JP6738060B2 - 面形状測定方法および面形状測定装置 - Google Patents

面形状測定方法および面形状測定装置 Download PDF

Info

Publication number
JP6738060B2
JP6738060B2 JP2016163067A JP2016163067A JP6738060B2 JP 6738060 B2 JP6738060 B2 JP 6738060B2 JP 2016163067 A JP2016163067 A JP 2016163067A JP 2016163067 A JP2016163067 A JP 2016163067A JP 6738060 B2 JP6738060 B2 JP 6738060B2
Authority
JP
Japan
Prior art keywords
measured
phase
measurement
phase map
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016163067A
Other languages
English (en)
Other versions
JP2018031629A (ja
Inventor
俊樹 熊谷
俊樹 熊谷
謙一 日比野
謙一 日比野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Olympus Corp
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST, Olympus Corp filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2016163067A priority Critical patent/JP6738060B2/ja
Publication of JP2018031629A publication Critical patent/JP2018031629A/ja
Application granted granted Critical
Publication of JP6738060B2 publication Critical patent/JP6738060B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、面形状測定方法および面形状測定装置に関する。
干渉計を用いた面形状測定の分野において干渉計やフィゾーレンズなどの光学部品からの反射によるノイズ光の影響を抑制する面形状測定装置および方法が種々提案されている。
特許文献1には、装置内の基準位置に対する参照面および被測定面の光軸方向の位置の位相を、例えばπ/2ずつずらした状態で4つの位相マップを取得し、これらの位相マップの平均を測定結果とすることが提案されている。
この原理について図6を参照して説明する。図6は、従来技術におけるノイズ成分除去の原理を示す模式図である。図6は、横軸を実軸Re、縦軸を虚軸Imとする複素平面を表す。
参照面からの反射光と被測定面からの反射光との干渉縞の複素ベクトルをSとする。参照面からの反射光と干渉計内部の光学部品の表面(以下、ノイズ面と表記する)からの反射光との干渉によるノイズ成分は、参照面および被測定面の光軸方向における移動によって位相がπ/2ずつ変化するため、複素平面上でπ/2ずつ回転する。ノイズ成分の複素ベクトルをNk(k=1,2,3,4)と表すと、各移動位置において測定される干渉縞の複素ベクトルは、Sk=S+Nkのようになる。複素ベクトルSkの位相は、それぞれθkである。
したがって、位相θkの平均値φ(=(θ1+θ2+θ3+θ4)/4)を取ることによって、ノイズ成分はキャンセルされる。このため、平均値φは、複素ベクトルSの位相ψのよい近似値になる。
特開2001−349712号公報
しかしながら、上記のような従来の面形状測定方法および面形状測定装置には、以下のような問題がある。
特許文献1に記載の技術では、位相のノイズ成分が平均処理によってキャンセルされるように参照面および被測定面を光軸方向に移動し、それぞれの移動位置における位相マップを平均することによって位相マップにおけるノイズ成分が除去される。
しかし、参照面および被測定面の光軸方向の移動量に誤差が発生すると、平均処理によってノイズ成分がキャンセルされなくなるため、測定誤差が生じるという問題がある。
移動機構に含まれる運動誤差としては、光軸方向の移動に伴って参照面および被測定面の光軸に対する倒れが生じる運動誤差が挙げられる。このような運動誤差が生じると、光軸上の位相差が正確にπ/2になっても、光軸から離れた外周部では、位相差がπ/2からずれてしまう。このため、光軸から離れた部位に現れるノイズ成分が十分除去されなくなってしまうおそれがある。
本発明は、上記のような問題に鑑みてなされたものであり、被測定面の移動誤差が生じても光学部品からの反射によるノイズ光による被測定面の面形状の測定誤差を被測定面の全体にわたって低減することができる面形状測定装置および面形状測定方法を提供することを目的とする。
上記の課題を解決するために、本発明の第1の態様の面形状測定方法は、参照面に対する被測定面の光軸方向における位置である被測定面位置をM通り(ただし、Mは3以上の整数)に設定することと、前記参照面からの反射光と、前記被測定面からの反射光とによって形成される干渉縞の画像を解析することにより、前記被測定面位置ごとに第1の位相マップθ(i=1,2,…,M)を取得することと、前記第1の位相マップθをすべて取得した後、下記式(1)、(2)による平均処理を行うことによって、前記被測定面の面形状の測定結果として第2の位相マップφを算出することと、を含む。
Figure 0006738060
ここで、a(i=1,2,…,M)は、ヌル状態の干渉縞が得られる測定基準位置に対する前記被測定面位置の位相差に関係づけられた1未満の正の係数である。
上記面形状測定方法においては、前記係数aは、下記式(3)〜(7)を満足してもよい。
Figure 0006738060
ここで、β(i=1,2,…,M)は、前記測定基準位置からの位相シフト量で表された前記被測定面位置の目標値である。
上記面形状測定方法においては、前記第1の位相マップθは、前記被測定面を前記被測定面位置にそれぞれ配置した状態でフリンジスキャン法を行うことによって取得されてもよい。
本発明の第2の態様の面形状測定装置は、被測定物を保持する被測定物保持部と、光源と、参照面を有する参照光学素子と、を含み、前記参照面からの反射光と、前記被測定物の被測定面からの反射光とによる干渉縞を形成する干渉計測光学系と、前記干渉縞の画像を解析して、前記干渉縞の画像に基づく第1の位相マップを取得する干渉縞解析部と、前記被測定面を光軸方向に移動する第1の位相シフト部と、前記第1の位相シフト部を駆動して、前記参照面に対する前記被測定面の光軸方向における位置である被測定面位置をM通り(ただし、Mは3以上の整数)に設定し、前記干渉縞解析部によって、前記被測定面位置ごとに、前記被測定面の第1の位相マップθ(i=1,2,…,M)を取得させる位相マップ計測制御部と、前記干渉縞解析部によって取得された前記第1の位相マップθに対して、下記式(1)、(2)による平均処理を行うことによって前記被測定面の面形状の測定結果として第2の位相マップφを算出する位相マップ合成部と、を備える。
Figure 0006738060
ここで、a(i=1,2,…,M)は、ヌル状態の干渉縞が得られる測定基準位置に対する前記被測定面位置の位相差に関係づけられた1未満の正の係数である。
上記面形状測定装置においては、前記係数aは、下記式(3)〜(7)を満足してもよい。
Figure 0006738060
ここで、β(i=1,2,…,M)は、前記測定基準位置からの位相シフト量で表された前記被測定面位置の目標値である。
