と一体的に第2基板14に対し逆X方向へ移動する(すなわち第2基板14は第1基板12及び保持板16に対しX方向へ移動する)。それに伴い、摩擦材40が第2面32に対し動摩擦力を生じて振動エネルギーを熱エネルギーに変換し、振動エネルギーを吸収することにより制振作用を発揮する。 The magnitude and speed of the external force applied to the first substrate 12 and the second substrate 14 in the direction of relative displacement due to the vibration increase, and the force for moving the holding plate 16 with respect to the second substrate 14 becomes the friction material 40. When the maximum static frictional force between the second surface 32 and the second surface 32 is exceeded, the holding plate 16 causes the viscoelastic material 38 to shear and deform, and the frictional material 40 and the first substrate 12 are integrated with the second substrate 14. It moves in the X direction (that is, the second substrate 14 moves in the X direction with respect to the first substrate 12 and the holding plate 16). Along with this, the friction material 40 produces a dynamic frictional force with respect to the second surface 32 to convert the vibration energy into heat energy and absorb the vibration energy, thereby exhibiting a damping effect.

なお、摩擦材40が制振作用を発揮する間、粘弾性材38は剪断変形をさらに進行させて制振作用を継続することが一般的である。ボルト42及び長穴44は、粘弾性材38が剪断変形し続けて塑性変形や破断に至ることを防止するストッパとしても機能する。 Note that, while the friction material 40 exerts the vibration damping action, the viscoelastic material 38 generally further advances the shear deformation to continue the vibration damping action. The bolts 42 and the elongated holes 44 also function as stoppers that prevent the viscoelastic material 38 from continuously undergoing shear deformation and leading to plastic deformation or fracture.

このように、制振装置10は、振動エネルギー吸収材として粘弾性材38と摩擦材40とを用いる複合型の構成を有するから、振動の大きさに関わらず優れた制振作用を発揮することができる。また制振装置10は、第1基板12と第2基板14とが互いに面内方向かつ横方向へ変位するものであるから、一対の架構部材を含む建物の構造体に、壁型又は間柱型の制振装置10として設置できる。一般に壁型又は間柱型の制振装置10は、構造体の中で斜めに配置されるブレース型の制振装置に比べて、制振装置を内蔵した建物の外壁等に開口部を設け易くなる利点がある。しかも制振装置10では、粘弾性材38と摩擦材40とが互いに対し、第1基板12と第2基板14との相対変位の方向の片側に配置されるから、この相対変位の方向における制振装置10の外形寸法を縮小でき、以て、制振装置10を構造体に設置したときの専有空間を削減することができる。制振装置10の専有空間を削減できれば、制振装置10を内蔵した建物の外壁等に所望の形状や寸法の開口部を設けることが一層容易になる。 As described above, since the vibration damping device 10 has a composite type structure using the viscoelastic material 38 and the friction material 40 as the vibration energy absorbing material, it can exhibit an excellent vibration damping action regardless of the magnitude of vibration. You can Further, in the vibration damping device 10, since the first substrate 12 and the second substrate 14 are displaced in the in-plane direction and the lateral direction with respect to each other, the structure of the building including the pair of frame members is added to the wall type or the stud type. The vibration damping device 10 can be installed. In general, the wall-type or stud-type vibration damping device 10 makes it easier to provide an opening in the outer wall of a building in which the vibration damping device is built, as compared with a brace-type vibration damping device that is obliquely arranged in the structure. There are advantages. Moreover, in the vibration damping device 10, since the viscoelastic material 38 and the friction material 40 are arranged on one side in the relative displacement direction of the first substrate 12 and the second substrate 14 with respect to each other, damping in the direction of this relative displacement is performed. The external dimensions of the vibration damping device 10 can be reduced, and thus the space occupied when the vibration damping device 10 is installed in a structure can be reduced. If the space occupied by the vibration damping device 10 can be reduced, it becomes easier to provide an opening of a desired shape and size on the outer wall of the building in which the vibration damping device 10 is built.

また制振装置10では、粘弾性材38と摩擦材40とが第1基板12と第2基板14との相対変位の方向へ互いに並んで配置されるから、粘弾性材38及び摩擦材40が前述したようにそれぞれの特性に従って制振動作するときのモーメントの発生が回避され、粘弾性材38と摩擦材40との間で第1基板12、第2基板14及び保持板16に生じる曲げモーメントが低減される。制振装置10において、制振動作中のモーメントの発生が回避されれば所期の制振性能を常に発揮でき、また構成部品に生じる曲げモーメントが低減されれば構成部品の耐久性が高まるので、結果として、制振装置10の制振性能の信頼性及び再現性が向上する。これに対し、例えば既述の特許文献2(特開2007−247278号公報)に記載される壁型の制震ダンパーでは、すべり機構が上階梁に近接して配置され、その下方に第一粘弾性体及び第二粘弾性体が配置されるので、すべり機構と粘弾性体とがそれぞれの特性に従って制振動作するときにモーメントが発生し、すべり機構と粘弾性体との間の構成部品の曲げモーメントが大きくなる。 Further, in the vibration damping device 10, since the viscoelastic material 38 and the friction material 40 are arranged side by side in the direction of relative displacement between the first substrate 12 and the second substrate 14, the viscoelastic material 38 and the friction material 40 are arranged. As described above, generation of a moment when the damping operation is performed according to the respective characteristics is avoided, and the bending moment generated between the viscoelastic material 38 and the friction material 40 in the first substrate 12, the second substrate 14, and the holding plate 16 is avoided. Is reduced. In the vibration damping device 10, if the generation of the moment during the vibration damping operation is avoided, the desired vibration damping performance can always be exhibited, and if the bending moment generated in the component is reduced, the durability of the component increases. As a result, the reliability and reproducibility of the vibration damping performance of the vibration damping device 10 are improved. On the other hand, for example, in the wall-type seismic damper described in Patent Document 2 (JP 2007-247278 A), the sliding mechanism is arranged in the vicinity of the upper girder, and the first sliding mechanism is arranged below the sliding mechanism. Since the viscoelastic body and the second viscoelastic body are arranged, a moment is generated when the sliding mechanism and the viscoelastic body perform damping operation according to their respective characteristics, and a component between the sliding mechanism and the viscoelastic body is generated. Bending moment is increased.

また制振装置10は、いずれも同じ側を向く第1面30及び第2面32と、それら第1面30及び第2面32に対向する保持面34との間に、粘弾性材38及び摩擦材40を挟持する構成であるから、装置全体の薄型化を促進できる。しかも、保持面34を有する保持板16を、粘弾性材38及び摩擦材40に対し制振装置10の厚み方向の外側に配置できるので、保持板16のさらに外側に、粘弾性材38及び摩擦材40を追加して配置することが容易である。したがって制振装置10では、要求される制振性能に応じて振動エネルギー吸収材の表面積を容易に増減できる。これに対し、例えば既述の特許文献1(特開2009−228834号公報)に記載される間柱型の減衰装置では、粘弾性ダンパーと摩擦ダンパーとが第3の板材の異なる面に設けられているから、装置全体の厚みが増加する傾向があり、また第3の板材の外側に粘弾性ダンパー及び摩擦ダンパーを追加して配置することが困難である。 Further, the vibration damping device 10 includes the viscoelastic material 38 and the second surface 32, which face the same side, and the viscoelastic material 38 and the holding surface 34, which face the first surface 30 and the second surface 32. Since the friction material 40 is sandwiched, the thinning of the entire device can be promoted. Moreover, since the holding plate 16 having the holding surface 34 can be disposed outside the viscoelastic material 38 and the friction material 40 in the thickness direction of the vibration damping device 10, the viscoelastic material 38 and the friction material 38 are further provided outside the holding plate 16. It is easy to add and arrange the material 40. Therefore, in the vibration damping device 10, the surface area of the vibration energy absorbing material can be easily increased or decreased according to the required vibration damping performance. On the other hand, for example, in the stud type damping device described in Patent Document 1 (JP 2009-228834 A), the viscoelastic damper and the friction damper are provided on different surfaces of the third plate member. Therefore, the thickness of the entire device tends to increase, and it is difficult to additionally arrange the viscoelastic damper and the friction damper outside the third plate member.

制振装置10では、第1及び第2支持板18、22の裏側(図1に示す側の反対側)にも、第1連結板20と第2連結板24と保持板16と粘弾性材38と摩擦材40とを前述した相互関係の下に配置することができる。第1及び第2支持板18、22の表裏両側に同一の制振構造を設置することで、制振動作中に制振装置10自体にモーメントが発生することを回避できる。 In the vibration damping device 10, the first connecting plate 20, the second connecting plate 24, the holding plate 16 and the viscoelastic material are also provided on the back sides of the first and second supporting plates 18 and 22 (the side opposite to the side shown in FIG. 1). 38 and the friction material 40 can be arranged in the above-mentioned mutual relation. By installing the same vibration damping structure on both the front and back sides of the first and second support plates 18 and 22, it is possible to avoid generation of a moment in the vibration damping device 10 itself during the vibration damping operation.

