JP6740793B2 - In-vehicle power supply control device - Google Patents

In-vehicle power supply control device Download PDF

Info

Publication number
JP6740793B2
JP6740793B2 JP2016154853A JP2016154853A JP6740793B2 JP 6740793 B2 JP6740793 B2 JP 6740793B2 JP 2016154853 A JP2016154853 A JP 2016154853A JP 2016154853 A JP2016154853 A JP 2016154853A JP 6740793 B2 JP6740793 B2 JP 6740793B2
Authority
JP
Japan
Prior art keywords
discharge
upper limit
value
charging
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016154853A
Other languages
Japanese (ja)
Other versions
JP2018023254A (en
Inventor
健太 大西
健太 大西
清仁 町田
清仁 町田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2016154853A priority Critical patent/JP6740793B2/en
Publication of JP2018023254A publication Critical patent/JP2018023254A/en
Application granted granted Critical
Publication of JP6740793B2 publication Critical patent/JP6740793B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Description

本発明は、車載電源制御装置に関する。 The present invention relates to an in-vehicle power supply control device.

電気自動車やハイブリッド車両等、回転電機を駆動源とする車両には、直流電源である電池モジュールが搭載されている。レイアウトの多様化を図る等の目的で、電池モジュールは、複数の電池パックに分割(小分け)される場合がある。例えば特許文献1のように、複数の電池パックは並列接続される。 A battery module, which is a DC power supply, is mounted on a vehicle that uses a rotating electric machine as a drive source, such as an electric vehicle or a hybrid vehicle. The battery module may be divided (subdivided) into a plurality of battery packs for the purpose of diversifying the layout. For example, as in Patent Document 1, a plurality of battery packs are connected in parallel.

図6の放電期間に示されているように、並列接続のため、それぞれの電池パックの端子間電圧(CCV)は基本的に等しい(CCV1=CCV2)。一方、各電池パックの内部抵抗(便宜上、分極電圧もこれに含める)の差異等に基づき、各電池パックの開路電圧(OCV)には差異が生じる(OCV1≠OCV2)。例えば、相対的に内部抵抗の高い電池パックでは、放電時に電流が絞り気味になる(出が悪い)ので、相対的に開路電圧OCVが高止まりする。 As shown in the discharge period of FIG. 6, the voltage (CCV) between terminals of each battery pack is basically equal because of the parallel connection (CCV1=CCV2). On the other hand, a difference occurs in the open circuit voltage (OCV) of each battery pack (OCV1≠OCV2) based on the difference in the internal resistance of each battery pack (including the polarization voltage for convenience). For example, in a battery pack having a relatively high internal resistance, the current tends to be squeezed during discharge (poor output), so that the open circuit voltage OCV remains relatively high.

並列接続では、開路電圧差(OCV差)が生じると、いわゆる循環電流が生じてOCV差が解消されることが知られている。図7には、循環電流を説明する回路図が例示されている。便宜上、内部抵抗と分極電圧をまとめてr(r1,r2)で示す。この図に示すように、電池パック100A及び電池パック100Bから負荷102へ流れる電流ILの他に、相対的に開路電圧(OCV1)の高い電池パック100Aから相対的に開路電圧(OCV2)の低い電池パック100Bに電流IC(循環電流)が流れ、両電池パック100A,100BのOCV差が低減(バランス)される。 In parallel connection, it is known that when an open circuit voltage difference (OCV difference) occurs, a so-called circulating current occurs and the OCV difference is eliminated. FIG. 7 illustrates a circuit diagram for explaining the circulating current. For convenience, the internal resistance and the polarization voltage are collectively indicated by r(r1, r2). As shown in this figure, in addition to the current I L flowing from the battery packs 100A and 100B to the load 102, the battery pack 100A having a relatively high open circuit voltage (OCV1) has a relatively low open circuit voltage (OCV2). A current I C (circulation current) flows through the battery pack 100B, and the OCV difference between the battery packs 100A and 100B is reduced (balanced).

特開2010−246285号公報JP, 2010-246285, A

ところで、負荷側の電力要求が増加すると、例えば放電時には電池モジュールから負荷側に持ち出される電流ILは増加し、循環電流ICは減少する。このような状態が長期間に亘ると、内部抵抗差に応じて各電池パックの開路電圧差は徐々に拡大する。 By the way, when the power demand on the load side increases, for example, the current I L carried out from the battery module to the load side at the time of discharging increases and the circulating current I C decreases. When such a state continues for a long period of time, the open circuit voltage difference between the battery packs gradually increases in accordance with the internal resistance difference.

例えば、図6の時刻t0(Ready−OFF)に示すように、各電池パックの開路電圧差が拡がった状態で電池モジュールの充放電が停止されると、各電池パックは分極が解消されるいわゆる緩和期間に入る。緩和期間の経過に伴って、各電池パックの端子間電圧(CCV)は開路電圧(OCV)に近づく。上述したように、各電池パックの開路電圧(OCV)には電位差があることから、緩和期間の経過に伴って(分極の解消に伴って)それぞれの電池パック間で電位差が生じる。例えば図6では時刻t1(Ready−ON)にてΔV1−ΔV2の電位差が生じる。 For example, as shown at time t0 (Ready-OFF) in FIG. 6, when charging/discharging of the battery module is stopped in a state where the open circuit voltage difference between the battery packs is widened, so-called polarization in each battery pack is eliminated. Enter the relaxation period. As the relaxation period elapses, the terminal voltage (CCV) of each battery pack approaches the open circuit voltage (OCV). As described above, since there is a potential difference in the open circuit voltage (OCV) of each battery pack, a potential difference occurs between the battery packs as the relaxation period elapses (with the elimination of polarization). For example, in FIG. 6, a potential difference of ΔV1-ΔV2 occurs at time t1 (Ready-ON).

各電池パックで電位差がある状態で、車両が起動操作されて各電池パックのシステムメインリレーが遮断状態から接続状態に切り換えられると、各電池パックが導通し、その電位差(OCV差)に基づいて各電池パック間で電流が流れる。各電池パック間の電位差(OCV差)が大きければ、電池パック間に大電流が流れ、システムメインリレーの溶着等に繋がるおそれがある。 When the vehicle is started and the system main relay of each battery pack is switched from the disconnection state to the connection state in a state where there is a potential difference in each battery pack, each battery pack becomes conductive and based on the potential difference (OCV difference). An electric current flows between the battery packs. If the potential difference (OCV difference) between the battery packs is large, a large current flows between the battery packs, which may lead to welding of the system main relay.

そこで本発明は、電池パック間の開路電圧差(OCV差)の拡大を抑制可能な、車載電源制御装置を提供することを目的とする。 Therefore, an object of the present invention is to provide an in-vehicle power supply control device capable of suppressing an increase in open circuit voltage difference (OCV difference) between battery packs.