上記面形状測定装置においては、前記参照面を光軸方向に移動する第2の位相シフト部をさらに備え、前記位相マップ計測制御部は、前記被測定面を前記被測定面位置に配置した状態で、前記第2の位相シフト部を駆動して前記参照面を位相シフトすることによって複数の干渉縞画像を取得し、前記干渉縞解析部は、前記被測定面位置ごとに前記位相マップ計測制御部が取得した複数の干渉縞画像に基づいたフリンジスキャン法によって、前記第1の位相マップθを取得してもよい。
上記面形状測定装置においては、前記干渉計測光学系は、空間コヒーレンス低減部を備えてもよい。
上記面形状測定装置においては、前記空間コヒーレンス低減部は、前記光源と前記参照光学素子との間の光路上に配置された回転拡散板を備えてもよい。
本発明の面形状測定方法および面形状測定方法によれば、被測定面の移動誤差が生じても光学部品からの反射によるノイズ光による被測定面の面形状の測定誤差を被測定面の全体にわたって低減することができるという効果を奏する。
本発明の実施形態の面形状測定装置の構成の一例を示す模式的な構成図である。 本発明の実施形態の面形状測定装置の制御部の主要部の機能構成を示す機能ブロック図である。 本発明の実施形態の面形状測定方法における位相シフト量の誤差と残留ノイズ振幅の関係を示すグラフである。 被測定面の移動量と光路差との関係を示す模式図である。 本発明の実施形態の面形状測定方法を説明するフローチャートである。 従来技術におけるノイズ成分除去の原理を示す模式図である。
以下では、本発明の実施形態の面形状測定装置および面形状測定方法について添付図面を参照して説明する。
図1は、本発明の実施形態の面形状測定装置の構成の一例を示す模式的な構成図である。
図1に示すように、本実施形態の面形状測定装置40は、干渉計20と、制御部30とを備える。
干渉計20は、面形状測定装置40の測定対象である被測定物の被測定面の干渉縞画像を取得するフィゾー型干渉計である。
被測定物は特に限定されない。被測定物の例としては、例えば、レンズ、ミラー、プリズム、平行平板などが挙げられる。被測定面の形状は、例えば、凸面、凹面、平面のいずれでもよい。
図1には、被測定物が、凹球面を被測定面15aとして有する被測定レンズ15である場合の例が図示されている。被測定面15aが凸球面や平面からなる場合の、干渉計20の配置、構成は当業者には容易に理解される。
干渉計20は、干渉計測光学系22と、被測定レンズ保持部16(被測定物保持部)と、第1の位相シフト部17とを備える。
干渉計測光学系22は、光源1と、参照面12aを有する参照レンズ12(参照光学素子)とを含み、参照面12aからの参照面反射光L5(参照面からの反射光)と、被測定面15aからの反射光である被測定面反射光L11(被測定面からの反射光)とによる干渉縞を形成する。
さらに、干渉計測光学系22は、結合レンズ2、空間コヒーレンス低減部21、マルチモードファイバー5、コリメーター6、および偏光板7を備える。マルチモードファイバー5の出射端5b、コリメーター6、および偏光板7は、光軸O1上にこの順に配置されている。光軸O1は、参照面12aの光軸O2と交差する位置関係にある。
さらに干渉計測光学系22は、光軸O2上に、偏光ビームスプリッター8、λ/4板9、リレーレンズ10、コリメーター11、結像レンズ18、および撮像部19を備える。
干渉計20は、さらに、参照レンズ保持部13、および第2の位相シフト部14を備える。
光源1は、干渉縞を形成するためのコヒーレント光を発生する。本実施形態では、一例として、波長λの平行なレーザー光L0を発生するレーザー光源が用いられている。
レーザー光L0は、正の屈折力を有する結合レンズ2によって集光されて、マルチモードファイバー5の入射端5aに結合される。
結合レンズ2と入射端5aの間には、空間コヒーレンス低減部21が配置されている。
空間コヒーレンス低減部21は、レーザー光L0の空間コヒーレンスを低減する装置部分である。空間コヒーレンス低減部21は、レーザー光L0の空間コヒーレンスを低減することにより、干渉計測光学系22において後述する参照レンズ12よりも像側に配置された光学部品による反射光と、参照面12aおよび被測定面15aからの反射光との干渉を抑制する。
空間コヒーレンス低減部21の装置構成は、レーザー光L0の空間コヒーレンスを低減できれば、特に限定されない。本実施形態における空間コヒーレンス低減部21は、一例として、拡散板4(回転拡散板)と、拡散板4を回転駆動するモーター3とを備える。
拡散板4は、例えば、すりガラスによって形成された円板状部材である。拡散板4は、レーザー光L0の光路を横断するように配置され、レーザー光L0の光路に平行な回転軸を有するモーター3によって回転可能に支持されている。拡散板4が回転されるとレーザー光L0が拡散板4上の異なる部位によって散乱されるため、レーザー光L0の空間コヒーレンスが低下する。
マルチモードファイバー5は、入射端5aから入射するレーザー光L0を伝送する。レーザー光L0が入射端5aと反対側の端部である出射端5bに到達すると、レーザー光L0は、光軸O1を中心とする発散光L1として外部に出射される。
コリメーター6は、出射端5bから出射される発散光L1をコリメートして、光軸O1に沿って進む平行光L2を形成する光学素子である。コリメーター6は、その焦点位置が出射端5bに一致するように、光軸O1と同軸に配置されている。
偏光板7は、平行光L2の光路中に配置され、平行光L2のうち、後述する偏光ビームスプリッター8のビームスプリッター面8aに対するS偏光成分のみを透過させる。
偏光ビームスプリッター8は、光軸O1上に配置され、光軸O1と斜めに交差するビームスプリッター面8aを有する光分岐素子である。ビームスプリッター面8aは、S偏光成分を反射し、P偏光成分を透過する。
偏光ビームスプリッター8は、S偏光とされた平行光L2をビームスプリッター面8aで反射して参照レンズ12の光軸O2上に導くとともに、参照レンズ12側から入射する後述のP偏光の被測定面反射光L13および参照面反射光L6を透過させる。
光軸O2に沿う光路において、ビームスプリッター面8aで反射された測定光L3が進む物体側の方向には、λ/4板9、リレーレンズ10、コリメーター11、参照レンズ12、および被測定レンズ15がこの順に配置されている。
光軸O2に沿う光路において、ビームスプリッター面8aで反射された測定光L3が進む方向と反対の像側には、結像レンズ18と、撮像部19とがこの順に配置されている。
λ/4板9は、透過光の偏光を直線偏光から円偏光に、円偏光から直線偏光に変換する。例えば、測定光L3はλ/4板9を透過すると、直線偏光から円偏光に変換される。
リレーレンズ10およびコリメーター11は、測定光L3の光束径を、測定範囲を覆うことができる大きさに変更するビームエキスパンダ光学系を構成している。
リレーレンズ10は、像側から入射する測定光L3をリレーレンズ10の焦点位置に集光する。
コリメーター11は、リレーレンズ10によって集光されてから発散する測定光L3を集光して、光軸O2に沿って進む平行光である測定光L4を形成する。コリメーター11の焦点距離は、測定光L4の光束径が、測定に必要な大きさが得られる適宜値に設定される。
参照レンズ12は、光軸O2上に入射された測定光L4の一部を参照面12aで反射して、参照面反射光L5を形成し、測定光L4の他の部分を測定光L10として透過する。測定光L10は、参照レンズ12の焦点位置で集光されてから参照レンズ12に対向して物体側に配置された被測定レンズ15の被測定面15aに向かって進む。参照レンズ12の参照面12aは、測定光L4を分割する機能を有する。
測定光L10が被測定面15aによって反射されると、光軸O2上を像側に戻る被測定面反射光L11が形成される。
