JP6517137B2 - Operation management method of water purification equipment - Google Patents

Operation management method of water purification equipment Download PDF

Info

Publication number
JP6517137B2
JP6517137B2 JP2015241771A JP2015241771A JP6517137B2 JP 6517137 B2 JP6517137 B2 JP 6517137B2 JP 2015241771 A JP2015241771 A JP 2015241771A JP 2015241771 A JP2015241771 A JP 2015241771A JP 6517137 B2 JP6517137 B2 JP 6517137B2
Authority
JP
Japan
Prior art keywords
water
treated
activated carbon
pond
nitrification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015241771A
Other languages
Japanese (ja)
Other versions
JP2017104818A (en
Inventor
槙田 則夫
則夫 槙田
弘明 仲田
弘明 仲田
安永 利幸
利幸 安永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Swing Corp
Original Assignee
Swing Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Swing Corp filed Critical Swing Corp
Priority to JP2015241771A priority Critical patent/JP6517137B2/en
Publication of JP2017104818A publication Critical patent/JP2017104818A/en
Application granted granted Critical
Publication of JP6517137B2 publication Critical patent/JP6517137B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Description

本発明は、水処理分野、特に上水道における高度浄水処理に使用される浄水処理設備の運転管理方法に関する。   TECHNICAL FIELD The present invention relates to the field of water treatment, in particular, to a method of managing operation of a water purification system used for advanced water purification in water supply.

わが国は、河川水、湖沼水及び地下水など清浄で豊富な水道水源に恵まれており、従来、浄水場では、例えば特許文献1の図1に示すような処理が一般的な浄水処理であった。   Japan is blessed with clean and abundant tap water sources such as river water, lake water and ground water. Conventionally, in water treatment plants, for example, the treatment shown in FIG. 1 of Patent Document 1 has been a general water purification treatment.

特許文献1には、従来の浄水処理装置および二酸化炭素排出負荷の小さい植物系活性炭使用した浄水処理装置と浄水処理方法が記載されており、活性炭吸着池における生物活性炭によるアンモニアの酸化作用に関する技術、また高度浄水処理のフローの前段に生物処理酸化池を組合せる処理フローが記載されている。   Patent Document 1 describes a conventional water purification apparatus and a water purification apparatus and a water purification method using plant-based activated carbon with a low carbon dioxide discharge load, a technology related to the oxidizing action of ammonia by biological activated carbon in an activated carbon adsorption pond Moreover, the processing flow which combines a biological treatment oxidation pond is described in the front of the flow of the advanced water purification processing.

これは、除濁と消毒を基本目的としたもので、水処理剤としては、硫酸アルミニウム、ポリ塩化アルミニウムなどの凝集剤や塩素、次亜塩素酸ナトリウムなどの消毒剤のみが使用されてきた。   This is basically intended to remove and disinfect, and as a water treatment agent, only flocculants such as aluminum sulfate and polyaluminum chloride and disinfectants such as chlorine and sodium hypochlorite have been used.

しかしながら、ライフラインとしての水道水源確保等を目的としたダム湖の増加、及び水源の富栄養化の進行に伴い、カビ臭物質である2−メチルイソボルネオール、ジェオスミンなどを産出するPhormidium tenue、Anabaena spiroides var. crassa、Oscillatoria tenuis、Microcystis aeruginosaなどの藻類の異常繁殖、及びこれに伴う異臭味発生問題が生じ、通常処理では対応が難しくなった。   However, Phromidium tenue, Anabaena which produces 2-methylisoborneol which is a mold odor substance, geosmin, etc. along with the increase of dam lakes for the purpose of securing tap water source as lifeline and progress of eutrophication of water source. spiroides var. Abnormal reproduction of algae such as crassa, Oscillatoria tenuis, and Microcystis aeruginosa, and the offensive odor development problems associated with this have occurred, and it has become difficult to cope with it by ordinary treatment.

この異臭味対策として、通常処理のフローに加え、オゾン処理、生物処理及び活性炭処理などが行われるようになった。活性炭は、1000m2/gもの広大な比表面積を持つ微細孔を有しており、カビ臭物質などの有機物質を除去することができる。この活性炭は、形状の違いにより粉末活性炭、粒状成型活性炭、及び粒状破砕活性炭に分類され、粒状成型活性炭は、円柱状や球状などに成形されたもの、粒状破砕活性炭は破砕して粒状破砕物としたものなどである。 As measures against this offensive odor, ozone treatment, biological treatment, activated carbon treatment, and the like have come to be performed in addition to the flow of normal treatment. Activated carbon has micropores with a large specific surface area as large as 1000 m 2 / g and can remove organic substances such as mold odor substances. The activated carbon is classified into powdery activated carbon, granular molded activated carbon, and granular crushed activated carbon according to the difference in shape, and the granular molded activated carbon is formed into a columnar or spherical shape, granular crushed activated carbon is crushed and granular crushed material And so on.

異臭味障害対策として、活性炭を使用するフローには、例えば特許文献1の図2、図3に示す2つのフローがあり、異臭味障害の発生頻度が小さい場合には、障害発生時期にのみ着水井などに粉末活性炭を注入する対処的な処理を、頻度が大きい場合には、粒状破砕活性炭を敷設した活性炭吸着池を設置して恒久的な処理を行うフローが選択される。   There are two flows shown in, for example, FIG. 2 and FIG. 3 of the patent document 1 in the flow using activated carbon as the offensive odor taste disorder countermeasure, and when the occurrence frequency of the offensive odor taste disorder is small, arrival only at the failure occurrence time. In the case where the frequency is high, a flow for performing permanent treatment is selected by installing an activated carbon adsorption pond on which granular activated carbon is laid, in order to cope with the problem of injecting powdered activated carbon into water wells and the like.

さらに、1970年代になると、水中のフミン酸などの有機物質と消毒剤の塩素剤の反応により生成される、発癌性物質であるトリハロメタン(クロロホルム、ブロモジクロロメタン、ジブロモクロロメタン、ブロモホルムの4物質の総称。以下、THMと称する)を始めとする、ハロ酢酸、抱水ハラールなどを含む有機ハロゲン系の消毒副生成物の問題が顕在化し、水道の安全性を揺るがせかねない大きな問題となった。塩素消毒時に塩素との反応によって上記のような消毒副生成物を生成する有機物は、消毒副生成物の前駆物質(precursor)と称され、この有機物を効率よく除去し、塩素消毒副生成物を低減する技術が求められるようになった。   Furthermore, in the 1970s, the carcinogenic substance trihalomethane (chloroform, bromodichloromethane, dibromochloromethane, bromoform, etc.) is a generic term for carcinogenic substances produced by the reaction of organic substances such as humic acid in water with the disinfectant chlorination agent. In the following, problems with organohalogen-based antiseptic byproducts including haloacetic acid, halal hydrate, etc., such as THM), have become apparent, and this has become a major problem that may cause the safety of the water supply. The organic matter that produces the above-mentioned disinfection by-products by reaction with chlorine during chlorination is called a precursor of the disinfection by-product, and this organic matter is efficiently removed, and the chlorine disinfection by-product is removed. Technology to reduce has come to be required.

また、水源の富栄養化の進行などにより、水道原水に含有されるアンモニア性窒素も増加する傾向があるが、アンモニア性窒素は水道消毒に使用される塩素剤(液体塩素、次亜塩素酸ナトリウム)と反応して、いわゆるカルキ臭と称される異臭味を残留させるため、水道水を不味くさせる要因となる。   In addition, although ammonia nitrogen contained in tap water tends to increase due to the progress of eutrophication of water source, etc., ammonia nitrogen is a chlorine agent used for water disinfection (liquid chlorine, sodium hypochlorite In order to cause an off-flavor taste, which is called so-called karuki odor, to react with the water, it causes unfavorable tap water.

このため、安全でおいしい水を供給するという観点から、塩素剤添加位置の見直し、生物活性炭BAC:(Biological Activate Carbon、表面に繁殖した微生物による代謝機能により有機物分解作用およびアンモニア性窒素の硝酸化作用を有する粒状活性炭)処理など、塩素消毒副生成物の抑制を目的とした高度浄水処理が本格検討されるようになった。   For this reason, from the viewpoint of supplying safe and delicious water, review the chlorinating agent addition position, biological activated carbon BAC: (Biological Activate Carbon, organic substance decomposition action by the metabolizing function by microorganisms propagated on the surface, and nitridation action of ammonia nitrogen Advanced water purification treatment aimed at control of chlorination byproducts such as treatment of granular activated carbon) has been considered in earnest.

BAC処理は、凝集処理+オゾン処理+粒状活性炭処理+後塩素処理の組合せを基本としたものである。まず、凝集処理による除濁と有機物質の粗除去、次いでオゾン処理により、残留有機物質の酸化分解及び低分子化・易生物分解化(biodegradable)を経て、BAC処理による残留有機物質の吸着除去及び生物分解、並びにアンモニア性窒素の低減が行われ、最終的に消毒副生成物の前駆物質となる有機物質やアンモニア性窒素をできるだけ減少させた後で塩素剤による消毒が行われる。ただし、未使用の粒状活性炭がBAC化するためには粒状活性炭表面に微生物が繁殖する必要があることから、一般的には3ヶ月〜6ヶ月程度かかると言われている。   The BAC treatment is based on a combination of aggregation treatment + ozone treatment + granular activated carbon treatment + post chlorination treatment. First, removal of residual organic substances by BAC treatment is carried out through oxidization and decomposition of the residual organic substances and degradation of molecular weight and biodegradability by ozonization, followed by turbidity removal by coarse treatment and rough removal of organic substances, followed by ozonation. Biodegradation as well as reduction of ammoniacal nitrogen is carried out, and after the organic nitrogen which is the precursor of the disinfection by-product and ammonia nitrogen are reduced as much as possible, the disinfection with the chlorinating agent is carried out. However, it is generally said that it takes about 3 to 6 months because microorganisms need to propagate on the surface of the granular activated carbon in order to BAC convert unused granular activated carbon.

上記のとおり、粒状活性炭を使用する浄水処理の処理フローとしては、オゾン処理併用の有無及び活性炭の配置位置の違いにより、特許文献1の図3、図4、図5、図6に示された4種が代表的であり、それぞれ用途に合わせた粒径の粒状破砕活性炭が使用されてきた。   As described above, the process flow of the water purification process using granular activated carbon is shown in FIG. 3, FIG. 4, FIG. 5, and FIG. 6 of Patent Document 1 depending on the presence or absence of combined ozone treatment and the arrangement position of activated carbon. Four types are representative, and granular crushed activated carbon having a particle size adapted to each use has been used.

砂ろ過池に前置される下向流活性炭吸着池には、粒径0.85mm〜2.0mm、有効径1.1〜1.3mm、均等係数1.3以下の大粒径の石炭系粒状破砕活性炭(特許文献1の図4)、砂ろ過池に後置される下向流活性炭吸着池には、それぞれ粒径0.5mm〜2.0mm、平均径0.9〜1.1mm、均等係数1.5〜1.9の中粒径のヤシ殻系粒状破砕活性炭及び石炭系粒状破砕活性炭(特許文献1の図5)、上向流流動床活性炭吸着池には、粒径0.2mm〜1.7mm、有効径0.35〜0.45、均等係数1.4以上の小粒径の石炭系粒状破砕活性炭(特許文献1の図6)が使用されるのが一般的である。   Downward-flowing activated carbon adsorption ponds in front of sand filtration ponds are large particle size coal systems with a particle size of 0.85 mm to 2.0 mm, an effective diameter of 1.1 to 1.3 mm, and an even coefficient of 1.3 or less. Granular crushed activated carbon (FIG. 4 of Patent Document 1), downward-flowing activated carbon adsorption ponds placed behind sand filters, each having a particle diameter of 0.5 mm to 2.0 mm, an average diameter of 0.9 to 1.1 mm, A medium particle size coconut shell-based granular crushed activated carbon and coal-based granular crushed activated carbon (FIG. 5 of Patent Document 1) of medium particle diameter with uniform coefficient of 1.5 to 1.9, upward flow fluidized bed activated carbon adsorption pool, Coal-based granular crushed activated carbon (Fig. 6 of Patent Document 1) having a small particle diameter of 2 mm to 1.7 mm, an effective diameter of 0.35 to 0.45, and a uniform coefficient of 1.4 or more is generally used. .