図2〜図7は、他の実施形態による制振装置60を示す。制振装置60は、図1の制振装置10の構成に対応する基本的構成を有するものであって、制振装置10の保持板16の外側に粘弾性材38及び摩擦材40を追加して配置したものである。制振装置60の構成要素のうち、制振装置10の構成要素に対応するものについては、共通の参照符号を付してその詳細な説明を省略する。なお図2〜図7では、装置構成部品の組み立てに用いられる前述した複数のボルト26、28、42、48を、簡略化のため適宜省略して示している。 2 to 7 show a vibration damping device 60 according to another embodiment. The vibration damping device 60 has a basic configuration corresponding to the configuration of the vibration damping device 10 of FIG. 1, and a viscoelastic material 38 and a friction material 40 are added to the outside of the holding plate 16 of the vibration damping device 10. It was arranged. Among the constituent elements of the vibration damping device 60, those corresponding to the constituent elements of the vibration damping device 10 are designated by common reference numerals, and detailed description thereof will be omitted. 2 to 7, the plurality of bolts 26, 28, 42, 48 used for assembling the components of the apparatus are omitted as appropriate for simplification.

図2(斜視図)及び図3(分解斜視図)に示すように、制振装置60は、第1面30を有する第1基板12と、第2面32を有する第2基板14と、保持面34を有する保持板16と、第1面30と保持面34との間に挟持される粘弾性材38と、第2面32と保持面34との間に挟持される摩擦材40とを備える。第1基板12は、第1支持板18と第1連結板20とを備え、第2基板14は、第2支持板22と第2連結板24とを備える。なお図2では、第1基板12(第1支持板18)と第2基板14(第2支持板22)とを互いに移動不能状態に連結する建て方用の複数の固定板Mが示されている。これら固定板Mは、制振装置60を建物の構造体に設置した後に除去されるものである。 As shown in FIG. 2 (perspective view) and FIG. 3 (exploded perspective view), the vibration damping device 60 includes a first substrate 12 having a first surface 30, a second substrate 14 having a second surface 32, and a holding member. The holding plate 16 having the surface 34, the viscoelastic material 38 sandwiched between the first surface 30 and the retaining surface 34, and the friction material 40 sandwiched between the second surface 32 and the retaining surface 34. Prepare The first substrate 12 includes a first supporting plate 18 and a first connecting plate 20, and the second substrate 14 includes a second supporting plate 22 and a second connecting plate 24. Note that FIG. 2 shows a plurality of fixing plates M for erection that connect the first substrate 12 (first support plate 18) and the second substrate 14 (second support plate 22) to each other so that they cannot move. There is. These fixing plates M are removed after the vibration damping device 60 is installed in the structure of the building.

制振装置60は、第1連結板20と第2連結板24と保持板16と粘弾性材38と摩擦材40とを含む複合ダンパー層62(図3)を、複数備えて構成される。個々の複合ダンパー層62は、いずれも実質的同一の構成を有して実質的同一の制振作用を発揮する。第1の複合ダンパー層62は、図1の制振装置10の第1連結板20、第2連結板24、保持板16、粘弾性材38及び摩擦材40にそれぞれ相当する第1連結板20、第2連結板24、保持板16、粘弾性材38及び摩擦材40を含む。同様に第2の複合ダンパー層62は、第1連結板20、第2連結板24、保持板16、粘弾性材38及び摩擦材40を含む。第2の複合ダンパー層62は、その第1連結板20及び第2連結板24を、第1の複合ダンパー層62の保持板16に重ね合わせた状態で、第1の複合ダンパー層62の外側に配置される。以下、図3を参照する説明では、識別のため、第2の複合ダンパー層62及びその構成要素について、参照符号の末尾に「B」を付すこととする。 The vibration damping device 60 includes a plurality of composite damper layers 62 (FIG. 3) including the first connecting plate 20, the second connecting plate 24, the holding plate 16, the viscoelastic material 38, and the friction material 40. Each of the individual composite damper layers 62 has substantially the same configuration and exhibits substantially the same vibration damping effect. The first composite damper layer 62 corresponds to the first connecting plate 20, the second connecting plate 24, the holding plate 16, the viscoelastic material 38, and the friction material 40 of the vibration damping device 10 of FIG. 1, respectively. The second connecting plate 24, the holding plate 16, the viscoelastic material 38, and the friction material 40. Similarly, the second composite damper layer 62 includes the first connecting plate 20, the second connecting plate 24, the holding plate 16, the viscoelastic material 38, and the friction material 40. The second composite damper layer 62 is placed outside the first composite damper layer 62 in a state where the first connecting plate 20 and the second connecting plate 24 are superposed on the holding plate 16 of the first composite damper layer 62. Is located in. Hereinafter, in the description with reference to FIG. 3, for identification, the second composite damper layer 62 and its constituent elements are denoted by “B” at the end of the reference numeral.

図3に示すように、第2の複合ダンパー層62Bの第2連結板24B、保持板16B、粘弾性材38B及び摩擦材40Bはそれぞれ、第1の複合ダンパー層62の第2連結板24、保持板16、粘弾性材38及び摩擦材40と略同一の外形を有する。第2の複合ダンパー層62Bの第1連結板20Bは、その連結部分20aBの外形が、第1の複合ダンパー層62の第1連結板20の連結部分20aの外形と若干異なる一方、延長部分20bBの外形は第1連結板20の延長部分20bの外形と略同一である。 As shown in FIG. 3, the second connecting plate 24B, the holding plate 16B, the viscoelastic material 38B, and the friction material 40B of the second composite damper layer 62B are respectively the second connecting plate 24 of the first composite damper layer 62, The holding plate 16, the viscoelastic material 38, and the friction material 40 have substantially the same outer shape. The outer shape of the connecting portion 20aB of the first connecting plate 20B of the second composite damper layer 62B is slightly different from the outer shape of the connecting portion 20a of the first connecting plate 20 of the first composite damper layer 62, while the extending portion 20bB. The outer shape of is substantially the same as the outer shape of the extension portion 20b of the first connecting plate 20.

第1連結板20Bは、延長部分20bBの輪郭を第1連結板20の延長部分20bの輪郭に見当合わせした姿勢で、保持板16の第1保持部分16aに重ねて配置され、複数のボルト26を用いて、第1連結板20と共に第1支持板18に固定される。第1連結板20、20Bは、連結部分20a、20aBにおいて保持板16の第1保持部分16aの外方へはみ出す形状を有しており、それら連結部分20a、20aBの間にスペーサ64(図2)を介在させることができる。なお第1基板12の構成は、この構成に限定されず、第1支持板18と第1連結板20、20Bとが同一素材で一体成形されたり別素材で成形され溶接等で一体化されたりしたものであってもよい。 The first connecting plate 20B is arranged so as to overlap the first holding portion 16a of the holding plate 16 in a posture in which the contour of the extending portion 20bB is registered with the contour of the extending portion 20b of the first connecting plate 20, and the plurality of bolts 26 Is fixed to the first supporting plate 18 together with the first connecting plate 20. The first connecting plates 20 and 20B have a shape protruding outside the first holding portion 16a of the holding plate 16 at the connecting portions 20a and 20aB, and the spacer 64 (see FIG. 2) is provided between the connecting portions 20a and 20aB. ) Can be interposed. The configuration of the first substrate 12 is not limited to this configuration, and the first support plate 18 and the first connecting plates 20 and 20B may be integrally formed of the same material or may be formed of different materials and integrated by welding or the like. It may be the one.

第2連結板24Bは、その輪郭を第2連結板24の輪郭に見当合わせした姿勢で、保持板16の第2保持部分16bに重ねて配置され、複数のボルト28を用いて、第2連結板24と共に第2支持板22に固定される。第2連結板24、24Bは、長手方向(図でZ方向)両端のボルト締結部分において保持板16の第2保持部分16bの外方へはみ出す形状を有しており、それらボルト締結部分の間にスペーサ66(図3)を介在させることができる。なお第2基板14の構成は、この構成に限定されず、第2支持板22と第2連結板24、24Bとが同一素材で一体成形されたり別素材で成形され溶接等で一体化されたりしたものであってもよい。 The second connecting plate 24</b>B is arranged so as to overlap the second holding portion 16 b of the holding plate 16 in a posture in which the contour is registered with the contour of the second connecting plate 24, and the second connecting plate 24</b>B is connected by using the plurality of bolts 28. It is fixed to the second support plate 22 together with the plate 24. The second connecting plates 24, 24B have a shape protruding to the outside of the second holding portion 16b of the holding plate 16 at the bolt fastening portions at both ends in the longitudinal direction (Z direction in the drawing), and between the bolt fastening portions. A spacer 66 (FIG. 3) can be interposed between the two. The configuration of the second substrate 14 is not limited to this configuration, and the second support plate 22 and the second connecting plates 24 and 24B may be integrally formed of the same material or may be formed of different materials and integrated by welding or the like. It may be the one.

