JP6737583B2 - Water treatment device, ultrapure water production device and water treatment method - Google Patents

Water treatment device, ultrapure water production device and water treatment method Download PDF

Info

Publication number
JP6737583B2
JP6737583B2 JP2015224114A JP2015224114A JP6737583B2 JP 6737583 B2 JP6737583 B2 JP 6737583B2 JP 2015224114 A JP2015224114 A JP 2015224114A JP 2015224114 A JP2015224114 A JP 2015224114A JP 6737583 B2 JP6737583 B2 JP 6737583B2
Authority
JP
Japan
Prior art keywords
water
amino group
immobilized
water treatment
urea
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015224114A
Other languages
Japanese (ja)
Other versions
JP2017087184A (en
Inventor
聖哲 塚越
聖哲 塚越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nomura Micro Science Co Ltd
Original Assignee
Nomura Micro Science Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nomura Micro Science Co Ltd filed Critical Nomura Micro Science Co Ltd
Priority to JP2015224114A priority Critical patent/JP6737583B2/en
Priority to KR1020187012824A priority patent/KR102678703B1/en
Priority to PCT/JP2016/083563 priority patent/WO2017086252A1/en
Priority to CN201680066592.4A priority patent/CN108349764B/en
Priority to TW105137486A priority patent/TWI706917B/en
Publication of JP2017087184A publication Critical patent/JP2017087184A/en
Application granted granted Critical
Publication of JP6737583B2 publication Critical patent/JP6737583B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/34Biological treatment of water, waste water, or sewage characterised by the microorganisms used
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J41/00Anion exchange; Use of material as anion exchangers; Treatment of material for improving the anion exchange properties
    • B01J41/04Processes using organic exchangers
    • B01J41/05Processes using organic exchangers in the strongly basic form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J41/00Anion exchange; Use of material as anion exchangers; Treatment of material for improving the anion exchange properties
    • B01J41/04Processes using organic exchangers
    • B01J41/07Processes using organic exchangers in the weakly basic form
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/42Treatment of water, waste water, or sewage by ion-exchange
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/06Aerobic processes using submerged filters
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/10Packings; Fillings; Grids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J41/00Anion exchange; Use of material as anion exchangers; Treatment of material for improving the anion exchange properties
    • B01J41/08Use of material as anion exchangers; Treatment of material for improving the anion exchange properties
    • B01J41/12Macromolecular compounds
    • B01J41/14Macromolecular compounds obtained by reactions only involving unsaturated carbon-to-carbon bonds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J47/00Ion-exchange processes in general; Apparatus therefor
    • B01J47/02Column or bed processes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Engineering & Computer Science (AREA)
  • Hydrology & Water Resources (AREA)
  • Microbiology (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biological Treatment Of Waste Water (AREA)
  • Water Treatment By Sorption (AREA)
  • Treatment Of Water By Ion Exchange (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Description

本発明は、水処理装置、超純水製造装置及び水処理方法に関する。 The present invention relates to a water treatment device, an ultrapure water production device, and a water treatment method.

一般に、市水、井水、地下水、工業用水等の原水から超純水を製造する超純水製造装置は、前処理装置、一次純水システム及び二次純水システムから構成されることが多い。このうち、前処理装置は、例えば、凝集沈殿装置、加圧浮上装置、ろ過装置等で構成され、原水中の濁質分を除去する。一次純水システムは、例えば、脱気装置、逆浸透膜装置、イオン交換装置、紫外線酸化装置等を組み合わせて構成され、前処理装置で処理された前処理水中の有機物、イオン成分、溶存ガス等を除去して一次純水を製造する。また、二次純水システムは、例えば、紫外線酸化装置、混床式イオン交換装置及び限外ろ過装置等で構成され、一次純水システムで製造された一次純水中の微量不純物を処理して高純度の超純水を製造する。 Generally, an ultrapure water production system for producing ultrapure water from raw water such as city water, well water, groundwater, and industrial water is often composed of a pretreatment device, a primary pure water system, and a secondary pure water system. .. Among them, the pretreatment device is composed of, for example, a coagulation-sedimentation device, a pressure flotation device, a filtration device, etc., and removes suspended matter in the raw water. The primary pure water system is configured by combining, for example, a degassing device, a reverse osmosis membrane device, an ion exchange device, an ultraviolet oxidation device, etc., and organic substances, ionic components, dissolved gases, etc. in pretreatment water treated by the pretreatment device. Are removed to produce primary pure water. The secondary pure water system is composed of, for example, an ultraviolet oxidation device, a mixed-bed ion exchange device, an ultrafiltration device, and the like, and treats trace impurities in the primary pure water produced by the primary pure water system. Produce high-purity ultrapure water.

近年、超純水に対しては、その純度の向上への要求が極めて高くなってきており、これに伴い全有機炭素(TOC)成分の除去が求められている。超純水中のTOC成分のうち、特に尿素は、分子量が小さくイオン化しにくいため、これを除去することが困難である。そのため、超純水中のTOC成分を低減するほど、TOC成分中における尿素の含有率が高くなる。そこで、超純水中のTOCを高度に低減するために、超純水製造装置に供給される水中から可能な限り尿素を除去することが求められる。 In recent years, ultrapure water has been extremely required to improve its purity, and accordingly, removal of total organic carbon (TOC) components is required. Of the TOC components in ultrapure water, urea is particularly difficult to remove because it has a small molecular weight and is difficult to ionize. Therefore, the content of urea in the TOC component increases as the TOC component in the ultrapure water decreases. Therefore, in order to highly reduce the TOC in the ultrapure water, it is required to remove urea as much as possible from the water supplied to the ultrapure water production apparatus.

尿素の除去方法として、特許文献1には、生物処理によって尿素を分解する方法において、原水に尿素若しくは尿素誘導体、及び/又はアンモニア性の窒素源を添加した後、生物処理を行う方法が開示されている。 As a method of removing urea, Patent Document 1 discloses a method of decomposing urea by biological treatment, in which urea or a urea derivative and/or an ammoniacal nitrogen source is added to raw water, and then biological treatment is performed. ing.

しかしながら、尿素を添加して生物処理を行う方法では、尿素の添加量の制御が困難なために、尿素が残留する場合がある。また、アンモニア性の窒素源を添加すると、このアンモニア性窒素が除去されないことがあり、超純水製造装置の下流側に配置される膜や樹脂の劣化を招くおそれがある。また、下流側にアンモニア性の窒素を除去するための装置を配置する必要が生じる等の理由で、超純水を製造するのに適さない場合がある。 However, in the method of performing biological treatment by adding urea, it may be difficult to control the amount of urea added, and thus urea may remain. Further, if an ammoniacal nitrogen source is added, this ammoniacal nitrogen may not be removed, which may lead to deterioration of the film or resin arranged on the downstream side of the ultrapure water production system. Further, it may not be suitable for producing ultrapure water because, for example, a device for removing ammoniacal nitrogen needs to be arranged on the downstream side.

国際公開2011/135942号International publication 2011/135942

本発明は、上記した課題を解決するためになされたものであって、水中の尿素を簡易かつ高度に除去することのできる水処理装置及び水処理方法を提供することを目的とする。
また、尿素を高度に除去して、TOC濃度の極めて低い高純度の超純水を簡易に得ることのできる超純水製造装置を提供することを目的とする。
The present invention has been made to solve the above problems, and an object of the present invention is to provide a water treatment apparatus and a water treatment method capable of easily and highly removing urea in water.
It is another object of the present invention to provide an ultrapure water production apparatus capable of easily obtaining highly pure ultrapure water having an extremely low TOC concentration by highly removing urea.

本発明の水処理装置は、原水を生物処理する水処理装置であって、原水と接触される、アミノ基が固定化された非水溶性のポリマーと、前記アミノ基が固定化された非水溶性のポリマーに接触された前記原水を処理する生物活性炭とを備えることを特徴とする。 The water treatment apparatus of the present invention is a water treatment apparatus for biologically treating raw water, which comprises a water-insoluble polymer having an amino group immobilized and a water-insoluble polymer having the amino group immobilized, which is brought into contact with the raw water. A bioactive carbon that treats the raw water contacted with a volatile polymer.

本発明の水処理装置において、前記アミノ基は4級アンモニウム基であることが好ましい。 In the water treatment device of the present invention, the amino group is preferably a quaternary ammonium group.

本発明の水処理装置において、前記アミノ基が固定化された非水溶性のポリマーと前記生物活性炭は、前記アミノ基が固定化された非水溶性のポリマーと前記生物活性炭が混合された混床、又は前記生物活性炭の上流側に前記アミノ基が固定化された非水溶性のポリマーが積層された複床であることが好ましい。 In the water treatment apparatus of the present invention, the water-insoluble polymer having the amino group immobilized thereon and the bioactive carbon are mixed beds in which the water-insoluble polymer having the amino group immobilized therein and the bioactive carbon are mixed. Alternatively, it is preferably a double bed in which the water-insoluble polymer having the amino group immobilized thereon is laminated on the upstream side of the biological activated carbon.