これら以外に、上記処理フローにおいて、凝集沈澱池の前段に生物酸化処理池を組み合わせる方式、特許文献1の図5に示したような中粒径下向流活性炭吸着池の後段に、更にろ過池(凝集ろ過を含む)を組み合わせる方式などもある。   In addition to the above, in the above process flow, a method of combining a biological oxidation treatment pond in the former stage of the coagulation sedimentation basin, a filtration pond further in the latter stage of medium particle size downward flow activated carbon adsorption pond as shown in FIG. There is also a method of combining (including coagulation filtration).

なお、オゾン処理を併用しない粒状活性炭であっても、また、オゾン処理を併用する生物活性炭においても、生物分解性の無い有機物が次第に蓄積されるため、吸着性能は次第に失われて行く。このように吸着性能がほとんど失われた活性炭は劣化炭などと称されるが、定期的な賦活再生を行うことによって活性炭としての有機物除去能力を再賦与することが可能である。   Incidentally, even in the case of granular activated carbon not using ozone treatment in combination, or biological activated carbon using ozone treatment in combination, since the organic substance having no biodegradability is gradually accumulated, the adsorption performance is gradually lost. The activated carbon from which the adsorption performance is almost lost in this way is referred to as degraded carbon etc., but it is possible to reapply the organic substance removing ability as the activated carbon by performing periodical activation regeneration.

上水道用の活性炭の劣化炭は塩素消毒副生成物の前駆物質となる腐植質(フミン質、フミン酸、フルボ酸などの有機性着色物質)や、異臭味成分であるジェオスミン、2−メチルイソボルネオールなどの有機物を吸着しているが、これら石炭系破砕炭およびヤシ殻系破砕炭の劣化炭の再生には800〜950℃の温度による水蒸気再生法が採用されることが一般的である。この有機物除去能力を再賦与させた活性炭は再生炭と称される。   Humid substances (organic coloring substances such as humic substances, humic acids, and fulvic acids), which are the precursors of chlorination by-products, degraded coal of activated carbon for water supply, geosmin, which is an offensive odor component, and 2-methylisoborneol And the like, but it is general that a steam regeneration method at a temperature of 800 to 950 ° C. is adopted for regeneration of degraded coal of these coal-based crushed charcoal and coconut shell-based crushed charcoal. The activated carbon to which this organic substance removing ability is reapplied is called regenerated carbon.

ただし、表面に繁殖していた微生物は水蒸気再生の過程で失われているため、再生炭を活性炭吸着池に戻した場合には、再生炭がBAC化するまでに未使用活性炭同様、3ヶ月〜6ヶ月程度かかる。   However, since the microorganisms that were propagating on the surface are lost in the process of water vapor regeneration, when the regenerated carbon is returned to the activated carbon adsorption pond, 3 months to 3 months as with unused activated carbon until the regenerated carbon becomes BAC. It takes about six months.

また、菌付着担体の一例を示すと、例えば、特許文献2には、ポリビニルアルコールとアルギン酸ナトリウム混合液を塩化カルシウム溶液中に液滴して球状ゲルを作成した後、球状ゲルを凍結・解凍処理や硫酸ナトリウム処理することで不溶化させた菌付着担体が開示されている。   Moreover, if an example of a microbe adhesion carrier is shown, for example, after making a liquid mixture of polyvinyl alcohol and sodium alginate drop in calcium chloride solution and producing a spherical gel, patent document 2 freezes and thaws the spherical gel. And a carrier adhering to bacteria that has been rendered insoluble by treatment with sodium sulfate.

更に、菌体を内部に包括する包括固定化担体としては、例えば、特許文献3に、ポリエチレングリコールのジエステル又はメトキシポリエチレングリコールのモノエステルの重合体ゲルの内部に微生物を包括固定してなる菌包括固定担体が開示されている。   Furthermore, as a comprehensive immobilization carrier that encases the cells inside, for example, Patent Document 3 discloses bacterial entrapment which is obtained by entrapping and immobilizing the microorganism in a diester of polyethylene glycol or a polymer gel of monoester of methoxypolyethylene glycol. A fixed carrier is disclosed.

特開2011−45853号公報JP 2011-45853 A 特開平5−271425号公報Unexamined-Japanese-Patent No. 5-271425 特公昭64−9072号公報Japanese Patent Publication No. 64-9072

しかしながら、前述のとおり、高度浄水処理は安全でおいしい水造りの切札となるものであるが、アンモニア性窒素除去の点で更に解決すべき課題を有していた。即ち、BAC処理において、アンモニア性窒素は、活性炭表面に繁殖した亜硝酸化菌・硝酸化菌により硝酸性窒素に酸化され低減するが、これらの微生物は20℃未満(特に10℃以下)の低水温になると活性度が著しく低下するという欠点を有していた。   However, as described above, the advanced water purification treatment is a safe and delicious trump card, but it still has problems to be solved in terms of ammonia nitrogen removal. That is, in the BAC treatment, ammonia nitrogen is oxidized to nitrate nitrogen and reduced by nitrite bacteria / nitrite bacteria propagated on the activated carbon surface, but these microorganisms have a low temperature of less than 20 ° C. (especially 10 ° C. or less) It had the disadvantage that the activity decreased significantly when the water temperature reached.

それに加えて、夏季などの高水温期は、水源上流地域から清浄な融雪水が大量に供給されるため河川流量も多く、アンモニア性窒素濃度も0.1mg/L程度の低濃度に保たれるが、冬季などの低水温期には河川水量が低下するため、都市近郊部の清浄度に欠ける流入河川の水質の影響が高くなり、アンモニア性窒素濃度が2mg/L以上といった高濃度になる場合もある。このように、生物活性の低下する低水温時期に、逆にアンモニア性窒素濃度が高くなる傾向があるため、従来のBAC処理だけではアンモニア性窒素が十分に低減できない場合があるという課題があった。   In addition, in the high water temperature season such as summer, a large amount of clean snow water is supplied from the upstream area of the water source, so the river flow is also large, and the ammonia nitrogen concentration can be maintained as low as 0.1 mg / L. However, since the river water volume decreases in low water temperature seasons such as winter, the influence of the water quality of the inflowing river lacking in cleanliness in the urban suburbs becomes high, and the ammoniacal nitrogen concentration becomes high as 2 mg / L or more There is also. Thus, there is a problem that the ammoniacal nitrogen concentration can not be sufficiently reduced by the conventional BAC treatment alone, since the ammoniacal nitrogen concentration tends to increase conversely at the low water temperature period when the biological activity decreases. .

残留したアンモニア性窒素は、浄水処理の最終工程で行われる塩素消毒(後塩素処理と称される)の際に、下記のようなブレークポイント塩素酸化を行うことで分解することができるが、アンモニア性窒素の分解には化学量論的には7.4倍の遊離塩素を必要とするため、残留アンモニア性窒素濃度が高いと所要塩素添加量多くなり、トリハロメタンなどの消毒副生成物が増加したり、いわゆるカルキ臭として知られる結合塩素由来の異臭味物質を副生させるため、後塩素消毒を実施する前の段階でアンモニア性窒素を完全に除去することが望まれていた。   The remaining ammoniacal nitrogen can be decomposed by performing chlorination of breakpoints as described below during chlorination (referred to as post-chlorination) performed in the final step of water purification treatment, but ammonia Since the decomposition of volatile nitrogen requires 7.4 times the stoichiometric amount of free chlorine, higher residual ammoniacal nitrogen concentration requires more chlorine to be added, and increases disinfection byproducts such as trihalomethane. It is desirable to completely remove ammonia nitrogen at a stage before post-chlorination, in order to by-produce an off-flavoring substance derived from combined chlorine known as so-called pulpy odor.

(ブレークポイント処理)
2NH + 6Cl → N↑ + 6HCl
(Breakpoint processing)
2NH 3 + 6Cl 2 → N 2 + + 6HCl

また、未使用炭、再生炭の何れを使用する場合でも、これらの粒状活性炭がBAC化するまでの期間はアンモニア性窒素を除去できないという課題もあった。   In addition, there is also a problem that ammonia nitrogen can not be removed during the period until these granular activated carbons become BAC, even when either unused coal or regenerated coal is used.

本発明は、上記従来の課題に鑑み成されたものであり、その目的とするところは、アンモニア性窒素含有水を水源とする浄水処理において、活性炭付着した微生物の活性度低下を防止し、アンモニア性窒素の残留を低濃度に抑制することができる浄水処理設備の最適運転管理方法を提供することにある。   The present invention has been made in view of the above-mentioned conventional problems, and the object of the present invention is to prevent the activity decrease of the microorganisms adhering to activated carbon in the water purification treatment using ammoniacal nitrogen-containing water as a water source, ammonia It is an object of the present invention to provide an optimum operation management method of a water purification treatment equipment capable of suppressing residual nitrogen concentration to low concentration.

上記課題を解決するために、本発明の運転管理方法は以下の構成とすることができる。
(1)被処理水に含まれるアンモニウムイオンを硝化菌で硝化する浄水処理設備の運転管理方法において、水温が10℃〜35℃であり、かつ、前記被処理水よりも高濃度のアンモニウムイオンを含有する馴致用水溶液で硝化菌を予め馴致しておく。被処理水の水温が20℃未満に低下したときに、その被処理水を馴致した硝化菌と接触させて硝化工程を行う。
(2)アンモニウムイオン濃度はアンモニウム性窒素濃度として定義することが可能であり、馴致用水溶液のアンモニウム性窒素濃度は1mg/L以上30mg/L以下にすることが好ましい。
(3)被処理水に凝集剤を添加して凝集沈殿する凝集沈殿池と、被処理水にオゾンを接触させるオゾン接触池と、被処理水を活性炭吸着処理する活性炭吸着池と、被処理水をろ過するろ過池とを有する浄水処理設備を運転管理する場合、少なくとも1台の前記活性炭吸着池に硝化菌を担持させておき、当該硝化菌に被処理水を接触させて硝化工程を行うことができる。
(4)馴致工程の場所は特に限定されず、活性炭吸着池の外部と内部の少なくとも一方で行うことができる。
(5)活性炭吸着池は複数台設置することも可能であり、この場合、1台以上の活性炭吸着池を予備池とし、他の1台以上の活性炭吸着池で被処理水の吸着処理を行い、被処理水の水温が所定温度以下に低下したときに、当該被処理水の通水を、吸着処理を行う活性炭吸着池から予備池に切り替え、硝化工程を行うことができる。
(6)上記のような浄水処理設備では、硝化工程の場所は特に限定されない。例えば、少なくとも凝集沈澱池よりも上流側に硝化菌を担持する硝酸化池を設置し、馴致工程後の硝化菌に、凝集沈殿前の被処理水を接触させて硝化工程を行うこともできる。
(7)ろ過池の上流側と下流側のいずれか一方又は両方に硝酸化池を設置し、馴致工程後の硝化菌に、ろ過処理前とろ過処理後のいずれか一方又は両方の被処理水を接触させて硝化工程を行うこともできる。
(8)更には、少なくとも凝集沈澱池とオゾン接触池の間に硝酸化池を設置し、馴致工程後の硝化菌に、凝集沈殿処理後であって、かつ、オゾン接触前の被処理水を接触させて硝化工程を行うこともできる。
(9)被処理水のアンモニウムイオン濃度と、水温のいずれか一方又は両方を測定し、測定したデータに基づき、馴致水溶液のアンモニウムイオン濃度と、硝化工程の開始時期のいずれか一方又は両方を制御することが好ましい。
(10)有機物吸着能が低下した前記活性炭吸着池と、硝化能が低下した前記硝酸化池のいずれか一方又は両方を再生処理することも可能である。
(11)更には、硝化工程の後に、被処理水を塩素消毒してもよい。
In order to solve the said subject, the operation management method of this invention can be set as the following structures.
(1) In the operation management method of the water purification equipment for nitrifying the ammonium ions contained in the water to be treated with nitrifying bacteria, the water temperature is 10 ° C. to 35 ° C. and ammonium ions having a higher concentration than the water to be treated are The nitrifying bacteria are acclimatized in advance with the aqueous solution for conditioning contained. When the temperature of the water to be treated drops below 20 ° C., the water to be treated is brought into contact with the acclimated nitrifying bacteria to carry out the nitrification step.
(2) The ammonium ion concentration can be defined as an ammonium nitrogen concentration, and the ammonium nitrogen concentration of the aqueous conditioning solution is preferably 1 mg / L or more and 30 mg / L or less.
(3) Coagulative sedimentation basin where flocculating agent is added to treated water to coagulate and precipitate, ozone contact pond where ozone is brought into contact with treated water, activated carbon adsorption pond which carries out activated carbon adsorption treatment of treated water, treated water When operating and managing a water purification treatment facility having a filtration basin for filtering, at least one of the activated carbon adsorption ponds is loaded with nitrifying bacteria, and the nitrifying bacteria are brought into contact with water to be treated to carry out the nitrification step Can.
(4) The place of the acclimatization process is not particularly limited, and can be performed at least one of the outside and the inside of the activated carbon adsorption pond.
(5) A plurality of activated carbon adsorption reservoirs can be installed. In this case, one or more activated carbon adsorption reservoirs are used as a reserve reservoir, and the other 1 or more activated carbon adsorption reservoirs carry out adsorption treatment of the water to be treated. When the water temperature of the water to be treated drops below a predetermined temperature, it is possible to switch the water flow of the water to be treated from the activated carbon adsorption reservoir to be subjected to the adsorption treatment to the reserve reservoir and to perform the nitrification step.
(6) The place of the nitrification step is not particularly limited in the water purification treatment equipment as described above. For example, it is possible to install a nitrification tank carrying nitrifying bacteria at least upstream of the coagulation sedimentation tank, and to carry out the nitrification process by bringing the water to be treated prior to coagulation precipitation into contact with the nitrifying bacteria after the acclimatization process.
(7) A nitrification tank is installed on either or both of the upstream side and the downstream side of the filtration basin, and the nitrifying bacteria after the acclimatization process are treated water before filtration and / or after filtration. The nitrification step can also be carried out by contacting.
(8) Furthermore, install a nitrification pond at least between the flocculation settling basin and the ozone contact pond, and after the flocculation settling treatment, the nitrifying bacteria after the acclimatization process should be treated water before contacting with ozone. The nitrification step can also be carried out by contacting.
(9) Measure one or both of the ammonium ion concentration of the water to be treated and the water temperature, and control one or both of the ammonium ion concentration of the acclimatized aqueous solution and the start time of the nitrification process based on the measured data It is preferable to do.
(10) It is also possible to regenerate either one or both of the activated carbon adsorption reservoir with lowered organic substance adsorption capacity and the nitrification pond with lowered nitrification capacity.
(11) Furthermore, the water to be treated may be chlorinated after the nitrification step.