保持板16Bは、その輪郭を保持板16の輪郭に見当合わせした姿勢で、第1連結板20B及び第2連結板24Bに重ねて配置される。保持板16Bは、粘弾性材38Bの粘着力により、第1連結板20Bに取り付けられる。 The holding plate 16B is arranged so as to overlap the first connecting plate 20B and the second connecting plate 24B in a posture in which its contour is registered with the contour of the holding plate 16. The holding plate 16B is attached to the first connecting plate 20B by the adhesive force of the viscoelastic material 38B.

保持板16Bはさらに、保持面34Bと第1面30Bとの間に粘弾性材38Bを挟持した状態で、複数のボルト(すなわち締結部材)42を用いて、第1連結板20Bに取り付けられ、かつ保持板16と共に第1連結板20に取り付けられる。各ボルト42は、保持板16Bの穴46B、第1連結板20Bの長穴44B、保持板16の穴46、第1連結板20の長穴44、及び第2支持板22の穴(図示せず)を貫通して、第2基板14の裏側で、図示しないナットに螺合する。この状態で保持板16Bは、個々のボルト42が対応の長穴44Bの長軸方向の端縁に係合する位置を限界として、保持板16と一体的に、第1連結板20Bに対し、第1基板12と第2基板14との前述した相対変位の方向(X方向)へ移動できる。粘弾性材38Bは、保持板16Bが第1連結板20Bに対しX方向へ移動する間、この移動を阻止しようとする力を粘弾性材38B自体に生じる。 The holding plate 16B is further attached to the first connecting plate 20B using a plurality of bolts (that is, fastening members) 42 with the viscoelastic material 38B being sandwiched between the holding surface 34B and the first surface 30B. Further, it is attached to the first connecting plate 20 together with the holding plate 16. Each bolt 42 has a hole 46B in the holding plate 16B, a long hole 44B in the first connecting plate 20B, a hole 46 in the holding plate 16, a long hole 44 in the first connecting plate 20, and a hole in the second supporting plate 22 (not shown). (Not shown), and is screwed into a nut (not shown) on the back side of the second substrate 14. In this state, the holding plate 16B is integrated with the holding plate 16 with respect to the first connecting plate 20B with the limit of the position where the individual bolts 42 engage with the end edges of the corresponding long holes 44B in the long axis direction. The first substrate 12 and the second substrate 14 can be moved in the above-described relative displacement direction (X direction). While the holding plate 16B moves in the X direction with respect to the first connecting plate 20B, the viscoelastic material 38B exerts a force on the viscoelastic material 38B itself to prevent this movement.

保持板16Bはさらに、保持面34Bと第2面32Bとの間に摩擦材40Bを挟持した状態で、複数のボルト(すなわち締結部材)48を用いて、第2連結板24Bに取り付けられ、かつ保持板16と共に第2連結板24に取り付けられる。各ボルト48は、保持板16Bの穴54B、摩擦材40Bの穴52B、第2連結板24Bの長穴50B、保持板16の穴54、摩擦材40の穴52、第2連結板24の長穴50、及び第2支持板22の穴(図示せず)を貫通して、第2基板14の裏側で、図示しないナットに螺合する。この状態で保持板16Bは、保持板16と一体的に、第2連結板24Bに対し、第1基板12と第2基板14との前述した相対変位の方向(X方向)へ移動できる。摩擦材40Bは、ボルト48に係合したまま、保持板16Bと一体的に第2連結板24Bに対しX方向へ移動でき、この移動の間、移動を阻止しようとする動摩擦力を第2面32Bに対して生じる。 The holding plate 16B is further attached to the second connecting plate 24B using a plurality of bolts (that is, fastening members) 48 with the friction material 40B being sandwiched between the holding surface 34B and the second surface 32B, and It is attached to the second connecting plate 24 together with the holding plate 16. Each bolt 48 has a hole 54B in the holding plate 16B, a hole 52B in the friction material 40B, an elongated hole 50B in the second connecting plate 24B, a hole 54 in the holding plate 16, a hole 52 in the friction material 40, and a length in the second connecting plate 24. It penetrates through the hole 50 and the hole (not shown) of the second support plate 22, and is screwed into a nut (not shown) on the back side of the second substrate 14. In this state, the holding plate 16B can move integrally with the holding plate 16 in the above-described relative displacement direction (X direction) between the first substrate 12 and the second substrate 14 with respect to the second connecting plate 24B. The friction member 40B can move in the X direction with respect to the second connecting plate 24B integrally with the holding plate 16B while being engaged with the bolt 48, and during this movement, the dynamic friction force that tries to prevent the movement is applied to the second surface. Occurs for 32B.

制振装置60は、追加の振動エネルギー吸収材として、第1の複合ダンパー層62の保持板16と第2の複合ダンパー層62Bの第1連結板20Bとの間に挟持される粘弾性材68と、第1の複合ダンパー層62の保持板16と第2の複合ダンパー層62Bの第2連結板24Bとの間に挟持される摩擦材70とをさらに備える。粘弾性材68及び摩擦材70はそれぞれ、複合ダンパー層62、62Bの粘弾性材38、38B及び摩擦材40、40Bに対応する位置に配置される。したがって粘弾性材68と摩擦材70とは、互いに対し、第1基板12と第2基板14との前述した相対変位の方向(X方向)の片側に配置される。 The vibration damping device 60 includes a viscoelastic material 68 sandwiched between the holding plate 16 of the first composite damper layer 62 and the first connecting plate 20B of the second composite damper layer 62B as an additional vibration energy absorbing material. And a friction material 70 sandwiched between the holding plate 16 of the first composite damper layer 62 and the second connecting plate 24B of the second composite damper layer 62B. The viscoelastic material 68 and the friction material 70 are arranged at positions corresponding to the viscoelastic materials 38 and 38B and the friction materials 40 and 40B of the composite damper layers 62 and 62B, respectively. Therefore, the viscoelastic material 68 and the friction material 70 are arranged on one side in the above-described relative displacement direction (X direction) between the first substrate 12 and the second substrate 14 with respect to each other.

粘弾性材68は、複合ダンパー層62、62Bの粘弾性材38、38Bと実質的同一の構成を有する。すなわち、粘弾性材68は、それ自体が有する粘着力により、保持板16の面36及び第1連結板20Bの裏面72B(第1面30Bの反対側の面)に固着する。この状態で保持板16は、粘弾性材68の粘弾性範囲において、第1連結板20Bに対し、第1基板12と第2基板14との前述した相対変位の方向(X方向)へ移動できる。粘弾性材68は、保持板16が第1連結板20Bに対しX方向へ移動する間、この移動を阻止しようとする力を粘弾性材68自体に生じる。 The viscoelastic material 68 has substantially the same structure as the viscoelastic materials 38 and 38B of the composite damper layers 62 and 62B. That is, the viscoelastic material 68 is fixed to the surface 36 of the holding plate 16 and the back surface 72B of the first connecting plate 20B (the surface opposite to the first surface 30B) by the adhesive force of itself. In this state, the holding plate 16 can move in the viscoelastic range of the viscoelastic material 68 in the above-described relative displacement direction (X direction) of the first substrate 12 and the second substrate 14 with respect to the first connecting plate 20B. .. While the holding plate 16 moves in the X direction with respect to the first connecting plate 20B, the viscoelastic material 68 exerts a force on the viscoelastic material 68 itself to prevent this movement.