本発明は、並列に接続された複数の電池パックを備える電池モジュールと負荷との間の充放電電力を制御する、車載電源制御装置に関する。当該制御装置は、カウンタ、抵抗算出部、及び、電力上限値算出部を備える。カウンタは、前記電池モジュールから前記負荷への放電電流値が閾値以上となる継続時間である連続放電時間と、前記負荷から前記電池モジュールへの充電電流値が閾値以上となる継続時間である連続充電時間を計測する。抵抗算出部は、前記複数の電池パックの内部抵抗を求める。電力上限値算出部は、前記連続放電時間の増加に応じて前記電池モジュールから前記負荷への放電電力上限値を引き下げ、かつ、それぞれの前記電池パック間の内部抵抗差の増加に応じて前記放電電力上限値の引き下げ率を割り増しさせる。また、前記連続充電時間の増加に応じて前記負荷から前記電池モジュールへの充電電力上限値を引き下げ、かつ、それぞれの前記電池パック間の内部抵抗差の増加に応じて前記充電電力上限値の引き下げ率を割り増しさせる。 The present invention relates to a vehicle-mounted power supply control device that controls charge/discharge power between a load and a battery module including a plurality of battery packs connected in parallel. The control device includes a counter, a resistance calculation unit, and a power upper limit value calculation unit. The counter is a continuous discharge time which is a duration time when the discharge current value from the battery module to the load is a threshold value or more, and a continuous charge time which is a duration time when the charge current value from the load to the battery module is a threshold value or more. Time is measured. The resistance calculator determines the internal resistance of the plurality of battery packs. The power upper limit calculation unit lowers the discharge power upper limit from the battery module to the load according to the increase in the continuous discharge time, and the discharge according to the increase in the internal resistance difference between the battery packs. Increase the rate of reduction of the upper limit of electric power. Also, the charging power upper limit value from the load to the battery module is reduced according to the increase of the continuous charging time, and the charging power upper limit value is reduced according to the increase of the internal resistance difference between the battery packs. Increase the rate.

本発明によれば、循環電流が乏しくなる連続充放電時間が長期間に亘ると、負荷への電流の持ち出しを制限することで循環電流を確保する。さらに、各電池パック間の内部抵抗差に応じて循環電流の割り当てを増加(割り増し)させる。この結果、電池パック間のOCV差の拡大を抑制可能となる。 According to the present invention, the circulating current is secured by limiting the carry-out of the current to the load when the continuous charging/discharging time when the circulating current becomes scarce becomes long. Further, the allocation of the circulating current is increased (added) according to the internal resistance difference between the battery packs. As a result, it becomes possible to suppress the expansion of the OCV difference between the battery packs.

本実施形態に係る電源制御装置を含む電源システムを例示する図である。It is a figure which illustrates the power supply system containing the power supply control device which concerns on this embodiment. 本実施形態に係る電源制御装置のハード構成を例示する図である。It is a figure which illustrates the hardware constitutions of the power supply control device which concerns on this embodiment. 本実施形態に係る電源制御装置の機能ブロックを例示する図である。It is a figure which illustrates the functional block of the power supply control device which concerns on this embodiment. 本実施形態に係る電源制御装置による、放電上限値設定フローを例示するフローチャートである。It is a flow chart which illustrates a discharge upper limit value setting flow by the power supply control device concerning this embodiment. 本実施形態に係る電源制御装置による、充電上限値設定フローを例示するフローチャートである。It is a flow chart which illustrates a charging upper limit value setting flow by the power supply control device according to the present embodiment. 開路電圧差について説明する図である。It is a figure explaining an open circuit voltage difference. 循環電流について説明する回路図である。It is a circuit diagram explaining a circulating current.

図1に、本実施形態に係る電源制御装置10を含む、電源システムを例示する。電源システムは、例えば電気自動車やハイブリッド車両等の、回転電機MG(負荷)を駆動源とする車両に搭載される。なお図1では、本実施形態と関連の低い構成については適宜図示を省略している。 FIG. 1 illustrates a power supply system including a power supply control device 10 according to this embodiment. The power supply system is mounted on a vehicle that uses a rotary electric machine MG (load) as a drive source, such as an electric vehicle or a hybrid vehicle. It should be noted that, in FIG. 1, a configuration that is less relevant to the present embodiment is omitted as appropriate.

電源システムは、電源制御装置10の他に、電池モジュール12、パワーコントロールユニット14(PCU)、回転電機MG(負荷)、及び各種センサ(電流センサ16A,16B,16C、電圧センサ18)を含んで構成される。 The power supply system includes, in addition to the power supply control device 10, a battery module 12, a power control unit 14 (PCU), a rotary electric machine MG (load), and various sensors (current sensors 16A, 16B, 16C, voltage sensor 18). Composed.

電池モジュール12は、複数の電池パック20A,20Bを備える。図1では図示を簡略化するために2台の電池パック20A,20Bのみを示しているが、3台以上備えていてもよい。これら複数の電池パック20A,20Bは、並列接続される。 The battery module 12 includes a plurality of battery packs 20A and 20B. Although only two battery packs 20A and 20B are shown in FIG. 1 to simplify the illustration, three or more battery packs may be provided. The plurality of battery packs 20A and 20B are connected in parallel.

電池パック20Aは、電池22、正極側システムメインリレーSMRB1、及び、負極側システムメインリレーSMRG1を備える。電池パック20Bは、電池22、正極側システムメインリレーSMRB2、及び、負極側システムメインリレーSMRG2を備える。電池22は、例えば複数の円筒電池が並列接続された電池ユニットから構成される。正極側システムメインリレーSMRB1,SMRB2、及び、負極側システムメインリレーSMRG1,SMRG2は、電池22と負荷(回転電機MG)との接続/遮断を切り替える。当該切り替えの指令は、例えば電源制御装置10から送信される。 The battery pack 20A includes a battery 22, a positive electrode side system main relay SMRB1, and a negative electrode side system main relay SMRG1. The battery pack 20B includes a battery 22, a positive electrode side system main relay SMRB2, and a negative electrode side system main relay SMRG2. The battery 22 is composed of, for example, a battery unit in which a plurality of cylindrical batteries are connected in parallel. The positive electrode side system main relays SMRB1 and SMRB2 and the negative electrode side system main relays SMRG1 and SMRG2 switch connection/disconnection between the battery 22 and the load (rotary electric machine MG). The switching command is transmitted from the power supply control device 10, for example.

パワーコントロールユニット14(PCU)は、電池モジュール12及び回転電機MG(負荷)との間に設けられる。パワーコントロールユニット14は、図示しないDC/DCコンバータやインバータを含む。回転電機MG(負荷)の力行時には、DC/DCコンバータにより電池モジュール12の直流電圧が昇圧され、また、インバータにより昇圧後の直流電力が交流電力に変換される。また、回転電機MG(負荷)の回生時には、インバータにより回転電機MGの交流電力が直流電力に変換(逆変換)され、さらにDC/DCコンバータにより変換後の直流電圧が降圧される。DC/DCコンバータやインバータの図示しないスイッチング素子のオン/オフは、電源制御装置10により制御される。例えば後述する放電電力上限値Woutや充電電力上限値Winに基づいて、スイッチング素子のオン/オフが制御される。 The power control unit 14 (PCU) is provided between the battery module 12 and the rotary electric machine MG (load). The power control unit 14 includes a DC/DC converter and an inverter (not shown). During power running of the rotating electrical machine MG (load), the DC/DC converter boosts the DC voltage of the battery module 12, and the inverter converts the boosted DC power into AC power. During regeneration of the rotating electrical machine MG (load), the inverter converts (inverts) the AC power of the rotating electrical machine MG into DC power, and the DC/DC converter lowers the converted DC voltage. ON/OFF of a switching element (not shown) of the DC/DC converter or the inverter is controlled by the power supply control device 10. For example, on/off of the switching element is controlled based on a discharge power upper limit value Wout and a charge power upper limit value Win which will be described later.