本発明の水処理装置において、前記アミノ基が固定化された非水溶性のポリマーと前記生物活性炭の比は、前記アミノ基が固定化された非水溶性のポリマー/前記生物活性炭で表される体積比で1/99〜99/1であることが好ましい。 In the water treatment device of the present invention, the ratio of the water-insoluble polymer having the amino group immobilized thereto and the bioactive carbon is represented by the water-insoluble polymer having the amino group immobilized/the bioactive carbon. The volume ratio is preferably 1/99 to 99/1.

本発明の水処理装置において、前記原水のpHは4〜9であることが好ましい。 In the water treatment device of the present invention, the pH of the raw water is preferably 4-9.

本発明の水処理装置において、前記アミノ基が固定化された非水溶性のポリマーが、前記アミノ基をイオン交換基として有する、イオン交換繊維又はイオン交換樹脂であることが好ましい。 In the water treatment device of the present invention, the water-insoluble polymer having the amino group immobilized thereon is preferably an ion exchange fiber or an ion exchange resin having the amino group as an ion exchange group.

本発明の超純水製造装置は、本発明の水処理装置の下流側に、一次純水システムと二次純水システムを備えることを特徴とする。 The ultrapure water production system of the present invention is characterized by including a primary pure water system and a secondary pure water system on the downstream side of the water treatment system of the present invention.

本発明の水処理方法は、原水を、アミノ基が固定化された非水溶性のポリマーに接触させる工程と、前記アミノ基が固定化された非水溶性のポリマーに接触された前記原水を生物活性炭によって処理する工程とを備えることを特徴とする。 The water treatment method of the present invention comprises a step of bringing raw water into contact with a water-insoluble polymer having an amino group immobilized, and a step of producing the raw water brought into contact with the water-insoluble polymer having an amino group immobilized. And a step of treating with activated carbon.

本発明の水処理装置及び水処理方法によれば、水中の尿素を簡易かつ高度に除去することができる。
本発明の超純水製造装置によれば、尿素が高度に除去されるため、TOC濃度の極めて低い高純度の超純水を簡易に得ることができる。
According to the water treatment device and the water treatment method of the present invention, urea in water can be easily and highly removed.
According to the ultrapure water production system of the present invention, since urea is highly removed, highly pure ultrapure water having an extremely low TOC concentration can be easily obtained.

第1の実施形態に係る水処理装置を概略的に表すブロック図である。It is a block diagram showing roughly the water treatment equipment concerning a 1st embodiment. 第2の実施形態に係る水処理装置を概略的に表すブロック図である。It is a block diagram showing roughly the water treatment equipment concerning a 2nd embodiment. 第3の実施形態に係る水処理装置を概略的に表すブロック図である。It is a block diagram showing roughly the water treatment equipment concerning a 3rd embodiment. 本発明の超純水製造装置の実施形態を概略的に表すブロック図である。1 is a block diagram schematically showing an embodiment of an ultrapure water production system of the present invention. 実施例及び比較例における、処理日数と尿素除去率の関係を表わすグラフである。It is a graph showing the relationship between the number of treatment days and the urea removal rate in Examples and Comparative Examples.

以下、図面を参照して、本発明の実施形態を詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

(水処理装置)
図1は、本実施形態の水処理装置1を概略的に示すブロック図である。水処理装置1は、原水Wを貯留して供給する貯留槽10と、生物処理を行う生物処理装置20を備えている。生物処理装置20には、アミノ基を固定化した非水溶性のポリマー(アミノ基固定化ポリマー)(AP)と生物活性炭(BAC)の混合された混床が充填されている。この貯留槽10に貯留された原水Wは、生物処理装置20で処理されて、その後、例えば、一次純水システムに供給されて純水又は超純水が製造される。
(Water treatment device)
FIG. 1 is a block diagram schematically showing a water treatment device 1 of this embodiment. The water treatment device 1 includes a storage tank 10 that stores and supplies the raw water W, and a biological treatment device 20 that performs biological treatment. The biological treatment apparatus 20 is filled with a mixed bed in which a water-insoluble polymer having amino groups immobilized (amino group-immobilized polymer) (AP) and biological activated carbon (BAC) are mixed. The raw water W stored in the storage tank 10 is processed by the biological treatment device 20, and then supplied to, for example, a primary pure water system to produce pure water or ultrapure water.

生物活性炭は、活性炭に微生物を担持させたものであり、生物処理を行う。一般的に有機物は、生物処理を行う微生物(菌体)により酸素呼吸・硝酸呼吸・発酵過程等で分解されて、ガス化されるか、微生物の体内に取り込まれ、汚泥として除去される。また、生物処理によって、窒素(硝化脱窒法)やりん(生物学的リン除去法)の除去処理もできる。このような微生物による水処理を一般に生物処理という。 The biological activated carbon is one in which microorganisms are carried on activated carbon, and biological treatment is performed. In general, organic matter is decomposed by oxygen (breathing) of microorganisms (biological cells) that perform biological treatment in the process of oxygen respiration, nitric acid respiration, fermentation, etc., and is gasified or taken into the body of microorganisms and removed as sludge. Further, by biological treatment, it is possible to remove nitrogen (nitrification denitrification method) and phosphorus (biological phosphorus removal method). Water treatment by such microorganisms is generally called biological treatment.

生物活性炭は、例えば、次のように準備される。微生物を含む汚泥に、微生物の栄養源となる、炭素源、リン、微量金属、無機塩を添加する。さらに必要に応じて、酸素を吹き込み、好気処理を行う。これにより、微生物を培養することができる。この、微生物の培養された活性汚泥に、活性炭を浸漬する。これにより、微生物が活性炭の有する細孔内に担持されて生物活性炭が作製される。通常、この生物活性炭にTOC成分を含有する水を通水すると、生物活性炭に担持された微生物の、上記のような作用で生物処理が行われて、水中のTOC成分が除去される。このような生物処理に際しては、微生物の活性を維持するため、必要に応じて上記微生物の栄養源を給水に添加することが行われる。 The biological activated carbon is prepared, for example, as follows. Carbon sources, phosphorus, trace metals, and inorganic salts, which are nutrient sources for microorganisms, are added to sludge containing microorganisms. If necessary, oxygen is blown in to perform aerobic treatment. Thereby, the microorganism can be cultured. Activated carbon is immersed in this activated sludge in which microorganisms have been cultured. As a result, the microorganisms are carried in the pores of the activated carbon to produce biological activated carbon. Usually, when water containing a TOC component is passed through this bioactive carbon, the TOC component in the water is removed by biological treatment of the microorganisms carried on the bioactive carbon by the above-mentioned action. In such a biological treatment, in order to maintain the activity of the microorganism, the nutrient source of the microorganism is added to the water supply as needed.

この際、活性汚泥に栄養源としてアンモニア性窒素を添加することで、硝化菌群(アンモニア酸化菌群)を優占化させた硝化菌汚泥を得ることができる。これは、硝化菌群以外の微生物がアンモニア性窒素の存在下で増殖しにくい一方で、アンモニア耐性を有する硝化菌群が増殖するためであると考えられる。尿素またはアンモニア性窒素以外の添加物の物質および量については、通常硝化菌培養に使用される物質および量でよい。 At this time, by adding ammonia nitrogen as a nutrient source to the activated sludge, it is possible to obtain a nitrifying bacteria sludge in which the nitrifying bacteria group (ammonia oxidizing bacteria group) is predominant. It is considered that this is because microorganisms other than the nitrifying bacteria group are difficult to grow in the presence of ammonia nitrogen, while the nitrifying bacteria group having ammonia resistance grows. Regarding the substance and amount of the additive other than urea or ammoniacal nitrogen, the substance and amount usually used for nitrifying bacteria culture may be used.

例えば、上記で得られる硝化菌汚泥に活性炭を浸漬することで、硝化菌群を担持させた生物活性炭を得ることができる。硝化菌群は、尿素を代謝するため、硝化菌を担持させた生物活性炭により生物処理を行うことで水中の尿素が除去される。 For example, by immersing activated carbon in the nitrifying bacteria sludge obtained above, biological activated carbon carrying a nitrifying bacteria group can be obtained. Since the nitrifying bacteria group metabolize urea, urea in water is removed by performing biological treatment with biological activated carbon supporting nitrifying bacteria.