摩擦材70は、複合ダンパー層62、62Bの摩擦材40、40Bと実質的同一の構成を有する。すなわち、摩擦材70は、ボルト48を挿通する穴74を有し、ボルト48に穴74の縁で係合する。また、摩擦材70と保持板16の面36との間の摩擦係数が摩擦材70と第2連結板24Bの裏面76B(第2面32Bの反対側の面)との間の摩擦係数よりも大きくなるように、摩擦材70、保持板16及び第2連結板24Bの素材や表面構造が設定される。摩擦材70は、ボルト48に係合したまま、保持板16と一体的に第2連結板24Bに対しX方向へ移動でき、この移動の間、移動を阻止しようとする動摩擦力を第2連結板24Bの裏面76Bに対して生じる。 The friction material 70 has substantially the same structure as the friction materials 40 and 40B of the composite damper layers 62 and 62B. That is, the friction material 70 has a hole 74 through which the bolt 48 is inserted, and engages with the bolt 48 at the edge of the hole 74. Further, the friction coefficient between the friction material 70 and the surface 36 of the holding plate 16 is greater than the friction coefficient between the friction material 70 and the back surface 76B of the second connecting plate 24B (the surface opposite to the second surface 32B). The materials and surface structures of the friction material 70, the holding plate 16 and the second connecting plate 24B are set so as to be large. The friction material 70 can move in the X direction with respect to the second connecting plate 24B integrally with the holding plate 16 while being engaged with the bolt 48, and during this movement, the dynamic friction force that tries to prevent the movement is secondly connected. It occurs on the back surface 76B of the plate 24B.

図4〜図7は、制振装置60の様々な部位の断面図である。図4〜図7に示すように、第1基板12の第1支持板18及び第2基板14の第2支持板22の双方は、互いに反対の表側78及び裏側80を備える(図2及び図3はいずれも表側78の構成を示している。)。制振装置60では、第1及び第2支持板18、22の表側78及び裏側80のそれぞれに、2組の複合ダンパー層62が設置される。このように制振装置60は、合せて4組の複合ダンパー層62を備え、したがって、それぞれが粘弾性材38及び摩擦材40又は粘弾性材68及び摩擦材70を含む総計6層の振動エネルギー吸収層を備えている。 4 to 7 are cross-sectional views of various portions of the vibration damping device 60. As shown in FIGS. 4-7, both the first support plate 18 of the first substrate 12 and the second support plate 22 of the second substrate 14 have a front side 78 and a back side 80 that are opposite to each other (FIGS. 2 and 5). 3 shows the structure of the front side 78 in each case.). In the vibration damping device 60, two sets of composite damper layers 62 are installed on the front side 78 and the back side 80 of the first and second support plates 18 and 22, respectively. Thus, the vibration damping device 60 includes a total of four sets of composite damper layers 62, and thus a total of six layers of vibration energy including the viscoelastic material 38 and the friction material 40 or the viscoelastic material 68 and the friction material 70, respectively. It has an absorption layer.

ここで、「表側」及び「裏側」という語句は便宜的なものであって、「表」及び「裏」に特段の意味は無い。制振装置60では、裏側80の2組の複合ダンパー層62は、表側78の2組の複合ダンパー層62(図3に示す複合ダンパー層62、62B)と同一の構成を有する。 Here, the terms "front side" and "back side" are for convenience, and "front side" and "back side" have no particular meaning. In the vibration damping device 60, the two sets of composite damper layers 62 on the back side 80 have the same configuration as the two sets of composite damper layers 62 on the front side 78 (the composite damper layers 62 and 62B shown in FIG. 3).

第1及び第2支持板18、22の表側78に設置される2組の複合ダンパー層62の最も外側の保持板16と、第1及び第2支持板18、22の裏側80に設置される2組の複合ダンパー層62の最も外側の保持板16とは、複数のボルト42、48により互いに固定的に締結される。図4及び図7には、個々のボルト42に螺合するナット82が示され、図5及び図7には、個々のボルト48に螺合するナット84が示されている。ボルト42及びナット82は、粘弾性材38、68及び摩擦材40、70が後述するようにそれぞれの特性に従って制振動作するときに、各複合ダンパー層62の保持板16が内部応力によって外側へ浮き上がる変形を生じることを防止するように作用する。他方、ボルト48及びナット84は、粘弾性材38、68及び摩擦材40、70が後述するようにそれぞれの特性に従って制振動作するときに、各摩擦材40、70に消耗の静止摩擦力及び動摩擦力を発揮させるための押圧力を摩擦材40、70に加えるように作用する。図5及び図7には、ボルト48の締め付けに伴い摩擦材40、70に押圧力を確実に加えるための皿ばね86が示されている。 The outermost holding plate 16 of the two sets of composite damper layers 62 installed on the front side 78 of the first and second support plates 18, 22 and the back side 80 of the first and second support plates 18, 22. The outermost holding plates 16 of the two sets of composite damper layers 62 are fixedly fastened to each other by a plurality of bolts 42 and 48. FIGS. 4 and 7 show nuts 82 screwed on the individual bolts 42, and FIGS. 5 and 7 show nuts 84 screwed on the individual bolts 48. When the viscoelastic materials 38, 68 and the friction materials 40, 70 perform damping operation according to their respective characteristics as will be described later, the bolt 42 and the nut 82 cause the holding plate 16 of each composite damper layer 62 to move outward due to internal stress. It acts to prevent floating deformation. On the other hand, the bolts 48 and the nuts 84, when the viscoelastic materials 38, 68 and the friction materials 40, 70 perform damping operation according to their respective characteristics, as will be described later, cause the friction materials 40, 70 to consume a static friction force and wear. A pressing force for exerting a dynamic friction force is applied to the friction members 40 and 70. 5 and 7 show a disc spring 86 for reliably applying a pressing force to the friction members 40 and 70 as the bolt 48 is tightened.

制振装置60は、前述した制振装置10と同様にして、建物の構造体の一対の梁の間又は一対の柱の間に架設され、その状態で、前述した制振装置10と同様の制振作用を発揮する。以下、制振装置60の制振作用を、図7並びに図7に対応する断面を示す図8A及び図8Bを参照して説明する。 The vibration damping device 60 is installed between the pair of beams or the pair of columns of the structure of the building in the same manner as the vibration damping device 10 described above, and in that state, is similar to the vibration damping device 10 described above. Exhibits damping effect. Hereinafter, the damping action of the damping device 60 will be described with reference to FIG. 7 and FIGS. 8A and 8B showing cross sections corresponding to FIG. 7.

制振装置60は、粘弾性材38、68が剪断変形していない図7の初期状態で構造体に設置される。この初期状態で、保持板16を第1連結板20に取り付ける複数のボルト42の各々は、第1連結板20の対応の長穴44の長軸方向略中央に位置し、保持板16を第2連結板24に取り付ける複数のボルト48の各々は、第2連結板24の対応の長穴50の長軸方向略中央に位置する。第1及び第2の架構部材が振動に起因して長手方向への相対変位を生じると、図8A及び図8Bに示すように、第1基板12(第1支持板18及び4枚の第1連結板20)と第2基板14(第2支持板22及び4枚の第2連結板24)とは、個々のボルト42、48と対応の長穴44、50との相互案内作用の下で、面内方向かつ横方向(図でX方向)へ相対的に変位する。なお図7、図8A及び図8Bには、長穴44、50に対応する位置で第2支持板22に設けられた穴88、90が示されている。 The vibration damping device 60 is installed in the structure in the initial state of FIG. 7 in which the viscoelastic materials 38 and 68 are not sheared and deformed. In this initial state, each of the plurality of bolts 42 for attaching the holding plate 16 to the first connecting plate 20 is located substantially at the center of the corresponding long hole 44 of the first connecting plate 20 in the longitudinal direction, and the holding plate 16 is attached to the first connecting plate 20. Each of the plurality of bolts 48 attached to the second connecting plate 24 is located substantially at the center of the corresponding elongated hole 50 of the second connecting plate 24 in the long axis direction. When the first and second frame members undergo relative displacement in the longitudinal direction due to vibration, as shown in FIGS. 8A and 8B, the first substrate 12 (the first support plate 18 and the four first plates). The connection plate 20) and the second substrate 14 (the second support plate 22 and the four second connection plates 24) are provided under the mutual guiding action of the individual bolts 42, 48 and the corresponding elongated holes 44, 50. , And is relatively displaced in the in-plane direction and the lateral direction (X direction in the figure). Note that FIGS. 7, 8A, and 8B show holes 88 and 90 provided in the second support plate 22 at positions corresponding to the elongated holes 44 and 50.