本発明によれば、高濃度アンモニウムイオン下で馴致した硝化菌を使用することで、低水温期であっても、処理水の残留アンモニア性窒素濃度を抑制することができる。   ADVANTAGE OF THE INVENTION According to this invention, even if it is a low water temperature period, the residual ammonia nitrogen concentration of treated water can be suppressed by using the nitrifying bacteria which adapted under high concentration ammonium ion.

本発明に用いる浄水処理設備の第一例を示す模式図である。It is a schematic diagram which shows the 1st example of the water purification treatment installation used for this invention. 本発明に用いる浄水処理設備の第二例を示す模式図である。It is a schematic diagram which shows the 2nd example of the water purification treatment installation used for this invention. 本発明に用いる浄水処理設備の第三例を示す模式図である。It is a schematic diagram which shows the 3rd example of the water purification treatment installation used for this invention. 本発明に用いる浄水処理設備の第四例を示す模式図である。It is a schematic diagram which shows the 4th example of the water purification treatment installation used for this invention. 本発明に用いる浄水処理設備の第五例を示す模式図である。It is a schematic diagram which shows the 5th example of the water purification treatment installation used for this invention. 本発明に用いる浄水処理設備の第六例を示す模式図である。It is a schematic diagram which shows the 6th example of the water purification treatment installation used for this invention. 本発明に用いる浄水処理設備の第七例を示す模式図である。It is a schematic diagram which shows the 7th example of the water purification treatment installation used for this invention.

以下、本発明を具体的に説明するが、本発明は特定の具体例に限定されるものではない。本発明は、水処理に有用な微生物を馴致する工程と、馴致した微生物を硝化等の処理に利用する工程とを有する。   Hereinafter, the present invention will be specifically described, but the present invention is not limited to a specific example. The present invention comprises the steps of adapting a microorganism useful for water treatment, and utilizing the adapted microorganism for the treatment such as nitrification.

以下にその具体例を説明する。   The specific example will be described below.

<微生物>
本発明は水処理工程に寄与する微生物(酵母、真菌、細菌類)であれば特に限定されず、複数種類の細菌類を利用することが可能であるが、特に、アンモニア性窒素の分解、除去に有用な微生物類を使用する。本発明では、アンモニア性窒素の酸化並びに亜硝酸の酸化に寄与する細菌類、即ち、硝酸菌(硝酸化菌)と亜硝酸菌(亜硝酸化菌)の少なくとも一方、好ましくは両方を使用可能であり、本願明細書ではこのような細菌類を硝化菌と称する。
<Microbial>
The present invention is not particularly limited as long as it is a microorganism (yeast, fungus, bacteria) contributing to the water treatment process, and multiple types of bacteria can be used, but in particular, decomposition and removal of ammonia nitrogen Use useful microorganisms. In the present invention, bacteria that contribute to the oxidation of ammonia nitrogen and the oxidation of nitrite, that is, at least one, preferably both nitrate bacteria (nitrite bacteria) and nitrite bacteria (nitrite bacteria) can be used, Such bacteria are referred to herein as nitrifying bacteria.

これら硝化菌の利用法は特に限定されないが、担体に付着(定着)させて馴致することが好ましい。   The utilization method of these nitrifying bacteria is not particularly limited, but it is preferable to adhere to (adhere to) a carrier to be familiar.

<担体>
硝化菌は担体に付着(定着)させ、馴致する。この担体は特に限定されず、表面に硝化菌を付着させる菌付着担体と、内部に硝化菌を固定化する菌包括固定化担体のいずれか一方又は両方を用いることができる。
<Carrier>
The nitrifying bacteria adhere to (adhere to) the carrier and become familiar. The carrier is not particularly limited, and any one or both of a carrier with bacterial adhesion to which nitrifying bacteria adheres to the surface and a carrier for immobilization with bacteria immobilized inside may be used.

菌付着担体は、特に限定されないが、一例としては不溶化ゲルがある。不溶化ゲルは、例えば、ポリビニルアルコールとアルギン酸ナトリウム混合液を塩化カルシウム溶液中に液滴して球状ゲルを作成した後、球状ゲルを凍結・解凍処理や硫酸ナトリウム処理することで不溶化させたものである。   The bacteria-adhering carrier is not particularly limited, but an example is an insolubilized gel. The insolubilized gel is, for example, a mixture of polyvinyl alcohol and sodium alginate dropped in calcium chloride solution to form a spherical gel, and then the spherical gel is insolubilized by freezing / thawing treatment or sodium sulfate treatment. .

また、不溶化ゲルと一緒に、又は不溶化ゲルとは別に、他の担体を使用することも可能である。他の担体としては、活性炭材料(例えば粒状活性炭)、アンスラサイト破砕物、木炭破砕物、天然ゼオライト破砕物、人工ゼオライト成形物、粒状樹脂成型物、ガラス繊維、プラスチック繊維、セラミック多孔体等のいずれか1種以上の材料を用いることが可能である。これらのうち、粒状樹脂成形物としては、ポリウレタンフォーム、ポリビニルアルコール、ポリプロピレン、ポリエチレン、ポリエチレングリコール、セルロース原料の樹脂成型物が使用できる。   It is also possible to use other carriers together with the insolubilized gel or separately from the insolubilized gel. Other carriers include any of activated carbon materials (for example, granular activated carbon), crushed anthracite, crushed charcoal, crushed natural zeolite, molded artificial zeolite, molded particulate resin, glass fiber, plastic fiber, porous ceramic body, etc. It is possible to use one or more materials. Among them, as the particulate resin molded product, resin molded products of polyurethane foam, polyvinyl alcohol, polypropylene, polyethylene, polyethylene glycol and cellulose raw materials can be used.

包括固定化担体としては、例えば、ポリエチレングリコールのジエステル又はメトキシポリエチレングリコールのモノエステルの重合体ゲルの内部に微生物を包括固定してなる菌包括固定担体を使用することができる。なお、菌包括固定担体は、これに限定されるものではなく、硝化菌等の微生物を担体内部に包括可能であれば、例えば、ポリアクリルアミド、寒天、カラギーナン、コラーゲン、ポリビニルアルコール、アルギン酸を原料とした粒状ゲルを使用可能である。   As the entrapment immobilization carrier, for example, a bacteria entrapping immobilization carrier formed by entrapping and immobilizing the microorganism on the inside of a polymer gel of a diester of polyethylene glycol or a monoester of methoxypolyethylene glycol can be used. In addition, the bacteria inclusion fixation carrier is not limited to this, and it is possible to contain microorganisms such as nitrifying bacteria inside the carrier, for example, polyacrylamide, agar, carrageenan, collagen, polyvinyl alcohol, alginic acid as a raw material Granular gel can be used.

硝化菌を担体に付着(定着)させる方法は特に限定されないが、別途分離培養した硝化菌、市販の硝化菌、または、硝化菌を含むであろう水若しくは土壌を、単独又は組み合わせて硝化菌の供給源として担体に接触させる。硝化菌の供給源となる水若しくは土壌は特に限定されず、汚泥水、海水等多様なものを用いることができるが、好ましくは、硝化処理の対象となる被処理水(塩素消毒前)を供給源として使用する。
次に、硝化菌の馴致工程を具体的に説明する。
There is no particular limitation on the method of attaching (fixing) the nitrifying bacteria to the carrier, but there are no particular limitations on the nitrifying bacteria obtained by separately or separately culturing nitrifying bacteria, commercially available nitrifying bacteria, or water or soil that may contain the nitrifying bacteria alone or in combination. Contact the support as a source. Water or soil that is a source of nitrifying bacteria is not particularly limited, and various types such as sludge water and seawater can be used, but preferably water to be treated (before chlorination) to be subjected to nitrification treatment Use as a source.
Next, the process of habituation of nitrifying bacteria will be specifically described.

<馴致工程>
馴致には、水を主成分とし、かつ、被処理水よりもアンモニウムイオン濃度(アンモニア性窒素濃度)が高い馴致用水溶液を使用する。馴致用水溶液には、例えば、浄水処理設備で処理前若しくは処理中の被処理水、浄水処理設備で処理後の処理水、浄水処理設備での処理対象外の水(河川水、雨水、排水等)、または、水道水等の多様な水源を利用可能であり、これらは2種以上を混合して用いることもできる。ただし、塩素等の硝化菌抑制物質を高濃度に含む場合は、脱塩素処理等の前処理が必要である。
<Familiarization process>
For adaptation, an adaptation aqueous solution containing water as a main component and having a higher ammonium ion concentration (ammoniacal nitrogen concentration) than the water to be treated is used. The aqueous solution for familiarization includes, for example, treated water before or during treatment in a water purification treatment facility, treated water after treatment in a water purification treatment facility, water not to be treated in a water purification treatment facility (river water, rain water, drainage, etc. ) Or various water sources such as tap water can be used, and two or more of them can be used as a mixture. However, when containing a nitrifying bacteria inhibitor such as chlorine at a high concentration, pretreatment such as dechlorination is required.

馴致用水溶液は、被処理水よりもアンモニア性窒素濃度を高く維持する必要がある。ここで、アンモニア性窒素濃度の基準になる被処理水は、浄水処理設備に導入前(原水)であってもよいし、処理中のものでもよいが、好ましくは、低水温期(水温10℃未満)以外の被処理水を基準にする。基準となる被処理水のアンモニア性窒素濃度は、後述するように、浄水処理中に測定してもよいし、過去の測定データから基準値を設定してもよい。   The aqueous conditioning solution needs to maintain the ammoniacal nitrogen concentration higher than that of the water to be treated. Here, the water to be treated, which is the standard of the ammoniacal nitrogen concentration, may be before introduction into the water purification treatment facility (raw water) or may be treated during treatment, but preferably the low water temperature period (water temperature 10 ° C. Based on the treated water other than As described later, the ammoniacal nitrogen concentration of the water to be treated as a reference may be measured during the water purification treatment, or a reference value may be set from measurement data in the past.

馴致用水溶液のアンモニア性窒素濃度は、一般に濃度が高いほど硝化工程の処理安定性が向上するが、必要以上に高濃度であるとコストが高くなり、また、高pHが硝化菌に悪影響を与える場合もある。逆に、馴致用水溶液のアンモニア性窒素濃度が低すぎると硝化効果の持続期間が短くなり、その後の被処理水の水温低下やアンモニア性窒素濃度増加に対応できないため、適切な濃度を事前に予測して設定することもできる。   Generally, the higher the concentration of ammoniacal nitrogen concentration in the adaptation aqueous solution, the process stability of the nitrification process improves, but if the concentration is higher than necessary, the cost becomes high, and high pH adversely affects nitrifying bacteria. In some cases. On the contrary, if the ammoniacal nitrogen concentration of the aqueous solution for adaptation is too low, the duration of the nitrification effect becomes short, and it can not cope with the subsequent decrease in the water temperature of the water to be treated or the increase in the ammoniacal nitrogen concentration. Can also be set.