生物処理装置20において使用される生物活性炭は、その全量が、活性炭を活性汚泥に浸漬して得られたものでもよく、活性汚泥に浸漬して得られた生物活性炭と、浸漬処理していない活性炭とが混合されたものでもよいが、これらの方法に限定されるものではない。 The biological activated carbon used in the biological treatment apparatus 20 may be obtained by immersing the activated carbon in activated sludge, or the activated carbon not immersed in the activated carbon may be obtained by immersing the activated carbon in activated sludge. However, it is not limited to these methods.

生物活性炭における硝化菌群の担持量は、尿素の除去率を指標として表わすことができる。生物活性炭としては、尿素を好ましくは0.02μg/L以下、より好ましくは0.005μg/L以下まで低減可能なものが好適である。 The amount of nitrifying bacteria supported on the biological activated carbon can be expressed using the urea removal rate as an index. As the bioactive carbon, one that can reduce urea to preferably 0.02 μg/L or less, more preferably 0.005 μg/L or less is suitable.

生物活性炭に用いられる活性炭としては、特に限定されず、石炭、ヤシ殻、木炭等を原料として製造されたものが挙げられる。活性炭の形状についても特に限定されず、例えば、繊維状、ハニカム状、円柱状、破砕状、粒状、粉末状、ペレット状等のものを使用することができる。なかでも、微生物を担持し易い点で、粒状又は破砕状の活性炭が好ましい。粒状又は破砕状の活性炭の活性炭を用いる場合、その粒度は、0.35〜2.0mmが好ましく、0.42〜1.7mmがより好ましい。活性炭の粒度は例えば、JIS標準篩等によって測定することができる。 The activated carbon used as the biological activated carbon is not particularly limited, and examples thereof include those produced by using coal, coconut shell, charcoal and the like as raw materials. The shape of the activated carbon is also not particularly limited, and, for example, fibrous, honeycomb, cylindrical, crushed, granular, powdery, pelletized, or the like can be used. Among them, granular or crushed activated carbon is preferable because it easily supports microorganisms. When using granular or crushed activated carbon, the particle size is preferably 0.35 to 2.0 mm, more preferably 0.42 to 1.7 mm. The particle size of activated carbon can be measured, for example, by a JIS standard sieve.

アミノ基固定化ポリマーは、アミノ基を固定化した非水溶性のポリマーである。本発明のアミノ基固定化ポリマーにおいて、アミノ基とは、1級〜3級アミノ基及び4級アンモニウム基を意味し、さらにこれらがイオン化してアンモニウムイオンを形成した基を含むものとする。アミノ基固定化ポリマーとして使用されるポリマーは、アミノ基を固定化可能であるとともに、非水溶性のポリマーであれば特に限定されない。ポリマーとして例えば、スチレン・ジビニルベンゼン共重合体やポリビニルアルコール系、アセテート等のセルロース系、ポリメタクリロニトリルやポリアクリロニトリル等のアクリル系、ポリ塩化ビニルやポリ塩化ビニリデン等の塩化ビニル系、ナイロン等のポリアミド系、ポリウレタンなどウレタン系の各種のポリマーを使用することができる。ポリマーの形態についても特に限定されず、樹脂状、繊維状、膜状、ブロック状等の種々の形態で使用することができる。アミノ基固定化ポリマーは1種を単独で用いてもよく2種以上を併用してもよい。 The amino group-immobilized polymer is a water-insoluble polymer in which an amino group is immobilized. In the amino group-immobilized polymer of the present invention, the amino group means a primary to tertiary amino group and a quaternary ammonium group, and further includes a group in which these are ionized to form an ammonium ion. The polymer used as the amino group-immobilized polymer is not particularly limited as long as it can immobilize the amino group and is a water-insoluble polymer. Examples of the polymer include styrene/divinylbenzene copolymer, polyvinyl alcohol, cellulose such as acetate, acrylic such as polymethacrylonitrile and polyacrylonitrile, vinyl chloride such as polyvinyl chloride and polyvinylidene chloride, nylon and the like. Various urethane polymers such as polyamide and polyurethane can be used. The form of the polymer is not particularly limited, and various forms such as a resin form, a fiber form, a film form and a block form can be used. The amino group-immobilized polymer may be used alone or in combination of two or more.

アミノ基としては1級〜3級アミノ基又は4級アンモニウム基のいずれであってもよい。アミノ基固定化ポリマーの有するアミノ基は1種であってもよく、複数種であってもよい。ここで、1級〜3級アミノ基は、それぞれ、−NR、−NR、−NRで表される基であり、4級アンモニウム基は、−Nで表される基である(式中、Rはそれぞれ同一であっても異なってもよい、置換または非置換のアルキル基である。)。 The amino group may be a primary to tertiary amino group or a quaternary ammonium group. The amino group-immobilized polymer may have one or more amino groups. Here, a primary to tertiary amino groups, respectively, -NR, -NR 2, a group represented by -NR 3, 4 quaternary ammonium groups is a group represented by -N + R 4 (In the formula, R is a substituted or unsubstituted alkyl group which may be the same or different.).

硝化菌による尿素除去能を向上させる点では、4級アンモニウム基が特に優れており、次いで、3級アミノ基、2級アミノ基、1級アミノ基の順である。アミノ基固定化ポリマーにおけるアミノ基の固定化方法は、例えば、ポリマー骨格上にアミノ基が結合したものが挙げられ、具体的にはポリマーの主鎖又は分岐を構成する炭素原子等にアミノ基が結合したものが好ましい。尿素除去性能をより向上させるために、分岐を構成する炭素原子等にアミノ基が結合したものが、より好ましい。 The quaternary ammonium group is particularly excellent in terms of improving the urea removal ability by nitrifying bacteria, and then the tertiary amino group, the secondary amino group, and the primary amino group are in this order. A method for immobilizing an amino group in an amino group-immobilized polymer includes, for example, one in which an amino group is bonded to a polymer skeleton, and specifically, an amino group is present at a carbon atom or the like constituting the main chain or branch of the polymer. Those linked are preferred. In order to further improve the urea removal performance, it is more preferable that an amino group is bonded to a carbon atom forming a branch.

1〜3級アミノ基又は4級アンモニウム基におけるRとしては、例えばメチル基、エチル基、ブチル基等のアルキル基、ヒドロキシメチル基、ヒドロキシエチル基、ヒドロキシブチル基等のヒドロキシアルキル基が挙げられる。 Examples of R in the primary to tertiary amino group or quaternary ammonium group include alkyl groups such as methyl group, ethyl group and butyl group, and hydroxyalkyl groups such as hydroxymethyl group, hydroxyethyl group and hydroxybutyl group.

アミノ基を固定化するポリマーとして具体的には、上記アミノ基をイオン交換基として有するイオン交換繊維やイオン交換樹脂を使用することが好ましい。これらは、内部に広い表面積を持つため、処理対象水との接触面積を大きくすることができる。また、単位容量あたりのアミノ基の量が多い。これらにより尿素の除去効率を向上させることができる。さらに、溶出物が少ないため、処理水の水質に悪影響を与えない。したがって、超純水の製造等、不純物を高度に除去する目的で好適に使用される。 Specifically, as the polymer for fixing the amino group, it is preferable to use an ion exchange fiber or an ion exchange resin having the amino group as an ion exchange group. Since these have a large surface area inside, the contact area with the water to be treated can be increased. Also, the amount of amino groups per unit volume is large. By these, the removal efficiency of urea can be improved. Furthermore, since the amount of eluate is small, it does not adversely affect the quality of treated water. Therefore, it is preferably used for the purpose of highly removing impurities such as production of ultrapure water.

アミノ基固定化ポリマーが有する上記アミノ基の量は、アミノ基固定化ポリマーの単位容量当たりのモル量で0.01モル/L〜10モル/Lが好ましく、0.5モル/L〜5モル/Lがより好ましい。アミノ基の量が0.01モル/L以上であれば、硝化菌群の菌相が良好に維持されて、尿素除去能を向上させることができる。アミノ基の量が10モル/L以下であることで、アミノ基固定化ポリマーの安定性に優れる。 The amount of the amino group contained in the amino group-immobilized polymer is preferably 0.01 mol/L to 10 mol/L, and is 0.5 mol/L to 5 mol in terms of a molar amount per unit volume of the amino group-immobilized polymer. /L is more preferable. When the amount of the amino group is 0.01 mol/L or more, the flora of the nitrifying bacteria group can be favorably maintained and the urea removing ability can be improved. When the amount of the amino group is 10 mol/L or less, the stability of the amino group-immobilized polymer is excellent.