第1基板12と第2基板14とに振動によって相対変位の方向へ加わる外力の大きさや速度が比較的小さいときは、図8Aに示すように、摩擦材40と第2面32との間及び摩擦材70と裏面76との間の静止摩擦力により、個々の保持板16は摩擦材40、70を介して第2基板14と一体的に第1基板12に対しX方向(図示の例では右方向)へ移動する(すなわち第1基板12は第2基板14及び保持板16に対し逆X方向(図示の例では左方向)へ移動する)。それに伴い、保持面34と第1面30との間に挟持された個々の粘弾性材38及び面36と裏面72との間に挟持された個々の粘弾性材68が、それぞれに剪断変形して振動エネルギーを熱エネルギーに変換し、振動エネルギーを吸収することにより制振作用を発揮する。粘弾性材38、68のみがこのように制振作用を発揮する間の、第1基板12と第2基板14との相対変位量は、通常、図8Aに示すように比較的小さいものとなる。 When the magnitude and speed of the external force applied to the first substrate 12 and the second substrate 14 in the direction of relative displacement by vibration are relatively small, as shown in FIG. 8A, between the friction material 40 and the second surface 32, and Due to the static frictional force between the friction material 70 and the back surface 76, each holding plate 16 is integrated with the second substrate 14 via the friction materials 40 and 70 in the X direction (in the example shown in the drawing) with respect to the first substrate 12. To the right) (that is, the first substrate 12 moves to the opposite X direction (left in the illustrated example) with respect to the second substrate 14 and the holding plate 16). Along with that, the individual viscoelastic materials 38 sandwiched between the holding surface 34 and the first surface 30 and the individual viscoelastic materials 68 sandwiched between the surface 36 and the back surface 72 are respectively shear-deformed. By converting the vibration energy into heat energy and absorbing the vibration energy, it exerts a damping effect. The relative displacement amount between the first substrate 12 and the second substrate 14 while the viscoelastic materials 38 and 68 only exert the vibration damping effect in this manner is usually relatively small as shown in FIG. 8A. ..

第1基板12と第2基板14とに振動によって相対変位の方向へ加わる外力の大きさや速度が増加し、保持板16を第2基板14に対して移動させようとする力が摩擦材40と第2面32との間及び摩擦材70と裏面76との間の最大静止摩擦力を超えると、図8Bに示すように、個々の保持板16は、粘弾性材38、68を剪断変形させながら、摩擦材40、70及び第1基板12と一体的に第2基板14に対し逆X方向(図示の例では左方向)へ移動する(すなわち第2基板14は第1基板12及び保持板16に対しX方向(図示の例では右方向)へ移動する)。それに伴い、個々の摩擦材40及び摩擦材70が対応の第2面32及び裏面76に対し、それぞれに動摩擦力を生じて振動エネルギーを熱エネルギーに変換し、振動エネルギーを吸収することにより制振作用を発揮する。 The magnitude and speed of the external force applied to the first substrate 12 and the second substrate 14 in the direction of relative displacement due to the vibration increase, and the force for moving the holding plate 16 with respect to the second substrate 14 becomes the friction material 40. When the maximum static friction force between the second surface 32 and between the friction material 70 and the back surface 76 is exceeded, the individual holding plates 16 cause the viscoelastic materials 38 and 68 to shear and deform, as shown in FIG. 8B. Meanwhile, the friction materials 40, 70 and the first substrate 12 move integrally with the second substrate 14 in the reverse X direction (left direction in the illustrated example) (that is, the second substrate 14 is the first substrate 12 and the holding plate). 16 moves in the X direction (to the right in the illustrated example). Accordingly, the friction material 40 and the friction material 70 generate dynamic frictional forces on the corresponding second surface 32 and back surface 76, respectively, to convert vibration energy into heat energy and absorb the vibration energy. Exert an effect.

なお、摩擦材40、70が制振作用を発揮する間、粘弾性材38、68は剪断変形をさらに進行させて制振作用を継続することが一般的である。ボルト42及び長穴44は、粘弾性材38が剪断変形し続けて塑性変形や破断に至ることを防止するストッパとしても機能する。 Note that, while the friction materials 40 and 70 exhibit the vibration damping action, it is general that the viscoelastic materials 38 and 68 further undergo shear deformation to continue the vibration damping action. The bolts 42 and the elongated holes 44 also function as stoppers that prevent the viscoelastic material 38 from continuously undergoing shear deformation and leading to plastic deformation or fracture.

上記構成を有する制振装置60は、図1の制振装置10の前述した効果と同等の効果を奏する。特に制振装置60は、厚み方向へ積層される複数(4組)の複合ダンパー層62を備えているから、それぞれが粘弾性材38及び摩擦材40又は粘弾性材68及び摩擦材70を含む複数(6層)の振動エネルギー吸収層の相乗効果により、専有空間を削減可能な構成を維持しつつ優れた制振性能を有するものである。なお、複合ダンパー層62の個数は、要求される制振性能に応じて様々に設定でき、第1及び第2支持板18、22の表側78及び裏側80のそれぞれに1組又は3組以上の複合ダンパー層62を設置することもできる。複合ダンパー層62の個数の増減は、複数のボルト26、28、42、48を着脱することにより、容易に実施できる。 The vibration damping device 60 having the above configuration has the same effects as the above-described effects of the vibration damping device 10 of FIG. In particular, since the vibration damping device 60 includes a plurality (4 sets) of composite damper layers 62 stacked in the thickness direction, each of them includes the viscoelastic material 38 and the friction material 40 or the viscoelastic material 68 and the friction material 70. Due to the synergistic effect of a plurality of (6 layers) vibration energy absorption layers, it has excellent vibration damping performance while maintaining a configuration capable of reducing the occupied space. The number of the composite damper layers 62 can be variously set according to the required vibration damping performance, and one set or three or more sets may be provided on each of the front side 78 and the back side 80 of the first and second support plates 18 and 22. A composite damper layer 62 can also be installed. The number of the composite damper layers 62 can be easily increased or decreased by attaching or detaching the plurality of bolts 26, 28, 42, 48.

図9〜図11はそれぞれ、粘弾性材38及び摩擦材40又は粘弾性材68及び摩擦材70を含む振動エネルギー吸収層の層数を様々に変更した変形例による制振装置60を示す。図9に示す変形例は、第1及び第2支持板18、22の表側78及び裏側80のそれぞれに3組(計6組)の複合ダンパー層62を設置した構成を有する。厚み方向へ隣り合う複合ダンパー層62の間には、前述したように粘弾性材68及び摩擦材70が設置される。図9の変形例による制振装置60は、それぞれが粘弾性材38及び摩擦材40又は粘弾性材68及び摩擦材70を含む総計10層の振動エネルギー吸収層を備えている。 9 to 11 respectively show a vibration damping device 60 according to a modification in which the number of layers of the vibration energy absorbing layer including the viscoelastic material 38 and the friction material 40 or the viscoelastic material 68 and the friction material 70 is variously changed. The modification shown in FIG. 9 has a configuration in which three sets (six sets in total) of composite damper layers 62 are installed on each of the front side 78 and the back side 80 of the first and second support plates 18 and 22. As described above, the viscoelastic material 68 and the friction material 70 are provided between the composite damper layers 62 adjacent to each other in the thickness direction. The vibration damping device 60 according to the modified example of FIG. 9 includes a total of 10 vibration energy absorption layers each including the viscoelastic material 38 and the friction material 40 or the viscoelastic material 68 and the friction material 70.

図10に示す変形例は、第1及び第2支持板18、22の表側78及び裏側80のそれぞれに1組(計2組)の複合ダンパー層62を設置するとともに、これら複合ダンパー層62の保持板16の外側に、粘弾性材68及び摩擦材70と第1連結板20及び第2連結板24とを設置した構成を有する。この構成は、図2〜図7に示す制振装置60の第2の複合ダンパー層62における保持板16並びに粘弾性材38及び摩擦材40を省略した構成に、実質的に相当する。図10の変形例による制振装置60は、それぞれが粘弾性材38及び摩擦材40又は粘弾性材68及び摩擦材70を含む総計4層の振動エネルギー吸収層を備えている。 In the modified example shown in FIG. 10, one set (two sets in total) of composite damper layers 62 is installed on each of the front side 78 and the back side 80 of the first and second support plates 18 and 22, and the composite damper layers 62 are It has a configuration in which the viscoelastic material 68, the friction material 70, the first connecting plate 20, and the second connecting plate 24 are installed outside the holding plate 16. This configuration substantially corresponds to the configuration in which the holding plate 16, the viscoelastic material 38, and the friction material 40 in the second composite damper layer 62 of the vibration damping device 60 shown in FIGS. 2 to 7 are omitted. The vibration damping device 60 according to the modified example of FIG. 10 includes a total of four layers of vibration energy absorption layers each including the viscoelastic material 38 and the friction material 40 or the viscoelastic material 68 and the friction material 70.