具体的には、馴致用水溶液のアンモニア性窒素濃度は1mg/L以上が好ましく、アンモニア性窒素濃度が3mg/L以上であることがより好ましく、アンモニア性窒素濃度が5mg/L以上であることが更に好ましい。その上限は特に限定されないが、好ましくは30mg/L以下、より好ましくは10mg/L以下である。   Specifically, the ammoniacal nitrogen concentration of the aqueous solution for adaptation is preferably 1 mg / L or more, more preferably 3 mg / L or more, and 5 mg / L or more More preferable. The upper limit thereof is not particularly limited, but is preferably 30 mg / L or less, more preferably 10 mg / L or less.

馴致用水溶液のアンモニア性窒素濃度が低い場合は、アンモニアをイオン又は塩の態様で添加する。また、硝化菌の培養を抑制しない物質であれば、pH緩衝剤、酸、アルカリ、糖類等の添加剤を馴致用水溶液に添加することも可能である。   If the ammoniacal nitrogen concentration of the aqueous conditioning solution is low, ammonia is added in the form of ions or salts. Moreover, it is also possible to add an additive such as a pH buffer, an acid, an alkali, or a saccharide to the aqueous solution for conditioning if it is a substance that does not inhibit the culture of nitrifying bacteria.

馴致用水溶液、硝化菌を担持した担体及び硝化菌(担体)を収容した装置(槽、池、カラムなど)のいずれか1以上を加熱又は冷却して10℃以上35℃以下の温度に維持して馴致工程を行う。好ましくは、馴致用水溶液の水温を10℃以上35℃以下に維持する。馴致に必要な期間は特に限定されず、溶存酸素濃度、アンモニウムイオン濃度、硝化菌の初期担持量等により適宜変更可能であるが、2週間以上の馴致期間を設けることが好ましい。馴致工程を経た硝化菌を、続いて硝化工程に利用する。   Heating or cooling any one or more of an aqueous solution for adaptation, a carrier carrying nitrifying bacteria, and an apparatus (tank, pond, column, etc.) containing nitrifying bacteria (carrier), and maintained at a temperature of 10 ° C to 35 ° C. Perform the familiarization process. Preferably, the water temperature of the conditioning aqueous solution is maintained at 10 ° C. or more and 35 ° C. or less. The time period required for habituation is not particularly limited, and can be appropriately changed depending on the dissolved oxygen concentration, ammonium ion concentration, initial loading amount of nitrifying bacteria and the like, but it is preferable to provide a two week or more habituation period. The nitrifying bacteria that have undergone the acclimatization process are subsequently used in the nitrification process.

<硝化工程>
本発明では、水温が一定温度以下に低下した被処理水、または、水温が一定温度以上であってもアンモニア性窒素濃度が所定濃度以上に上昇した被処理水の硝化に、上記馴致工程を経た硝化菌を利用し、浄水処理設備の硝化効率を高める。馴致工程を経た硝化菌の利用を水温が高い時期に開始しても処理安定性は高いが、その開始時期が早すぎると、その後の低水温期やアンモニア性窒素濃度の増加に対応できなくなる。
<Nitrification process>
In the present invention, the above-mentioned acclimatization process is applied to the untreated water whose water temperature has fallen below a certain temperature, or the nitrification of the untreated water whose ammonia nitrogen concentration has risen above a predetermined concentration even if the water temperature is above a certain temperature. Use nitrifying bacteria to increase the nitrification efficiency of the water purification equipment. Although the treatment stability is high even if utilization of the nitrifying bacteria that has passed through the adaptation step is started at a high water temperature period, if the start time is too early, it can not cope with the subsequent low water temperature period and the increase in ammoniacal nitrogen concentration.

従って、硝化工程の開始時期(馴致工程の終了)の判断は、被処理水の水温とアンモニア性窒素濃度のいずれか一方、好ましくは両方を連続的(常時)または1回以上の回数で定期的に測定し、必要であれば集積した他のデータと照合して総合的に判断する。このようなデータは、馴致工程の条件(アンモニア性窒素濃度、温度)の設定にも利用可能である。実測以外に利用可能な他のデータとしては、過去に同一の浄水処理設備で測定したデータ、他の浄水処理設備で取得したデータ(過去データ含む)の他、公表データ(厚生労働省水道水質データベース、国土交通省水文水質データベース等)など、多様なデータを利用可能である。なお、アンモニウム性窒素濃度(アンモニア態窒素濃度)は、例えば、イオン電極法で測定できる(JIS K0101の36.4等)   Therefore, the judgment of the start time of the nitrification process (end of the acclimatization process) should be made periodically (always or continuously) or at least once in either one of the water temperature of the water to be treated and the ammonia nitrogen concentration. And, if necessary, comprehensively judge against other accumulated data. Such data can also be used to set the conditions (ammoniacal nitrogen concentration, temperature) of the acclimatization process. As other data that can be used other than actual measurement, in addition to data measured with the same water purification treatment facility in the past, data acquired with other water purification treatment equipment (including past data), published data (Ministry of Health, Labor and Welfare Water Quality Database, A variety of data can be used, such as the Ministry of Land, Infrastructure, Transport and Tourism water quality and water quality database etc. The ammonium nitrogen concentration (ammonia nitrogen concentration) can be measured, for example, by the ion electrode method (JIS K 0101, 36.4, etc.)

具体的には、20℃未満、または15℃以下の水温を設定温度とし、この設定温度以下に水温が低下したときに硝化工程を開始する。ただし、温暖地など、被処理水の水温低下の可能性が低い場合は、硝化効率のみを考慮し、10℃以上、好ましくは15℃以上、より好ましくは20℃以上の水温で、硝化工程を開始することができる。この場合、例えば、被処理水のアンモニア性窒素濃度が所定濃度を超えた時を、硝化工程開始時期とする。   Specifically, the water temperature less than 20 ° C. or 15 ° C. or less is set as the set temperature, and the nitrification step is started when the water temperature drops below the set temperature. However, when the possibility of water temperature decrease of treated water is low, such as in a warm area, the nitrification process should be performed at a water temperature of 10 ° C or more, preferably 15 ° C or more, more preferably 20 ° C or more, considering only nitrification efficiency. It can start. In this case, for example, the time when the ammoniacal nitrogen concentration of the water to be treated exceeds a predetermined concentration is taken as the start time of the nitrification step.

硝化菌を被処理水に接触させる方法は特に限定されないが、例えば、硝化菌が定着した担体と共に、浄水処理設備の装置(例:充填活性炭)の充填材料に補充(追加)してもよいし、その充填材料の一部又は全部と交換してもよい。さらに、硝化菌をカラム、槽等の容器に収容した硝酸化池(硝酸化槽)を、浄水処理設備の中に組み込んで使用してもよい。硝酸化池の形状、構造は特に限定されず、例えば、固定床、流動床、生物膜方式であってもよいし、上向流であっても下向流であってもよい。   The method for bringing the nitrifying bacteria into contact with the water to be treated is not particularly limited. For example, together with the carrier on which the nitrifying bacteria are fixed, it may be replenished (added) to the filling material of the water treatment equipment (eg, filled activated carbon). And may be replaced with part or all of the filling material. Furthermore, a nitrification tank (nitrification tank) in which nitrifying bacteria are accommodated in a vessel such as a column or tank may be incorporated into the water purification treatment facility and used. The shape and structure of the nitrification tank are not particularly limited, and may be, for example, a fixed bed, fluidized bed, biofilm type, and may be upflow or downflow.

次に、硝酸化池を利用した浄水処理設備と、その運転管理方法を具体的に説明する。   Next, the water purification equipment using the nitrification tank and its operation management method will be specifically described.

<浄水処理設備>
図1〜5は浄水処理設備の具体例を示している。なお、図1〜図5に記載の活性炭吸着池は固定床下向流式のものであるが、流動床上向流式のものであってもよい。これら浄水処理設備の構造は特に限定されないが、共通する構造(装置)には同じ符号を付して以下に説明する。各浄水処理設備は凝集沈澱池10を有している。凝集沈澱池10は、原水(被処理水)の供給源に、直接又は前処理部(着水井など)を介して間接的に接続されており、未処理の被処理水又は少なくとも一部が前処理された被処理水が凝集沈澱池10に供給される。
<Water treatment facility>
1 to 5 show specific examples of the water purification equipment. In addition, although the activated carbon adsorption reservoir shown in FIGS. 1-5 is a fixed-bed downflow type thing, it may be a fluidized bed upflow type. The structure of these water purification facilities is not particularly limited, but common structures (devices) will be described below with the same reference numerals. Each water treatment facility has a coagulation sedimentation basin 10. The coagulation sedimentation tank 10 is directly or indirectly connected to a source of raw water (water to be treated) directly or through a pretreatment unit (such as a water receiving well), and untreated water to be treated or at least a part thereof is The treated water to be treated is supplied to the coagulation settling tank 10.

凝集沈澱池10では、手作業又は機械的手段により、1種以上の凝集剤(無機凝集剤、高分子凝集剤、凝集助剤など)を被処理水に添加、攪拌し、フロックを成長させる。フロックは、凝集沈澱池10の一部の装置と、凝集沈澱池10よりも下流側の装置のうち、いずれか1以上の装置で構成された固液分離装置により分離される。   In the coagulation sedimentation tank 10, one or more flocculants (inorganic flocculant, polymer flocculant, flocculant aid, etc.) are added to the water to be treated by manual or mechanical means, and stirred to grow floc. The floc is separated by a solid-liquid separation device constituted by any one or more of the devices of a part of the coagulation settling tank 10 and the devices downstream of the coagulation settling tank 10.

例えば、凝集沈澱池10は、凝集剤を添加撹拌する凝集槽11の他、凝集槽11の下流側の沈澱池12を有しており、沈澱池12には傾斜板又は傾斜管が設けられ、フロックが沈殿分離(固液分離)する。なお、固液分離装置はこれに限定されず、後述する図6、7の膜分離装置と凝集槽11との組み合わせであってもよいし、凝集沈澱池と砂ろ過池(ろ過装置)との組合せであってもよい。また、沈澱池を伴わない凝集槽と砂ろ過池(ろ過装置)との組合せであってもよい。   For example, the coagulation sedimentation basin 10 has a sedimentation basin 12 on the downstream side of the coagulation basin 11 in addition to a coagulation basin 11 for adding and stirring a coagulant, and the sedimentation basin 12 is provided with a sloped plate or a sloped pipe Floc precipitates (solid-liquid separation). The solid-liquid separation device is not limited to this, and may be a combination of the membrane separation device of FIGS. 6 and 7 and the coagulation tank 11 described later, or a combination of a coagulation sedimentation basin and a sand filtration basin (filtration unit). It may be a combination. Moreover, it may be a combination of a coagulation tank and a sand filter (filter device) without a settling tank.

ここでは、凝集沈澱池10の下流側には他の1以上の装置が設置され、フロックが分離された後の被処理水(液相)が更に処理される。具体的には、凝集沈澱池10の下流側に、オゾン接触池21と活性炭吸着池25、31と、砂ろ過池28のいずれか1台以上が設置されており、これらの台数や設置順は特に限定されないが、好ましくは、オゾン接触池21と、1台以上の活性炭吸着池25、31と、砂ろ過池28とを記載した順番に設置する。   Here, one or more other devices are installed on the downstream side of the coagulation settling tank 10, and the water to be treated (liquid phase) after the floc has been separated is further treated. Specifically, one or more of the ozone contact pond 21, the activated carbon adsorption ponds 25 and 31, and the sand filtration pond 28 are installed downstream of the coagulation sedimentation basin 10, and the number and the installation order of these are as follows. Although not particularly limited, preferably, the ozone contact pond 21, one or more activated carbon adsorption ponds 25 and 31, and the sand filtration pond 28 are installed in the order described.

