JP4934177B2 - Water purification apparatus and method - Google Patents

Water purification apparatus and method Download PDF

Info

Publication number
JP4934177B2
JP4934177B2 JP2009198068A JP2009198068A JP4934177B2 JP 4934177 B2 JP4934177 B2 JP 4934177B2 JP 2009198068 A JP2009198068 A JP 2009198068A JP 2009198068 A JP2009198068 A JP 2009198068A JP 4934177 B2 JP4934177 B2 JP 4934177B2
Authority
JP
Japan
Prior art keywords
activated carbon
water
disinfection
coal
coconut shell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009198068A
Other languages
Japanese (ja)
Other versions
JP2011045853A (en
Inventor
則夫 槙田
克昭 佐藤
彰 川上
乃大 矢出
靖行 吉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Swing Corp
Original Assignee
Swing Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Swing Corp filed Critical Swing Corp
Priority to JP2009198068A priority Critical patent/JP4934177B2/en
Publication of JP2011045853A publication Critical patent/JP2011045853A/en
Application granted granted Critical
Publication of JP4934177B2 publication Critical patent/JP4934177B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、水処理分野、特に上水道における高度浄水処理に使用される浄水処理装置と方法に関する。   The present invention relates to a water purification apparatus and method used for advanced water purification treatment in the field of water treatment, particularly in waterworks.

わが国は、河川水、湖沼水及び地下水など清浄で豊富な水道水源に恵まれており、従来、浄水場では、図1に示すような処理フローが一般的な浄水処理フローであった。これは、除濁と消毒を基本目的としたもので、水処理剤としては、硫酸アルミニウム、ポリ塩化アルミニウムなどの凝集剤や塩素、次亜塩素酸ナトリウムなどの消毒剤のみが使用されてきた。
しかしながら、ライフラインとしての水道水源確保等を目的としたダム湖の増加、及び水源の富栄養化の進行に伴い、カビ臭物質である2−メチルイソボルネオール、ジェオスミンなどを産出するPhormidium tenue、Anabaena spiroides var. crassa、Oscillatoria tenuis、Microcystis aeruginosaなどの藻類の異常繁殖、及びこれに伴う異臭味発生問題が生じ、通常処理では対応が難しくなった。
Japan is endowed with clean and abundant tap water sources such as river water, lake water, and groundwater. Conventionally, the treatment flow as shown in FIG. This is for the purpose of turbidity and disinfection, and as water treatment agents, only flocculants such as aluminum sulfate and polyaluminum chloride and disinfectants such as chlorine and sodium hypochlorite have been used.
However, along with the increase of dam lakes for the purpose of securing tap water sources as a lifeline and the progress of eutrophication of water sources, Formium tenue, Anabaena that produces 2-methylisoborneol, geosmin, etc. that are musty odor substances spiroides var. Problems such as abnormal growth of algae such as crassa, Oscillatoria tenuis, Microcystis aeruginosa, and accompanying off-flavor generation occurred, making it difficult to deal with normal treatment.

この異臭味対策として、通常処理のフローに加え、オゾン処理、生物処理及び活性炭処理などが行われるようになった。活性炭は、1,000m/gもの広大な比表面積を持つ微細孔を有しており、カビ臭物質などの有機物質を除去することができる。活性炭は、形状の違いにより粉末活性炭、粒状成型活性炭、及び粒状破砕活性炭に分類される。粒状成型活性炭は、円柱状や球状などに成形されたもの、粒状破砕活性炭は破砕して粒状破砕物としたものである。また、粉末活性炭と粒状活性炭の使用様態上の大きな違いとしては、粉末活性炭は1回限りの使い捨てであるのに対し、粒状活性炭は、定期的に750〜950℃程度で炭化−水蒸気賦活などの再生処理を行い、基本的に繰返し再使用することが挙げられる。従来技術として、粉末活性炭は上述のように1回限りの使い捨て処理であるため、全て新炭の粉末活性炭が使用されている。粒状活性炭の再生は、定期的に実施されているが、個々の浄水施設ごとに個別の業務として実施されており、再生処理時の燃焼等により生じる欠損分の補充炭には全て新炭の粒状活性炭が使用されている。 As a countermeasure against this off-flavor, ozone treatment, biological treatment, activated carbon treatment, and the like have been performed in addition to the normal treatment flow. Activated carbon has fine pores with a large specific surface area of 1,000 m 2 / g, and can remove organic substances such as mold odor substances. Activated carbon is classified into powdered activated carbon, granular molded activated carbon, and granular crushed activated carbon according to the difference in shape. The granular molded activated carbon is formed into a columnar shape or a spherical shape, and the granular crushed activated carbon is crushed into a granular crushed material. In addition, as a big difference in the usage mode of powdered activated carbon and granular activated carbon, powdered activated carbon is disposable only once, whereas granular activated carbon is periodically carbonized and steam activated at about 750 to 950 ° C. A reproduction process is performed, and reuse can be basically repeated. As a conventional technique, powdered activated carbon is a one-time disposable process as described above, and therefore, powdered activated carbon of all new coals is used. The regeneration of granular activated carbon is carried out regularly, but it is carried out as an individual operation for each water purification facility. Activated carbon is used.