イオン交換樹脂としては、ゲル型イオン交換樹脂、ゲル型イオン交換樹脂に孔径100〜1000オングストロームのマクロポアーを形成したポーラス型イオン交換樹脂、ポーラス型イオン交換樹脂より微細な孔を持つ高多孔性のハイポーラス型イオン交換樹脂が挙げられる。単位容量あたりのアミノ基の量を多くできるので、ポーラス型あるはハイポーラス型のイオン交換樹脂であることがより好ましい。 As the ion-exchange resin, a gel-type ion-exchange resin, a porous-type ion-exchange resin in which macropores having a pore size of 100 to 1000 angstrom are formed in the gel-type ion-exchange resin, and a high-porosity high-pore structure having finer pores than the porous-type ion-exchange resin Examples include porous ion exchange resins. Since the amount of amino groups per unit volume can be increased, a porous type or high porous type ion exchange resin is more preferable.

また、イオン交換樹脂としては、スチレン・ジビニルベンゼン共重合体又はアクリル系のポリマーを樹脂骨格として、トリメチルアンモニウム基(−N(CH)、ジメチルヒドロキシエチルアンモニウム基(−N(CH(COH))等の4級アンモニウム基をイオン交換基として有する強塩基性陰イオン交換樹脂、及びメチルアミノ基、ジメチルアミノ基等の1〜3級アミノ基や−NH−(CNH)Hで表されるポリアミン型イオン交換基などを有する弱塩基性陰イオン交換樹脂が挙げられる。イオン交換繊維としては、ポリビニルアルコール系の繊維に上記1〜3級アミノ基又は4級アンモニウム基の結合した塩基性陰イオン交換繊維等を使用することができる。 Further, as the ion exchange resin, a styrene/divinylbenzene copolymer or an acrylic polymer is used as a resin skeleton, and a trimethylammonium group (-N + (CH 3 ) 3 ) and a dimethylhydroxyethylammonium group (-N + (CH 3 ) 2 (C 2 H 5 OH)) and other strongly basic anion exchange resins having a quaternary ammonium group as an ion exchange group, and primary to tertiary amino groups such as methylamino group and dimethylamino group, and —NH A weakly basic anion exchange resin having a polyamine type ion exchange group represented by —(C 2 H 4 NH) n H and the like can be mentioned. As the ion exchange fiber, a basic anion exchange fiber in which the above-mentioned primary to tertiary amino groups or quaternary ammonium groups are bonded to polyvinyl alcohol fiber can be used.

アミノ基固定化ポリマーとして弱塩基性陰イオン交換樹脂又は強塩基性陰イオン交換樹脂を用いる場合、その水分含有量は35〜65質量%であることが好ましく、40〜50質量%であることがより好ましい。これにより、生物活性炭と混合して用いる場合に、微生物を保持し易くなる。 When a weakly basic anion exchange resin or a strongly basic anion exchange resin is used as the amino group-immobilized polymer, the water content thereof is preferably 35 to 65% by mass, and 40 to 50% by mass. More preferable. This facilitates retention of microorganisms when used in a mixture with biological activated carbon.

弱塩基性陰イオン交換樹脂としては例えば、三菱化学株式会社製のダイヤイオンシリーズ(WA20、WA21J等)、ランクセス社製のレバチットシリーズ、DOW社製のデュオライトシリーズ等を使用することができる。強塩基性陰イオン交換樹脂としては例えば、三菱化学株式会社製のダイヤイオンシリーズ(SA10A、SA20A)、ランクセス社製のレバチットシリーズ、DOW社製のデュオライトシリーズ等を使用することができる。 As the weakly basic anion exchange resin, for example, DIAION series (WA20, WA21J etc.) manufactured by Mitsubishi Chemical Co., Levatit series manufactured by LANXESS, Duolite series manufactured by DOW, etc. can be used. As the strongly basic anion exchange resin, for example, DIAION series (SA10A, SA20A) manufactured by Mitsubishi Chemical Co., Levatit series manufactured by LANXESS, Duolite series manufactured by DOW can be used.

弱塩基イオン交換繊維としては、例えば、ニチビ社製のEF−SA−WA、強塩基イオン交換繊維としては、ニチビ社製のIEF−SA等を使用することができる。 As the weak base ion exchange fiber, for example, EF-SA-WA manufactured by Nichibi Co., Ltd., and as the strong base ion exchange fiber, IEF-SA manufactured by Nichibi Co., etc. can be used.

なお、使用可能なイオン交換樹脂やイオン交換繊維は、上記に記載された種類に限定されない。また、イオン交換樹脂を用いる場合、イオン交換樹脂は、新品のイオン交換樹脂でもよく、使用済みのもの、例えば、純水製造装置内で長期間使用したイオン交換樹脂を使用してもよい。 The ion exchange resins and ion exchange fibers that can be used are not limited to the types described above. When an ion exchange resin is used, the ion exchange resin may be a new ion exchange resin or a used ion exchange resin, for example, an ion exchange resin that has been used for a long time in a pure water producing apparatus.

アミノ基固定化ポリマーとしては、なかでも、イオン交換基として4級アンモニウム基を有する強塩基性陰イオン交換樹脂が好ましい。 As the amino group-immobilized polymer, a strong basic anion exchange resin having a quaternary ammonium group as an ion exchange group is preferable.

アミノ基固定化ポリマーと生物活性炭の混床を得る方法は特に限定されず、上記で準備された生物活性炭とアミノ基固定化ポリマーを容器に収容した後、上向流で通水して混合する方法や、ミキサー等によって混合する方法で作製することができる。また、活性炭とアミノ基固定化ポリマーを混合した混床に、活性汚泥を用いて微生物を担持させる方法で作製することができる。硝化菌の優占化は、上記したように微生物に栄養源としてのアンモニア性窒素源を添加して行うが、これは、生物活性炭をアミノ基固定化ポリマーと混合する前に行ってもよく、アミノ基固定化ポリマーと生物活性炭を混合した後に行ってもよい。また、あらかじめ硝化菌群の優占化された生物活性炭を用いてもよく、混床を作成してから硝化菌群を優占化させてもよい。 The method for obtaining a mixed bed of the amino group-immobilized polymer and the bioactive carbon is not particularly limited, and the bioactive carbon and the amino group-immobilized polymer prepared above are housed in a container and then mixed by passing water in an upward flow. It can be prepared by a method or a method of mixing with a mixer or the like. Further, it can be prepared by a method of supporting microorganisms in a mixed bed in which activated carbon and an amino group-immobilized polymer are mixed, using activated sludge. The nitrifying bacteria are dominated by adding an ammoniacal nitrogen source as a nutrient source to the microorganism as described above, which may be performed before mixing the bioactive carbon with the amino group-immobilized polymer. It may be performed after mixing the amino group-immobilized polymer and the bioactive carbon. Further, bioactive carbon in which nitrifying bacteria group is predominantly used may be used in advance, or the nitrifying bacteria group may be predominantly made after preparing a mixed bed.

アミノ基固定化ポリマーと生物活性炭の割合は、例えば、アミノ基固定化ポリマー/生物活性炭で表される体積比が1/99〜99/1の範囲で本発明の効果を得ることができるが、尿素の除去率をより高くする点では、1/9〜9/1がより好ましく、3/7〜7/3がさらに好ましい。 The ratio of the amino group-immobilized polymer and the bioactive carbon is, for example, the volume ratio represented by the amino group-immobilized polymer/bioactive carbon, and the effect of the present invention can be obtained in the range of 1/99 to 99/1. From the viewpoint of further increasing the urea removal rate, 1/9 to 9/1 is more preferable, and 3/7 to 7/3 is even more preferable.

生物活性炭とアミノ基固定化ポリマーの混床を例えば、処理対象水を供給する給水管及び処理水を排出する排出管を備えた水処理塔等に充填して、生物処理装置20を構成することができる。 A biological treatment apparatus 20 is configured by filling a mixed bed of biological activated carbon and an amino group-immobilized polymer into, for example, a water treatment tower provided with a water supply pipe for supplying water to be treated and a discharge pipe for discharging treated water. You can

処理対象の原水Wとしては、地下水、河川水、市水、その他の工業用水、又は半導体工場や液晶工場等の使用済み超純水を回収した回収水が用いられる。回収水を用いる場合、これを、イオン交換処理又は中和処理して、pHを例えば後述する範囲に調製して用いることが好ましい。また、処理対象水は、これらの原水Wを、前処理システム又はこれと同様の装置で処理したものであってもよい。前処理システムは例えば、凝集沈殿装置、加圧浮上装置、ろ過装置等により構成され、原水中の濁質分を除去する。 As the raw water W to be treated, ground water, river water, city water, other industrial water, or recovered water obtained by collecting used ultrapure water from a semiconductor factory, a liquid crystal factory, or the like is used. When the recovered water is used, it is preferable that the recovered water is subjected to an ion exchange treatment or a neutralization treatment to adjust the pH to, for example, the range described below. The water to be treated may be the raw water W treated with a pretreatment system or an apparatus similar thereto. The pretreatment system is composed of, for example, a coagulating sedimentation device, a pressure flotation device, a filtration device, etc., and removes suspended matter in the raw water.