参照面12aの形状は、精度よく仕上げられた球面である。参照面12aは、被測定面15aで反射された被測定面反射光L11と参照面反射光L5との干渉縞を形成するための参照面を構成している。参照レンズ12の光軸O2は、干渉計20の干渉計測の光軸を構成している。
参照レンズ保持部13は、参照レンズ12を保持する。参照レンズ保持部13は、第2の位相シフト部14によって、光軸O2に沿って移動可能に支持されている。
第2の位相シフト部14の構成は、参照レンズ保持部13を光軸O2に沿って精度よく移動できれば特に限定されない。本実施形態では、一例として、第2の位相シフト部14はピエゾ素子を含む駆動機構を備える。第2の位相シフト部14は、後述する制御部30によって移動量が制御される。
被測定レンズ保持部16は、被測定面15aが参照レンズ12の参照面12aに対向するように被測定レンズ15を保持する装置部分である。被測定レンズ保持部16は、第1の位相シフト部17によって、光軸O2に沿って移動可能に支持されている。
第1の位相シフト部17の構成は、被測定レンズ保持部16を光軸O2に沿って精度よく移動できれば特に限定されない。本実施形態では、一例として、第1の位相シフト部17はピエゾ素子を含む駆動機構を備える。第1の位相シフト部17は、後述する制御部30によって移動量が制御される。
本実施形態では、被測定レンズ保持部16は、図示略の移動機構によっても移動可能に支持されている。この移動機構は、参照レンズ12の焦点位置と、被測定面15aの球心位置あるいは面頂位置とが一致するように位置調整を行う装置部分である。
この移動機構としては、例えば、光軸O2に直交する2軸方向の移動ステージ、光軸O2に対する傾動ステージ、および光軸O2に沿う方向(光軸方向)に移動させる1軸移動ステージの組合せを採用することができる。
第1の位相シフト部17は、この移動機構によって調整された測定基準位置から、光軸O2に沿う方向に被測定レンズ保持部16を移動することができる。ここで、測定基準位置は、ヌル状態の干渉縞が得られるような参照面12aおよび被測定面15aのそれぞれの配置位置を意味する。以下では、参照面12aおよび被測定面15aのそれぞれの測定基準位置からの移動量を位相に換算して表す場合には、測定基準位置に対応する位相0を、基準位相と称する場合がある。
本実施形態では、一例として、上述した第1の位相シフト部17の他に、このような移動機構が設けられている例で説明する。ただし、この移動機構のうち、光軸O2に沿う方向への移動機構には第1の位相シフト部17が用いられてもよい。
結像レンズ18は、後述の被測定面反射光L13、参照面反射光L6による干渉縞を、撮像部19の撮像面上に投影する光学素子である。
撮像部19は、例えば、CCDなどの撮像素子を備え、この撮像素子の撮像面上に投影された干渉縞画像を光電変換する。
撮像部19は、後述する制御部30と通信可能に接続されており、制御部30によって撮像動作が制御される。撮像部19で撮像された干渉縞画像の画像信号は制御部30に送出される。
制御部30は、面形状測定装置40の装置全体を制御する。以下では、制御部30における本実施形態の面形状測定方法に関連する主要部の機能構成について説明する。
図2は、本発明の実施形態の面形状測定装置の制御部の主要部の機能構成を示す機能ブロック図である。
図2に示すように、制御部30は、位相マップ計測制御部100、干渉縞解析部101、位相マップ合成部102、および記憶部103を備える。
位相マップ計測制御部100は、面形状測定装置40の各装置部分を協調制御することにより、本実施形態の面形状測定方法を行う装置部分である。位相マップ計測制御部100は、撮像部19、第1の位相シフト部17、第2の位相シフト部14、および被測定レンズ保持部16と通信可能に接続されている。さらに位相マップ計測制御部100は、モニタなどからなる表示部23(図1では図示略)にも通信可能に接続されている。
位相マップ計測制御部100は、制御部30の内部において、後述する干渉縞解析部101、位相マップ合成部102、および記憶部103と通信可能に接続されている。
位相マップ計測制御部100は、撮像部19に制御信号を送出して、撮像部19が撮像する干渉縞画像の画像信号を取得する。位相マップ計測制御部100は、撮像部19から送出される画像信号を画像フレームごとに取り込んで、輝度データに変換し、2次元の画像データとして干渉縞解析部101に送出する。
位相マップ計測制御部100は、第1の位相シフト部17を駆動して、参照面12aに対する被測定面15aの光軸O2方向における位置である被測定面位置をM通り(ただし、Mは3以上の整数)に設定する。被測定面位置の設定方法については後述する。
位相マップ計測制御部100は、各被測定面位置において干渉縞計測を行うことによって、被測定面15aの第1の位相マップθ(i=1,2,…,M)を取得する。ここで、第1の位相マップとは、各被測定面位置における干渉縞画像に基づいた参照面12aに対する被測定面15aの位相差の2次元データである。このため、光軸O2に直交する2軸をx軸、y軸とすると、第1の位相マップは、θ(x,y)と表すことができる。ただし、以下では簡単のため(x,y)の表記は省略する。
第1の位相マップθの求め方は特に限定されない。第1の位相マップθを求めるため、例えば、Daniel Malacara著、成相恭二他訳、「光学実験・測定法 II Optical Shop Testing Third Edition」、アドコム・メディア株式会社、2010年6月29日、p.106−150に開示されている種々の位相シフト干渉法が用いられてもよい。位相シフト干渉法は、例えば、フリンジスキャン法、位相シフト法などの名称で知られる手法を含んでいる。
ただし、第1の位相マップθを求める手法は、同書に記載された手法に限定されることはない。例えば、同書に開示された手法に改良、変形などが施された種々の公知の測定手法によって求められてもよい。
本実施形態では、位相シフト干渉法を実行するため、位相マップ計測制御部100は、第2の位相シフト部14によって参照面12aを光軸O2に沿う方向に移動させる制御を行う。位相マップ計測制御部100は、参照面12aの移動中の適宜タイミングで撮像部19から干渉縞画像の画像信号を取得する。位相マップ計測制御部100は、取得した画像信号を画像データに変換した後、干渉縞解析部101に送出する。
干渉縞解析部101は、位相マップ計測制御部100から送出された干渉縞の画像データを、予め選択された位相シフト干渉法の手法に基づいて解析して第1の位相マップθを取得する。干渉縞解析部101は、取得された第1の位相マップθを記憶部103に記憶させる。
位相マップ合成部102は、位相マップ計測制御部100からの制御信号に基づいて、第1の位相マップθを後述する平均処理を行って、第2の位相マップφを算出する。位相マップ合成部102は、算出された第2の位相マップφは、記憶部103に記憶させる。
記憶部103に記憶された第2の位相マップφは、位相マップ計測制御部100によって読み出され、表示部23に表示される。
記憶部103は、上述の第1の位相マップθ、第2の位相マップφを含むデータを記憶する。記憶部103には、これらのデータの他にも、制御部30における制御および演算の実行に必要なデータが記憶されている。
制御部30の装置構成は、上記各機能を専用のハードウェアを用いて実現してもよいが、本実施形態では、制御部30は、CPU、メモリ、入出力インターフェース、外部記憶装置などからなるコンピュータで構成され、このコンピュータにより適宜の制御プログラム、演算プログラムを実行することで上述の機能を実現している。
図示は省略するが、制御部30の入出力インターフェースには、例えば、制御部30を動作させるための操作入力、数値入力などを行う、例えば、キーボード、マウスなどの適宜の入力デバイスを含む図示略の操作部が接続されている。