異臭味障害対策として、活性炭を使用するフローには図2、図3の2つがあり、異臭味障害の発生頻度が小さい場合には、障害発生時期にのみ着水井などに粉末活性炭を注入する対処的な処理を、頻度が大きい場合には、ヤシ殻系粒状破砕活性炭を敷設した活性炭吸着池を設置して恒久的な処理を行うフローが選択される。
さらに、1970年代になると、水中のフミン酸などの有機物質と消毒剤の塩素剤の反応により生成される、発癌性物質であるトリハロメタン(クロロホルム、ブロモジクロロメタン、ジブロモクロロメタン、ブロモホルムの4物質の総称。以下、THMと称する)を始めとする、ハロ酢酸、抱水ハラールなどの消毒副生成物の問題が顕在化し、水道の安全性を揺るがせる大きな問題となった。塩素消毒時に塩素との反応によって上記のような消毒副生成物を生成する有機物は、消毒副生成物の前駆物質(precursor)と称され、この有機物を効率よく除去し、塩素消毒副生成物を低減する技術が求められるようになった。
As a countermeasure against bad odor, there are two types of flow in which activated carbon is used, as shown in Fig. 2 and Fig. 3. When the frequency of occurrence of bad odor is low, powder activated carbon is injected into the landing well only when the trouble occurs. If the frequency is high, a flow is selected in which an activated carbon adsorption pond laid with coconut shell granular crushed activated carbon is installed to perform permanent treatment.
Furthermore, in the 1970s, trihalomethanes (chloroform, bromodichloromethane, dibromochloromethane, and bromoform), which are carcinogenic substances, are produced by the reaction of organic substances such as humic acid in water and chlorine as a disinfectant. (Hereinafter referred to as THM), and other problems of disinfection by-products such as haloacetic acid and halal hydrate became apparent and became a major problem that shakes the safety of waterworks. Organic substances that produce disinfection by-products as described above by reaction with chlorine during chlorine disinfection are called disinfection by-product precursors, and the organic substances are efficiently removed and chlorine disinfection by-products are removed. Technology to reduce has come to be demanded.

このため、安全でおいしい水を供給するという観点から、塩素剤添加位置の見直し、生物活性炭(Biological Activate Carbon。以下、BACと称する)処理など、塩素消毒副生成物の抑制を目的とした高度浄水処理が本格検討されるようになった。
高度浄水処理は、凝集処理+オゾン処理+BAC処理+後塩素の組合せを基本としたものである。まず、凝集処理による除濁と有機物質の粗除去、次いでオゾン処理により、残留有機物質の酸化分解及び低分子化・易生物分解化(biodegradable)を経て、BAC処理による残留有機物質の吸着除去及び生物分解が行われ、最終的に消毒副生成物の前駆物質となる有機物質をできるだけ減少させた後で塩素剤による消毒が行われる。
Therefore, from the viewpoint of supplying safe and delicious water, advanced water purification for the purpose of suppressing chlorine disinfection by-products, such as reviewing the location of chlorinating agents and treating biological activated carbon (hereinafter referred to as BAC) Processing is now under full consideration.
The advanced water purification treatment is based on a combination of coagulation treatment + ozone treatment + BAC treatment + post-chlorine. First, turbidity removal by coagulation treatment and rough removal of organic substances, followed by ozone treatment, oxidative decomposition of residual organic substances and low molecular weight / biodegradable, removal of residual organic substances by BAC treatment and Biodegradation is performed, and organic substances that ultimately become disinfection by-product precursors are reduced as much as possible before disinfection with a chlorinating agent.

高度浄水処理の処理フローとしては、活性炭の使用方法により図4、図5、図6の3種が代表的であり、それぞれ粒径の異なる粒状破砕活性炭が使用される。砂ろ過池に前置される下向流活性炭吸着池(図4)には、粒径0.85mm〜2.0mm、有効径1.1〜1.3mm、均等係数1.3以下の大粒径の石炭系粒状破砕活性炭が、砂ろ過池に後置される下向流活性炭吸着池(図5)には、粒径0.5mm〜2.0mm、平均径0.9〜1.1mm、均等係数1.5〜1.9の中粒径の石炭系粒状破砕活性炭が、上向流流動床活性炭吸着池(図6)には、粒径0.2mm〜1.7mm、有効径0.35〜0.45、均等係数1.4以上の小粒径の石炭系粒状破砕活性炭が使用される。 これら以外に、上記処理フローにおいて、凝集沈澱地の前段に生物酸化処理池を組み合わせる方式、図5の中粒径下向流活性炭吸着池の後段に、さらにろ過池(凝集ろ過を含む)を組み合わせる方式などもある。   As the processing flow of the advanced water purification treatment, three types of FIG. 4, FIG. 5, and FIG. 6 are representative depending on the method of using activated carbon, and granular crushed activated carbon having different particle diameters is used. The down-flow activated carbon adsorption pond (Fig. 4) placed in front of the sand filtration pond has a large particle diameter of 0.85mm to 2.0mm, an effective diameter of 1.1 to 1.3mm, and a uniformity coefficient of 1.3 or less. In the downward-flow activated carbon adsorption pond (FIG. 5), the coal-based granular crushed activated carbon having a diameter is placed after the sand filtration pond, the particle diameter is 0.5 mm to 2.0 mm, the average diameter is 0.9 to 1.1 mm, A coal-based granular pulverized activated carbon having a medium particle size with a uniformity coefficient of 1.5 to 1.9 has a particle size of 0.2 mm to 1.7 mm and an effective diameter of 0.8 mm in an upward flow fluidized bed activated carbon adsorption pond (FIG. 6). Coal-based granular crushed activated carbon having a small particle size of 35 to 0.45 and a uniformity coefficient of 1.4 or more is used. In addition to these, in the above processing flow, a system in which a biological oxidation treatment pond is combined in the previous stage of the coagulation sedimentation site, and a filter pond (including coagulation filtration) is further combined in the subsequent stage of the medium-size downflow activated carbon adsorption pond in FIG. There are also methods.