図11に示す変形例は、第1及び第2支持板18、22の表側78及び裏側80のそれぞれに2組(計4組)の複合ダンパー層62を設置するとともに、これら複合ダンパー層62の保持板16の外側に、粘弾性材68及び摩擦材70と第1連結板20及び第2連結板24とを設置した構成を有する。この構成は、図2〜図7に示す制振装置60の第2の複合ダンパー層62の外側に、粘弾性材68及び摩擦材70と第1連結板20及び第2連結板24とを追加した構成に、実質的に相当する。図11の変形例による制振装置60は、それぞれが粘弾性材38及び摩擦材40又は粘弾性材68及び摩擦材70を含む総計8層の振動エネルギー吸収層を備えている。 In the modification shown in FIG. 11, two sets (four sets in total) of composite damper layers 62 are installed on each of the front side 78 and the back side 80 of the first and second support plates 18 and 22, and the composite damper layers 62 are It has a configuration in which the viscoelastic material 68, the friction material 70, the first connecting plate 20, and the second connecting plate 24 are installed outside the holding plate 16. In this configuration, the viscoelastic material 68 and the friction material 70, the first connecting plate 20 and the second connecting plate 24 are added to the outside of the second composite damper layer 62 of the vibration damping device 60 shown in FIGS. 2 to 7. It substantially corresponds to the above configuration. The vibration damping device 60 according to the modified example of FIG. 11 includes a total of eight vibration energy absorption layers each including the viscoelastic material 38 and the friction material 40 or the viscoelastic material 68 and the friction material 70.

ここで、図10及び図11の変形例では、ボルト48の締め付けにより摩擦材40、70に押圧力を加えた状態で、厚み方向の最も外側に配置される表裏両側の第2連結板24同士が固定されるので、ボルト48を挿通する長穴50を、第2連結板24ではなく保持板16に形成している。また、摩擦材40と保持板16の保持面34との間の摩擦係数が摩擦材40と第2連結板24の第2面32との間の摩擦係数よりも小さくなり、かつ摩擦材70と保持板16の面36との間の摩擦係数が摩擦材70と第2連結板24の裏面76との間の摩擦係数よりも小さくなるように、摩擦材40、摩擦材70、保持板16及び第2連結板24の素材や表面構造を設定している。その結果、図10及び図11の変形例では、ボルト48の締め付けにより第2連結板24を保持板16に向けて押し付けた状態で、摩擦材40、70は、ボルト48に係合したまま、第2連結板24と一体的に保持板16に対し、第1基板12と第2基板14との前述した相対変位の方向へ移動できる。摩擦材40、70は、第2連結板24と一体的に移動する間、この移動を阻止しようとする動摩擦力を保持板16に対して生じる。なお、この構成に伴い、ボルト42を挿通する長穴44も、第1連結板20ではなく保持板16に形成されている。 Here, in the modified examples of FIGS. 10 and 11, the second connecting plates 24 on both front and back sides arranged on the outermost side in the thickness direction in a state where pressing force is applied to the friction members 40 and 70 by tightening the bolts 48. Is fixed, the elongated hole 50 through which the bolt 48 is inserted is formed in the holding plate 16 instead of the second connecting plate 24. Further, the friction coefficient between the friction material 40 and the holding surface 34 of the holding plate 16 becomes smaller than the friction coefficient between the friction material 40 and the second surface 32 of the second connecting plate 24, and the friction material 70 and The friction material 40, the friction material 70, the holding plate 16, The material and surface structure of the second connecting plate 24 are set. As a result, in the modified examples of FIGS. 10 and 11, the friction members 40 and 70 remain engaged with the bolt 48 while the second connecting plate 24 is pressed toward the holding plate 16 by tightening the bolt 48. The second connecting plate 24 and the holding plate 16 can be moved integrally with each other in the direction of the relative displacement of the first substrate 12 and the second substrate 14 described above. While the friction materials 40 and 70 move integrally with the second connecting plate 24, a dynamic frictional force that tries to prevent this movement is generated on the holding plate 16. With this configuration, the elongated hole 44 through which the bolt 42 is inserted is also formed in the holding plate 16 instead of the first connecting plate 20.

図12は、一実施形態による建物の制振構造100を示す。制振構造100は、互いに間隔を空けて配置される上下一対の梁(第1及び第2の架構部材)102、104と、上記した制振装置10又は制振装置60とを備えて構成される。制振装置10(60)の第1基板12は、ブラケット106を用いて上の梁(第1の架構部材)102に取り付けられ、制振装置10(60)の第2基板14は、ブラケット108を用いて下の梁(第2の架構部材)104に取り付けられる。第1基板12及び第2基板14は、両者の相対変位の方向(X方向)が梁102、104の長手方向に合致するように方向付けされる。 FIG. 12 illustrates a building damping structure 100 according to one embodiment. The vibration damping structure 100 includes a pair of upper and lower beams (first and second frame members) 102 and 104 which are spaced apart from each other, and the vibration damping device 10 or the vibration damping device 60 described above. It The first substrate 12 of the vibration damping device 10 (60) is attached to the upper beam (first frame member) 102 using the bracket 106, and the second substrate 14 of the vibration damping device 10 (60) is mounted on the bracket 108. Is attached to the lower beam (second frame member) 104 using. The first substrate 12 and the second substrate 14 are oriented so that the relative displacement direction (X direction) between them matches the longitudinal direction of the beams 102, 104.

梁102、104を有する構造体110は、左右一対の柱112、114をさらに備えて、建物の単層分の矩形状の骨組みを形成する。この構造体110に振動が生じ、上下の梁102、104が長手方向への相対変位を反復して生じると、制振装置10(60)の第1基板12と第2基板14とは、相対変位の方向(X方向)に相当する実質的水平方向へ互いに反復して変位する。この間、制振装置10(60)は、前述したように粘弾性材38(38及び68)及び摩擦材40(40及び70)がそれぞれの特性に従って制振動作することで制振作用を発揮し、構造体110の振動を抑制する。 The structure 110 having the beams 102 and 104 further includes a pair of left and right columns 112 and 114 to form a rectangular frame for a single layer of a building. When vibration is generated in the structure 110 and the upper and lower beams 102 and 104 are repeatedly displaced relative to each other in the longitudinal direction, the first substrate 12 and the second substrate 14 of the vibration damping device 10 (60) move relative to each other. It is repeatedly displaced in the substantially horizontal direction corresponding to the direction of displacement (X direction). During this time, the vibration damping device 10 (60) exerts a vibration damping action by vibrating the viscoelastic material 38 (38 and 68) and the friction material 40 (40 and 70) according to their respective characteristics as described above. The vibration of the structure 110 is suppressed.

図13は、他の実施形態による建物の制振構造120を示す。制振構造120は、互いに間隔を空けて配置される左右一対の柱(第1及び第2の架構部材)122、124と、上記した制振装置10又は制振装置60とを備えて構成される。制振装置10(60)の第1基板12は、ブラケット126を用いて右の柱(第2の架構部材)124に取り付けられ、制振装置10(60)の第2基板14は、ブラケット128を用いて左の柱(第1の架構部材)122に取り付けられる。第1基板12及び第2基板14は、両者の相対変位の方向(X方向)が柱122、124の長手方向に合致するように方向付けされる。 FIG. 13 shows a building damping structure 120 according to another embodiment. The vibration damping structure 120 is configured to include a pair of left and right columns (first and second frame members) 122 and 124 that are arranged at a distance from each other, and the vibration damping device 10 or the vibration damping device 60 described above. It The first board 12 of the vibration damping device 10 (60) is attached to the right column (second frame member) 124 using the bracket 126, and the second board 14 of the vibration damping device 10 (60) is mounted on the bracket 128. Is attached to the left column (first frame member) 122 using. The first substrate 12 and the second substrate 14 are oriented so that the relative displacement direction (X direction) between them matches the longitudinal direction of the columns 122 and 124.

柱122、124を有する構造体130に振動が生じ、左右の柱122、124が長手方向への相対変位を反復して生じると、制振装置10(60)の第1基板12と第2基板14とは、相対変位の方向(X方向)に相当する実質的鉛直方向へ互いに反復して変位する。この間、制振装置10(60)は、前述したように粘弾性材38(38及び68)及び摩擦材40(40及び70)がそれぞれの特性に従って制振動作することで制振作用を発揮し、構造体130の振動を抑制する。 When vibration is generated in the structure 130 having the columns 122 and 124 and the left and right columns 122 and 124 repeatedly generate relative displacement in the longitudinal direction, the first substrate 12 and the second substrate of the vibration damping device 10 (60). 14 is displaced repeatedly in a substantially vertical direction corresponding to the direction of relative displacement (X direction). During this time, the vibration damping device 10 (60) exerts a vibration damping action by vibrating the viscoelastic material 38 (38 and 68) and the friction material 40 (40 and 70) according to their respective characteristics as described above. The vibration of the structure 130 is suppressed.