回転電機MG(負荷)は、電池モジュール12から電力を受けて駆動する(力行)。また、車両の制動時には回生駆動して電池モジュール12を充電させる。回転電機MGは、例えば三相の永久磁石同期モータから構成される。 The rotary electric machine MG (load) receives electric power from the battery module 12 and is driven (power running). When the vehicle is being braked, it is regeneratively driven to charge the battery module 12. The rotary electric machine MG is composed of, for example, a three-phase permanent magnet synchronous motor.

電源制御装置10は、電池モジュール12と回転電機MG(負荷)との間の充放電電力を制御する。電源制御装置10は、例えば車両の中央演算装置である電子コントロールユニット(ECU)から構成される。電源制御装置10(ECU)は、例えばコンピュータから構成される。図2のハード構成図に例示されるように、電源制御装置10は、CPU24(Central Processing Unit)、メモリ26、ハードディスクドライブ28(HDD)、ディスプレイ等の表示装置である出力部30、及び入出力インターフェース32を備え、これらの機器がシステムバスを介してそれぞれ接続される。 The power supply control device 10 controls charge/discharge power between the battery module 12 and the rotary electric machine MG (load). The power supply control device 10 is composed of, for example, an electronic control unit (ECU) which is a central processing unit of a vehicle. The power supply control device 10 (ECU) is composed of, for example, a computer. As illustrated in the hardware configuration diagram of FIG. 2, the power supply control device 10 includes a CPU 24 (Central Processing Unit), a memory 26, a hard disk drive 28 (HDD), an output unit 30 which is a display device such as a display, and input/output. An interface 32 is provided, and these devices are connected to each other via a system bus.

ハードディスクドライブ28は、後述する放電上限値設定フロー及び充電上限値設定フローを実行するためのプログラムが記憶された、コンピュータ読み取り可能な非一過性の記憶媒体である。当該プログラムがCPU24によって実行されることで、電源制御装置10を構成するコンピュータは、図3に例示する各機能部として機能する。 The hard disk drive 28 is a computer-readable non-transitory storage medium that stores a program for executing a discharge upper limit value setting flow and a charge upper limit value setting flow described later. When the program is executed by the CPU 24, the computer configuring the power supply control device 10 functions as each functional unit illustrated in FIG.

図3を参照し、電源制御装置10の機能部は、連続放電時間カウンタ34、連続充電時間カウンタ36、基準上限値算出部38、抵抗算出部40、制限係数算出部42、電力上限値算出部44、及び、起動禁止フラグ設定部46を備える。なお、基準上限値算出部38、制限係数算出部42、及び電力上限値算出部44をまとめて上限値算出部として捉えてもよい。上記の機能部は、仮想的にあるいは説明を容易にするために便宜的にそれぞれ独立して図示されている。例えばCPU24やメモリ26、ハードディスクドライブ28等のリソースを適宜割り当ててそれぞれの機能部が構成される。 With reference to FIG. 3, the functional unit of the power supply control device 10 includes a continuous discharge time counter 34, a continuous charge time counter 36, a reference upper limit value calculation unit 38, a resistance calculation unit 40, a limit coefficient calculation unit 42, and a power upper limit value calculation unit. 44 and a start prohibition flag setting unit 46. The reference upper limit value calculation unit 38, the limit coefficient calculation unit 42, and the power upper limit value calculation unit 44 may be collectively regarded as an upper limit value calculation unit. The functional units described above are illustrated virtually or independently for convenience of description. For example, resources such as the CPU 24, the memory 26, and the hard disk drive 28 are appropriately allocated to configure respective functional units.

連続放電時間カウンタ34には、電池モジュール12と回転電機MG(負荷)との間に流れる電流値ILが、電流センサ16Cから送られる。連続放電時間カウンタ34は、電流センサ16Cが検出した、電池モジュール12から回転電機MG(負荷)への放電電流値が所定の閾値以上となる継続時間である、連続放電時間Tdをカウントする。また、このカウント中に、放電電流値が閾値未満となれば、連続放電時間Tdのカウントは0にリセットされる。なお、放電電流値は、電流センサ16Cによって検出される正の電流値であってよい。また、連続放電時間Tdのカウント開始のトリガーとなる放電電流の閾値は、電池パック20A,20B間に流れる循環電流量と回転電機MG(負荷)に持ち出される電流との割合に応じて適宜定められる。 A current value I L flowing between the battery module 12 and the rotary electric machine MG (load) is sent from the current sensor 16C to the continuous discharge time counter 34. The continuous discharge time counter 34 counts the continuous discharge time Td, which is the duration time during which the value of the discharge current from the battery module 12 to the rotary electric machine MG (load) detected by the current sensor 16C is equal to or greater than a predetermined threshold value. If the discharge current value becomes less than the threshold value during this counting, the count of the continuous discharge time Td is reset to zero. The discharge current value may be a positive current value detected by the current sensor 16C. Further, the threshold value of the discharge current that triggers the start of counting the continuous discharge time Td is appropriately determined according to the ratio of the circulating current amount flowing between the battery packs 20A and 20B and the current carried to the rotary electric machine MG (load). ..

上述したように、電池モジュール12から回転電機MG(負荷)への持ち出し電流ILが増加すると、その分、電池パック20A,20B間の循環電流ICが減少し、電池パック20A,20Bの内部抵抗(便宜的に分極電圧も含む)に応じて、電池パック20A,20Bの開路電圧差(OCV差)は拡大する。例えば相対的に内部抵抗の高い電池パックは、放電時に電流が絞り気味になる(出が悪い)ので、相対的に開路電圧OCVが高止まりする。連続放電時間カウンタ34は、このような、開路電圧差が拡大する時間を連続放電時間Tdとして計測する。 As described above, when the carry-out current I L from the battery module 12 to the rotary electric machine MG (load) increases, the circulating current I C between the battery packs 20A and 20B decreases correspondingly, and the inside of the battery packs 20A and 20B decreases. The open circuit voltage difference (OCV difference) between the battery packs 20A and 20B increases in accordance with the resistance (including the polarization voltage for convenience). For example, in a battery pack having a relatively high internal resistance, the current tends to be squeezed during discharge (poor output), so the open circuit voltage OCV remains relatively high. The continuous discharge time counter 34 measures such a time during which the open circuit voltage difference increases as the continuous discharge time Td.

連続充電時間カウンタ36には、連続放電時間カウンタ34と同様にして、電池モジュール12と回転電機MG(負荷)との間に流れる電流値ILが、電流センサ16Cから送られる。連続充電時間カウンタ36は、電流センサ16Cが検出した、回転電機MG(負荷)から電池モジュール12への充電電流値が所定の閾値以上となる継続時間である、連続充電時間Tcをカウントする。また、このカウント中に、充電電流値が閾値未満となれば(電流値が閾値よりも0寄りになれば)、連続充電時間のカウントは0にリセットされる。なお、連続充電時間Tcのカウント開始のトリガーとなる充電電流の閾値は、電池パック20A,20B間に流れる循環電流量と回転電機MG(負荷)から電池モジュール12に流れ込む充電電流との割合に応じて適宜定められる。 Similar to the continuous discharge time counter 34, the continuous charge time counter 36 is supplied with the current value I L flowing between the battery module 12 and the rotary electric machine MG (load) from the current sensor 16C. The continuous charge time counter 36 counts the continuous charge time Tc, which is the duration time during which the value of the charge current from the rotary electric machine MG (load) to the battery module 12 detected by the current sensor 16C is equal to or greater than a predetermined threshold value. Further, during this counting, if the charging current value is less than the threshold value (the current value is closer to 0 than the threshold value), the continuous charging time count is reset to 0. The threshold value of the charging current that triggers the start of counting the continuous charging time Tc depends on the ratio between the circulating current amount flowing between the battery packs 20A and 20B and the charging current flowing from the rotary electric machine MG (load) into the battery module 12. It is determined as appropriate.