次に、面形状測定装置40の動作について、本実施形態の面形状測定方法の動作を中心に説明する。
具体的な動作説明を行う前に、本実施形態の面形状測定方法の原理について説明する。
干渉計20を用いた面形状測定では、干渉計測光学系22に含まれる光学部品の表面反射光が参照面12aからの反射光あるいは被測定面15aからの反射光と干渉することにより、干渉縞画像のノイズが発生するおそれがある。
干渉縞がヌル状態になる測定基準位置から、参照面12a、被測定面15aを光軸O2に沿ってそれぞれα、βだけ位相シフトした場合の輝度I(α,β)は下記式(8)で表される。輝度I(α,β)は、光軸O2に直交するxy平面上の2次元データである。
α=0、β=0は、参照面12a、被測定面15aの基準位相であり、それぞれの測定基準位置を表わす。
α、βは、移動距離に換算するとそれぞれ、λα/2π、λβ/2πである。これらの移動距離は、第2の位相シフト部14、第1の位相シフト部17の移動制御の目標値を表しており、xy平面上の座標値には依存しない。
Figure 0006738060
ここで、第1項は定数項、第2項は参照面12aからの反射光と被測定面15aからの反射光とによる干渉による輝度成分、第3項は参照面12aからの反射光とノイズ光との干渉による輝度成分、第4項は被測定面15aからの反射光とノイズ光との干渉による輝度成分を表す。
係数A、B、C、Dは、それぞれxy平面上の座標値(x,y)により異なる定数である。φroは測定基準位置における参照面12aと被測定面15aとの間の位相差、φrcは測定基準位置における参照面12aとノイズ光の発生位置の間の位相差、φcoは測定基準位置におけるノイズ光と被測定面15aとの間の位相差である。
ノイズ光の例としては、例えば、コリメーター11に付着したゴミ等による散乱光、あるいはコリメーター11で生じた反射光が挙げられる。ただし、ノイズ光は、参照レンズ12よりも像側の光学部品で発生した反射光であれば上記式(8)と同様に表される。
本実施形態では、第1の位相マップθを求める場合、被測定面15aを固定して(β=const.)、参照面12aを光軸O2に沿って移動する位相シフト干渉法を用いるため、上記式(8)において、第1項、第4項は定数とすることができる。このため、上記式(8)は、下記式(9)〜(12)のように変形される。
Figure 0006738060
ここで、上記式(10)をC/Bでべき級数展開し、ノイズ光の輝度が測定光の輝度に比べて小さいという条件(B>>C)に基づいて2次以上の微小項を省略すると、下記式(13)が得られる。
Figure 0006738060
上記式(13)において、中かっこ内の第2項が微小量であることを用いると、周知の三角関数の近似公式から下記式(14)が得られる。
Figure 0006738060
上記式(14)は、右辺の第3項がノイズ光の干渉に起因する位相ずれ量を表している。
このようなノイズ光の影響を、複数の位相マップの測定結果を用いて除去する条件を求めるため、複数回の測定結果を表す上記式(14)の両辺の一次結合を作る。その際、被測定レンズ15の位相シフト量の誤差率εを導入し、β=(1−ε)βの置換を併せて行うと、下記式(15)が得られる。ここで、θおよびβの添字iは、Mを3以上の整数として、i=1,2,…,Mである。係数aは、βごとに異なる定数である。
誤差率εは、xy平面上の各位置より異なっていてもよいため、ε(x,y)と表すことができるが、簡単のため、単にεと表記している。
Figure 0006738060
上記式(15)の右辺の第3項に三角関数の加法定理を適用し、かつεβが微小量であることに注意すると、下記式(16)が得られる。
Figure 0006738060
ここで、係数aと位相シフト量βとを下記式(2)〜(7)を満足するように設定する。
Figure 0006738060
これらの条件を、上記式(16)に適用すると、ε、Cによらず、恒等的に下記式(17)が成り立つことが分かる。
Figure 0006738060
上記式(17)は、係数aと位相シフト量βとが、下記式(2)〜(7)を満足する場合、上記式(17)の左辺の一次結合式が、位相差φroを良好に近似できることを意味している。
位相差φroは、参照面12aと被測定面15aとの位相差であり、被測定面15aの面形状を表す位相マップに他ならない。
このような原理に基づき、本実施形態の面形状測定方法では、上記式(2)〜(7)を満足するM個の位相シフト量βと、M個の係数aとを求め、被測定面15aの被測定面位置を位相シフト量βに対応する位置に移動して、第1の位相マップθを取得する。その後、下記式(1)から、第2の位相マップφを算出し、第2の位相マップφを被測定面15aの面形状を表す位相マップの測定結果とする。
Figure 0006738060
本実施形態の面形状測定方法に用いることができる係数{a}、位相シフト量{β}の具体例を下記[表1]に示す。
Figure 0006738060
[表1]には、M=3、4、5、7の場合が例示されている。Mは3以上の整数であればよく、Mが3、4、5、7には限定されることはない。
[表1]に示すNo.3、5の例とNo.4、6の例とから分かるように、係数{a}は、同一の{β}に対して複数存在する場合がある。
[表1]に示すNo.1〜No.6の各例において、{β}の位相増分は、いずれもπになっているが、位相増分はπには限定されない。例えば、{β}の位相増分はπ/2であってもよいし、その他の位相量であってもよい。さらに、{β}の位相増分は不均等であってもよい。
さらに、例えば、No.2の例のように、{β}には、基準位相を表すβ=0が含まれていなくてもよい。
各βに対応する各aは、[表1]に示す例では、|β|が大きいほどaが小さくなっていることが多いが、例えば、No.5のように、β=−π、0、πに対応してaが一定値(2/8)になる場合もある。[表1]には示していないが、例えば、{β}の位相増分が不均等である場合には、すべてのaが、一定値1/Mとなる解も存在する。
すべてのaが、一定値1/Mとなる場合には、上記式(1)による第2の位相マップφは第1の位相マップθの単純平均から算出されることを意味する。
が不均等の場合には、上記式(1)による第2の位相マップφは第1の位相マップθの加重平均から算出されることを意味する。この場合、係数{a}は、加重平均の重み係数になっている。
M、係数{a}、位相シフト量{β}の具体的な数値は、それぞれの組み合わせによるノイズ低減特性などを考慮して適宜選択することができる。
No.1〜No.6の例におけるノイズ低減特性を示すグラフを図3に示す。
図3は、本発明の実施形態の面形状測定方法における位相シフト量の誤差と残留ノイズ振幅の関係を示すグラフである。図3のグラフにおいて、横軸は上記の誤差率ε、縦軸は残留ノイズのノイズ振幅(%)を示す。
図3に示す折れ線201〜206は、それぞれ、上記[表1]のNo.1〜No.6(図3では、#1〜#6と表記されている)の数値を用いた場合の第2の位相マップφの残留ノイズのノイズ振幅のシミュレーション結果である。本シミュレーションは、第1の位相マップに一定のノイズを仮定し、被測定面15aの光軸O2に沿う方向の移動誤差の誤差率εを−0.2〜0.5に振った場合の残留ノイズを百分率で表している。
折れ線200は、特許文献1と同様の手法を用いた場合の残留ノイズを示す比較例である。本比較例は、a=1/4、β=−π/2、β=0、β=π/2、β=πとした単純平均の場合の例になっている。この場合、上記式(5)、(6)、(7)の左辺の計算値がいずれも0にならないため、本実施形態の条件に該当しない。
誤差率εの範囲を−0.2〜0.5としたのは、被測定面15aを移動する際の運動誤差の寄与分を±0.2、被測定面15aのNAに応じた光路差の誤差分を0(光軸上)〜0.3(レンズ外縁部)を仮定したためである。