図14は、図12の制振構造100の変形例を示す。この変形例では、制振構造100は、上の梁(第1の架構部材)102と下の梁(第2の架構部材)104との間に、第1基板12と第2基板14との相対変位の方向(X方向)へ互いに並んで設置される複数(図では2個)の制振装置10(60)を備えて構成される。複数の制振装置10(60)は、それぞれの第1基板12及び第2基板14を互いに同じ方向に向けて設置され、隣り合う第1基板12同士、及び隣り合う第2基板14同士が、ボルト/ナット等の公知の固定手段により互いに固定される。構造体110に振動が生じると、個々の制振装置10(60)が実質的に同期して制振作用を発揮し、構造体110の振動を抑制する。 FIG. 14 shows a modification of the vibration damping structure 100 of FIG. In this modification, the vibration damping structure 100 includes a first substrate 12 and a second substrate 14 between an upper beam (first frame member) 102 and a lower beam (second frame member) 104. A plurality of (two in the figure) vibration damping devices 10 (60) are installed side by side in the direction of relative displacement (X direction). The plurality of vibration damping devices 10 (60) are installed with their respective first substrates 12 and second substrates 14 oriented in the same direction, and adjacent first substrates 12 are adjacent to each other, and adjacent second substrates 14 are adjacent to each other. They are fixed to each other by known fixing means such as bolts/nuts. When the structure 110 is vibrated, the individual vibration damping devices 10 (60) exhibit a vibration damping action substantially in synchronization, and suppress the vibration of the structure 110.

上記変形例において、制振装置10(60)の個数は、構造体110に要求される制振性能に応じて様々に設定できる。制振装置10(60)の個数の増減は、隣り合う第1基板12同士及び第2基板14同士を固定するボルト/ナット等の公知の固定手段を着脱することにより、容易に実施できる。なお、図13の制振構造120においても、同様に複数の制振装置10(60)を備えることができる。 In the above modification, the number of the vibration damping devices 10 (60) can be variously set according to the vibration damping performance required for the structure 110. The number of the vibration damping devices 10 (60) can be easily increased or decreased by attaching/detaching known fixing means such as bolts/nuts for fixing the adjacent first substrates 12 and the adjacent second substrates 14 to each other. The vibration damping structure 120 of FIG. 13 may also include a plurality of vibration damping devices 10 (60).

上記構成を有する制振構造100、120は、制振装置10(60)を備えたことにより、制振性能の信頼性及び再現性に優れ、かつ建物の要求に応じて制振性能を簡易に調整できるものである。また、構造体110、130の中での制振装置10(60)の専有空間を削減できるので、制振構造100、120を備えた建物の外壁等に所望の形状や寸法の開口部(ドア、窓等)を設けることが容易である。 Since the vibration damping structures 100 and 120 having the above-described configuration are provided with the vibration damping device 10 (60), the vibration damping performance is excellent in reliability and reproducibility, and the vibration damping performance can be simplified in accordance with the requirements of the building. It can be adjusted. In addition, since the space occupied by the vibration damping device 10 (60) in the structures 110 and 130 can be reduced, an opening (door) having a desired shape and size can be formed on the outer wall of the building including the vibration damping structures 100 and 120. , Windows, etc.) are easy to provide.

以上、図面を参照して幾つかの実施形態を説明したが、本発明は図示及び上述した構成に限定されない。例えば、構造体の中での制振装置10、60の左右や上下の方向付け、ボルト26、28、42、48及び対応するナットの個数や位置、第1及び第2基板12、14の寸法、第1及び第2連結板20、24の寸法や枚数、個々の構成要素の素材等を、本発明で所望される効果に応じて、図示及び上述した実施形態の構成から様々に変更することができる。 Although some embodiments have been described with reference to the drawings, the present invention is not limited to the structures shown and described above. For example, the horizontal or vertical orientation of the vibration damping device 10, 60 in the structure, the number and position of the bolts 26, 28, 42, 48 and the corresponding nuts, the dimensions of the first and second boards 12, 14. The dimensions and number of the first and second connecting plates 20 and 24, the material of each component, and the like may be variously changed from the configurations of the embodiments shown and described above according to the effect desired by the present invention. You can

10、60 制振装置
12 第1基板
14 第2基板
16 保持板
18 第1支持板
20 第1連結板
22 第2支持板
24 第2連結板
30 第1面
32 第2面
34 保持面
38、68 粘弾性材
40、70 摩擦材
42、48 ボルト(締結部材)
44、50 長穴
62 複合ダンパー層
78 表側
80 裏側
100、120 制振構造
102、104 梁
110、130 構造体
112、114、122、124 柱
10, 60 vibration damping device 12 first substrate 14 second substrate 16 holding plate 18 first support plate 20 first connecting plate 22 second supporting plate 24 second connecting plate 30 first surface 32 second surface 34 holding surface 38, 68 Viscoelastic material 40, 70 Friction material 42, 48 Bolt (fastening member)
44, 50 slot 62 composite damper layer 78 front side 80 back side 100, 120 damping structure 102, 104 beam 110, 130 structure 112, 114, 122, 124 column

Claims (12)