なお、上述したように、電流センサ16Cが放電電流値を正の電流値として検出する場合、充電電流値は、回転電機MG(負荷)から電池モジュール12に向かう電流のため、負の電流値として検出される。これを踏まえて、放電電流値との対応関係の理解を容易にするため、以降では適宜、充電電流値として電流センサ16Cの検出値の絶対値を基準にして説明する。 As described above, when the current sensor 16C detects the discharge current value as a positive current value, the charging current value is a negative current value because the current flows from the rotary electric machine MG (load) to the battery module 12. To be detected. Based on this, in order to facilitate understanding of the correspondence relationship with the discharge current value, the charge current value will be described below based on the absolute value of the detected value of the current sensor 16C as appropriate.

例えば、充電電流値が所定の閾値以上となる場合とは、負に増加する場合、つまり、充電電流値の絶対値が所定の閾値の絶対値以上となる場合を指す。また、充電電流値が閾値未満となる場合とは、充電電流値が閾値よりも0側にある場合、つまり、充電電流値の絶対値が所定の閾値の絶対値未満となる場合を指す。 For example, the case where the charging current value is equal to or higher than the predetermined threshold value refers to the case where the charging current value increases negatively, that is, the case where the absolute value of the charging current value is equal to or higher than the predetermined threshold value. The case where the charging current value is less than the threshold value means that the charging current value is on the 0 side of the threshold value, that is, the absolute value of the charging current value is less than the absolute value of the predetermined threshold value.

回転電機MG(負荷)から電池モジュール12への充電電流が増加すると、内部抵抗差により、電池パック20A,20Bの開路電圧差(OCV差)が拡大する。例えば相対的に内部抵抗の高い電池パックは、充電電流の入りが絞られるので、相対的に開路電圧OCVの回復が遅れる。このような、連続充電時間カウンタ36は、開路電圧差が拡大する時間を連続充電時間Tcとして計測する。 When the charging current from the rotary electric machine MG (load) to the battery module 12 increases, the open circuit voltage difference (OCV difference) between the battery packs 20A and 20B increases due to the internal resistance difference. For example, in a battery pack having a relatively high internal resistance, the charging current is restricted, so that the recovery of the open circuit voltage OCV is relatively delayed. The continuous charging time counter 36 measures the time during which the open circuit voltage difference increases as the continuous charging time Tc.

基準上限値算出部38は、連続放電時間Td及び連続充電時間Tcに応じて、基準放電上限値Wout0及び基準充電上限値Win0を求める。基準上限値算出部38には、連続放電時間Tdと基準放電上限値Wout0との対応関係が記憶された基準放電上限値マップ(図示せず)が記憶されている。基準放電上限値マップは、連続放電時間Tdの増加に応じて基準放電上限値Wout0が引き下げられる(絞られる)ように設定されている。例えば、連続放電時間Tdに反比例して、基準放電上限値Wout0が減少するように設定されている。後述するように、基準放電上限値Wout0が引き下げられることで、放電電力上限値Woutが引き下げられる。 The reference upper limit value calculation unit 38 obtains the reference discharge upper limit value Wout0 and the reference charge upper limit value Win0 according to the continuous discharge time Td and the continuous charge time Tc. The reference upper limit value calculation unit 38 stores a reference discharge upper limit value map (not shown) in which the correspondence relationship between the continuous discharge time Td and the reference discharge upper limit value Wout0 is stored. The reference discharge upper limit value map is set such that the reference discharge upper limit value Wout0 is lowered (throttled) as the continuous discharge time Td increases. For example, the reference discharge upper limit value Wout0 is set to decrease in inverse proportion to the continuous discharge time Td. As will be described later, the discharge power upper limit value Wout is lowered by lowering the reference discharge upper limit value Wout0.

また、基準上限値算出部38には、連続充電時間Tcと基準充電上限値Win0との対応関係が記憶された基準充電上限値マップ(図示せず)が記憶されている。基準充電上限値マップは、連続充電時間Tcの増加に応じて基準充電上限値Win0が引き下げられる(絞られる)ように設定されている。例えば、連続充電時間Tcに反比例して、基準充電上限値Win0が減少するように設定されている。 Further, the reference upper limit value calculation unit 38 stores a reference charge upper limit value map (not shown) in which the correspondence relationship between the continuous charging time Tc and the reference charge upper limit value Win0 is stored. The reference charge upper limit value map is set such that the reference charge upper limit value Win0 is lowered (throttled) as the continuous charging time Tc increases. For example, the reference charging upper limit value Win0 is set to decrease in inverse proportion to the continuous charging time Tc.

なお、上述したように、充電電流は負の電流値で表されることから、連続充電時間Tcの増加に応じて基準充電上限値Win0が引き下げられるとは、負に減少する(0に近づく)、すなわち、基準充電上限値Win0の絶対値が減少することを指す。後述するように、基準充電上限値Win0が引き下げられることで、充電電力上限値Winが引き下げられる(0側に絞られる)。 As described above, the charging current is represented by a negative current value. Therefore, when the reference charging upper limit value Win0 is lowered in accordance with the increase in the continuous charging time Tc, it decreases negatively (close to 0). That is, it means that the absolute value of the reference charge upper limit value Win0 decreases. As will be described later, the reference charging upper limit value Win0 is lowered, so that the charging power upper limit value Win is lowered (closed to the 0 side).

抵抗算出部40には、電流センサ16Aから、電池パック20Aの電流値が送られる。また、電流センサ16Bから、電池パック20Bの電流値が送られる。さらに、電圧センサ18から、平滑コンデンサ48の両端電圧VLが送られる。 The current value of the battery pack 20A is sent from the current sensor 16A to the resistance calculation unit 40. Further, the current value of the battery pack 20B is sent from the current sensor 16B. Further, the voltage VL of the smoothing capacitor 48 is sent from the voltage sensor 18.

抵抗算出部40は、上記各種センサから得た値に基づいて、各電池パック20A,20Bの内部抵抗を算出(推定)する。例えば、電流センサ16Aの電流値と、電圧センサ18の電圧値から、電池パック20Aの内部抵抗r1を算出(推定)する。同様にして、電流センサ16Bの電流値と、電圧センサ18の電圧値から、電池パック20Bの内部抵抗r2を算出(推定)する。 The resistance calculator 40 calculates (estimates) the internal resistance of each of the battery packs 20A and 20B based on the values obtained from the various sensors. For example, the internal resistance r1 of the battery pack 20A is calculated (estimated) from the current value of the current sensor 16A and the voltage value of the voltage sensor 18. Similarly, the internal resistance r2 of the battery pack 20B is calculated (estimated) from the current value of the current sensor 16B and the voltage value of the voltage sensor 18.