被測定面15aのNAに応じた光路差の誤差分は、レンズのF値(曲率半径/直径)に依存するが、誤差率0.3は、例えば、F値0.7のレンズを想定している。
ここで被測定面15aの曲率に応じた光路差の誤差について図4を参照して説明する。
図4は、被測定面の移動量と光路差との関係を示す模式図である。
図4は、曲率半径Rの被測定面S(図示二点鎖線)が光軸O2に沿って距離dだけ移動された被測定面S’(実線)を示す。
干渉縞は、被測定面S’に垂直入射する光によって形成されるため、距離dの移動によって、面頂Pにおける光路差は2dだけ増加する。これに対して、光軸O2から径方向の距離r(ただし、r>0)だけ離れた被測定面S’上では、被測定面S’の中心Oを通る径方向の光路差は、d’=dcosTとして、2d’しか増加しない。ここで、T=sin−1(r/R)である。
したがって、移動量dが目標値通りであれば、頂部Pを除く被測定面の部位では、光路差の変化としては目標値を下回るため、被測定面の移動誤差が発生していることと同じである。
図3に示すシミュレーション結果について説明する。
折れ線200に示された比較例のノイズ低減特性の特徴としては、誤差率の大きさ|ε|にほぼ比例してノイズ振幅が増大していることが挙げられる。すなわち、比較例では位相シフト量の誤差に対する残留ノイズの低減効果がほとんどないことが分かる。
これは、比較例では、参照面および被測定面をともにπ/2ずつ位相シフトさせることで、測定基準位置と同等の測定を繰り返し、ノイズ成分の複素ベクトルを正確にπ/2ずつ回転させることでノイズ成分をキャンセルする手法だからである。しかし、運動誤差によって位相シフト量に誤差が生じると、ノイズ成分の複素ベクトルの和が0にならないため、原理的に残留ノイズが発生してしまう。
これに対して、本実施形態では、被測定面15aの被測定面位置を変えて第1の位相マップθを取得することで、測定基準位置以外における位相マップの情報を取得する。これらの異なる第1の位相マップθは、位相シフト量の誤差が発生しても影響しないように位相シフト量{β}と関係づけられた係数{a}を用いて上記式(1)による平均処理されることによって合成される。このようにして算出された第2の位相マップφは、係数{a}の導出過程から分かるように、位相シフト量の誤差が微小であるとの仮定が満足される範囲では、原理的に運動誤差の影響が除去されている。
具体的には、図3に示すように、第1の位相シフト部17の折れ線201〜206に示された各例では、いずれの誤差率εにおいても、残留ノイズのノイズ振幅が、比較例の折れ線200における残留ノイズのノイズ振幅よりも低くなっている。特に、誤差率の大きさ|ε|が0.3以下の範囲では、いずれの設定例でも比較例の残留ノイズの半分以下の残留ノイズになっている。
折れ線201〜204に示されたNo.1〜No.4の設定例のノイズ低減特性は、誤差率の大きさ|ε|があまり大きくない範囲では、ノイズ振幅の増加率が比較例に比べて格段に緩やかになっている。
折れ線205、206が示されたNo.5、6の設定例のノイズ低減特性は、誤差率の大きさ|ε|が増大するにつれて、上に凸の曲線に沿って変化している。
例えば、M=5の例であるNo.5は、|ε|が0.4未満では、Mが同じNo.3よりも残留ノイズが大きいが、0.4を超えるとNo.3よりも残留ノイズが小さくなっている。
折れ線206、204で示されたNo.6、4の設定例でも同様な傾向がある。ただし、No.6の残留ノイズのピーク値は4%と格段に小さいため、誤差率εが−0.2〜0.5の全範囲で良好なノイズ低減効果が得られている。
このように、本実施形態では、M、係数{a}、位相シフト量{β}の設定によって、ノイズ低減効果の大きさが異なり、ノイズ低減効果が現れやすい領域も異なる。このため、第1の位相シフト部17の運動誤差のバラツキを予め把握するなどして、機械差や被測定面の形状に応じて適切な設定を行うことで、さらに効率的に残留ノイズを低減することができる。
次に、面形状測定装置40の動作について、本実施形態の実施形態の面形状測定方法に関する動作を中心として説明する。
図5は、本発明の実施形態の面形状測定方法を説明するフローチャートである。
本実施形態の面形状測定装置40による被測定面15aの面形状測定は、図3に示すようなフローにしたがって行われる。
ステップS1では、面形状測定の初期設定が行われる。
面形状測定装置40の電源が投入されると、制御部30によって測定条件の初期化が行われる。例えば、位相マップ計測制御部100は、記憶部103に記憶されたデフォルトの測定条件の情報に基づいて、M、位相シフト量{β}、係数{a}を設定する。これらのデフォルト値は、測定者の操作入力によって変更することも可能である。
位相マップ計測制御部100は、第2の位相シフト部14、第1の位相シフト部17、および被測定レンズ保持部16の移動機構(図示略。以下も同様)の位置を初期化する。
この後、測定者は、被測定レンズ15を被測定レンズ保持部16に配置し、移動機構を操作して、干渉縞画像が現れるように、被測定面15aの球心位置と参照レンズ12の焦点位置とが略一致する位置に、被測定レンズ保持部16を移動する。
ここで、干渉計測光学系22の光路について説明する。
図1に示すように、光源1から出射されたレーザー光L0は、結合レンズ2によってマルチモードファイバー5の入射端5aに結合される。マルチモードファイバー5に入射したレーザー光L0は出射端5bから発散光L1として出射される。発散光L1はコリメーター6によって平行光L2とされる。平行光L2は、偏光板7を透過するとS偏光成分のみとなるため、偏光ビームスプリッター8のビームスプリッター面8aによって反射された測定光L3として光軸O2に沿って進む。
測定光L3は、λ/4板9を透過することで、直線偏光から円偏光に変換される。さらに測定光L3は、リレーレンズ10およびコリメーター11を透過することで、拡径された測定光L4として、参照レンズ12に入射する。
測定光L4は、参照面12aによって分割され、一部は参照面12aによって偏光ビームスプリッター8の側に反射されて参照面反射光L5として進む。その他の光は、測定光L10として透過し、参照レンズ12のレンズ作用により集光される。測定光L10は、集光位置Fに集光されてから被測定面15aに導かれる。測定光L10は、被測定面15aの法線方向に入射することにより、被測定面反射光L11として反射される。被測定面反射光L11は、測定光L10と同一光路を逆進し、参照レンズ12を透過して偏光ビームスプリッター8側に出射される。
参照面12a上には、被測定面反射光L11と参照面反射光L5との光路差に応じた干渉縞画像が形成される。
被測定面反射光L11と参照面反射光L5とは、それぞれ、コリメーター11およびリレーレンズ10を像側に透過して光束径が縮径された被測定面反射光L12と参照面反射光L6としてλ/4板9に入射する。被測定面反射光L12と参照面反射光L6は、λ/4板9によってP偏光の直線偏光に変換されるため、偏光ビームスプリッター8を像側に透過する。
偏光ビームスプリッター8から出射された被測定面反射光L12と参照面反射光L6は、結像レンズ18により撮像部19の撮像面に投影される。
参照面12a上に形成された干渉縞画像は、撮像部19で光電変換されて画像信号として制御部30の位相マップ計測制御部100に送出される。
ステップS1においては、位相マップ計測制御部100は、画像信号を表示部23(図2参照)に送出する。これにより、干渉縞画像が表示部23に表示される。
測定者は、表示部23に表示された干渉縞画像を見ながら、ヌル状態の干渉縞画像が得られるように移動機構を操作して被測定レンズ保持部16の位置、姿勢を微調整する。この位置調整が終了したら、位相マップ計測制御部100は、調整終了後の第1の位相シフト部17、第2の位相シフト部14の位置を、それぞれの測定基準位置に設定する。