この生物活性炭においても、生物分解性の無い有機物が次第に蓄積されるため、定期的な水蒸気賦活再生を行わないと、活性炭の有機物除去能力を維持させることができない。
しかしながら、活性炭の能力を新炭なみに回復させるためには、3年程度毎の再生が好ましいと言われるにもかかわらず、実質的には、財政上の理由などから6〜8年経過後に行わざるを得ないことが多い。しかし、6〜8年後の再生では、吸着性能の回復、硬さの低化及び粒径の小粒化などの問題から再生収率が低下するため、使用済み炭は再生利用は行わずに廃棄し、新炭と交換するという方式を採る自治体が多くなっている。
Even in this biological activated carbon, organic matter having no biodegradability is gradually accumulated, and therefore, the organic matter removal ability of activated carbon cannot be maintained unless periodic steam activation regeneration is performed.
However, in order to restore the ability of activated carbon to the same level as that of new charcoal, although it is said that regeneration every 3 years is preferable, it is practically carried out after 6 to 8 years have passed for financial reasons. In many cases, it is unavoidable. However, in the regeneration after 6 to 8 years, the regeneration yield decreases due to problems such as recovery of adsorption performance, reduction in hardness and particle size reduction, so used charcoal is discarded without being recycled. However, the number of local governments adopting a method of exchanging for new coal is increasing.

活性炭には、石炭、ヤシ殻、木材のおが屑などを原料としたものがあり、それぞれ石炭系活性炭、ヤシ殻系活性炭、木質系活性炭などと称される。粉末活性炭を使用する異臭味対策処理フローにおいては、粉末という形状の特性から、木材のおが屑を原料とした木質系粉末活性炭の使用が一般的である。粒状破砕活性炭を使用する異臭味対策処理フローにおいては、ヤシ殻系粒状破砕活性炭の使用が一般的であるが、これはヤシ殻系活性炭の場合、細孔径2nm以下の領域のマイクロポアが発達しているため、分子量の比較的小さい2−メチルイソボルネオール、ジェオスミンといった異臭味物質の吸着特性が高いという特長によるものである。   Activated carbon includes those made from coal, coconut shells, wood sawdust, etc., which are called coal-based activated carbon, coconut shell-based activated carbon, wood-based activated carbon, and the like, respectively. In the off-flavor countermeasure processing flow using powdered activated carbon, it is common to use wood-based powdered activated carbon made of wood sawdust from the characteristics of the shape of powder. In the processing flow for countermeasures against off-flavors using granular pulverized activated carbon, coconut shell-based granular pulverized activated carbon is generally used, but in the case of coconut shell-based activated carbon, micropores with a pore diameter of 2 nm or less have developed. Therefore, this is due to the feature that adsorption properties of off-flavor substances such as 2-methylisoborneol and geosmin with relatively small molecular weight are high.

一方、塩素消毒副生成物の低減を目的とした高度浄水処理フローにおいては、石炭系粒状破砕活性炭の使用が一般的であるが、これは、細孔径2〜50nmの領域のメソポアが発達しているため、塩素消毒副生成物の前駆物質となる有機物質の吸着特性が高いという特長によるものである。   On the other hand, in advanced water purification treatment flow aimed at reducing chlorine disinfection by-products, coal-based granular crushed activated carbon is generally used. This is because mesopores with a pore diameter of 2 to 50 nm are developed. Therefore, this is due to the high adsorption characteristics of organic substances that are precursors of chlorine disinfection by-products.

樹木は、大気中の二酸化炭素を光合成に利用して成長するものであるため、言わば二酸化炭素が固定されて樹木に形を変えたものと言える。したがって、樹木を燃焼させた場合、発生する二酸化炭素は元々大気中に存在していたものであるため、新たな排出二酸化炭素とはならず、いわゆるカーボン・ニュートラルとなる。これに対して、石炭に含有される炭素は、太古の大気中の二酸化炭素が固定されたものであるため、石炭を燃焼させた際に発生する二酸化炭素は、現在の大気に対して新たに排出された二酸化炭素として扱われる。ヤシ殻系、木質系及び石炭系活性炭製造に共通したことであるが、原料中の炭素成分の全てが活性炭化できる訳ではなく、炭化、賦活の工程において大部分は燃焼、ガス化により揮散し、最終的に活性炭となるのは、原料100重量部に対しおよそ10〜20重量部に過ぎない。この工程で発生する原料由来の二酸化炭素も、ヤシ殻系など植物由来の活性炭に関してはカーボン・ニュートラルとなる。
このため、ヤシ殻系活性炭や木質系活性炭などの植物系活性炭と石炭系活性炭では、その製造工程における二酸化炭素排出量には大きな差があり、使用電力、燃料、水などのユーティリティーも勘案した試算では、石炭系活性炭製造時には、植物系活性炭製造時の約3〜5倍もの二酸化炭素が排出されることとなる。
Trees grow by using carbon dioxide in the atmosphere for photosynthesis, so it can be said that the trees have been fixed and transformed into trees. Therefore, when a tree is burned, the generated carbon dioxide was originally present in the atmosphere, so it does not become new exhausted carbon dioxide, but becomes so-called carbon neutral. On the other hand, the carbon contained in coal is the one in which carbon dioxide in the ancient atmosphere is fixed, so the carbon dioxide generated when burning coal is new to the current atmosphere. Treated as exhausted carbon dioxide. This is common to the production of coconut shell, wood and coal-based activated carbon, but not all carbon components in the raw material can be activated carbonized, and most of them are volatilized by combustion and gasification in the carbonization and activation processes. The final activated carbon is only about 10 to 20 parts by weight per 100 parts by weight of the raw material. The carbon dioxide derived from the raw material generated in this process is also carbon neutral with respect to activated carbon derived from plants such as coconut shells.
For this reason, there is a large difference in carbon dioxide emissions between plant-type activated carbon such as coconut shell-based activated carbon and wood-based activated carbon and coal-based activated carbon in the production process, and trial calculation considering utilities such as power consumption, fuel, and water. Then, about 3 to 5 times as much carbon dioxide as that at the time of producing the plant-based activated carbon is discharged during the production of the coal-based activated carbon.