原水W(処理対象水)中の尿素濃度は5〜200μg/L、特に5〜100μg/L程度が好適である。また、硝化菌群を優占化して尿素の除去率を上げるため、原水Wの溶存酸素濃度(DO)は5〜8mg/Lであることが好ましい。 The urea concentration in the raw water W (water to be treated) is preferably 5 to 200 μg/L, and particularly preferably 5 to 100 μg/L. Further, the dissolved oxygen concentration (DO) of the raw water W is preferably 5 to 8 mg/L in order to dominate the nitrifying bacteria group and increase the urea removal rate.

原水Wは、生物処理装置20に供給されて、ここで、尿素が除去される。生物処理装置段20への通水方法に特に制限はなく、上向流方式、下向流方式のいずれであってもよい。菌による目詰まりが起こりにくい点では、上向流方式が好ましい。 The raw water W is supplied to the biological treatment apparatus 20 where urea is removed. The method of passing water to the biological treatment apparatus stage 20 is not particularly limited and may be either an upward flow method or a downward flow method. The upflow method is preferable in that clogging by bacteria is unlikely to occur.

生物処理装置20への通水速度は、SV5〜50hr−1程度とするのが好ましく、SV5〜20hr−1がより好ましい。この生物処理装置20へ供給される処理対象水の水温は、微生物の活性を向上させる点で、常温付近、例えば10〜35℃であることが好ましく、20〜35℃程度がより好ましい。したがって、必要に応じて、生物処理装置20の前段に熱交換機を設けるのが好ましい。 Water flow rate into the biological treatment apparatus 20 may preferably be about SV5~50hr -1, SV5~20hr -1 it is more preferred. From the viewpoint of improving the activity of microorganisms, the water temperature of the water to be treated supplied to the biological treatment apparatus 20 is preferably around room temperature, for example, 10 to 35°C, and more preferably about 20 to 35°C. Therefore, it is preferable to provide a heat exchanger before the biological treatment apparatus 20 as needed.

生物処理装置20へ供給される処理対象水のpHは、微生物の中でも硝化菌群を優占化させる点で、中性〜弱アルカリ性、例えばpH4〜9であることが好ましく、pH5〜8であることがより好ましい。 The pH of the water to be treated supplied to the biological treatment device 20 is preferably neutral to weakly alkaline, for example, pH 4 to 9, and preferably pH 5 to 8, from the viewpoint of predominantly nitrifying bacteria among microorganisms. Is more preferable.

本実施形態の水処理装置1において、アミノ基固定化ポリマーと生物活性炭によって水中の尿素が低減される理由は次のように推測される。 In the water treatment device 1 of this embodiment, the reason why urea in water is reduced by the amino group-immobilized polymer and the bioactive carbon is presumed as follows.

従来、硝化菌群により生物処理を行う場合、尿素を分解する硝化菌群の菌相を維持し、その他の菌を殺菌するために給水にアンモニア性窒素源を添加することが行われていた。生物処理装置20では、アミノ基固定化ポリマーのアミノ基が有するアンモニア性窒素が、水中に添加されるアンモニア性窒素と同様に作用すると考えられる。すなわち、アミノ基固定化ポリマーに接触された水を生物活性炭に連続的に通水することで、アミノ基固定化ポリマーの有するアンモニア性窒素の作用で、硝化菌群の菌相が維持されるとともに硝化菌群が優占化され、尿素の除去が行われると考えられる。 Conventionally, when biological treatment is performed with a nitrifying bacteria group, an ammoniacal nitrogen source has been added to the feed water in order to maintain the flora of the nitrifying bacteria group that decomposes urea and to sterilize other bacteria. In the biological treatment apparatus 20, it is considered that the ammoniacal nitrogen contained in the amino group of the amino group-immobilized polymer acts in the same manner as the ammoniacal nitrogen added to water. That is, by continuously passing the water contacted with the amino group-immobilized polymer through the biological activated carbon, by the action of the ammonia nitrogen contained in the amino group-immobilized polymer, the flora of the nitrifying bacteria group is maintained. It is considered that the nitrifying bacteria group is dominated and urea is removed.

したがって、アミノ基固定化ポリマーと生物活性炭は必ずしも生物処理装置20のように混合されている必要はなく、アミノ基固定化ポリマーに接触された原水Wが生物活性炭によって処理されれば、水処理装置1を用いるのと同様の効果を得ることができる。このような、水処理装置1以外の構成の水処理装置の例として、図2に示すようなアミノ基固定化ポリマーと生物活性炭を積層した複床を有する水処理装置2、及び図3に示すような、アミノ基固定化ポリマーの単床と生物活性炭の単床をそれぞれ有する水処理装置3が挙げられる。 Therefore, the amino group-immobilized polymer and the bioactive carbon do not necessarily need to be mixed as in the biological treatment apparatus 20, and if the raw water W contacted with the amino group-immobilized polymer is treated by the bioactive carbon, the water treatment apparatus is used. The same effect as when 1 is used can be obtained. As an example of such a water treatment device having a configuration other than the water treatment device 1, a water treatment device 2 having a multiple bed in which an amino group-immobilized polymer and bioactive carbon are laminated as shown in FIG. 2 and shown in FIG. Such a water treatment device 3 having a single bed of an amino group-immobilized polymer and a single bed of bioactive carbon can be mentioned.

水処理装置2は、アミノ基固定化ポリマーと生物活性炭を上流側からこの順に積層した積層を有する生物処理装置21を備えている。水処理装置3は、アミノ基固定化ポリマーを備える装置22と生物活性炭装置23に順に備えている。例えば、水処理装置2、3についても水処理装置1と同様の効果を得ることができる。 The water treatment device 2 includes a biological treatment device 21 having a laminated structure in which an amino group-immobilized polymer and biological activated carbon are laminated in this order from the upstream side. The water treatment device 3 is equipped with a device 22 having an amino group-immobilized polymer and a biological activated carbon device 23 in this order. For example, the same effects as those of the water treatment device 1 can be obtained for the water treatment devices 2 and 3.

なお、上記で説明した各実施形態の水処理装置は、これにより長期間水処理を行った場合に、生物活性炭とアミノ基固定化ポリマー、生物活性炭同士又はアミノ基固定化ポリマー同士が相互に付着して塊が生じることがあり、この場合には、水による逆洗が行われるが、例えば、イオン交換樹脂やイオン交換繊維等を用いたイオン交換装置のように、酸やアルカリ等の薬剤によって再生する必要はない。 In the water treatment device of each embodiment described above, when the water treatment is carried out for a long period of time by this, the bioactive carbon and the amino group-immobilized polymer, the bioactive carbons or the amino group-immobilized polymer adhere to each other. In this case, backwashing with water is carried out, but for example, with an agent such as an acid or alkali, such as an ion exchange device using an ion exchange resin or ion exchange fiber. No need to play.

以上説明した実施形態の水処理装置によれば、アンモニア性窒素源等の薬剤を添加することなく、水中の尿素を高度に除去することができる。また、アンモニア性窒素源を添加した水を生物活性炭で処理する方法では、生物活性炭への通水開始から尿素の除去率が安定するまでの立ち上げに長期間が必要であるが、実施形態の水処理装置によれば、立ち上げ期間を短縮することができる。 According to the water treatment device of the embodiment described above, urea in water can be highly removed without adding a chemical such as an ammoniacal nitrogen source. Further, in the method of treating water added with an ammoniacal nitrogen source with biological activated carbon, it takes a long time to start up from the start of water passage to the biological activated carbon until the removal rate of urea becomes stable. According to the water treatment device, the startup period can be shortened.

(超純水製造装置)
次に、上記した実施形態の水処理装置を備える超純水製造装置について説明する。図4は、実施形態の超純水製造装置4を概略的に示すブロック図である。超純水製造装置4は、水処理装置1(水処理装置2又は水処理装置3でもよい。)の下流側に、一次純水システム41と二次純水システム42を備えている。
(Ultrapure water production system)
Next, an ultrapure water production system equipped with the water treatment system of the above embodiment will be described. FIG. 4 is a block diagram schematically showing the ultrapure water production system 4 of the embodiment. The ultrapure water production system 4 includes a primary pure water system 41 and a secondary pure water system 42 on the downstream side of the water treatment device 1 (the water treatment device 2 or the water treatment device 3 may be used).