活性炭吸着池25、31には、多様な活性炭を使用可能であるが、従来技術でも使用可能な活性炭、即ち、大粒径(粒径0.85mm〜2.0mm、有効径1.1〜1.3mm、均等係数1.3以下)、中粒径(粒径0.5mm〜2.0mm、平均径0.9〜1.1mm、均等係数1.5〜1.9)、小粒径(粒径0.2mm〜1.7mm、有効径0.35〜0.45、均等係数1.4以上)のいずれのサイズ;石炭系、植物系、高分子樹脂系のいずれを原料;破砕状、球形状、円柱状のいずれの形状をも使用可能であり、2種以上を混合又は別層として使用することもできる。   Although various activated carbons can be used for the activated carbon adsorption reservoirs 25 and 31, activated carbons that can be used also in the prior art, that is, large particle size (particle diameter 0.85 mm to 2.0 mm, effective diameter 1.1 to 1) .3 mm, uniformity coefficient 1.3 or less, medium particle diameter (particle diameter 0.5 mm to 2.0 mm, average diameter 0.9 to 1.1 mm, uniformity coefficient 1.5 to 1.9), small particle diameter Particle size 0.2 mm to 1.7 mm, effective diameter 0.35 to 0.45, uniformity coefficient 1.4 or more) any of coal type, plant type, polymer resin type raw material; crushed, Any of spherical and cylindrical shapes may be used, and two or more may be used as a mixture or a separate layer.

他方、砂ろ過池28は、ろ過砂(珪砂)、アンスラサイト、ガーネット、マンガン砂、セラミック等のろ過材が1種以上充填されている。従って、フロックを沈殿分離した後の被処理水(液相)は、オゾン接触池21でオゾン処理され、活性炭吸着池25、31で残留物質が吸着除去され、更に、砂ろ過池28でろ過され、残留汚染物質が除去された処理水となる。   On the other hand, the sand filtration pond 28 is filled with one or more kinds of filter media such as filter sand (silica sand), anthracite, garnet, manganese sand, ceramic and the like. Therefore, the water to be treated (liquid phase) after precipitation and separation of floc is subjected to ozone treatment in the ozone contact pond 21, residual substances are adsorbed and removed in the activated carbon adsorption ponds 25 and 31, and further filtered in the sand filter pond 28. And treated water from which residual contaminants have been removed.

なお、残留汚染物質の除去工程の下流側には後処理部を設けることも可能である。具体的には、処理水に次亜塩素酸ナトリウム等の塩素剤を添加して塩素消毒(後塩素処理)し、水道水等の浄水とすることもできる。本発明では、この後処理(塩素消毒)の前、すなわち、原水から処理水になる前の間で硝化工程を行う。   In addition, it is also possible to provide an after-treatment part downstream of the removal process of a residual contaminant. Specifically, a chlorine agent such as sodium hypochlorite may be added to the treated water, and the mixture may be chlorinated (post-chlorination treatment) to form purified water such as tap water. In the present invention, the nitrification step is performed before the post-treatment (chlorination), that is, between the raw water and the treated water.

この硝化工程と、前述の馴致工程のためは、被処理水の状態を測定する必要がある。具体的には、浄水処理設備内に測定センサーを設置し、又は、浄水処理設備内部若しくはその前段から被処理水(原水)を採取し、被処理水のアンモニア性窒素濃度の少なくとも一方、好ましくは両方を測定し、前述したように、馴致工程と硝化工程のいずれか一方又は両方で利用する。   It is necessary to measure the condition of the water to be treated for this nitrification step and the above-mentioned fitting step. Specifically, a measurement sensor is installed in the water purification treatment facility, or water to be treated (raw water) is collected from the inside of the water purification treatment facility or from the former stage, and at least one ammonia nitrogen concentration of the water to be treated, preferably Both are measured and used in one or both of the acclimatization step and the nitrification step as described above.

浄水処理設備内部の被処理水からデータを取得する場合、測定場所は、塩素消毒前であれば特に限定されず、また、一カ所のみ又は複数箇所の被処理水を測定しもよい。好ましいデータの測定場所は、活性炭吸着池25とその前後の配管(流入水、流出水)のいずれか一カ所以上であり、加えて、後述する硝酸化池(予備池)と、その前後の配管(流入水、流出水)でも測定することが好ましい。   When acquiring data from the treated water inside the water purification treatment facility, the measuring place is not particularly limited as long as it is before chlorination, and the treated water at only one place or plural places may be measured. The preferred data measurement site is at least one location of the activated carbon adsorption pond 25 and piping (inflow water, outflow water) before and after it, and additionally, the nitrification pond (preliminary pond) described later and piping before and after it It is preferable to measure (influent water, outflow water).

以下、硝酸化池を組み込んだ浄水処理設備の具体例を説明する。   Hereafter, the specific example of the water purification treatment installation which integrated the nitrification tank is demonstrated.

<第一例>
図1に示す第一例の浄水処理設備では、1台以上の活性炭吸着池25、31が直列又は並列に設置されており、好ましくは2台以上の活性炭吸着池25、31が、より好ましくは3台以上の活性炭吸着池25、31が並列に設置されている。これらの活性炭吸着池25、31のうち、1台以上、好ましくは2台以上の活性炭吸着池31を予備池とし、予備池31に被処理水を通水するか、別途硝化菌を播種して硝化菌を定着させる。
<First example>
In the water purification treatment equipment of the first example shown in FIG. 1, one or more activated carbon adsorption ponds 25 and 31 are installed in series or in parallel, preferably two or more activated carbon adsorption ponds 25 and 31 are more preferably Three or more activated carbon adsorption ponds 25 and 31 are installed in parallel. Of these activated carbon adsorption reservoirs 25 and 31, one or more, preferably two or more activated carbon adsorption reservoirs 31 are used as reserve reservoirs, and water to be treated is passed through reserve reservoir 31 or seeded with nitrifying bacteria separately Establish nitrifying bacteria.

バルブの開閉等により、予備池31は他の活性炭吸着池25から独立して通水可能になっている。測定される被処理水の水温が10℃を超える、より好ましくは20℃以上の高温期では、活性炭吸着池25に被処理水を通水し、通常の活性炭吸着処理を行う。   The reserve reservoir 31 can flow water independently of the other activated carbon adsorption reservoirs 25 by opening and closing the valve. In the high temperature phase where the water temperature of the treated water to be measured exceeds 10 ° C., more preferably 20 ° C. or more, the treated water is passed through the activated carbon adsorption pond 25 to carry out a normal activated carbon adsorption treatment.

このとき、被処理水のアンモニア性窒素濃度を実測又は予測し、被処理水よりもアンモニア性窒素濃度を高くした馴致用水溶液を予備池31に通水する。上述したように、馴致用水溶液は特に限定されないが、硝酸化池(予備池31)を浄水処理設備に組み込む場合は、予備池31にも被処理水の一部を通水し、被処理水が予備池31に流入する直前または流入後にアンモニア(イオン又は塩)を添加し、馴致用水溶液とする。   At this time, the ammoniacal nitrogen concentration of the to-be-treated water is measured or predicted, and the acclimatization aqueous solution in which the ammoniacal nitrogen concentration is higher than that of the to-be-treated water is passed through the reserve reservoir 31. As described above, the aqueous solution for adaptation is not particularly limited. However, when the nitrification tank (spare reservoir 31) is incorporated into the water purification treatment facility, part of the treated water is also passed through the reserve pond 31 to be treated water Ammonia (ion or salt) is added immediately before or after flowing into the reserve reservoir 31 to obtain an aqueous solution for adaptation.

馴致用水溶液を予備池31に通水しながら、或いは、一定量を超える馴致用水溶液を予備池31内部に保持し、その水温(10〜35℃)を維持し、かつ、そのアンモニア性窒素濃度を被処理水よりも高濃度に維持して馴致培養を行う。馴致培養の間、活性炭吸着池25では通常の吸着処理が行われるが、被処理水の水温が低下(20℃未満)した時を硝化工程の開始時期と判断し、手動又は機械的手段により、馴致用水溶液の通水又はアンモニアの供給を停止し、被処理水の少なくとも一部の通水を、活性炭吸着池25から予備池31へ切り替える。   The aqueous solution for adaptation is passed through the reserve reservoir 31 or the aqueous solution for adaptation exceeding a certain amount is kept inside the reserve reservoir 31, the water temperature (10 to 35 ° C.) is maintained, and the ammonia nitrogen concentration is maintained Maintain a higher concentration than the water to be treated and perform accustomed culture. During the acclimatization culture, a normal adsorption treatment is performed in the activated carbon adsorption pond 25, but when the water temperature of the water to be treated is lowered (less than 20 ° C.), it is judged as the start timing of the nitrification step, manually or by mechanical means Stop the flow of the aqueous solution for adaptation or the supply of ammonia, and switch the flow of at least part of the water to be treated from the activated carbon adsorption reservoir 25 to the reserve reservoir 31.

馴致により、予備池31の硝化能力は向上しているため、低温、高濃度アンモニア性窒素の被処理水であっても、そのアンモニア性窒素濃度を低減させることができる。なお、馴致工程を予備池31の外部で行い、馴致した硝化菌(担体)を予備池31に充填してから硝化工程を行うことも可能である。   As the nitrification capacity of the reserve reservoir 31 is improved by the adaptation, the ammonia nitrogen concentration can be reduced even for low temperature, high concentration ammonia nitrogen treated water. In addition, it is also possible to perform the acclimatization process after performing the acclimatization process in the exterior of the preliminary pond 31, and filling the acclimatized nitrifying bacteria (carrier) into the preliminary pond 31 before the nitrification process.

予備池31は2台以上設置してもよく、この場合、先ず1台以上の予備池31で硝化工程を行い、その予備池31の硝化能力の低下や故障が生じた場合は、他の1台以上の予備池31に被処理水の通水を切り替えれば、浄水処理設備をより長時間連続運転することが可能になる。   Two or more reserve reservoirs 31 may be installed. In this case, first, the nitrification process is performed in one or more reserve reservoirs 31. If the decrease in the nitrification capacity of the reserve reservoir 31 or a failure occurs, the other one If the flow of the treated water is switched to the reserve pond 31 or more, it is possible to continuously operate the water purification system for a longer time.

第一例の浄水処理設備のみならず、他の例の浄水処理設備においても、有機物吸着能が低下した活性炭吸着池25(予備池31)には再生処理(賦活処理)を施すことができる。賦活処理は、ガス賦活(水蒸気、二酸化炭素、空気等)、薬品賦活(塩化亜鉛、硫酸塩、リン酸塩等)またはこれら1以上の賦活処理を組み合わせることが可能である。   Not only in the water purification treatment equipment of the first example, but also in the water purification treatment equipment of other examples, the activated carbon adsorption pond 25 (spare pond 31) whose organic substance adsorption capacity is reduced can be subjected to the regeneration treatment (activation treatment). For the activation treatment, it is possible to combine gas activation (steam, carbon dioxide, air, etc.), chemical activation (zinc chloride, sulfate, phosphate, etc.) or one or more of these activation treatments.

より好ましくは、活性炭吸着池25、31から取り出した活性炭材料に、高温(700〜1000℃、好ましくは800〜950℃)の水蒸気を接触させる水蒸気賦活処理を施した後、酸洗浄処理を施し、再生した活性炭材料を活性炭吸着池25の容器(カラム、槽)に充填し、再利用する。活性炭吸着池31(予備池)は、硝化菌を担持した場合も、活性炭材料以外の担体を収容した場合も、担体が有機物であれば水蒸気賦活工程で燃焼されるため、活性炭材料の性能を再生後に劣化させることはない。   More preferably, the activated carbon material taken out of the activated carbon adsorption reservoirs 25 and 31 is subjected to a steam activation treatment in which steam of high temperature (700 to 1000 ° C., preferably 800 to 950 ° C.) is brought into contact. The regenerated activated carbon material is packed in a container (column, tank) of the activated carbon adsorption reservoir 25 and reused. The activated carbon adsorption reservoir 31 (preliminary reservoir) regenerates the performance of the activated carbon material because it is burned in the water vapor activation process if the carrier is an organic substance even when carrying the nitrifying bacteria and also when containing the carrier other than the activated carbon material. It will not be degraded later.

従って、予備池31としての担体は、活性炭材料自体又は樹脂等の有機物を主成分とするものが好ましい。   Therefore, it is preferable that the carrier as the reserve reservoir 31 is mainly composed of an activated carbon material itself or an organic substance such as a resin.

第一例では、活性炭吸着池の予備池31を硝酸化池としたが、本発明はこれに限定されない。以下に、第二〜第五例の浄水処理設備についても説明する。   In the first example, the reserve reservoir 31 of the activated carbon adsorption reservoir is a nitrated reservoir, but the present invention is not limited thereto. Below, the 2nd-5th example water purification treatment installation is also explained.

<第二例〜第五例>
図2〜5は第二例〜第五例の浄水処理設備を示しており、これらの浄水処理設備は、活性炭吸着池(予備池)31以外に硝酸化池32が設置されている。
Second to fifth examples
FIGS. 2 to 5 show water purification treatment equipment of the second to fifth examples. In these water purification treatment equipment, in addition to the activated carbon adsorption pond (spare pond) 31, a nitrated pond 32 is installed.