互いに間隔を空けて配置される一対の架構部材を含む構造体に設置される制振装置であって、
第1の架構部材に取り付けられる第1基板と、
第2の架構部材に取り付けられ、前記第1基板に隣接して配置される第2基板であって、第1の架構部材と第2の架構部材との相対移動に伴い、前記第1基板に対して面内方向かつ横方向へ変位する第2基板と、
前記第1基板に設けられる第1面と、
前記第2基板に設けられ、前記第1面と同じ側を向く第2面と、
前記第1基板及び前記第2基板に重ね合わされ、前記第1面及び前記第2面に対向する保持面を有する保持板と、
前記第1面と前記保持面との間に挟持される粘弾性材と、
前記第2面と前記保持面との間に挟持され、前記粘弾性材に対し前記第1基板と前記第2基板との相対変位の方向の片側に配置される摩擦材と、
を具備し、
前記第1基板は、第1の架構部材に支持される第1支持板と、該第1支持板に連結され、前記第1面を有する第1連結板とを備え、
前記第2基板は、第2の架構部材に支持される第2支持板と、該第2支持板に連結され、前記第2面を有する第2連結板とを備え、
前記第1支持板と前記第2支持板とは、前記相対変位の方向に直交する方向へ並んで配置され、
前記第1連結板と前記第2連結板とは、前記相対変位の方向へ並んで配置される、
制振装置。
A vibration damping device installed on a structure including a pair of frame members arranged at a distance from each other,
A first substrate attached to the first frame member;
A second substrate attached to a second frame member and arranged adjacent to the first substrate, wherein the second substrate is attached to the first substrate as the first frame member and the second frame member move relative to each other. A second substrate that is displaced in-plane and laterally,
A first surface provided on the first substrate;
A second surface provided on the second substrate and facing the same side as the first surface;
A holding plate which is superposed on the first substrate and the second substrate and has a holding surface facing the first surface and the second surface;
A viscoelastic material sandwiched between the first surface and the holding surface;
A friction material that is sandwiched between the second surface and the holding surface and that is disposed on one side in the direction of relative displacement of the first substrate and the second substrate with respect to the viscoelastic material;
Equipped with,
The first substrate includes a first support plate supported by a first frame member, and a first connection plate connected to the first support plate and having the first surface,
The second substrate includes a second support plate supported by a second frame member, and a second connection plate connected to the second support plate and having the second surface,
The first support plate and the second support plate are arranged side by side in a direction orthogonal to the direction of the relative displacement,
The first connecting plate and the second connecting plate are arranged side by side in the relative displacement direction,
Vibration control device.
前記第1連結板と前記第2連結板と前記保持板と前記粘弾性材と前記摩擦材とを含む複合ダンパー層を、複数備える、請求項に記載の制振装置。 The composite damper layer including the first connection plate and the second connecting plate and the holding plate and the viscoelastic material and said friction member comprises a plurality, vibration damping device according to claim 1. 1つの前記複合ダンパー層の前記保持板に、他の1つの前記複合ダンパー層の前記第1連結板及び前記第2連結板が重ね合わせて配置され、
1つの前記複合ダンパー層の前記保持板と他の1つの前記複合ダンパー層の前記第1連結板との間に挟持される粘弾性材と、
1つの前記複合ダンパー層の前記保持板と他の1つの前記複合ダンパー層の前記第2連結板との間に挟持される摩擦材とをさらに具備する、
請求項に記載の制振装置。
The first connecting plate and the second connecting plate of another one of the composite damper layers are arranged so as to overlap with each other on the holding plate of the one composite damper layer,
A viscoelastic material sandwiched between the holding plate of one of the composite damper layers and the first connecting plate of the other one of the composite damper layers;
And a friction material sandwiched between the holding plate of one of the composite damper layers and the second connecting plate of the other one of the composite damper layers.
The vibration damping device according to claim 2 .
前記第1支持板及び前記第2支持板の双方は、互いに反対の表側及び裏側を備え、該表側及び該裏側のそれぞれに前記複合ダンパー層が設置される、請求項又はに記載の制振装置。 The control according to claim 2 or 3 , wherein both the first support plate and the second support plate have front and back sides opposite to each other, and the composite damper layer is installed on each of the front and back sides. Shaking device. 前記表側に設置される前記複合ダンパー層の前記保持板と、前記裏側に設置される前記複合ダンパー層の前記保持板とが、互いに固定的に締結される、請求項に記載の制振装置。 The vibration damping device according to claim 4 , wherein the holding plate of the composite damper layer installed on the front side and the holding plate of the composite damper layer installed on the back side are fixedly fastened to each other. .. 前記表側の前記保持板と前記裏側の前記保持板とを互いに締結する締結部材をさらに具備し、
前記第1連結板は、前記相対変位の方向へ長軸を向ける長穴を有し、前記締結部材は該長穴を貫通し、
前記保持板は、前記締結部材が前記長穴の長軸方向の端縁に係合する位置を限界として、前記第1連結板に対し前記相対変位の方向へ移動できる、
請求項に記載の制振装置。
Further comprising a fastening member for fastening the holding plate on the front side and the holding plate on the back side to each other,
The first connecting plate has an elongated hole whose major axis is oriented in the direction of the relative displacement, and the fastening member penetrates the elongated hole,
The holding plate can move in the direction of the relative displacement with respect to the first connecting plate, with a limit of a position where the fastening member engages with an edge of the long hole in the long axis direction.
The vibration damping device according to claim 5 .
前記表側の前記保持板と前記裏側の前記保持板とを互いに締結する締結部材をさらに具備し、
前記第2連結板は、前記相対変位の方向へ長軸を向ける長穴を有し、前記締結部材は該長穴を貫通し、
前記摩擦材は、前記締結部材に係合して、前記保持板と一体的に前記第2連結板に対し前記相対変位の方向へ移動できる、
請求項に記載の制振装置。
Further comprising a fastening member for fastening the holding plate on the front side and the holding plate on the back side to each other,
The second connecting plate has an elongated hole whose major axis is oriented in the direction of the relative displacement, and the fastening member penetrates the elongated hole,
The friction material engages with the fastening member and can move integrally with the holding plate in the relative displacement direction with respect to the second connecting plate.
The vibration damping device according to claim 5 .
互いに間隔を空けて配置される第1及び第2の架構部材と、
請求項1〜のいずれか1項に記載の制振装置と、
を具備する建物の制振構造。
First and second frame members spaced apart from each other;
A vibration damping device according to any one of claim 1 to 7
Damping structure of a building equipped with.
前記第1の架構部材と前記第2の架構部材との間に、前記相対変位の方向へ互いに並んで設置される複数の前記制振装置を具備する、請求項に記載の制振構造。 9. The vibration damping structure according to claim 8 , further comprising a plurality of the vibration damping devices installed between the first frame member and the second frame member side by side in the relative displacement direction. 互いに間隔を空けて配置される第1及び第2の架構部材と、
前記第1の架構部材と前記第2の架構部材との間に設置される複数の制振装置とを具備する、建物の制振構造であって、
前記複数の制振装置の各々は、
前記第1の架構部材に取り付けられる第1基板と、
前記第2の架構部材に取り付けられ、前記第1基板に隣接して配置される第2基板であって、前記第1の架構部材と前記第2の架構部材との相対移動に伴い、前記第1基板に対して面内方向かつ横方向へ変位する第2基板と、
前記第1基板に設けられる第1面と、
前記第2基板に設けられ、前記第1面と同じ側を向く第2面と、
前記第1基板及び前記第2基板に重ね合わされ、前記第1面及び前記第2面に対向する保持面を有する保持板と、
前記第1面と前記保持面との間に挟持される粘弾性材と、
前記第2面と前記保持面との間に挟持され、前記粘弾性材に対し前記第1基板と前記第2基板との相対変位の方向の片側に配置される摩擦材とを具備し、
前記複数の制振装置は、前記相対変位の方向へ互いに並んで設置される、
建物の制振構造。
First and second frame members spaced apart from each other;
A vibration damping structure for a building, comprising: a plurality of vibration damping devices installed between the first frame member and the second frame member,
Each of the plurality of vibration damping devices,
A first substrate attached to the first frame member;
A second substrate attached to the second frame member and disposed adjacent to the first substrate, wherein the first substrate and the second frame member move relative to each other, and A second substrate which is displaced in-plane and laterally with respect to one substrate;
A first surface provided on the first substrate;
A second surface provided on the second substrate and facing the same side as the first surface;
A holding plate which is superposed on the first substrate and the second substrate and has a holding surface facing the first surface and the second surface;
A viscoelastic material sandwiched between the first surface and the holding surface;
A friction material that is sandwiched between the second surface and the holding surface and that is disposed on one side in the direction of relative displacement of the first substrate and the second substrate with respect to the viscoelastic material,
The plurality of vibration damping devices are installed side by side in the direction of the relative displacement,
Vibration control structure of the building.
前記第1及び第2の架構部材の各々が梁である、請求項10に記載の制振構造。 The vibration damping structure according to claim 10 , wherein each of the first and second frame members is a beam. 前記第1及び第2の架構部材の各々が柱である、請求項10に記載の制振構造。 The vibration damping structure according to claim 10 , wherein each of the first and second frame members is a pillar.
JP2015255397A 2015-12-25 2015-12-25 Vibration control device and building vibration control structure Active JP6741424B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015255397A JP6741424B2 (en) 2015-12-25 2015-12-25 Vibration control device and building vibration control structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015255397A JP6741424B2 (en) 2015-12-25 2015-12-25 Vibration control device and building vibration control structure

Publications (2)

Publication Number Publication Date
JP2017115553A JP2017115553A (en) 2017-06-29
JP6741424B2 true JP6741424B2 (en) 2020-08-19

Family

ID=59233580

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015255397A Active JP6741424B2 (en) 2015-12-25 2015-12-25 Vibration control device and building vibration control structure

Country Status (1)

Country Link
JP (1) JP6741424B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7508807B2 (en) * 2020-02-28 2024-07-02 住友ゴム工業株式会社 Composite Damper
CN111910790A (en) * 2020-08-18 2020-11-10 江苏工邦振控科技有限公司 Composite friction damper

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4355673B2 (en) * 2005-03-15 2009-11-04 東海ゴム工業株式会社 Building seismic control structure
JP5239437B2 (en) * 2008-03-24 2013-07-17 株式会社大林組 Damping device
WO2011099816A2 (en) * 2010-02-12 2011-08-18 조선대학교 산학협력단 High-performance shear friction damper
JP2011256577A (en) * 2010-06-08 2011-12-22 Shimizu Corp Seismic control structure including viscoelastic damper
JP6049428B2 (en) * 2012-11-30 2016-12-21 スリーエム イノベイティブ プロパティズ カンパニー Attenuator

Also Published As

Publication number Publication date
JP2017115553A (en) 2017-06-29

Similar Documents

Publication Publication Date Title
JP4355673B2 (en) Building seismic control structure
JP2006241934A (en) Damper device
JP2014231897A (en) Tension brace vibration control system
JP6741424B2 (en) Vibration control device and building vibration control structure
JP5961057B2 (en) Seismic isolation structure, seismic isolation floor structure and clean room equipped with the same
JP6049428B2 (en) Attenuator
JP2019120050A (en) Vibration control unit, vibration control device, and building
KR102124584B1 (en) Vibration reducing device for structure
JP3792395B2 (en) Building vibration control device
JP5592663B2 (en) Viscoelastic damper device
JP5305756B2 (en) Damping wall using corrugated steel
JP6832019B2 (en) Damping structure
JP7157611B2 (en) Vibration control damper
JP6977313B2 (en) Damping structure of the structure
JP2004232380A (en) Base isolation device
JP5713962B2 (en) Vibration control device
JP6590209B2 (en) Seismic isolation building
JP2012241403A (en) Structural panel, and seismic-control and earthquake-resistant structure
KR102480668B1 (en) System for damping seismic energy
JP7285186B2 (en) friction damper
JP7487649B2 (en) Vibration control system and vibration control method
JP5795905B2 (en) Bridge support structure
JP2013159450A (en) Warehouse
JP5053554B2 (en) Vibration control device
JP2008223424A (en) Seismic response control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190903

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20191202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200303

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200623

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200727

R150 Certificate of patent or registration of utility model

Ref document number: 6741424

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250