また、石炭は地下資源であるため、埋蔵される地層や地下水に含有される重金属の影響を受け易く、例えば砒素などの汚染物質の含有が多い地層から採掘された石炭を原料とする場合、製品である活性炭に含有される灰分の安全性も懸念されている。これに対して、植物系活性炭は灰分の含有量が極めて微量であるため、その点でも安全性が高い活性炭と言える。したがって、環境対策上、安全対策上の両面で、ヤシ殻系活性炭や木質系活性炭などの植物系活性炭を使用することが望ましい。
しかしながら、ヤシ殻系粒状破砕活性炭については、我が国においても1970年代に実験的に検討されたこともあるが、細孔径2〜50nmの領域のメソポア、及び物質拡散速度に大きな影響を与える細孔径50nm以上の領域のマクロポアの発達が石炭系に劣っており、消毒副生成物の前駆物質となる有機物質の吸着除去性能が劣るため、高度浄水処理実施設に採用されることはなかった。また、欧州の高度浄水処理施設では、木材などを原料とした木質系粒状破砕活性炭が使用されるケースもあり、我が国においても実験的に検討されたこともあるが、硬度が低い、ヤシ殻系同様塩素消毒副生成物の前駆物質の吸着特性が低いなどの理由で、我が国の高度浄水処理実施設に採用されることはなかった。
In addition, since coal is an underground resource, it is easily affected by heavy metals contained in the buried formation and groundwater. For example, if coal mined from a formation containing a large amount of contaminants such as arsenic is used as a raw material, There is also concern about the safety of ash contained in activated carbon. On the other hand, since the plant-based activated carbon has a very small amount of ash, it can be said that the activated carbon is highly safe in that respect. Therefore, it is desirable to use plant activated carbon such as coconut shell activated carbon or wood activated carbon for both environmental and safety measures.
However, the coconut shell granular crushed activated carbon has been experimentally studied in Japan in the 1970s, but mesopores in the pore diameter region of 2 to 50 nm and the pore diameter of 50 nm which has a great influence on the material diffusion rate. The development of macropores in the above areas is inferior to that of coal, and the adsorption removal performance of organic substances that are precursors of disinfection by-products is inferior. In addition, there are cases where wood-based granular crushed activated carbon made from wood or other materials is used in advanced water treatment plants in Europe, which has been studied experimentally in Japan. Similarly, it has not been adopted in Japan's advanced water treatment facilities because of the low adsorption characteristics of the chlorine disinfection by-product precursors.

また、粒状成形活性炭の従来技術としては、例えば特開2002−29725号公報では、明細書(0006)に「・・・。(1)粉末状活性炭もしくは破砕活性炭にバインダーを混合した混合物に、水分を付与して混練後、成形して造粒物を調製し、熱硬化処理及び炭化処理を行い、賦活処理を行わずに造粒活性炭を製造する方法・・・」として開示されている製造方法などがある。
特開2002−29725号公報
Moreover, as a prior art of granular shaping | molding activated carbon, for example, in Unexamined-Japanese-Patent No. 2002-29725, description (0006) is ".... (1) Water | moisture content in the mixture which mixed the binder with powdered activated carbon or crushed activated carbon. And after kneading and forming, a granulated product is prepared, subjected to thermosetting treatment and carbonization treatment, and a method of producing granulated activated carbon without activation treatment ... and so on.
JP 2002-29725 A

そこで、本発明は、かかる従来技術の課題を解決し、カーボン・ニュートラルである植物系材料を原料としながら、石炭系粒状破砕活性炭に匹敵するレベルに、消毒副生成物の前駆物質となる有機物吸着能力が高く、孔径2〜50nm領域のメソポア及び細孔径50nm以上のマクロポアが発達した、二酸化炭素排出負荷の小さい植物系活性炭を使用した浄水処理装置と方法を提供することを課題とする。   Therefore, the present invention solves such problems of the prior art, adsorbs organic matter that becomes a precursor of disinfection by-products to a level comparable to that of coal-based granular crushed activated carbon, while using plant-based material that is carbon neutral as a raw material. It is an object of the present invention to provide a water purification apparatus and method using plant-based activated carbon having a high capacity and having developed mesopores having a pore diameter of 2 to 50 nm and macropores having a pore diameter of 50 nm or more and having a small carbon dioxide discharge load.