一次純水システム41は、例えば、イオン交換装置、逆浸透膜装置、脱気装置、紫外線酸化装置、再生型混床式イオン交換装置を組み合わせて構成される。一次純水システム41では、上記実施形態の水処理装置1で尿素が除去された処理水から、イオン交換装置としての陰イオン交換装置及び陽イオン交換装置の組合せによって不純物イオンが除去され、逆浸透膜装置によって無機イオン、有機物、微粒子等が除去される。さらに、脱気装置により溶存酸素や溶存炭酸などの溶存ガスが除去される。残存する有機物が紫外線酸化装置で分解除去された後、再生型混床式イオン交換装置によって微量のイオン成分が除去されて一次純水が製造される。一次純水は例えば、TOC濃度は10μgC/L以下、比抵抗率が17MΩ・cm以上である。 The primary pure water system 41 is configured by combining, for example, an ion exchange device, a reverse osmosis membrane device, a degassing device, an ultraviolet oxidation device, and a regenerative mixed bed type ion exchange device. In the primary pure water system 41, impurity ions are removed from the treated water from which urea has been removed by the water treatment apparatus 1 of the above-described embodiment by a combination of an anion exchange apparatus and a cation exchange apparatus as an ion exchange apparatus, and reverse osmosis is performed. The membrane device removes inorganic ions, organic substances, fine particles and the like. Further, dissolved gases such as dissolved oxygen and dissolved carbonic acid are removed by the deaerator. After the remaining organic substances are decomposed and removed by the ultraviolet oxidation device, a small amount of ionic components are removed by the regenerative mixed bed ion exchange device to produce primary pure water. For example, the primary pure water has a TOC concentration of 10 μg C/L or less and a specific resistance of 17 MΩ·cm or more.

二次純水システム42は、一次純水中の微量有機物や微量微粒子を除去する装置であり、紫外線酸化装置、膜脱気装置、非再生型混床式イオン交換装置、限外ろ過装置を組み合わせて構成される。これにより得られる超純水は、例えば、TOC濃度が5μgC/L以下、比抵抗率が17.5MΩ・cm以上、尿素濃度が5μg/L以下まで低減される。 The secondary pure water system 42 is a device that removes a trace amount of organic substances and trace particulates in the primary pure water, and combines an ultraviolet oxidation device, a membrane degassing device, a non-regeneration type mixed bed ion exchange device, and an ultrafiltration device. Consists of The ultrapure water thus obtained has a TOC concentration of 5 μg C/L or less, a specific resistance of 17.5 MΩ·cm or more, and a urea concentration of 5 μg/L or less.

以上説明した実施形態の超純水製造装置によれば、処理対象水にアンモニア性窒素源等の薬剤を添加することなく、水中の尿素を高度に除去することができるため、TOC濃度の極めて低い超純水を簡易に得ることができる。また、一次純水システム41の上流側において、処理対象水にアンモニア性窒素源を添加し、その後、生物活性炭で処理する方法に比べて、生物処理装置の立ち上げ期間を短縮することができるため、原水の無駄がなく、効率的に超純水を製造することができる。 According to the ultrapure water production system of the embodiment described above, urea in water can be highly removed without adding a chemical such as an ammoniacal nitrogen source to the water to be treated, so the TOC concentration is extremely low. Ultrapure water can be easily obtained. In addition, on the upstream side of the primary pure water system 41, the start-up period of the biological treatment device can be shortened as compared with a method of adding an ammonia nitrogen source to the water to be treated and then treating with biological activated carbon. Therefore, it is possible to efficiently produce ultrapure water without wasting raw water.

(実施例1)
活性汚泥に、尿素を2mg/L、アンモニア50mg/Lを添加し、30日間静置して、硝化菌汚泥を馴養した。得られた硝化菌汚泥の尿素除去能を、尿素含有水を用いて測定したところ、尿素を0.02mg/Lまで除去可能であった。
(Example 1)
Urea (2 mg/L) and ammonia (50 mg/L) were added to the activated sludge, and the mixture was allowed to stand for 30 days to acclimate the nitrifying bacteria sludge. When the urea removing ability of the obtained nitrifying bacteria sludge was measured using urea-containing water, urea could be removed up to 0.02 mg/L.

この硝化菌汚泥に、活性炭(ダイヤホープM006、カルゴンカーボンジャパン社製、粒状活性炭、粒径0.425〜1.7mm)の300mLを7日間浸漬して、その後取り出し、生物活性炭を得た。この生物活性炭の300mLに、強塩基性陰イオン交換樹脂(ダイヤイオンSA10A、三菱化学株式会社製、アミノ基量1.3モル/L以上)の100mLを混合して混床を作製した。混合比は、強塩基性陰イオン交換樹脂/生物活性炭で示される体積比で、1/3である。 300 mL of activated carbon (Dia Hope M006, manufactured by Calgon Carbon Japan Co., Ltd., granular activated carbon, particle size 0.425 to 1.7 mm) was immersed in this nitrifying bacteria sludge for 7 days and then taken out to obtain biological activated carbon. A mixed bed was prepared by mixing 300 mL of this bioactive carbon with 100 mL of a strongly basic anion exchange resin (Diaion SA10A, manufactured by Mitsubishi Chemical Corporation, amino group amount 1.3 mol/L or more). The mixing ratio is 1/3, which is the volume ratio of strong basic anion exchange resin/bioactive carbon.

得られた混床を内径25mmのカラムに充填し、処理対象水として厚木市市水から塩素を除去して尿素を添加した水(溶存酸素濃度5〜6mg/L、pH=6〜7、尿素濃度10〜20μg/L)を、SV=10h−1で通水した。 The obtained mixed bed was packed in a column having an inner diameter of 25 mm, and water obtained by removing chlorine from Atsugi-shi city water as treatment target water and adding urea (dissolved oxygen concentration 5-6 mg/L, pH=6-7, urea Water having a concentration of 10 to 20 μg/L was passed at SV=10 h −1 .

カラムから得られた処理水中の尿素濃度を測定し、通水開始時を0日として、尿素除去率の経時変化を調べた。結果を図5のグラフに実線で示す。なお、尿素除去率は、下記式によって算出した。水温は、調節せず成り行きで通水した。通水試験の間の水温は24〜26℃であった。後述の各実施例及び比較例の水温についても同様である。
尿素除去率={(1−処理水中の尿素濃度)/処理対象水中の尿素濃度}×100(%)
The urea concentration in the treated water obtained from the column was measured, and the time course of the urea removal rate was examined with the start of water passage as 0 day. The results are shown by the solid line in the graph of FIG. The urea removal rate was calculated by the following formula. The water temperature was allowed to flow without adjustment. The water temperature during the water flow test was 24 to 26°C. The same applies to the water temperature of each Example and Comparative Example described below.
Urea removal rate={(1-urea concentration in treated water)/urea concentration in treated water}×100(%)

また、実施例1において、350日通水後にカラムから、使用後の強塩基性陰イオン交換樹脂を取出し、交換容量を測定したところ、初期の交換容量の95%であった。このことから、イオン交換樹脂がアンモニウムイオンの供給源となっていないことが確認された。また、アンモニウム基が減少していないことから、さらに通水を継続した場合にも、継続的に高い尿素除去率が維持されると予測できる。 Also, in Example 1, the strongly basic anion exchange resin after use was taken out of the column after passing water for 350 days and the exchange capacity was measured, and it was 95% of the initial exchange capacity. From this, it was confirmed that the ion exchange resin did not serve as a supply source of ammonium ions. Further, since the ammonium group is not reduced, it can be predicted that a high urea removal rate will be continuously maintained even when water is further passed.

(比較例1)
強塩基性陰イオン交換樹脂を混合しない点以外は実施例1と同様に作製した生物活性炭をカラムに充填し、実施例1と同様の処理対象水に、アンモニアを濃度が0.5mg/Lとなるように添加して、実施例1と同様の条件でカラムに通水した。実施例1と同様に、尿素除去率の経時変化を調べた。結果を実施例1とあわせて図5のグラフに破線で示す。
(Comparative Example 1)
The column was filled with the bioactive carbon produced in the same manner as in Example 1 except that the strongly basic anion exchange resin was not mixed, and the same water to be treated as in Example 1 had ammonia at a concentration of 0.5 mg/L. Then, water was passed through the column under the same conditions as in Example 1. Similar to Example 1, the change with time of the urea removal rate was examined. The results are shown in a broken line in the graph of FIG.

(実施例2)
活性炭の使用量は300mLのままで、強塩基性陰イオン交換樹脂/生物活性炭で示される体積比を1/1とした他は、実施例1と同様にして、混床を作製した。この混床を用いて、実施例1と同様の条件で、尿素の除去率の測定を行った。本例では、尿素除去率が、通水30日後に85%を超え、50日後には100%となった。
(Example 2)
A mixed bed was prepared in the same manner as in Example 1 except that the amount of activated carbon used was 300 mL and the volume ratio of strong basic anion exchange resin/biological activated carbon was 1/1. Using this mixed bed, the urea removal rate was measured under the same conditions as in Example 1. In this example, the urea removal rate exceeded 85% after 30 days of passing water and reached 100% after 50 days.