硝酸化池32は、第二例では原水(着水井)と凝集沈澱池11との間に設置され(図2)、第三例では砂ろ過池28よりも下流側に設置され(図3)、第四例では凝集沈澱池10とオゾン接触池21との間に設置され(図4)、第五例では活性炭吸着池25と砂ろ過池28との間に設置されている(図5)。   In the second example, the nitrification tank 32 is disposed between the raw water (water receiving well) and the coagulation sedimentation basin 11 (FIG. 2), and in the third example, is disposed downstream of the sand filtration pond 28 (FIG. 3) In the fourth example, it is installed between the coagulation sedimentation basin 10 and the ozone contact pond 21 (Fig. 4), and in the fifth example, it is installed between the activated carbon adsorption pond 25 and the sand filtration pond 28 (Fig. 5) .

いずれの場合も、バルブの開閉等により、手作業又は機械的に被処理水の通水を制御可能であり、被処理水は一部又は全部が硝酸化池32を通り、或いは、硝酸化池32を通らずに浄水処理設備で処理され、処理水となる。   In any case, it is possible to manually or mechanically control the flow of the water to be treated by opening or closing a valve, and part or all of the water to be treated passes through the nitrification tank 32, or Treated at the water treatment facility without passing through 32 to become treated water.

第一例の予備池31と同様、硝酸化池32に硝化菌(担体)を収容して馴致工程を行うか、硝酸化池32の外部で馴致した硝化菌(担体)を硝酸化池32に収容し、被処理水の水温が低温になったときには、硝酸化池32への馴致用水溶液の通水(アンモニアの供給)を停止し、被処理水の少なくとも一部を硝酸化池32に通水して硝化工程を開始する。第一例と同様、第二〜第五例の場合も、硝化工程を得た硝化菌を使用することで、低温時のアンモニア性窒素の残留濃度を抑制することができる。   As in the case of the first example reservoir 31, nitrification bacteria (carriers) are accommodated in the nitrification ponds 32 to perform acclimation step, or nitrification bacteria (carriers) adapted outside the nitrification ponds 32 are added to the nitrification ponds 32. When the water temperature of the water to be treated becomes low, stop the water flow (supply of ammonia) of the aqueous solution for adaptation to the nitrification pond 32 and pass at least a part of the water to the nitrification pond 32. Start the nitrification process with water. As in the first example, also in the second to fifth examples, the residual concentration of ammonia nitrogen at low temperature can be suppressed by using the nitrifying bacteria obtained in the nitrification step.

このように、硝酸化池32の設置場所は限定されず、また、硝酸化池32の台数も限定されないが、硝酸化池32に担持させる微生物(硝化菌)が好気性菌の場合はオゾン接触池21よりも下流又は上流に設置する。   Thus, the installation location of the nitrification tank 32 is not limited, and the number of the nitrification ponds 32 is not limited, but when the microorganism (nitrifying bacteria) to be carried by the nitrification pond 32 is aerobic bacteria, ozone contact is made. It will be installed downstream or upstream of the pond 21.

第一例〜第五例で示した硝酸化池32を組み合わせ、異なる処理工程の被処理水の硝化処理を行うことも可能であり、この場合は、複数台の硝酸化池32に同時に被処理水を通水して硝化処理を行ってもよいし、1台以上の硝酸化池32を硝化処理に使用する間は、他の1台以上の硝酸化池32では馴致処理を行ってもよい。   It is also possible to combine the nitrification ponds 32 shown in the first to fifth examples to perform nitrification treatment of the water to be treated in different treatment steps, and in this case, treatment can be conducted simultaneously to a plurality of nitrification ponds 32. Water may be passed through the water to perform nitrification treatment, or while one or more nitrification ponds 32 are used for nitrification treatment, the other one or more nitrification ponds 32 may be subjected to accommodative treatment .

<その他>
以上は、凝集沈澱池10、オゾン接触池21、活性炭吸着池25(31)及び砂ろ過池28を、硝酸化池32と組み合わせたが、本発明はこれに限定されるものではない。
<Others>
Although the aggregation settling basin 10, the ozone contact pond 21, the activated carbon adsorption pond 25 (31) and the sand filtration pond 28 are combined with the nitrification pond 32, the present invention is not limited to this.

例えば、図1〜5の設備からオゾン接触池21を除き、更に、砂ろ過池28を活性炭吸着池25と凝集沈澱池10の間に設置してもよい。凝集沈澱池10と砂ろ過池28と、オゾン接触池21と、活性炭吸着池25を記載した順番に接続してもよい。   For example, the ozone contact pond 21 may be removed from the equipment shown in FIGS. 1 to 5 and a sand filter pond 28 may be installed between the activated carbon adsorption pond 25 and the coagulation settling pond 10. The aggregation settling basin 10, the sand filtration pond 28, the ozone contact pond 21, and the activated carbon adsorption pond 25 may be connected in the order described.

これらの浄水処理設備においても、硝酸化池31、32の設置場所や設置台数は特に限定されず、また、浄水処理設備に予備池31を設置せず、活性炭吸着池25のみを設置する場合は、別途馴致した硝化菌(担体)を活性炭吸着池25の活性炭材料に追加又は交換して、硝化工程を行うこともできる。   Also in these water purification treatment facilities, the installation place and number of nitrate ponds 31, 32 are not particularly limited, and when only the activated carbon adsorption pond 25 is installed without installing the reserve pond 31 in the water purification treatment facility, Alternatively, the nitrification step may be performed by adding or replacing the separately adapted nitrifying bacteria (carrier) with the activated carbon material of the activated carbon adsorption reservoir 25.

更に、図6のような浸漬型分子装置51を、凝集沈澱池10の内部、又は、凝集沈澱池10よりも下流側の槽の内部に浸漬して設置してもよいし、図7のようなセラミックモジュール型膜分離装置55を、凝集沈澱池10よりも下流側に設置してもよい。   Furthermore, the immersion type molecular device 51 as shown in FIG. 6 may be installed in the inside of the coagulation sedimentation tank 10 or in the tank downstream of the coagulation sedimentation tank 10, as shown in FIG. The ceramic module type membrane separation apparatus 55 may be installed downstream of the coagulation sedimentation tank 10.

いずれの例でも、硝酸化池32は、凝集沈澱池10よりも上流側、凝集沈澱池10と膜分離装置51、55の間、または膜分離装置51、55よりも下流側のいずれか一カ所以上に設置することができる。   In any of the examples, the nitrated pond 32 is any one of the upstream side of the flocculation settling basin 10, between the flocculation settling basin 10 and the membrane separation apparatus 51, 55, or downstream of the membrane separation apparatus 51, 55. It can be installed above.

以下に、本発明の実施例を比較例と共に説明する。   Hereinafter, examples of the present invention will be described together with comparative examples.

[比較例1]
予備池31を除いた以外は図1と同じ浄水処理設備の活性炭吸着池25に脱塩素した水道水に塩化アンモニウムをアンモニア性窒素として0.2mg/L、市販の水槽用硝化菌剤液を300mg/Lとなるよう添加した溶液を張り、1週間コンディショニングした。ついで脱塩素した水道水にカオリン10mg/L、塩化アンモニウムをアンモニア性窒素として0.2mg/L添加した試験用の被処理水を25℃に水温調整し、予備池31を除いた以外は図1と同じ浄水処理設備で、処理量60L/時(1時間当たりの通水量60リットル)で連続処理を行ったところ、通水開始20日目後の処理水はアンモニア性窒素が0.02mg/L未満であった。更に、31日目から被処理水の水温を9℃に変更したところ、34日目から処理水のアンモニア性窒素が検出され(検出濃度以上)、38日目にはアンモニア性窒素が0.1mg/L以上にまで上昇した。
Comparative Example 1
In the same activated carbon adsorption pond 25 of the same water treatment equipment as in Fig. 1 except that the reserve pond 31 was removed, 0.2 mg / L of ammonium chloride as ammonia nitrogen in tap water dechlorinated in the same activated carbon adsorption pond 25; 300 mg of commercially available nitrifying liquid for aquarium The solution added so as to become / L was applied and conditioned for 1 week. Next, the temperature of the water to be treated for testing in which 10 mg / L of kaolin and 0.2 mg / L of ammonium chloride as ammoniacal nitrogen were added to the dechlorinated tap water was adjusted to 25 ° C., and the reserve reservoir 31 was removed; The same water purification equipment as in the above was used for continuous treatment with a throughput of 60 L / hr (water flow rate of 60 liters per hour), and the treated water after the 20th day of water flow initiation had 0.02 mg ammonia nitrogen in ammonia nitrogen It was less than. Furthermore, when the water temperature of the water to be treated was changed to 9 ° C from the 31st day, ammonia nitrogen in the treated water was detected from the 34th day (detected concentration or more), and 0.1 mg ammonia nitrogen on the 38th day It rose to / more than / L.

比較例1と同じ条件で活性炭吸着池25をコンディショニング後、比較例1と同じ条件で作製し、水温調整した被処理水を、図1の浄水処理設備で予備池31を経由させずに処理量60L/時で連続処理を行った。比較例1と同様、通水開始20日目から処理水のアンモニア性窒素は0.02mg/L未満まで低下した。ただし、実施例1では、被処理水を通水処理している間、活性炭吸着池25と同じ条件でコンディショニングを行った予備池31では、水温25℃、アンモニア性窒素濃度1mg/L、溶存酸素6mg/L以上に維持した馴致用水溶液で馴致培養を行った。その後、試験開始から31日目に被処理水の水温を9℃に変更するとともに、活性炭吸着池25を予備池31に切り替えて通水したところ、60日目でも処理水のアンモニア性窒素濃度は0.02mg/L未満に維持された。   After conditioning the activated carbon adsorption pond 25 under the same conditions as in Comparative Example 1, the treated water prepared under the same conditions as in Comparative Example 1 and having its water temperature adjusted is treated without passing through the reserve reservoir 31 in the water purification treatment facility of FIG. Continuous processing was performed at 60 L / hour. As in Comparative Example 1, the ammonia nitrogen of the treated water decreased to less than 0.02 mg / L from the 20th day after the start of water flow. However, in Example 1, in the reserve reservoir 31 which was conditioned under the same conditions as the activated carbon adsorption reservoir 25 while treating the water to be treated, the water temperature was 25 ° C., the ammoniacal nitrogen concentration was 1 mg / L, and dissolved oxygen Conditioned culture was performed with the aqueous solution for adjustment maintained at 6 mg / L or more. Thereafter, the temperature of the water to be treated was changed to 9 ° C. on the 31st day from the start of the test, and the activated carbon adsorption reservoir 25 was switched to the reserve reservoir 31 to pass water. It was maintained at less than 0.02 mg / L.

馴致用水溶液のアンモニア性窒素濃度を5mg/Lに変更した以外は実施例1と同じ条件で馴致培養を行い、更に、31日目以降の被処理水のアンモニア性窒素濃度を2mg/Lに増加した以外は実施例1と同じ条件で予備池32での硝化処理を行ったところ、60日目目でもアンモニア性窒素濃度は0.02mg/L未満に維持された。   Conditioned culture was carried out under the same conditions as Example 1 except that the ammoniacal nitrogen concentration of the aqueous solution for conditioning was changed to 5 mg / L, and the ammonia nitrogen concentration of the water to be treated on day 31 and thereafter was increased to 2 mg / L. When the nitrification treatment in the reserve reservoir 32 was performed under the same conditions as in Example 1 except for the above, the ammoniacal nitrogen concentration was maintained at less than 0.02 mg / L even on the 60th day.

塩化アンモニウムをアンモニア性窒素として1mg/L添加した以外は、実施例1及び比較例1と同じ条件で活性炭吸着池の事前コンディショニングおよび被処理水を作製した。この被処理水を水温25℃に調整し、図2の浄水処理設備で、硝酸化池32を経由させずに処理量60L/時で連続処理を行ったところ、通水開始20日目から処理水のアンモニア性窒素は0.02mg/L未満になった。   Under the same conditions as Example 1 and Comparative Example 1 except that ammonium chloride was added at 1 mg / L as ammonia nitrogen, preconditioning of the activated carbon adsorption reservoir and water to be treated were prepared. The water to be treated was adjusted to a water temperature of 25 ° C. and continuously treated at a treatment amount of 60 L / hour without passing through the nitrification tank 32 in the water purification treatment facility of FIG. The ammonia nitrogen of water became less than 0.02 mg / L.