制限係数算出部42は、抵抗算出部40が算出した、電池パック20A,20Bの内部抵抗r1,r2に基づいて内部抵抗差Δrを求める。なお、電池パック20が3以上設けられている場合には、そのうち最小の内部抵抗と最大の内部抵抗との差を求める。 The restriction coefficient calculation unit 42 calculates the internal resistance difference Δr based on the internal resistances r1 and r2 of the battery packs 20A and 20B calculated by the resistance calculation unit 40. If three or more battery packs 20 are provided, the difference between the minimum internal resistance and the maximum internal resistance is calculated.

さらに制限係数算出部42は、電池パック20A,20Bの内部抵抗差Δrに基づいて、放電制限係数Kout及び充電制限係数Kinを求める。上述したように、内部抵抗差Δrが大きいほど、電池パック20A,20Bの開路電圧差(OCV差)は拡がっていく。そこで、ここでは内部抵抗差に応じて、循環電流ICの割り当てを増減させる。 Further, the limiting coefficient calculating unit 42 obtains the discharging limiting coefficient Kout and the charging limiting coefficient Kin based on the internal resistance difference Δr of the battery packs 20A and 20B. As described above, the larger the internal resistance difference Δr, the wider the open circuit voltage difference (OCV difference) between the battery packs 20A and 20B. Therefore, here, the allocation of the circulating current I C is increased or decreased according to the internal resistance difference.

放電制限係数Koutは、放電電力上限値Woutの引き下げ率を割り増しさせる係数であり、例えば1以下の数値が与えられる。制限係数算出部42には、電池パック20A,20Bの内部抵抗差Δrと放電制限係数Koutの対応関係が記憶された、放電制限係数マップ(図示せず)が記憶されている。例えば放電制限係数マップでは、電池パック20A,20Bの内部抵抗差Δrが増加するほど放電制限係数Koutによる引き下げ率は高くなる(0に近い値を取る)。 The discharge restriction coefficient Kout is a coefficient for increasing the reduction rate of the discharge power upper limit value Wout, and is given a numerical value of 1 or less, for example. The limit coefficient calculation unit 42 stores a discharge limit coefficient map (not shown) in which the correspondence between the internal resistance difference Δr of the battery packs 20A and 20B and the discharge limit coefficient Kout is stored. For example, in the discharge restriction coefficient map, the reduction rate by the discharge restriction coefficient Kout becomes higher (takes a value close to 0) as the internal resistance difference Δr of the battery packs 20A and 20B increases.

また、充電制限係数Kinは、充電電力上限値Winの引き下げ率を割り増しさせる係数であり、例えば1以下の数値が与えられる。制限係数算出部42には、電池パック20A,20Bの内部抵抗差Δrと充電制限係数Kinの対応関係が記憶された、充電制限係数マップ(図示せず)が記憶されている。例えば充電制限係数マップでは、電池パック20A,20Bの内部抵抗差Δrが増加するほど充電制限係数Kinによる引き下げ率は高くなる(0に近い値を取る)。 The charge restriction coefficient Kin is a coefficient for increasing the reduction rate of the charge power upper limit Win, and is given a numerical value of 1 or less, for example. The limit coefficient calculating unit 42 stores a charge limit coefficient map (not shown) in which the correspondence between the internal resistance difference Δr of the battery packs 20A and 20B and the charge limit coefficient Kin is stored. For example, in the charge restriction coefficient map, the reduction rate by the charge restriction coefficient Kin becomes higher (takes a value close to 0) as the internal resistance difference Δr of the battery packs 20A and 20B increases.

電力上限値算出部44は、基準上限値算出部38から基準放電上限値Wout0及び基準充電上限値Win0を取得するとともに、制限係数算出部42から放電制限係数Kout及び充電制限係数Kinを取得する。電力上限値算出部44は、これらの値から、最終的な放電電力上限値Wout及び充電電力上限値Winを算出する。例えば、基準放電上限値Wout0に放電制限係数Koutを掛けることで放電電力上限値Woutを求める。同様にして、基準充電上限値Win0に充電制限係数Kinを掛けることで充電電力上限値Winを求める。 The power upper limit value calculation unit 44 acquires the reference discharge upper limit value Wout0 and the reference charge upper limit value Win0 from the reference upper limit value calculation unit 38, and also acquires the discharge restriction coefficient Kout and the charge restriction coefficient Kin from the restriction coefficient calculation unit 42. The power upper limit value calculation unit 44 calculates the final discharge power upper limit value Wout and the charging power upper limit value Win from these values. For example, the discharge power upper limit value Wout is obtained by multiplying the reference discharge upper limit value Wout0 by the discharge limiting coefficient Kout. Similarly, the charging power upper limit Win is obtained by multiplying the reference charging upper limit Win0 by the charging limit coefficient Kin.

放電電力上限値Wout及び充電電力上限値Winにより、パワーコントロールユニット14のから出力される放電電力が放電電力上限値Wout以下に制限され、充電電力(の絶対値)が充電電力上限値Win(の絶対値)以下に制限される。 The discharge power upper limit value Wout and the charging power upper limit value Win limit the discharge power output from the power control unit 14 to the discharge power upper limit value Wout or less, and the charging power (absolute value) of the charging power upper limit value Win( Absolute value) Limited to the following.

<放電上限値設定フロー>
図4に、本実施形態に係る放電上限値設定フローが例示されている。当該フローの開始トリガーは、例えば車両のシステム起動時(Ready−On時)とする。また、連続放電時間Tdは初期値0とする。
<Flow of discharge upper limit value setting>
FIG. 4 illustrates a discharge upper limit value setting flow according to the present embodiment. The start trigger of the flow is, for example, when the system of the vehicle is activated (at the time of Ready-On). The initial value of the continuous discharge time Td is 0.

さらに、本フローは車両のシステム遮断時(Ready−Off時)に強制的に終了されるものとする。このとき、終了時(遮断時)の起動禁止フラグの値(0または1)に基づいて、次回のシステム起動の可否が決定される。 Further, this flow is forcibly terminated when the system of the vehicle is shut down (at the time of Ready-Off). At this time, whether or not the system can be started next time is determined based on the value (0 or 1) of the start prohibition flag at the time of termination (when shutting off).

連続放電時間カウンタ34は、電流センサ16Cから取得した電流値ILが、放電閾値Ith_D以上であるか否かを判定する(S10)。電流値ILが、放電閾値Ith_D未満である場合は、基準放電上限値Wout0を0に設定する(S12)。これにより、基準放電上限値Wout0と放電制限係数Koutの積である放電電力上限値Woutが0に設定される。また、連続放電時間カウンタ34は、連続放電時間Tdを0にセット(リセット)する(S14)。さらに、電力上限値算出部44は、基準放電上限値Wout0が0であることを受けて、起動禁止フラグ設定部46の設定値を0(無効)に設定する(S16)。起動禁止フラグについては後述する。その後所定時間待機の後(S18)、再びステップS10に戻る。 The continuous discharge time counter 34 determines whether or not the current value I L acquired from the current sensor 16C is greater than or equal to the discharge threshold Ith_D (S10). Current value I L is is less than the discharge threshold Ith_D is a reference discharge limit Wout0 set to 0 (S12). As a result, the discharge power upper limit value Wout, which is the product of the reference discharge upper limit value Wout0 and the discharge limit coefficient Kout, is set to zero. Further, the continuous discharge time counter 34 sets (resets) the continuous discharge time Td to 0 (S14). Further, the power upper limit value calculation unit 44 sets the set value of the start prohibition flag setting unit 46 to 0 (invalid) in response to the reference discharge upper limit value Wout0 being 0 (S16). The start prohibition flag will be described later. After waiting for a predetermined time (S18), the process returns to step S10.