以上で、ステップS1が終了する。
ステップS1が終了し、測定者が図示略の操作部を介して、面形状測定装置40に測定開始を操作入力すると、ステップS2〜S7のフローに基づいて面形状測定が開始される。
ステップS2では、位相マップ計測制御部100がカウンターiを1にセットする(i=1)。
この後、ステップS3が行われる。ステップS3は、位相マップ計測制御部100がi番目の被測定面位置における第1の位相マップθを取得するステップである。
位相マップ計測制御部100は、第1の位相シフト部17に制御信号を送出して、被測定レンズ保持部16をi番目の被測定面位置に移動させる。i番目の被測定面位置は、光軸O2に沿う方向において、基準位相からの位相シフト量がβに相当する位置である。
被測定レンズ保持部16の移動によって、被測定面15aがi番目の被測定面位置に移動したら、位相マップ計測制御部100は、i番目の被測定面位置における第1の位相マップθの取得動作を開始する。
この取得動作は、第1の位相マップθを取得するための手法に応じた周知の動作が行われる。
例えば、フリンジスキャン法が用いられる場合、位相マップ計測制御部100は、第2の位相シフト部14を駆動して、参照面12aを光軸O2に沿う方向に微小移動させて、撮像部19からN枚の干渉縞画像を取得する。N枚の干渉縞画像が取得されると、位相マップ計測制御部100は、第2の位相シフト部14を測定基準位置に復帰させる。
N枚の干渉縞画像は、位相マップ計測制御部100によって画像データに変換されて干渉縞解析部101に送出される。
干渉縞解析部101では、例えば、Nバケット法などとして知られるフリンジスキャン法の解析手法に基づいて、N枚の干渉縞画像の画像データから第1の位相マップθを算出する。
第1の位相マップθは、記憶部103に記憶される。
このようにして第1の位相マップθが取得されるとステップS3が終了する。
ステップS4は、位相マップ計測制御部100がカウンターiを更新する(i=i+1
)ステップである。
ステップS5は、位相マップ計測制御部100によってカウンターiがMを超えているかどうか判定されるステップである。
カウンターiがMを超えている場合には、ステップS6に移行する。
カウンターiがMを超えていない場合(i≦M)には、ステップS3に移行する。
このようにしてステップS3〜S5がM回繰り返された後、ステップS6が実行される。
ステップS3で取得される第1の位相マップθは、フリンジスキャン法を用いる場合には、被測定面15aの位置を固定して参照面12aを移動することにより干渉縞画像を取得している。しかし、フリンジスキャン法の解析手法によって算出される第1の位相マップθは、参照面12aが測定基準位置、被測定面15aがi番目の被測定面位置にそれぞれ配置された状態における位相マップの推定値になっている。すなわち、第1の位相マップθは、参照面12aおよび被測定面15aの測定基準位置に対して、被測定面15aのみをβだけ位相シフトした場合の位相マップを表している。
ステップS6は、上記式(1)に基づいて、第2の位相マップφを算出するステップである。
位相マップ計測制御部100は、位相マップ合成部102に制御信号を送出して、位相マップ合成部102による第2の位相マップφの算出を開始させる。
位相マップ合成部102は、位相マップ計測制御部100によって選択されている係数{a}と記憶部103に記憶された第1の位相マップ{θ}とを用いて、上記式(1)の演算を実行し、第2の位相マップφを算出する。算出された第2の位相マップφは、記憶部103に記憶される。
以上で、ステップS6が終了する。
ステップS7は、第2の位相マップφを測定結果として出力するステップである。
位相マップ計測制御部100は、例えば、記憶部103に記憶された第2の位相マップφを読み出し、必要に応じて表示用の加工を施して表示部23に出力する。これにより、表示部23に、面形状の測定結果として第2の位相マップφに関する情報が表示される。
表示部23に表示される情報としては、例えば、第2の位相マップφを表す適宜の画像情報、被測定面15aの面精度の情報などが挙げられる。
以上で、ステップS7が終了し、本実施形態の面形状測定方法が終了する。
このようにして算出された第2の位相マップφは、係数{a}、位相シフト量{β}が上記式(2)〜(7)を満足しているため、第1の位相シフト部17に移動誤差が生じても光学部品からの反射によるノイズ光による被測定面15aの面形状の測定誤差が被測定面の全体にわたって低減されている。
このため、面形状測定装置40を用いた本実施形態の面形状測定方法によれば、被測定面15aの面形状をより高精度に測定できる。さらに、第1の位相シフト部17における運動誤差の許容値が大きくなるため、面形状測定装置40の製造に際して、第1の位相シフト部17の部品コスト、調整コストなどを低減することができる。
なお、上記実施形態の説明では、被測定面15aがi番目の被測定面位置に移動された後、i番目の被測定面位置に第1の位相マップθが取得され、これがM回繰り返される場合の例で説明した。
しかし、第1の位相マップθは、第2の位相マップφを算出するまでに取得されていれば、このような動作順序には限定されない。
例えば、すべての第1の位相マップθの取得に必要となる第1の位相シフト部17および第2の位相シフト部14の移動範囲を適宜組み合わせて、適宜の順序で第1の位相マップθの算出に必要な干渉縞画像を先に取得してもよい。この後、取得された干渉縞画像を適宜組み合わせて干渉縞解析部101に送出することによって、第1の位相マップθを算出することができる。
上記実施形態の説明では、第1の位相シフト部17(第2の位相シフト部14)が、被測定レンズ保持部16(参照レンズ保持部13)を駆動する場合の例で説明した。しかし、第1の位相シフト部17(第2の位相シフト部14)は、被測定レンズ保持部(参照レンズ保持部)と被測定レンズ15(参照レンズ12)との間に配置され、被測定レンズ15(参照レンズ12)を直接に移動するように構成されてもよい。
上記実施形態の説明では、第1の位相マップを求める手法として、位相シフト干渉法などが例示された。第1の位相マップを求めるため用いることができる他の手法として、空間的位相シフト法に分類されるキャリアメソッド(空間キャリア法)が挙げられる。
このキャリアメソッドは、被測定面15aを光軸O2に対して傾けて、干渉縞が、例えば20〜30本程度の所定本数だけ現れるように調整して、干渉縞画像を取得する。そして、これをフーリエ変換して1枚の干渉縞画像から波面を測定する。このキャリアメソッドの詳細は、例えば、特開2000−86057号公報等に開示されている。
上記実施形態の説明では、干渉計として、フィゾー型干渉計を用いた例で説明したが、位相シフトされた干渉縞画像が取得できれば、干渉計の種類は、これらの干渉計には限定されない。例えば、トワイマングリーン型干渉計、マッハツェンダー型干渉計などが用いられてもよい。
以上、本発明の好ましい実施形態を説明したが、本発明はこの実施形態に限定されることはない。本発明の趣旨を逸脱しない範囲で、構成の付加、省略、置換、およびその他の変更が可能である。
また、本発明は前述した説明によって限定されることはなく、添付の特許請求の範囲によってのみ限定される。
1 光源
4 拡散板(回転拡散板)
12 参照レンズ(参照光学素子)
12a 参照面
14 第2の位相シフト部
15 被測定レンズ(被測定物)
15a 被測定面
17 第1の位相シフト部
19 撮像部
20 干渉計
21 空間コヒーレンス低減部
22 干渉計測光学系
23 表示部
30 制御部
40 面形状測定装置
100 位相マップ計測制御部
101 干渉縞解析部
102 位相マップ合成部
103 記憶部
L11、L12、L13 被測定面反射光(被測定面からの反射光)
L5、L6 参照面反射光(参照面からの反射光)
O1、O2 光軸