他方、硝酸化池32には天然ゼオライト破砕物を担体として充填し、活性炭吸着池と同じ条件でコンディショニングしておき、硝酸化池32を経由しない系で処理する間、水温30℃、アンモニア性窒素10mg/L、溶存酸素6mg/L以上に維持した馴致用水溶液で馴致培養を行った。その後、31日目から被処理水の水温を8℃に、アンモニア性窒素濃度を3mg/Lに変更するとともに、硝酸化池32を経由する系に切り替えて通水したところ、60日目でもアンモニア性窒素は0.02mg/L未満のままであった。   On the other hand, nitrated pond 32 is filled with crushed natural zeolite as a carrier, conditioned under the same conditions as activated carbon adsorption pond, and treated with a system that does not go through nitrated pond 32, water temperature 30 ° C, ammonia nitrogen Conditioned culture was carried out with an aqueous solution for adjustment adjusted to 10 mg / L and 6 mg / L or more of dissolved oxygen. Then, from the 31st day, the water temperature of the water to be treated was changed to 8 ° C., the ammoniacal nitrogen concentration was changed to 3 mg / L, and the system was switched to the system via the nitrification tank 32 to pass water. Nitrogen remained below 0.02 mg / L.

実施例1及び比較例1と同じ条件で活性炭吸着池の事前コンディショニングおよび試験用の被処理水を作製した。この被処理水を水温25℃に調整し、図3の浄水処理設備で、硝酸化池32を経由させずに、処理量60L/時)で連続処理を行ったところ、通水開始20日目から処理水のアンモニア性窒素は0.02mg/L未満に低下した。   Under the same conditions as in Example 1 and Comparative Example 1, treated water for preconditioning and testing of the activated carbon adsorption pool was prepared. The water to be treated was adjusted to a water temperature of 25 ° C. and continuously treated with the treatment amount of 60 L / hour) without passing through the nitrification tank 32 in the water purification treatment facility of FIG. The ammonia nitrogen of treated water decreased to less than 0.02 mg / L.

他方、硝酸化池32には粒状活性炭を担体として充填して実施例1の活性炭吸着池と同じ条件でコンディショニングしておき、水温25℃、アンモニア性窒素濃度5mg/L、溶存酸素6mg/L以上に維持した馴致用水溶液で馴致培養を行った。その他、31日目から被処理水の水温を9℃に、アンモニア性窒素濃度を2mg/Lに変更するとともに、硝酸化池32を経由する系に切り替えて通水したところ、60日目でもアンモニア性窒素は0.02mg/L未満のままであった。   On the other hand, the nitrated pond 32 is filled with granular activated carbon as a carrier and conditioned under the same conditions as the activated carbon adsorption pond of Example 1, and the water temperature is 25 ° C., the ammoniacal nitrogen concentration is 5 mg / L, and dissolved oxygen is 6 mg / L or more Conditioned culture was carried out with the aqueous solution for adaptation kept. In addition, when the water temperature of the water to be treated was changed to 9 ° C and the ammoniacal nitrogen concentration was changed to 2 mg / L from the 31st day, the system was switched to a system via the nitrification tank 32 and water flowed. Nitrogen remained below 0.02 mg / L.

被処理水のアンモニア性窒素濃度を0.5mg/Lに変えた以外は、実施例1及び比較例1と同様の活性炭吸着池の事前コンディショニングおよび試験用被処理水を作製した。この被処理水を水温25℃に調整し、図4の浄水処理設備で硝酸化池32を経由させずに処理量60L/時で連続処理を行ったところ、通水開始20日目から処理水のアンモニア性窒素は0.02mg/L未満になった。   The pretreatment water for the activated carbon adsorption pond and the test for treatment similar to those of Example 1 and Comparative Example 1 were produced except that the ammoniacal nitrogen concentration of the water to be treated was changed to 0.5 mg / L. The water to be treated was adjusted to a water temperature of 25 ° C. and treated continuously at a treatment amount of 60 L / hour without passing through the nitrification tank 32 in the water purification treatment facility of FIG. Ammonia nitrogen was less than 0.02 mg / L.

硝酸化池32にはポリビニルアルコール・ゲルを担体として充填して実施例1の活性炭吸着池と同じ条件でコンディショニングしておき、水温30℃、アンモニア性窒素濃度10mg/L、溶存酸素6mg/L以上に維持した馴致用水溶液で馴致培養を行った。ついで、31日目から、被処理水の水温を9℃に、アンモニア性窒素濃度を2mg/Lに変更するとともに硝酸化池32を経由する系に切り替えて通水したところ、60日目でも処理水のアンモニア性窒素濃度は0.02mg/L未満のままであった。   The nitrification tank 32 is filled with polyvinyl alcohol gel as a carrier and conditioned under the same conditions as the activated carbon adsorption tank of Example 1, and the water temperature is 30 ° C., the ammoniacal nitrogen concentration is 10 mg / L, and dissolved oxygen is 6 mg / L or more Conditioned culture was carried out with the aqueous solution for adaptation kept. Then, from the 31st day, the water temperature of the water to be treated was changed to 9 ° C, the ammoniacal nitrogen concentration was changed to 2 mg / L, and the system was switched to a system via the nitrification tank 32 and water flowed. The ammoniacal nitrogen concentration of the water remained below 0.02 mg / L.

実施例5と同じ条件で活性炭吸着池の事前コンディショニングおよび被処理水を作製した。ついで水温25℃に調整し、図5の浄水処理設備で、硝酸化池32を経由しない系の連続処理(処理量60L/時)を行ったところ、通水開始20日目から処理水のアンモニア性窒素は0.02mg/L未満に低下した。   Under the same conditions as in Example 5, preconditioning of the activated carbon adsorption pond and water to be treated were prepared. Next, the water temperature was adjusted to 25 ° C, and continuous treatment (throughput 60 L / hour) of the system not passing through the nitrification tank 32 was performed with the water purification treatment equipment of FIG. Nitrogen decreased to less than 0.02 mg / L.

この間、水温30℃、粉末活性炭100mg/L、アンモニア性窒素10mg/L、水槽用硝化菌薬剤300mg/L、溶存酸素6mg/L以上の状態を維持した亜硝酸化菌・硝酸化菌の馴致培養を行い、更に、この培養液をポリエチレングリコールジメタルリレート重合ゲルにより包括させた粒状ゲルを作製し、硝酸化池32に充填した。   During this time, water temperature 30 ° C, powdered activated carbon 100 mg / L, ammonia nitrogen 10 mg / L, aquarium nitrifying bacteria drug 300 mg / L, dissolved oxygen 6 mg / L or more Conditioned culture of nitrifying bacteria / nitrifying bacteria Further, a granular gel in which this culture solution was covered with a polyethylene glycol dimetallate polymer gel was prepared and filled in a nitrated pond 32.

次いで、31日目から被処理水の水温を9℃に、アンモニア性窒素濃度を2mg/Lに変更するとともに、ゲル充填済みの硝酸化池32に被処理水を通水したところ、60日目でも処理水のアンモニア性窒素濃度は0.02mg/L未満のままであった。   Then, from the 31st day, the water temperature of the water to be treated was changed to 9 ° C., and the ammoniacal nitrogen concentration was changed to 2 mg / L, and the water to be treated was passed through the nitrated pond 32 filled with gel. However, the ammoniacal nitrogen concentration of the treated water remained below 0.02 mg / L.

図1の浄水処理設備に2台(2池)の予備池31を設けたものを用意し、実施例1と同じ条件で活性炭吸着池及び予備池の事前コンディショニングおよび被処理水を作製した。ついで水温25℃に調整し、実施例1と同じ条件でいずれの予備池31も経由させずに、処理量60L/時で連続処理を行ったところ、通水開始20日目から処理水のアンモニア性窒素は0.02mg/L未満に低下した。   What provided two reserve ponds 31 (two ponds) in the water purification treatment equipment of FIG. 1 was prepared, and preconditioning and treated water of an activated carbon adsorption pond and a reserve pond were produced on the same conditions as Example 1. Subsequently, the water temperature was adjusted to 25 ° C., and continuous treatment was performed at a throughput of 60 L / hour under the same conditions as in Example 1 without passing through any reserve reservoir 31. Nitrogen decreased to less than 0.02 mg / L.

2台の予備池31のうち、第1の予備池31は、水温25℃、アンモニア性窒素1mg/L、溶存酸素6mg/L以上に維持した馴致用水溶液で馴致培養を行い、第2の予備池31については水温25℃、アンモニア性窒素10mg/L、溶存酸素6mg/L以上に維持した馴致用水溶液で馴致培養を行った。   Of the two reserve reservoirs 31, the first reserve reservoir 31 is acclimated with the aqueous solution for adaptation adapted to maintain the water temperature 25 ° C., ammonia nitrogen 1 mg / L, dissolved oxygen 6 mg / L or more, and the second reserve The pond 31 was subjected to acclimatization culture with a conditioning aqueous solution maintained at a water temperature of 25 ° C., ammonia nitrogen 10 mg / L, and dissolved oxygen 6 mg / L or more.

ついで、31日目から被処理水の水温を9℃、アンモニア性窒素を2mg/Lに変更するとともに、活性炭吸着池25を第1の予備池31に切り替えて通水したところ、60日目でも処理水のアンモニア性窒素濃度は0.02mg/L未満のままであった。さらに61日目からは被処理水の水温を7℃、アンモニア性窒素濃度を3mg/Lに変更するとともに、第1の予備池31から第2の予備池32へ被処理水の通水を切り替えたところ、120日目でも処理水のアンモニア性窒素濃度は0.02mg/L未満のままであった。   Next, from the 31st day, the water temperature of the water to be treated was changed to 9 ° C, the ammoniacal nitrogen was changed to 2mg / L, and the activated carbon adsorption reservoir 25 was switched to the first reserve reservoir 31 to pass water. The ammoniacal nitrogen concentration of the treated water remained below 0.02 mg / L. Furthermore, from the 61st day, the water temperature of the water to be treated is changed to 7 ° C., the ammoniacal nitrogen concentration is changed to 3 mg / L, and the flow of the water to be treated is switched from the first reserve reservoir 31 to the second reserve reservoir 32 As a result, even at the 120th day, the ammoniacal nitrogen concentration of the treated water remained below 0.02 mg / L.

10:凝集沈澱池、21:オゾン接触池、25:活性炭吸着池、28:砂ろ過池、31:予備池、32:硝酸化池   10: Coagulation settling basin, 21: ozone contact pond, 25: activated carbon adsorption pond, 28: sand filtration pond, 31: reserve pond, 32: nitrification pond

Claims (10)