(実施例3)
活性炭の使用量は300mLのままで、強塩基性陰イオン交換樹脂/生物活性炭で示される体積比を1/8とした他は、実施例1と同様にして、混床を作製した。この混床を用いて、実施例1と同様の条件で、尿素の除去率の測定を行った。本例では、尿素除去率が、通水30日後に80%を超え、50日後には90%となり、以降、尿素の除去率は安定して推移した。
(Example 3)
A mixed bed was produced in the same manner as in Example 1 except that the amount of activated carbon used was 300 mL and the volume ratio represented by strong basic anion exchange resin/biological activated carbon was 1/8. Using this mixed bed, the urea removal rate was measured under the same conditions as in Example 1. In this example, the urea removal rate exceeded 80% after 30 days of water passage and reached 90% after 50 days, and thereafter the urea removal rate remained stable.

(実施例4)
活性炭の使用量は300mLのままで、強塩基性陰イオン交換樹脂/生物活性炭で示される体積比を1/99とした他は、実施例1と同様にして、混床を作製した。この混床を用いて、実施例1と同様の条件で、尿素の除去率の測定を行った。本例では、尿素除去率が、通水30日後に75%を超え、50日後には88%となり、以降、尿素の除去率は安定して推移した。
(Example 4)
A mixed bed was prepared in the same manner as in Example 1 except that the amount of the activated carbon used was 300 mL and the volume ratio represented by the strongly basic anion exchange resin/biological activated carbon was 1/99. Using this mixed bed, the urea removal rate was measured under the same conditions as in Example 1. In this example, the urea removal rate exceeded 75% after 30 days of water passage and reached 88% after 50 days, and thereafter the urea removal rate remained stable.

(実施例5)
強塩基性陰イオン交換樹脂の代わりに弱塩基性陰イオン交換樹脂(ダイヤイオンWA30、三菱化学株式会社製、アミノ基量1.5モル/L以上)を使用した以外は、実施例1と同様にして、混床を作製した。この混床を用いて、実施例1と同様の条件で、尿素の除去率の測定を行った。本例では、尿素除去率が、通水30日後に95%を超え、50日後には99%となり、以降、尿素の除去率は安定して推移した。
(Example 5)
Similar to Example 1 except that a weakly basic anion exchange resin (Diaion WA30, manufactured by Mitsubishi Chemical Corporation, amino group amount 1.5 mol/L or more) was used instead of the strongly basic anion exchange resin. Then, a mixed bed was prepared. Using this mixed bed, the urea removal rate was measured under the same conditions as in Example 1. In this example, the urea removal rate exceeded 95% after 30 days of water passage and became 99% after 50 days, and thereafter the urea removal rate remained stable.

(実施例6)
実施例1と同様の強塩基性陰イオン交換樹脂と生物活性炭を用い、生物活性炭の使用量は300mLのままで、混合比を、強塩基性陰イオン交換樹脂/生物活性炭(体積比)で、3/1にした以外は、実施例1と同様にして、混床を作製した。この混床を用いて、実施例1と同様の条件で、尿素の除去率の測定を行った。本例では、尿素分解率の推移は、実施例1(図5の実線)と同様であった。
(Example 6)
The same strong basic anion exchange resin and biological activated carbon as in Example 1 were used, the amount of biological activated carbon used was 300 mL, and the mixing ratio was strong basic anion exchange resin/biological activated carbon (volume ratio). A mixed bed was produced in the same manner as in Example 1 except that the mixing time was 3/1. Using this mixed bed, the urea removal rate was measured under the same conditions as in Example 1. In this example, the transition of the urea decomposition rate was similar to that in Example 1 (solid line in FIG. 5).

(実施例7)
実施例1と同様の強塩基性陰イオン交換樹脂と生物活性炭を、混合せずに、強塩基性陰イオン交換樹脂の上方に生物活性炭を積層した(処理対象水に対して強塩基性陰イオン交換樹脂が上流側、生物活性炭が下流側)他は実施例1と同様にして複床を作製した。この複床に、処理対象水を上向流で通水した以外は、実施例1と同様の条件で、尿素の除去率の測定を行った。本例では、尿素分解率の推移は、実施例1(図5の実線)と同様であった。
(Example 7)
The strong basic anion exchange resin and the bioactive carbon similar to those in Example 1 were not mixed, but the bioactive carbon was laminated on the strong basic anion exchange resin (the strong basic anion was added to the water to be treated). A double bed was produced in the same manner as in Example 1 except that the exchange resin was on the upstream side and the biological activated carbon was on the downstream side. The urea removal rate was measured under the same conditions as in Example 1 except that the water to be treated was passed through the multiple beds in an upward flow. In this example, the transition of the urea decomposition rate was similar to that in Example 1 (solid line in FIG. 5).

(比較例2)
実施例1と同様の強塩基性陰イオン交換樹脂100mLを硝化菌汚泥に7日間浸漬した後、取出して、カラムに充填し、実施例1と同様の条件で、尿素の除去率の測定を行った。本例では、尿素除去率が、通水30日後に30%を超え、50日後には45%となり、以降、尿素の除除去率は安定して推移した。
(Comparative example 2)
100 mL of the same strongly basic anion exchange resin as in Example 1 was immersed in nitrifying bacteria sludge for 7 days, then taken out and packed in a column, and the removal rate of urea was measured under the same conditions as in Example 1. It was In this example, the urea removal rate exceeded 30% after 30 days of water passage and reached 45% after 50 days, and thereafter, the urea removal rate remained stable.

各実施例及び比較例の結果より、実施形態の水処理装置によれば、アンモニア性窒素源等の薬剤を添加することなく、水中の尿素を高度に除去することができることが分かる。また、図5より、実施形態の水処理装置によれば、アンモニア性窒素源を添加した水を生物活性炭で処理する方法に比べて、生物活性炭への通水開始から尿素の除去率が安定するまでの立ち上げ期間を短縮することができることが分かる。 From the results of each example and comparative example, it is understood that the water treatment device of the embodiment can highly remove urea in water without adding a chemical agent such as an ammoniacal nitrogen source. Further, from FIG. 5, according to the water treatment device of the embodiment, the urea removal rate is stable from the start of water passage to the biological activated carbon as compared with the method of treating the water added with the ammoniacal nitrogen source with the biological activated carbon. It can be seen that the startup period up to can be shortened.

1,2,3…水処理装置、4…超純水製造装置、10…貯留槽、20,21…生物処理装置、22…アミノ基固定化ポリマーを備える装置、23…生物活性炭装置、41…一次純水システム、42…二次純水システム。 1, 2, 3... Water treatment device, 4... Ultrapure water production device, 10... Storage tank, 20, 21... Biological treatment device, 22... Device provided with amino group-immobilized polymer, 23... Biological activated carbon device, 41... Primary pure water system, 42... Secondary pure water system.

Claims (9)