前記課題を解決するために、本発明では、塩素消毒により消毒副生成物を生成する消毒副生成物前駆有機物を含有する水の浄水処理装置であって、凝集沈澱処理装置と、砂ろ過装置と、オゾン酸化処理装置と、活性炭吸着処理装置とを順次接続して有すると共に、該活性炭吸着処理装置に使用する活性炭が、ヤシ殻系材料を原料とする活性炭で、BET比表面積が1300±200m/g、孔径2〜50nmのメソポア領域の細孔容積が0.15±0.05cm/g、かつ50nm以上のマクロポア領域の細孔容積が0.40±0.10cm/gである球状成形活性炭であることを特徴とする浄水処理装置、又は、塩素消毒により消毒副生成物を生成する消毒副生成物前駆有機物を含有する水の浄水処理装置であって、凝集沈澱処理装置と、オゾン酸化処理装置と、活性炭吸着処理装置と、砂ろ過装置とを順次接続して有すると共に、該活性炭吸着処理装置に使用する活性炭が、ヤシ殻系材料を原料とする活性炭で、BET比表面積が1300±200m/g、孔径2〜50nmのメソポア領域の細孔容積が0.15±0.05cm/g、かつ50nm以上のマクロポア領域の細孔容積が0.40±0.10cm/gである球状成形活性炭であることを特徴とする浄水処理装置としたものである。 In order to solve the above problems, in the present invention, a water purification apparatus for water containing a disinfection by-product precursor organic substance that generates a disinfection by-product by chlorine disinfection, comprising a coagulation sedimentation treatment apparatus, a sand filtration apparatus, In addition, the ozone oxidation treatment device and the activated carbon adsorption treatment device are sequentially connected, and the activated carbon used in the activated carbon adsorption treatment device is activated carbon made from a coconut shell material and has a BET specific surface area of 1300 ± 200 m 2. / G, a spherical volume having a pore volume of 0.15 ± 0.05 cm 3 / g in a mesopore region having a pore diameter of 2 to 50 nm and a pore volume of 0.40 ± 0.10 cm 3 / g in a macropore region of 50 nm or more. A water purification apparatus characterized by being formed activated carbon, or a water purification apparatus for water containing a disinfection by-product precursor organic substance that generates a disinfection by-product by chlorine disinfection, and a coagulation precipitation treatment , An ozone oxidation treatment device, an activated carbon adsorption treatment device, and a sand filtration device are connected in sequence, and the activated carbon used in the activated carbon adsorption treatment device is activated carbon made from coconut shell material, BET The specific surface area is 1300 ± 200 m 2 / g, the pore volume of the mesopore region having a pore diameter of 2 to 50 nm is 0.15 ± 0.05 cm 3 / g, and the pore volume of the macropore region of 50 nm or more is 0.40 ± 0. The water purification apparatus is characterized by being spherically shaped activated carbon having a density of 10 cm 3 / g.

また、本発明では、塩素消毒により消毒副生成物を生成する消毒副生成物前駆有機物を含有する水の浄水処理方法であって、該被処理水を、凝集沈澱工程と、砂ろ過工程と、オゾン酸化工程と、活性炭吸着工程とを順次通して処理するに際し、該活性炭吸着工程に使用する活性炭が、ヤシ殻系材料を原料とする活性炭で、BET比表面積が1300±200m/g孔径2〜50nmのメソポア領域の細孔容積が0.15±0.05cm/g、かつ50nm以上のマクロポア領域の細孔容積が0.40±0.10cm/gである球状成形活性炭であることを特徴とする浄水処理方法、又は、塩素消毒により消毒副生成物を生成する消毒副生成物前駆有機物を含有する水の浄水処理方法であって、該被処理水を、凝集沈澱工程と、オゾン酸化工程と、活性炭吸着工程と、砂ろ過工程とを順次通して処理するに際し、該活性炭吸着工程に使用する活性炭が、ヤシ殻系材料を原料とする活性炭で、BET比表面積が1300±200m/g孔径2〜50nmのメソポア領域の細孔容積が0.15±0.05cm/g、かつ50nm以上のマクロポア領域の細孔容積が0.40±0.10cm/gである球状成形活性炭であることを特徴とする浄水処理方法としたものである。
前記浄水処理装置と方法において、砂ろ過装置は、凝集沈澱装置とオゾン酸化装置の間、及び、活性炭吸着処理装置の後段の両方に設けることができ、また、前記活性炭は、洗浄濁度が20度以下であり、さらに好ましくは洗浄濁度が15度以下のものが好適である。
Further, in the present invention, a water purification method for water containing a disinfection by-product precursor organic material that generates a disinfection by-product by chlorine disinfection, wherein the treated water includes a coagulation precipitation step, a sand filtration step, In the treatment through the ozone oxidation process and the activated carbon adsorption process in sequence, the activated carbon used in the activated carbon adsorption process is activated carbon made from coconut shell material, and the BET specific surface area is 1300 ± 200 m 2 / g pore diameter 2 Spherical shaped activated carbon having a pore volume of ˜50 nm mesopore region of 0.15 ± 0.05 cm 3 / g and a macropore region of 50 nm or more having a pore volume of 0.40 ± 0.10 cm 3 / g Or a water purification method for water containing a disinfection by-product precursor organic substance that produces a disinfection by-product by chlorine disinfection, wherein the treated water is subjected to an aggregation precipitation step, and ozone Of the process, the activated carbon adsorption step, upon sequentially through by treatment and sand filtration step, the activated carbon for use in the activated carbon adsorption step, with activated carbon for a coconut shell-based material as a raw material, BET specific surface area of 1300 ± 200 meters 2 / G Spherical molding in which the pore volume of the mesopore region having a pore diameter of 2 to 50 nm is 0.15 ± 0.05 cm 3 / g and the pore volume of the macropore region having a pore size of 50 nm or more is 0.40 ± 0.10 cm 3 / g The water purification method is characterized by being activated carbon.
In the water purification apparatus and method, the sand filtration apparatus can be provided both between the coagulating sedimentation apparatus and the ozone oxidation apparatus, and at the subsequent stage of the activated carbon adsorption treatment apparatus, and the activated carbon has a washing turbidity of 20 It is preferable that the washing turbidity is 15 degrees or less.