Claims (8)

  1. 参照面に対する被測定面の光軸方向における位置である被測定面位置をM通り(ただし、Mは3以上の整数)に設定することと、
    前記参照面からの反射光と、前記被測定面からの反射光とによって形成される干渉縞の画像を解析することにより、前記被測定面位置ごとに第1の位相マップθ(i=1,2,…,M)を取得することと、
    前記第1の位相マップθをすべて取得した後、下記式(1)、(2)による平均処理を行うことによって、前記被測定面の面形状の測定結果として第2の位相マップφを算出することと、
    を含む、
    面形状測定方法。
    Figure 0006738060
    ここで、a(i=1,2,…,M)は、ヌル状態の干渉縞が得られる測定基準位置に対する前記被測定面位置の位相差に関係づけられた1未満の正の係数である。
  2. 前記係数aは、下記式(3)〜(7)を満足する、
    請求項1に記載の面形状測定方法。
    Figure 0006738060
    ここで、β(i=1,2,…,M)は、前記測定基準位置からの位相シフト量で表された前記被測定面位置の目標値である。
  3. 前記第1の位相マップθは、前記被測定面を前記被測定面位置にそれぞれ配置した状態でフリンジスキャン法を行うことによって取得される、
    請求項1または2に記載の面形状測定方法。
  4. 被測定物を保持する被測定物保持部と、
    光源と、参照面を有する参照光学素子と、を含み、前記参照面からの反射光と、前記被測定物の被測定面からの反射光とによる干渉縞を形成する干渉計測光学系と、
    前記干渉縞の画像を解析して、前記干渉縞の画像に基づく第1の位相マップを取得する干渉縞解析部と、
    前記被測定面を光軸方向に移動する第1の位相シフト部と、
    前記第1の位相シフト部を駆動して、前記参照面に対する前記被測定面の光軸方向における位置である被測定面位置をM通り(ただし、Mは3以上の整数)に設定し、前記干渉縞解析部によって、前記被測定面位置ごとに、前記被測定面の第1の位相マップθ(i=1,2,…,M)を取得させる位相マップ計測制御部と、
    前記干渉縞解析部によって取得された前記第1の位相マップθに対して、下記式(1)、(2)による平均処理を行うことによって前記被測定面の面形状の測定結果として第2の位相マップφを算出する位相マップ合成部と、
    を備える、
    面形状測定装置。
    Figure 0006738060
    ここで、a(i=1,2,…,M)は、ヌル状態の干渉縞が得られる測定基準位置に対する前記被測定面位置の位相差に関係づけられた1未満の正の係数である。
  5. 前記係数aは、下記式(3)〜(7)を満足する、
    請求項4に記載の面形状測定装置。
    Figure 0006738060
    ここで、β(i=1,2,…,M)は、前記測定基準位置からの位相シフト量で表された前記被測定面位置の目標値である。
  6. 前記参照面を光軸方向に移動する第2の位相シフト部をさらに備え、
    前記位相マップ計測制御部は、前記被測定面を前記被測定面位置に配置した状態で、前記第2の位相シフト部を駆動して前記参照面を位相シフトすることによって複数の干渉縞画像を取得し、
    前記干渉縞解析部は、前記被測定面位置ごとに前記位相マップ計測制御部が取得した複数の干渉縞画像に基づいたフリンジスキャン法によって、前記第1の位相マップθを取得する、
    請求項4または5に記載の面形状測定装置。
  7. 前記干渉計測光学系は、空間コヒーレンス低減部を備える、
    請求項4〜6のいずれか1項に記載の面形状測定装置。
  8. 前記空間コヒーレンス低減部は、前記光源と前記参照光学素子との間の光路上に配置された回転拡散板を備える、
    請求項7に記載の面形状測定装置。
JP2016163067A 2016-08-23 2016-08-23 面形状測定方法および面形状測定装置 Active JP6738060B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016163067A JP6738060B2 (ja) 2016-08-23 2016-08-23 面形状測定方法および面形状測定装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016163067A JP6738060B2 (ja) 2016-08-23 2016-08-23 面形状測定方法および面形状測定装置