尿素を含有する原水を生物処理する水処理装置であって、
原水と接触される、アミノ基が固定化された非水溶性のポリマーと、
前記アミノ基が固定化された非水溶性のポリマーに接触させて得られた処理水を処理する、前記尿素を分解するための硝化菌群担持された生物活性炭と
を備えることを特徴とする水処理装置。
A water treatment device for biologically treating raw water containing urea ,
A water-insoluble polymer having an amino group immobilized, which is contacted with raw water,
Wherein the amino group into contact with the water-insoluble polymer that is immobilized for processing the resulting et the treated water, and a biological activated carbon which nitrifying bacteria group for decomposing the urea is carried And water treatment equipment.
前記アミノ基は4級アンモニウム基であることを特徴とする請求項1記載の水処理装置。 The water treatment device according to claim 1, wherein the amino group is a quaternary ammonium group. 前記アミノ基が固定化された非水溶性のポリマーと前記生物活性炭は、
前記アミノ基が固定化された非水溶性のポリマーと前記生物活性炭が混合された混床、又は前記生物活性炭の上流側に前記アミノ基が固定化された非水溶性のポリマーが積層された複床であることを特徴とする請求項1又は2に記載の水処理装置。
The water-insoluble polymer having the amino group immobilized thereon and the bioactive carbon,
A mixed bed in which the water-insoluble polymer having the amino group immobilized and the biological activated carbon are mixed, or a composite bed in which the water-insoluble polymer having the amino group immobilized is laminated on the upstream side of the biological activated carbon. It is a floor, The water treatment equipment of Claim 1 or 2 characterized by the above-mentioned.
前記アミノ基が固定化された非水溶性のポリマーと前記生物活性炭の比は、前記アミノ基が固定化された非水溶性のポリマー/前記生物活性炭で表される体積比で1/99〜99/1であることを特徴とする請求項1乃至3のいずれか1項に記載の水処理装置。 The ratio of the water-insoluble polymer having the amino group immobilized thereto and the bioactive carbon is 1/99 to 99 in terms of a volume ratio expressed by the water-insoluble polymer having the amino group immobilized/the bioactive carbon. It is /1, The water treatment apparatus of any one of Claims 1 thru|or 3 characterized by the above-mentioned. 前記アミノ基が固定化された非水溶性のポリマーが、前記アミノ基をイオン交換基として有する、イオン交換繊維又はイオン交換樹脂であることを特徴とする請求項1乃至4のいずれか1項に記載の水処理装置。 The water-insoluble polymer having the amino group immobilized thereon is an ion exchange fiber or an ion exchange resin having the amino group as an ion exchange group, according to any one of claims 1 to 4. The described water treatment device. 請求項1乃至5のいずれか1項に記載の水処理装置の下流側に、一次純水システムと二次純水システムを備えることを特徴とする超純水製造装置。 An ultrapure water production system comprising a primary deionized water system and a secondary deionized water system on the downstream side of the water treatment device according to any one of claims 1 to 5. 尿素を含有する原水を、アミノ基が固定化された非水溶性のポリマーに接触させる工程と、
前記アミノ基が固定化された非水溶性のポリマーに接触させて得られた処理水を、硝化菌群担持された生物活性炭によって処理し、前記尿素を分解する工程と、
を備えることを特徴とする水処理方法。
Contacting raw water containing urea with a water-insoluble polymer having an amino group immobilized thereon,
A step in which the amino group is contacted to the water-insoluble polymer that is immobilized resulting et treated water, treated with biological activated carbon which nitrifying bacteria group is carried, to decompose the urea,
A water treatment method comprising:
前記原水のpHは4〜9であることを特徴とする請求項7に記載の水処理方法。 The water treatment method according to claim 7, wherein the raw water has a pH of 4-9. 前記原水のpHは5〜8であることを特徴とする請求項7に記載の水処理方法。The water treatment method according to claim 7, wherein the raw water has a pH of 5-8.
JP2015224114A 2015-11-16 2015-11-16 Water treatment device, ultrapure water production device and water treatment method Active JP6737583B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2015224114A JP6737583B2 (en) 2015-11-16 2015-11-16 Water treatment device, ultrapure water production device and water treatment method
KR1020187012824A KR102678703B1 (en) 2015-11-16 2016-11-11 Water treatment device, ultrapure water production device and water treatment method
PCT/JP2016/083563 WO2017086252A1 (en) 2015-11-16 2016-11-11 Water treatment device, ultrapure water manufacturing device, and water treatment method
CN201680066592.4A CN108349764B (en) 2015-11-16 2016-11-11 Water treatment apparatus, ultrapure water production apparatus, and water treatment method
TW105137486A TWI706917B (en) 2015-11-16 2016-11-16 Water treatment device, ultrapure water manufacturing device and water treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015224114A JP6737583B2 (en) 2015-11-16 2015-11-16 Water treatment device, ultrapure water production device and water treatment method

Publications (2)

Publication Number Publication Date
JP2017087184A JP2017087184A (en) 2017-05-25
JP6737583B2 true JP6737583B2 (en) 2020-08-12

Family

ID=58718879

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015224114A Active JP6737583B2 (en) 2015-11-16 2015-11-16 Water treatment device, ultrapure water production device and water treatment method

Country Status (5)

Country Link
JP (1) JP6737583B2 (en)
KR (1) KR102678703B1 (en)
CN (1) CN108349764B (en)
TW (1) TWI706917B (en)
WO (1) WO2017086252A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6983582B2 (en) * 2017-08-30 2021-12-17 オルガノ株式会社 Cartridge for water purifier and water purifier for softening

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5995987A (en) * 1982-11-22 1984-06-02 Ebara Infilco Co Ltd Treatment for waste water of stack gas desulfurization and denitration
JPS6168198A (en) * 1984-09-11 1986-04-08 Hitachi Plant Eng & Constr Co Ltd Waste water treating agent
JPH0839058A (en) * 1994-07-28 1996-02-13 Kurita Water Ind Ltd Treatment of semiconductor washing waste water
JP3200314B2 (en) * 1994-11-29 2001-08-20 オルガノ株式会社 Organic wastewater treatment equipment
GB9925215D0 (en) * 1999-10-26 1999-12-22 Cerestar Holding Bv Process for the manufacture of citric acid
JP2007313492A (en) * 2006-04-26 2007-12-06 Kurita Water Ind Ltd Method and apparatus for treating soluble cod component-containing water
CN101285046B (en) * 2007-04-09 2011-08-17 天津科技大学 Mutant strain streptomyces albus TUST2 and process for producing epsilon-polylysine and salts thereof by using the mutant strain
US20100288308A1 (en) * 2007-11-06 2010-11-18 Kurita Water Industries Ltd. Method and system for producing ultrapure water, and method and system for washing electronic component members
JP5844960B2 (en) 2009-12-25 2016-01-20 株式会社三共 Game machine
KR20130014493A (en) * 2010-03-05 2013-02-07 쿠리타 고교 가부시키가이샤 Water treatment method and process for producing ultrapure water
CN102191188A (en) * 2010-03-10 2011-09-21 中国科学院福建物质结构研究所 Method for culturing bacteria and application thereof
US20130105389A1 (en) * 2010-04-30 2013-05-02 Kurita Water Industries Ltd. Water treatment method and ultrapure water production method
JP5914964B2 (en) * 2010-10-18 2016-05-11 栗田工業株式会社 Ultrapure water production method
CN104529075A (en) * 2014-12-29 2015-04-22 日照金禾博源生化有限公司 Improved process for treating citric acid wastewater

Also Published As

Publication number Publication date
JP2017087184A (en) 2017-05-25
CN108349764B (en) 2021-07-30
WO2017086252A1 (en) 2017-05-26
KR20180081513A (en) 2018-07-16
TW201731770A (en) 2017-09-16
CN108349764A (en) 2018-07-31
KR102678703B1 (en) 2024-06-25
TWI706917B (en) 2020-10-11

Similar Documents

Publication Publication Date Title
US7465400B2 (en) System for biodegradation of oxyanions such as perchlorate on ion exchange resins
JP5194783B2 (en) Biological treatment method and apparatus for water containing organic matter
JP5914964B2 (en) Ultrapure water production method
JP6517137B2 (en) Operation management method of water purification equipment
Johir et al. Removal of phosphorus by a high rate membrane adsorption hybrid system
JP6737583B2 (en) Water treatment device, ultrapure water production device and water treatment method
CN110963648B (en) Sewage treatment device and process for high-sludge-concentration sludge side-flow in-situ reduction and carbon-nitrogen ratio improvement
Dahab et al. Nitrate removal from water using cyclically operated fixedfilm bio-denitrification reactors
JPS62110795A (en) Device for producing high-purity water
JPS6336890A (en) Apparatus for producing high-purity water
JP5217883B2 (en) Method and apparatus for treating phosphoric acid, nitric acid and water containing organic acid
JP7479238B2 (en) Pure water production device and method
CN211734107U (en) Sewage treatment device for high-sludge-concentration sludge side-stream in-situ reduction and carbon-nitrogen ratio improvement
JP3948337B2 (en) Ultrapure water production apparatus and ultrapure water production method
WO2023058031A1 (en) System and method for treatment of ammonia in a feed water stream
JP7268860B2 (en) Culture method, culture device, wastewater treatment method and wastewater treatment device
KR20190037474A (en) Method and apparatus for purifying reverse osmosis concentrated water
JPH0671255A (en) Method for removing nitrate ion and/or nitrite ion and device therefor
JP2013208583A (en) Water treatment method, water treatment system, and ultrapure water production method
KR20110095750A (en) Wastewater treatment system using filter paper filled with absorbent media coating hydroxide metal salt, and wastewater treatment method using the same
JPS62258795A (en) Denitrifying treatment for waste water containing ammonium ion and its device
JP6531441B2 (en) Method and apparatus for membrane treatment of water containing organic matter
JP2020127383A (en) Culture method, culture apparatus, waste water treatment method, and waste water treatment apparatus
KR20180136317A (en) Low ammonia nitrogen biological treatment procee and apparatus using microbe attached zeolite media

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181017

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190903

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190924

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200323

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20200323

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20200413

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200630

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200716

R150 Certificate of patent or registration of utility model

Ref document number: 6737583

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250