ステップS10にて、電流値ILが、放電閾値Ith_D以上である場合は、連続放電時間カウンタ34により連続放電時間Tdのカウントが開始される(S20)。例えば、ステップS10時点の連続放電時間Tdがインクリメントされる。 In step S10, the current value I L is, if the discharge threshold Ith_D than the count of the continuous discharge time Td is started by continuous discharge time counter 34 (S20). For example, the continuous discharge time Td at step S10 is incremented.

次に、基準上限値算出部38は、連続放電時間Td及び基準放電上限値マップに基づいて、基準放電上限値Wout0を求める(S22)。続いて、抵抗算出部40は、電流センサ16Aの電流値と電圧センサ18の電圧値から、電池パック20Aの内部抵抗値r1を求める。さらに、電流センサ16Bの電流値と電圧センサ18の電圧値から、電池パック20Bの内部抵抗値r2を求める。 Next, the reference upper limit value calculation unit 38 obtains the reference discharge upper limit value Wout0 based on the continuous discharge time Td and the reference discharge upper limit value map (S22). Subsequently, the resistance calculator 40 obtains the internal resistance value r1 of the battery pack 20A from the current value of the current sensor 16A and the voltage value of the voltage sensor 18. Further, the internal resistance value r2 of the battery pack 20B is obtained from the current value of the current sensor 16B and the voltage value of the voltage sensor 18.

制限係数算出部42は、抵抗算出部40から電池パック20Aの内部抵抗値r1、及び、電池パック20Bの内部抵抗値r2を取得して、両者の内部抵抗差Δrを求める(S24)。さらに制限係数算出部42は、内部抵抗差Δrと放電制限係数マップに基づいて、放電制限係数Koutを求める(S26)。 The restriction coefficient calculation unit 42 acquires the internal resistance value r1 of the battery pack 20A and the internal resistance value r2 of the battery pack 20B from the resistance calculation unit 40, and obtains the internal resistance difference Δr between them (S24). Further, the limiting coefficient calculation unit 42 obtains the discharging limiting coefficient Kout based on the internal resistance difference Δr and the discharging limiting coefficient map (S26).

電力上限値算出部44は、基準上限値算出部38から基準放電上限値Wout0を取得するとともに、制限係数算出部42から放電制限係数Koutを取得する。さらに電力上限値算出部44は、基準放電上限値Wout0に放電制限係数Koutを掛けて、最終的な放電電力上限値Woutを算出する(S28)。算出された放電電力上限値Woutに基づいて、パワーコントロールユニット14のスイッチング素子(図示せず)のオン/オフ動作が制御される。 The power upper limit value calculation unit 44 acquires the reference discharge upper limit value Wout0 from the reference upper limit value calculation unit 38, and also acquires the discharge limit coefficient Kout from the limit coefficient calculation unit 42. Further, the power upper limit value calculation unit 44 multiplies the reference discharge upper limit value Wout0 by the discharge limiting coefficient Kout to calculate the final discharge power upper limit value Wout (S28). On/off operation of the switching element (not shown) of the power control unit 14 is controlled based on the calculated discharge power upper limit value Wout.

また、電力上限値算出部44は、放電電力上限値Woutが所定の放電閾値Wout_thを超過するか否かを判定する(S30)。放電電力上限値Woutが放電閾値Wout_th以下である場合には、ステップS32をスキップしてステップS18に進む。一方、ステップS30にて放電電力上限値Woutが所定の放電閾値Wout_thを超過する場合、電力上限値算出部44は、起動禁止フラグ設定部46の起動禁止フラグを1(有効)に設定する(S32)。起動禁止フラグの設定後、所定時間待機の後(S18)、再びステップS10に戻る。 Further, the power upper limit value calculation unit 44 determines whether the discharge power upper limit value Wout exceeds a predetermined discharge threshold value Wout_th (S30). When the discharge power upper limit value Wout is equal to or less than the discharge threshold value Wout_th, step S32 is skipped and the process proceeds to step S18. On the other hand, when the discharge power upper limit value Wout exceeds the predetermined discharge threshold value Wout_th in step S30, the power upper limit value calculation unit 44 sets the activation prohibition flag of the activation prohibition flag setting unit 46 to 1 (valid) (S32). ). After setting the start prohibition flag, after waiting for a predetermined time (S18), the process returns to step S10 again.

上述したように、電池パック20A,20B間で開路電圧差(OCV差)が過度に拡がった状態で、車両のシステムが遮断(Ready−Off)されると、その後の緩和期間を経て、電池パック20A,20Bの端子間電圧(CCV)が開路電圧に近づく。このような状態で車両のシステムを起動させると、開路電圧差に基づき、電池パック20A,20B間に大電流が流れるおそれがある。そこで、電池パック20A,20B間で開路電圧差(OCV差)が相対的に大きいと推定される、つまり、放電電力上限値Woutが放電閾値Wout_thを超過するほど絞られているときには、次回の起動を禁止するために、起動禁止フラグが1(有効)に設定される。 As described above, when the vehicle system is shut down (Ready-Off) in a state where the open circuit voltage difference (OCV difference) is excessively widened between the battery packs 20A and 20B, the battery pack passes through the subsequent relaxation period. The voltage (CCV) between the terminals of 20A and 20B approaches the open circuit voltage. When the system of the vehicle is started in such a state, a large current may flow between the battery packs 20A and 20B based on the open circuit voltage difference. Therefore, when the open circuit voltage difference (OCV difference) between the battery packs 20A and 20B is estimated to be relatively large, that is, when the discharge power upper limit value Wout is narrowed to exceed the discharge threshold value Wout_th, the next start-up is performed. In order to prohibit the activation, the activation prohibition flag is set to 1 (valid).

なお、充電上限値設定フローでも起動禁止フラグの有効/無効が設定されるが、例えば車両のシステム遮断時(Ready−Off)において、放電上限値設定フローにおける起動禁止フラグと、充電上限値設定フローにおける起動禁止フラグの少なくとも一方が有効(1)設定されている場合に、次回の起動が禁止されるものとしてもよい。 Although the activation prohibition flag is set to be valid/ineffective in the charging upper limit value setting flow, for example, when the vehicle system is shut down (Ready-Off), the starting prohibition flag and the charging upper limit value setting flow in the discharging upper limit value setting flow If at least one of the start prohibition flags in 1 is set to valid (1), the next start may be prohibited.

<充電上限値設定フロー>
図5に、本実施形態に係る充電上限値設定フローが例示されている。当該フローの開始トリガーは、放電上限値設定フローと同様に、例えば車両のシステム起動時(Ready−On時)とする。また、連続充電時間Tcは初期値0とする。
<Charge upper limit value setting flow>
FIG. 5 illustrates a charge upper limit value setting flow according to the present embodiment. Similar to the discharge upper limit value setting flow, the start trigger of the flow is, for example, when the system of the vehicle is started (at the time of Ready-On). In addition, the continuous charging time Tc has an initial value 0.