本発明の第一の効果は、使用活性炭に係る二酸化炭素排出量を既存の高度浄水処理装置より大幅に削減できることである。活性炭吸着池(活性炭充填量:245m×24池=5,880m)の大規模高度浄水処理施設を例として、既存の石炭系粒状破砕活性炭による従来の浄水処理装置とヤシ殻系球状活性炭による本発明の浄水処理装置について、新炭製造から焼却処分までの活性炭のライフサイクルにおける二酸化炭素排出量のライフサイクルアセスメント(Life Cycle Assessment:以下LCAと記す)のケーススタディ結果を表1に示す。 The first effect of the present invention is that the amount of carbon dioxide emitted from the activated carbon used can be greatly reduced as compared with the existing advanced water purification apparatus. Activated carbon adsorption pond: Examples Large advanced water treatment facilities (activated carbon loading of 245m 3 × 24 ponds = 5,880m 3), according to the conventional water treatment device and coconut shell-based spherical activated carbon according to existing coal-based granular crushed activated carbon Table 1 shows the case study results of the life cycle assessment (hereinafter referred to as LCA) of carbon dioxide emissions in the life cycle of activated carbon from fresh coal production to incineration disposal for the water purification apparatus of the present invention.

8年サイクルで新炭に交換更新するケースと6年サイクルで再生賦活更新するケースについて、それぞれ24年間の運用比較を行なうと、従来の石炭系粒状破砕活性炭8年サイクル新炭更新のケースの二酸化炭素排出量合計を1.00とした場合、本発明のヤシ殻系球状活性炭8年サイクル新炭更新のLCAは0.27、ヤシ殻系球状活性炭6年サイクル賦活再生更新のLCAは0.32となり、本発明によればヤシ殻系球状活性炭8年サイクル新炭更新では15.4万t−CO/24年、ヤシ殻系球状活性炭6年サイクル賦活再生更新では16.5万t−CO/24年もの大幅な二酸化炭素排出量低減となる。 A 24-year operation comparison of the case of renewal replacement with new coal in the 8-year cycle and the case of renewal activation renewal in the 6-year cycle reveals that the case of the conventional coal-based granular crushed activated carbon 8-year cycle new coal renewal case When the total amount of carbon emissions is 1.00, the LCA for renewal of 8-year cycle activated carbon of the coconut shell-based spherical activated carbon of the present invention is 0.27, and the LCA of 6-year cycle activation regeneration for palm-shelled spherical activated carbon is 0.32. next, according to the present invention 154,000 t-CO 2/24 years in coconut shell-based spherical activated carbon 8 year cycle new coal update, 165,000 t-CO is a coconut shell-based spherical activated carbon 6-year cycle activated reproducing update 2/24 years a significant carbon dioxide emissions reduction of.

第二の効果は、微粉炭の発生が少ないことに基づく洗浄水量の低減効果である。高度浄水処理装置の活性炭吸着池では、定期的に逆洗操作による活性炭吸着池の洗浄を実施するが、逆洗工程は通常以下の工程で実施されるのが一般的である。
「通水停止」→「水位低下」→「空気・水同時洗浄」→「水洗浄」→「捨水」→「通水再開」
従来の石炭系粒状破砕活性炭を使用する浄水処理装置の場合、空気・水同時洗浄工程での活性炭摩耗が激しく、後段の水洗浄工程及び捨水工程を長くとる必要があったが、本発明の浄水処理装置の場合は、微粉炭の発生が少ないため水洗浄工程及び捨水工程を短縮することができ、このため洗浄水量を低減できる効果がある。
The second effect is an effect of reducing the amount of washing water based on the fact that there is little generation of pulverized coal. In the activated carbon adsorption pond of the advanced water purification apparatus, the activated carbon adsorption pond is regularly cleaned by backwashing operation, but the backwashing process is generally performed in the following steps.
`` Water stoppage '' → `` Water level drop '' → `` Simultaneous cleaning with air and water '' → `` Washing '' → `` Discarding '' → `` Restarting water supply ''
In the case of a water purification apparatus using conventional coal-based granular pulverized activated carbon, activated carbon wear in the air / water simultaneous washing process was severe, and it was necessary to take a long water washing process and waste water treatment process. In the case of a water purification apparatus, since there is little generation | occurrence | production of pulverized coal, a water washing | cleaning process and a draining process can be shortened, and there exists an effect which can reduce the amount of washing water for this.

第三の効果は、通水抵抗が小さいことに基づく効果である。高度浄水処理装置の活性炭吸着池の通水速度は空塔速度(space velocity[hr−1]:以下、SVと記す)3〜8hr−1程度で通水されるのが一般的であるが、本発明の浄水処理装置の場合は通水抵抗が小さいために直線速度(linear velocity[m/hr]:以下、LVと記す)を大きくして充填層高を高くすることができる。このことは装置面積を小さくすることを意味するものであり、浄水処理装置設置面積の省スペース効果がある。
以上述べたように、本発明は、カーボン・ニュートラルである植物系材料を主原料としながら、石炭系粒状破砕活性炭に匹敵するレベルに、塩素消毒副生成物の前駆物質である有機物質の吸着能力が高く、細孔径2〜50nm領域のメソポア、及び物質拡散速度に大きな影響を与える細孔径50nm以上の領域のマクロポアが発達した、二酸化炭素排出負荷の小さい植物系活性炭、及び当該活性炭を用いた新しい浄水処理装置を提供するものであり、大きな環境貢献を果せる発明と言える。
The third effect is an effect based on the small water flow resistance. Advanced water treatment apparatus water flow rate superficial velocity of the activated carbon adsorption pond (space velocity [hr -1]: hereinafter referred to as SV) is being passed through at about 3~8Hr -1 is generally, In the case of the water purification apparatus of the present invention, since the water flow resistance is small, the linear velocity (linear velocity [m / hr]: hereinafter referred to as LV) can be increased to increase the packed bed height. This means that the area of the apparatus is reduced, and there is a space-saving effect on the installation area of the water purification apparatus.
As described above, the present invention uses carbon-neutral plant-based materials as the main raw material, and has a level comparable to that of coal-based granular pulverized activated carbon. , A mesopore with a pore diameter of 2 to 50 nm, and a macropore with a pore diameter of 50 nm or more, which has a large effect on the material diffusion rate, have been developed. The present invention provides a water purification apparatus and can be said to be an invention that can greatly contribute to the environment.