被処理水に含まれるアンモニウムイオンを硝化菌で硝化する浄水処理設備の運転管理方法であって、
水温が10℃〜35℃であり、かつ、前記被処理水よりも高濃度のアンモニウムイオンを含有する馴致用水溶液で前記硝化菌を馴致する馴致工程と、
水温が20℃未満に低下した被処理水を、馴致した前記硝化菌と接触させる硝化工程と、
を有し、
前記浄水処理設備が、被処理水に凝集剤を添加して凝集沈殿する凝集沈殿池と、被処理水にオゾンを接触させるオゾン接触池と、被処理水を活性炭吸着処理する活性炭吸着池と、被処理水をろ過するろ過池と、を有し、
少なくとも前記凝集沈澱池よりも上流側に、前記硝化菌を担持する硝酸化池を設置し、
馴致工程後の硝化菌に、凝集沈殿前の被処理水を接触させて硝化工程を行うことを特徴とする運転管理方法。
An operation management method of a water purification system for nitrifying ammonium ions contained in water to be treated with nitrifying bacteria,
An adapting step of adapting the nitrifying bacteria with an adapting aqueous solution having a water temperature of 10 ° C. to 35 ° C. and containing ammonium ions having a higher concentration than the water to be treated;
A nitrification step of bringing the water to be treated whose water temperature has dropped below 20 ° C. into contact with the acclimatized nitrifying bacteria;
I have a,
A coagulation sedimentation basin where the water purification treatment facility coagulates and precipitates by adding a coagulant to treated water, an ozone contact pond where ozone is brought into contact with treated water, and an activated carbon adsorption pond where activated water adsorption treatment of treated water is performed; And a filtration pond for filtering the water to be treated;
A nitrification tank carrying the nitrifying bacteria is installed at least upstream of the coagulation sedimentation tank,
A method for operation management comprising: performing nitrification steps by bringing water to be treated prior to aggregation and precipitation into contact with nitrifying bacteria after the step of becoming familiar .
被処理水に含まれるアンモニウムイオンを硝化菌で硝化する浄水処理設備の運転管理方法であって、
水温が10℃〜35℃であり、かつ、前記被処理水よりも高濃度のアンモニウムイオンを含有する馴致用水溶液で前記硝化菌を馴致する馴致工程と、
水温が20℃未満に低下した被処理水を、馴致した前記硝化菌と接触させる硝化工程と、
を有し、
前記浄水処理設備が、被処理水に凝集剤を添加して凝集沈殿する凝集沈殿池と、被処理水にオゾンを接触させるオゾン接触池と、被処理水を活性炭吸着処理する活性炭吸着池と、被処理水をろ過するろ過池と、を有し、
前記ろ過池の上流側と下流側のいずれか一方又は両方に、前記硝化菌を担持する硝酸化池を設置し、
馴致工程後の硝化菌に、ろ過処理前とろ過処理後のいずれか一方又は両方の被処理水を接触させて硝化工程を行うことを特徴とする運転管理方法。
An operation management method of a water purification system for nitrifying ammonium ions contained in water to be treated with nitrifying bacteria,
An adapting step of adapting the nitrifying bacteria with an adapting aqueous solution having a water temperature of 10 ° C. to 35 ° C. and containing ammonium ions having a higher concentration than the water to be treated;
A nitrification step of bringing the water to be treated whose water temperature has dropped below 20 ° C. into contact with the acclimatized nitrifying bacteria;
I have a,
A coagulation sedimentation basin where the water purification treatment facility coagulates and precipitates by adding a coagulant to treated water, an ozone contact pond where ozone is brought into contact with treated water, and an activated carbon adsorption pond where activated water adsorption treatment of treated water is performed; And a filtration pond for filtering the water to be treated;
A nitrification pond supporting the nitrifying bacteria is installed on either or both of the upstream side and the downstream side of the filtration pond,
A method of operation management comprising: carrying out a nitrification step by bringing the nitrifying bacteria after the acclimatization step into contact with either or both of the treated water before and / or after the filtration treatment .
被処理水に含まれるアンモニウムイオンを硝化菌で硝化する浄水処理設備の運転管理方法であって、
水温が10℃〜35℃であり、かつ、前記被処理水よりも高濃度のアンモニウムイオンを含有する馴致用水溶液で前記硝化菌を馴致する馴致工程と、
水温が20℃未満に低下した被処理水を、馴致した前記硝化菌と接触させる硝化工程と、
を有し、
前記浄水処理設備が、被処理水に凝集剤を添加して凝集沈殿する凝集沈殿池と、被処理水にオゾンを接触させるオゾン接触池と、被処理水を活性炭吸着処理する活性炭吸着池と、被処理水をろ過するろ過池と、を有し、
少なくとも凝集沈澱池とオゾン接触池の間に、前記硝化菌を担持する硝酸化池を設置し、
馴致工程後の硝化菌に、凝集沈殿処理後であって、かつ、オゾン接触前の被処理水を接触させて前記硝化工程を行うことを特徴とする運転管理方法。
An operation management method of a water purification system for nitrifying ammonium ions contained in water to be treated with nitrifying bacteria,
An adapting step of adapting the nitrifying bacteria with an adapting aqueous solution having a water temperature of 10 ° C. to 35 ° C. and containing ammonium ions having a higher concentration than the water to be treated;
A nitrification step of bringing the water to be treated whose water temperature has dropped below 20 ° C. into contact with the acclimatized nitrifying bacteria;
I have a,
A coagulation sedimentation basin where the water purification treatment facility coagulates and precipitates by adding a coagulant to treated water, an ozone contact pond where ozone is brought into contact with treated water, and an activated carbon adsorption pond where activated water adsorption treatment of treated water is performed; And a filtration pond for filtering the water to be treated;
A nitrification pond supporting the nitrifying bacteria is installed at least between the coagulation sedimentation basin and the ozone contact pond,
An operation management method characterized by performing the above-mentioned nitrification step by bringing the water to be treated which is after coagulation / sedimentation treatment and before ozone contact into contact with the nitrifying bacteria after the adaptation step .
前記馴致用水溶液のアンモニウム性窒素濃度が1mg/L以上30mg/L以下である請求項1〜3のいずれか1項に記載の運転管理方法。 The operation control method according to any one of claims 1 to 3, wherein the concentration of ammonium nitrogen in the aqueous solution for adaptation is 1 mg / L or more and 30 mg / L or less. 被処理水に凝集剤を添加して凝集沈殿する凝集沈殿池と、被処理水にオゾンを接触させるオゾン接触池と、被処理水を活性炭吸着処理する活性炭吸着池と、被処理水をろ過するろ過池と、を有する浄水処理設備を運転管理する方法であって、
少なくとも1台の前記活性炭吸着池に前記硝化菌を担持させ、当該硝化菌に前記被処理水を接触させ、硝化工程を行う請求項1〜4のいずれか1項に記載の運転管理方法。
Add a flocculant to the water to be treated to coagulate and precipitate it, an ozone contact tank to make ozone contact with the water to be treated, an activated carbon adsorption tank to treat the water to be treated with activated carbon, and filter the water to be treated A method of operating and managing a water purification system having a filtration pond,
The operation management method according to any one of claims 1 to 4 , wherein the nitrifying bacteria are supported on at least one of the activated carbon adsorption ponds, the nitrifying bacteria are brought into contact with the water to be treated, and a nitrification step is performed.
前記活性炭吸着池の外部と、前記活性炭吸着池の内部のいずれか一方又は両方で馴致工程を行う請求項に記載の運転管理方法。 The operation management method according to claim 5 , wherein the acclimatization step is performed in one or both of the outside of the activated carbon adsorption reservoir and the inside of the activated carbon adsorption reservoir. 前記活性炭吸着池を複数台設置し、
1台以上の活性炭吸着池を、前記硝化菌を担持させる予備池とし、
他の1台以上の活性炭吸着池で被処理水の吸着処理を行い、
前記被処理水の水温が所定温度以下に低下したときに、当該被処理水の通水を、吸着処理を行う活性炭吸着池から前記予備池に切り替え、硝化工程を行う請求項又は請求項に記載の運転管理方法。
Install multiple activated carbon adsorption ponds,
Make one or more activated carbon adsorption ponds a reserve pond to carry the nitrifying bacteria,
Adsorb treatment of treated water with one or more other activated carbon adsorption ponds,
Wherein when the water temperature of the water to be treated is lowered below a predetermined temperature, the water flow of the water to be treated is switched to the preliminary pond from activated carbon adsorption pond performing adsorption treatment, claim 5 or claim performing nitrification step 6 Operation management method described in.
前記被処理水のアンモニウムイオン濃度と、水温のいずれか一方又は両方を測定し、
測定したデータに基づき、前記馴致水溶液のアンモニウムイオン濃度と、前記硝化工程の開始時期のいずれか一方又は両方を制御する請求項1〜のいずれか1項に記載の運転管理方法。
Measuring either one or both of the ammonium ion concentration and the water temperature of the water to be treated;
The operation management method according to any one of claims 1 to 7 , wherein either or both of the ammonium ion concentration of the aqueous solution and the start time of the nitrification step are controlled based on the measured data.
有機物吸着能が低下した前記活性炭吸着池と、硝化能が低下した前記硝酸化池のいずれか一方又は両方を再生処理する再生工程を更に含む請求項のいずれか1項に記載の運転管理方法。 The operation according to any one of claims 5 to 8 , further comprising a regeneration step of regenerating either one or both of the activated carbon adsorption pool having a reduced organic substance adsorption capacity and the nitrification pool having a reduced nitrification capacity. Management method. 硝化工程の後に、被処理水を塩素消毒する工程を更に有する請求項1〜のいずれか1項に記載の運転管理方法。 The operation management method according to any one of claims 1 to 9 , further comprising the step of chlorinating the water to be treated after the nitrification step.
JP2015241771A 2015-12-11 2015-12-11 Operation management method of water purification equipment Active JP6517137B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015241771A JP6517137B2 (en) 2015-12-11 2015-12-11 Operation management method of water purification equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015241771A JP6517137B2 (en) 2015-12-11 2015-12-11 Operation management method of water purification equipment

Publications (2)

Publication Number Publication Date
JP2017104818A JP2017104818A (en) 2017-06-15
JP6517137B2 true JP6517137B2 (en) 2019-05-22

Family

ID=59060437

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015241771A Active JP6517137B2 (en) 2015-12-11 2015-12-11 Operation management method of water purification equipment

Country Status (1)

Country Link
JP (1) JP6517137B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107265778A (en) * 2017-08-02 2017-10-20 浙江西地环境科技有限公司 Box hi-effect coagulation denitrification equipment
CN108675561A (en) * 2018-06-12 2018-10-19 江苏思威博生物科技有限公司 A kind of livestock breeding wastewater processing system
CN110482712A (en) * 2019-07-18 2019-11-22 国家地质实验测试中心 A kind of Water environment restoration material and preparation method
CN112723667A (en) * 2020-12-17 2021-04-30 重庆华歌生物化学有限公司 Method for treating high-salinity wastewater of sodium trichloropyridinol
CN114684925B (en) * 2020-12-30 2023-03-24 中国石油化工股份有限公司 Short-cut nitrification treatment method for ammonia-containing wastewater

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2682751B2 (en) * 1991-03-26 1997-11-26 株式会社クボタ Water treatment method
JPH05169090A (en) * 1991-12-24 1993-07-09 Meidensha Corp Device for supplying nitrification bacteria in biological activated carbon treatment tower
JPH05185093A (en) * 1992-01-10 1993-07-27 Ngk Insulators Ltd Method for purifying water by using membrane
JP2004160339A (en) * 2002-11-12 2004-06-10 Mitsubishi Electric Corp Water treatment system
JP5177802B2 (en) * 2009-03-25 2013-04-10 株式会社日立プラントテクノロジー Waste water treatment method and waste water treatment apparatus
US8445253B2 (en) * 2009-07-01 2013-05-21 The United States Of America, As Represented By The Secretary Of Agriculture High performance nitrifying sludge for high ammonium concentration and low temperature wastewater treatment
JP4934177B2 (en) * 2009-08-28 2012-05-16 水ing株式会社 Water purification apparatus and method
JP6161210B2 (en) * 2012-07-26 2017-07-12 学校法人 東洋大学 Method and apparatus for low temperature treatment of ammonia nitrogen containing water
JP6165598B2 (en) * 2013-11-13 2017-07-19 水ing株式会社 Regeneration method of plant-based spherical activated carbon and reuse method of the regenerated plant-based spherical activated carbon in water purification treatment

Also Published As

Publication number Publication date
JP2017104818A (en) 2017-06-15

Similar Documents

Publication Publication Date Title
JP6517137B2 (en) Operation management method of water purification equipment
Laîné et al. Status after 10 years of operation—overview of UF technology today
ES2605624T3 (en) Procedure for a compact bed bioreactor for the control of biological inlays of reverse osmosis and nanofiltration membranes
KR101809769B1 (en) Water treatment method and ultrapure water production method
CN105036495A (en) Method for removing nitrate nitrogen in water through ion exchange and denitrification integration
JP2011045853A (en) Water-purifying treatment apparatus and method
TW201202153A (en) Water treatment method and process for producing ultrapure water
CN102869619A (en) Water treatment method and method for producing ultrapure water
KR101840896B1 (en) Ultrapure water production process
CN113003845B (en) Zero-emission treatment process and system for sewage with high sulfate content and high COD (chemical oxygen demand)
JP2006142283A (en) Water purification system
JP5217883B2 (en) Method and apparatus for treating phosphoric acid, nitric acid and water containing organic acid
JP5126926B2 (en) Ultra-high water treatment method and water treatment system used therefor
JPH03270800A (en) Treatment of organic sewage
JP3948337B2 (en) Ultrapure water production apparatus and ultrapure water production method
KR102067164B1 (en) Method and apparatus for reusing hydrofluoric acid wastewater
TWI706917B (en) Water treatment device, ultrapure water manufacturing device and water treatment method
JP3461514B2 (en) Advanced water treatment system and method of starting advanced water treatment system
JP4390959B2 (en) Wastewater treatment equipment
KR100327095B1 (en) Method for nitrate removal in ground water
JP2006272081A (en) Ultrahigh-level method for treating water and water treatment system to be used therein
JP2013208583A (en) Water treatment method, water treatment system, and ultrapure water production method
KR20110095750A (en) Wastewater treatment system using filter paper filled with absorbent media coating hydroxide metal salt, and wastewater treatment method using the same
JP2554687B2 (en) Biological nitrogen removal method
KR20190037474A (en) Method and apparatus for purifying reverse osmosis concentrated water

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190306

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190319

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190417

R150 Certificate of patent or registration of utility model

Ref document number: 6517137

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250