さらに、本フローは車両のシステム遮断時(Ready−Off時)に強制的に終了されるものとする。このとき、終了時(遮断時)の起動禁止フラグの値(0または1)に基づいて、次回のシステム起動の可否が定められる。 Further, this flow is forcibly terminated when the system of the vehicle is shut down (at the time of Ready-Off). At this time, whether or not the system can be started next time is determined based on the value (0 or 1) of the start prohibition flag at the time of termination (at the time of interruption).

連続充電時間カウンタ36は、電流センサ16Cから取得した電流値ILが、充電閾値Ith_C以下である、つまり、充電電流値の絶対値が閾値の絶対値以上であるか否かを判定する(S40)。電流値ILが、充電閾値Ith_Cを超過する(0側に寄る)場合は、基準充電上限値Win0を0に設定する(S42)。これにより、基準充電上限値Win0と充電制限係数Kinの積である充電電力上限値Winが0に設定される。また、連続充電時間カウンタ36は、連続充電時間Tcを0にセット(リセット)する(S44)。さらに、電力上限値算出部44は、基準充電上限値Win0が0であることを受けて、起動禁止フラグ設定部46の設定値を0(無効)に設定する(S46)。その後所定時間待機の後(S48)、再びステップS40に戻る。 The continuous charging time counter 36 determines whether or not the current value I L acquired from the current sensor 16C is less than or equal to the charging threshold value Ith_C, that is, whether the absolute value of the charging current value is greater than or equal to the absolute value of the threshold value (S40). ). Current value I L is, exceeds the charge threshold Ith_C (stop at 0 side), then the reference charging upper limit value Win0 is set to 0 (S42). As a result, the charging power upper limit Win that is the product of the reference charging upper limit Win0 and the charging limit coefficient Kin is set to zero. Further, the continuous charging time counter 36 sets (resets) the continuous charging time Tc to 0 (S44). Further, the electric power upper limit value calculation unit 44 sets the set value of the activation prohibition flag setting unit 46 to 0 (invalid) in response to the reference charging upper limit value Win0 being 0 (S46). After waiting for a predetermined time (S48), the process returns to step S40 again.

ステップS40にて、電流値ILが、充電閾値Ith_C以下である、つまり、充電電流値の絶対値が閾値の絶対値以上である場合は、連続充電時間カウンタ36により連続充電時間Tcのカウントが開始される(S50)。例えば、ステップS40時点の連続充電時間Tcがインクリメントされる。 At step S40, the current value I L is equal to or less than the charge threshold value Ith_C, that is, when the absolute value of the charging current value is greater than or equal to the absolute value of the threshold, the count of continuous charging time by continuous charging time counter 36 Tc It is started (S50). For example, the continuous charging time Tc at step S40 is incremented.

次に、基準上限値算出部38は、連続充電時間Tc及び基準充電上限値マップに基づいて、基準充電上限値Win0を求める(S52)。続いて、抵抗算出部40は、電流センサ16Aの電流値と電圧センサ18の電圧値から、電池パック20Aの内部抵抗値r1を求める。さらに、電流センサ16Bの電流値と電圧センサ18の電圧値から、電池パック20Bの内部抵抗値r2を求める。 Next, the reference upper limit value calculation unit 38 obtains the reference charge upper limit value Win0 based on the continuous charging time Tc and the reference charge upper limit value map (S52). Subsequently, the resistance calculator 40 obtains the internal resistance value r1 of the battery pack 20A from the current value of the current sensor 16A and the voltage value of the voltage sensor 18. Further, the internal resistance value r2 of the battery pack 20B is obtained from the current value of the current sensor 16B and the voltage value of the voltage sensor 18.

制限係数算出部42は、抵抗算出部40から電池パック20Aの内部抵抗値r1、及び、電池パック20Bの内部抵抗値r2を取得して、両者の内部抵抗差Δrを求める(S54)。さらに制限係数算出部42は、内部抵抗差Δrと充電制限係数マップに基づいて、充電制限係数Kinを求める(S56)。 The restriction coefficient calculation unit 42 acquires the internal resistance value r1 of the battery pack 20A and the internal resistance value r2 of the battery pack 20B from the resistance calculation unit 40, and obtains the internal resistance difference Δr between them (S54). Further, the restriction coefficient calculation unit 42 obtains the charging restriction coefficient Kin based on the internal resistance difference Δr and the charging restriction coefficient map (S56).

電力上限値算出部44は、基準上限値算出部38から基準充電上限値Win0を取得するとともに、制限係数算出部42から充電制限係数Kinを取得する。さらに電力上限値算出部44は、基準充電上限値Win0に充電制限係数Kinを掛けて、最終的な充電電力上限値Winを算出する(S58)。算出された充電電力上限値Winに基づいて、パワーコントロールユニット14のスイッチング素子(図示せず)のオン/オフ動作が制御される。 The power upper limit value calculation unit 44 acquires the reference charging upper limit value Win0 from the reference upper limit value calculation unit 38, and also acquires the charging restriction coefficient Kin from the restriction coefficient calculation unit 42. Further, the power upper limit value calculation unit 44 multiplies the reference charge upper limit value Win0 by the charge restriction coefficient Kin to calculate the final charge power upper limit value Win (S58). On/off operation of the switching element (not shown) of the power control unit 14 is controlled based on the calculated charging power upper limit Win.

また、電力上限値算出部44は、充電電力上限値Winが所定の充電閾値Win_th未満となるか否か、言い換えると、充電電力上限値Winの絶対値が充電閾値Win_thの絶対値を超過するか否かを判定する(S60)。充電電力上限値Winが充電閾値Win_th以上となる(Win ≧ Win_th,|Win|≦|Win_th|)場合には、ステップS62をスキップしてステップS48に進む。一方、充電電力上限値Winが所定の充電閾値Win_th未満となる場合(Win < Win_th,|Win|>|Win_th|)、電力上限値算出部44は、起動禁止フラグ設定部46の起動禁止フラグを1(有効)に設定する(S62)。起動禁止フラグの設定後、所定時間待機の後(S48)、再びステップS40に戻る。 Further, the power upper limit value calculation unit 44 determines whether or not the charging power upper limit value Win is less than the predetermined charging threshold value Win_th, in other words, whether the absolute value of the charging power upper limit value Win exceeds the absolute value of the charging threshold value Win_th. It is determined whether or not (S60). When the charging power upper limit Win is equal to or higher than the charging threshold Win_th (Win≧Win_th, |Win|≦|Win_th|), step S62 is skipped and the process proceeds to step S48. On the other hand, when the charging power upper limit value Win is less than the predetermined charging threshold value Win_th (Win<Win_th, |Win|>|Win_th|), the power upper limit value calculation unit 44 sets the activation prohibition flag of the activation prohibition flag setting unit 46. It is set to 1 (valid) (S62). After setting the start prohibition flag, after waiting for a predetermined time (S48), the process returns to step S40.

10 電源制御装置、12 電池モジュール、16A,16B,16C 電流センサ、18 電圧センサ、20A,20B 電池パック、34 連続放電時間カウンタ、36 連続充電時間カウンタ、38 基準上限値算出部、40 抵抗算出部、42 制限係数算出部、44 電力上限値算出部、46 起動禁止フラグ設定部、MG 回転電機(負荷)。 10 power supply control device, 12 battery module, 16A, 16B, 16C current sensor, 18 voltage sensor, 20A, 20B battery pack, 34 continuous discharge time counter, 36 continuous charge time counter, 38 reference upper limit value calculation unit, 40 resistance calculation unit , 42 restriction coefficient calculation unit, 44 electric power upper limit value calculation unit, 46 start prohibition flag setting unit, MG rotating electric machine (load).