本発明は、植物系材料を原料とする活性炭であって、BET比表面積が1300±200m/g、孔径2〜50nmのメソポア領域の細孔容積が0.15±0.05cm/g、かつ50nm以上のマクロポア領域の細孔容積が0.40±0.10cm/gである球状成形活性炭を用いており、従来の石炭系粒状破砕活性炭を使用した装置では成し遂げられなかった二酸化炭素排出抑制効果の高い浄水処理装置と方法の発明である。活性炭としては、ヤシ殻系、木質系などの植物系のもので前記細孔容積を有するものであれば特に限定するものではないが、例えば、表2に示す活性炭A、活性炭Bのようなヤシ殻系のものが好適である。 The present invention is activated carbon made from plant-based materials, the BET specific surface area is 1300 ± 200 m 2 / g, the pore volume of the mesopore region having a pore diameter of 2 to 50 nm is 0.15 ± 0.05 cm 3 / g, Moreover, it uses spherical shaped activated carbon with a pore volume of 0.40 ± 0.10 cm 3 / g in the macropore region of 50 nm or more, and carbon dioxide emissions that could not be achieved with conventional equipment using coal-based granular crushed activated carbon It is an invention of a water purification apparatus and method having a high suppression effect. The activated carbon is not particularly limited as long as it has a plant volume such as coconut shell or wood and has the above pore volume. For example, coconuts such as activated carbon A and activated carbon B shown in Table 2 are used. A shell system is preferred.

活性炭A及び活性炭Bは、ヤシ殻粉末活性炭100重量部、ノボラック型粉末状フェノール樹脂20重量部、水90重量部を混練、球状成形機で球状に造粒成形後、170℃でゲル化処理、還元雰囲気900℃で30分間炭化処理して炭化処理物とし、さらに、還元雰囲気900℃、水蒸気濃度40% as molの条件下において水蒸気賦活処理を3時間以上行うことにより製造したもので、活性炭Aは粒径0.85〜2.0mm、有効径1.1〜1.3mm、均等係数1.3以下に粒度調整したもの、活性炭Bは粒径0.5〜2.0mm、平均径0.9〜1.1mm、均等係数1.5〜1.9に粒度調整したものである。表2に、活性炭A、活性炭Bの製品仕様例を従来の石炭系粒状破砕活性炭、ヤシ殻系粒状破砕活性炭の仕様例と共に示す。
ここで、BET比表面積及びメソポアの細孔容積はマイクロメトリックス社(販売:島津製作所株式会社)製の比表面積・細孔分布測定装置ASAP2010型により、マクロポアの細孔容積は島津製作所株式会社製の水銀ポロシメータ装置オートポアIV9500型により測定したものである。
Activated carbon A and activated carbon B were kneaded with 100 parts by weight of coconut powder activated carbon, 20 parts by weight of a novolac-type powdered phenol resin, and 90 parts by weight of water, and after being granulated and formed into a spherical shape with a spherical molding machine, the gelation treatment was performed at 170 ° C. Carbonized for 30 minutes at a reducing atmosphere of 900 ° C. to obtain a carbonized product, and further manufactured by performing a steam activation treatment for 3 hours or more under the conditions of a reducing atmosphere of 900 ° C. and a water vapor concentration of 40% as mol. Has a particle size of 0.85 to 2.0 mm, an effective diameter of 1.1 to 1.3 mm, and a particle size adjusted to a uniformity coefficient of 1.3 or less. Activated carbon B has a particle size of 0.5 to 2.0 mm and an average diameter of 0.8. The particle size is adjusted to 9 to 1.1 mm and the uniformity coefficient 1.5 to 1.9. Table 2 shows product specification examples of activated carbon A and activated carbon B together with specification examples of conventional coal-based granular crushed activated carbon and coconut shell-based granular crushed activated carbon.
Here, the BET specific surface area and the pore volume of the mesopore are measured by the specific surface area / pore distribution measuring device ASAP2010 manufactured by Micrometrics (sales: Shimadzu Corporation), and the pore volume of the macropore is manufactured by Shimadzu Corporation. It is measured by a mercury porosimeter device Autopore IV9500 type.

さらに、本発明は、前記活性炭が、洗浄濁度が20度以下、さらに好ましくは洗浄濁度が15度以下のものが好適である。
洗浄濁度は、日本水道協会の規格であるJWWA A 103水道用ろ材試験方法に記載されている試験項目で、以下のような試験である。
Furthermore, in the present invention, the activated carbon preferably has a washing turbidity of 20 degrees or less, more preferably a washing turbidity of 15 degrees or less.
The washing turbidity is a test item described in the JWWA A 103 water filter test method, which is a standard of the Japan Water Works Association, and is the following test.