Publications (2)

Publication Number Publication Date
JP2018031629A JP2018031629A (ja) 2018-03-01
JP6738060B2 true JP6738060B2 (ja) 2020-08-12

Family

ID=61304087

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016163067A Active JP6738060B2 (ja) 2016-08-23 2016-08-23 面形状測定方法および面形状測定装置

Country Status (1)

Country Link
JP (1) JP6738060B2 (ja)

Also Published As

Publication number Publication date
JP2018031629A (ja) 2018-03-01

Similar Documents

Publication Publication Date Title
US10444004B2 (en) Phase shift interferometer
JP5222954B2 (ja) 偏光スキャンを利用した干渉計
JP2015145876A (ja) 表面特性測定装置
JP2009162539A (ja) 光波干渉測定装置
JP4667965B2 (ja) 光ビーム測定装置
JP6273127B2 (ja) 計測装置、および物品の製造方法
JP6738060B2 (ja) 面形状測定方法および面形状測定装置
JP5493152B2 (ja) 形状測定装置
JP2007298281A (ja) 被検体の面形状の測定方法及び測定装置
JP2003294418A (ja) 微小周期構造評価装置及び微小周期構造評価方法
JP5517583B2 (ja) 収差測定システム及び収差測定方法
JP5904896B2 (ja) レンズ検査装置およびレンズ検査方法
Heikkinen Defocused speckle imaging for remote surface motion measurements
JP2003042711A (ja) 試料観察計測用可干渉ビーム装置
JP2009145068A (ja) 表面形状の測定方法および干渉計
JP2005024505A (ja) 偏心測定装置
JP2009244227A (ja) 光波干渉測定装置
JP5699221B2 (ja) 仮想参照面を備えた干渉計
CN112629433A (zh) 分析设备、分析方法、干涉测量系统和存储介质
JP2009139151A (ja) 干渉計装置のシステム誤差較正方法
Sivakumar et al. Measurement of surface profile in vibrating environment with instantaneous phase shifting interferometry
JP2007534942A (ja) 耐振動性干渉法
WO2023042339A1 (ja) 光学測定システムおよび光学測定方法
JP2004525381A (ja) 干渉計におけるコヒーレントアーティファクトの低減
JP5430473B2 (ja) 面形状計測装置

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20160824

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160915

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190604

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200529

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200623

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200708

R150 Certificate of patent or registration of utility model

Ref document number: 6738060

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250