Claims (1)

並列に接続された複数の電池パックを備える電池モジュールと負荷との間の充放電電力を制御する、車載電源制御装置であって、
前記電池モジュールから前記負荷への放電電流値が正の電流値である放電閾値以上となる継続時間である連続放電時間、及び、前記負荷から前記電池モジュールへの充電電流値の絶対値が負の電流値である充電閾値の絶対値以上となる継続時間である連続充電時間を計測するとともに
放電電流値が前記放電閾値未満となったときに前記連続放電時間が0にリセットされ、その後放電電流値が前記放電閾値以上になると前記連続放電時間の計測を再開し、
充電電流値の絶対値が前記充電閾値の絶対値未満となったときに前記連続充電時間が0にリセットされ、その後充電電流値の絶対値が前記充電閾値の絶対値以上になると前記連続充電時間の計測を再開する、
計測およびリセットを、車両のシステム起動時からシステム遮断時までの間に行う、
カウンタと、
前記複数の電池パックの内部抵抗を求める抵抗算出部と、
前記連続放電時間の増加に応じて前記電池モジュールから前記負荷への放電電力上限値を引き下げ、かつ、それぞれの前記電池パック間の内部抵抗差の増加に応じて前記放電電力上限値の引き下げ率を割り増しさせるとともに、前記連続充電時間の増加に応じて前記負荷から前記電池モジュールへの充電電力上限値を引き下げ、かつ、それぞれの前記電池パック間の内部抵抗差の増加に応じて前記充電電力上限値の引き下げ率を割り増しさせる、上限値算出部と、
を備えることを特徴とする、車載電源制御装置。
An in-vehicle power supply control device for controlling charge/discharge power between a load and a battery module having a plurality of battery packs connected in parallel,
The discharge current value from the battery module to the load is a continuous discharge time that is a continuous time that is equal to or more than the discharge threshold value that is a positive current value, and the absolute value of the charge current value from the load to the battery module is negative. While measuring the continuous charging time that is the duration that is equal to or greater than the absolute value of the charging threshold that is the current value ,
When the discharge current value becomes less than the discharge threshold value, the continuous discharge time is reset to 0, and then when the discharge current value becomes equal to or more than the discharge threshold value, the measurement of the continuous discharge time is restarted,
When the absolute value of the charging current value is less than the absolute value of the charging threshold value, the continuous charging time is reset to 0, and when the absolute value of the charging current value becomes equal to or more than the absolute value of the charging threshold value, the continuous charging time period is reset. Restart measurement,
Performs measurement and reset from the time the system starts up to the time the system is shut down,
A counter,
A resistance calculation unit for calculating the internal resistance of the plurality of battery packs,
The discharge power upper limit value from the battery module to the load is reduced according to the increase of the continuous discharge time, and the reduction rate of the discharge power upper limit value according to the increase of the internal resistance difference between the battery packs. While increasing the charge, the charging power upper limit value from the load to the battery module is reduced according to the increase of the continuous charging time, and the charging power upper limit value according to the increase of the internal resistance difference between the battery packs. An upper limit calculation unit that increases the reduction rate of
An in-vehicle power supply control device comprising:
JP2016154853A 2016-08-05 2016-08-05 In-vehicle power supply control device Active JP6740793B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016154853A JP6740793B2 (en) 2016-08-05 2016-08-05 In-vehicle power supply control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016154853A JP6740793B2 (en) 2016-08-05 2016-08-05 In-vehicle power supply control device

Publications (2)

Publication Number Publication Date
JP2018023254A JP2018023254A (en) 2018-02-08
JP6740793B2 true JP6740793B2 (en) 2020-08-19

Family

ID=61166025

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016154853A Active JP6740793B2 (en) 2016-08-05 2016-08-05 In-vehicle power supply control device

Country Status (1)

Country Link
JP (1) JP6740793B2 (en)

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4952031B2 (en) * 2006-04-14 2012-06-13 トヨタ自動車株式会社 Power supply device, input / output restriction setting method in power supply device, vehicle and control method thereof
JP4179383B2 (en) * 2007-02-13 2008-11-12 トヨタ自動車株式会社 Driving force generation system, vehicle including the same, and control method thereof
JP5210591B2 (en) * 2007-10-15 2013-06-12 トヨタ自動車株式会社 Secondary battery control system, electric vehicle equipped with the same, and secondary battery control method
JP5588777B2 (en) * 2010-07-30 2014-09-10 日本信号株式会社 Vehicle charging system
JP6013857B2 (en) * 2012-09-28 2016-10-25 株式会社神戸製鋼所 Secondary battery charge / discharge controller for construction machinery
US20160087314A1 (en) * 2013-04-11 2016-03-24 Sony Corporation Battery apparatus
JP6069103B2 (en) * 2013-05-30 2017-01-25 日本リライアンス株式会社 Battery charging / discharging device, charging / discharging method, and program
JP2015208140A (en) * 2014-04-22 2015-11-19 株式会社豊田自動織機 Vehicle theft prevention device and method
JP6040965B2 (en) * 2014-07-10 2016-12-07 トヨタ自動車株式会社 Power system
JP6388285B2 (en) * 2015-03-03 2018-09-12 日立建機株式会社 Hybrid construction machine
JP6198352B2 (en) * 2016-03-16 2017-09-20 本田技研工業株式会社 Secondary battery control device

Also Published As

Publication number Publication date
JP2018023254A (en) 2018-02-08

Similar Documents

Publication Publication Date Title
JP4353222B2 (en) Power supply apparatus and control method thereof
JP6225977B2 (en) Battery system
US8803473B2 (en) Pulse modulation charging method and apparatus
KR102541040B1 (en) Supplementary charging sysemt and method for auxiliary battery of eco-friendly vehicle
US10505477B2 (en) Load drive current control method and system
JP5567040B2 (en) Secondary battery control device
JP6711221B2 (en) Battery system
JP6573069B2 (en) Charge control device
JP2015141117A (en) Deterioration state estimation device for battery
JP6414038B2 (en) Battery system
JP2015233390A (en) Charge control apparatus
JP2012060757A (en) Charging control method and charging controller
JP2015100171A (en) Power conversion system
JP6740793B2 (en) In-vehicle power supply control device
JP2016046851A (en) Power supply
JP2005278249A (en) Capacity adjustment device and adjusting method of battery pack
JP6341145B2 (en) Power system
JP2018125154A (en) Power storage device and power storage control method
JP2014193094A (en) Power supply control device for vehicle
EP3100337B1 (en) Charge algorithm for battery propelled elevator
JP2015228755A (en) Charge control device
JP2014192966A (en) Power supply unit
KR100829188B1 (en) Estimation method for resistance, inductance and capacitor capacitance of motor
CN114336801A (en) Charging control method and device for hybrid electric vehicle and vehicle
TWI484747B (en) Driving system based on state of charge to adjust output power and method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190403

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191029

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191211

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200317

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200518

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20200526

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200623

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200706

R151 Written notification of patent or utility model registration

Ref document number: 6740793

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151