(洗浄濁度測定方法)
風乾試料30gを共栓試薬瓶500mLに採り、精製水300mLを加えて密栓し、1分間150回の割合で、振り幅約15cmで1分間振り混ぜ、3分間静置する。次に、上液の約150mLを傾斜して採取し、濁度を測定する。
洗浄濁度は、本来はろ過砂を対象とした試験であり、アンスラサイト、マンガン砂などの微粉や色度が生じ易いろ材では適用外となっている。我が国の高度浄水処理に使用される石炭系粒状破砕活性炭の製造方法は、瀝青炭、亜瀝青炭を微粉砕後、灰分除去を行い、バインダーを添加して混錬成形し、これを破砕、粒度調整した後、炭化、水蒸気賦活したものである。したがって、外観は角張った形状をしているため、既存の高度浄水処理装置では、逆洗工程時に摩耗による微粉が発生し易く、洗浄時間が長いという欠点があった。
(Washing turbidity measurement method)
Take 30 g of an air-dried sample in a 500 mL stoppered reagent bottle, add 300 mL of purified water, seal tightly, shake at a rate of 150 times per minute, shake for 1 minute with a swinging width of about 15 cm, and leave for 3 minutes. Next, about 150 mL of the upper liquid is collected by inclining and the turbidity is measured.
The washing turbidity is originally a test for filter sand, and is not applicable to filter media such as anthracite and manganese sand, which easily generate chromaticity. The manufacturing method of coal-based granular pulverized activated carbon used in Japan's advanced water purification treatment is to finely pulverize bituminous coal and subbituminous coal, remove ash, knead and add binder, crush and adjust the particle size Thereafter, carbonization and steam activation were performed. Therefore, since the external appearance has an angular shape, the existing advanced water purification apparatus has a drawback that fine powder due to wear is easily generated during the backwashing process, and the washing time is long.

本発明は、凝集沈澱処理装置と、該凝集沈澱処理装置に接続するオゾン酸化処理装置と、該オゾン酸化処理装置に接続する活性炭吸着処理装置からなる、塩素消毒により消毒副生成物を生成する消毒副生成物前駆有機物を含有する水の浄水処理装置であって、該活性炭吸着処理装置に、ヤシ殻系材料を原料とする活性炭であって、BET比表面積が1300±200m/g、孔径2〜50nmのメソポア領域の細孔容積が0.15±0.05cm/g、かつ50nm以上のマクロポア領域の細孔容積が0.40±0.10cm/gである球状成形活性炭を用いる。さらに、前記の凝集沈澱処理装置とオゾン酸化処理装置の間に、もしくは前記の活性炭吸着処理装置の後段に、又は上記の凝集沈澱処理装置とオゾン酸化処理装置の間と前記の活性炭吸着処理装置の後段の両方に砂ろ過装置を接続した装置であっても良い。したがって、本発明の浄水処理装置には、図4、図5、図6に記した処理フローで構成される実施形態も含まれる。 The present invention comprises a coagulation sedimentation treatment device, an ozone oxidation treatment device connected to the coagulation precipitation treatment device, and an activated carbon adsorption treatment device connected to the ozone oxidation treatment device, which produces a disinfection by-product by chlorine disinfection. A water purification apparatus for water containing a by-product precursor organic substance, wherein the activated carbon adsorption treatment apparatus is activated carbon using a coconut shell material as a raw material, and has a BET specific surface area of 1300 ± 200 m 2 / g and a pore diameter of 2 Spherical shaped activated carbon having a pore volume of ˜50 nm mesopore region of 0.15 ± 0.05 cm 3 / g and a macropore region of 50 nm or more having a pore volume of 0.40 ± 0.10 cm 3 / g is used. Further, between the coagulation precipitation treatment device and the ozone oxidation treatment device, or after the activated carbon adsorption treatment device, or between the coagulation precipitation treatment device and the ozone oxidation treatment device, and the activated carbon adsorption treatment device. The apparatus which connected the sand filtration apparatus to both the back | latter stages may be sufficient. Accordingly, the water purification apparatus of the present invention also includes an embodiment configured with the processing flows shown in FIGS. 4, 5, and 6.

また、上水処理において原水中にアンモニア性窒素が存在すると、塩素消毒によって各種アミン(モノクロラミンNHCL、ジクロラミンNHCL、トリクロラミンNHCL)が生成することが避けられない。このうちジクロラミン、トリクロラミンには臭いがあり、特に後者の臭いが強く、これらはカルキ臭と呼ばれている。カルキ臭は富栄養化した水源で藻類によって産出される2−メチルイソボルネオールやジェオスミンによって生ずる悪臭と共に、長らく水道利用者に忌避されて来たことから、供給水中のこれら臭気を低減することは水道管理者にとって重要な課題である。
また、クロラミンを完全に分解するためにはいわゆる不連続点塩素処理が必要であるが、そのために消費される塩素量は経験的にアンモニア性窒素の8〜10倍程度とされていることから、塩素の使用量を節減するためにもアンモニア性窒素の除去は重要である。
In addition, if ammonia nitrogen is present in the raw water in the water treatment, it is inevitable that various amines (monochloramine NH 2 CL, dichloroamine NHCL 2 , trichloramine NHCL 3 ) are generated by chlorine disinfection. Of these, dichloramine and trichloramine have odors, and the latter is particularly strong, and these are called odors. Chalk odor has been repelled by water users for a long time along with the malodor produced by algae in eutrophic water sources, and reducing these odors in the supply water This is an important issue for administrators.
Moreover, in order to completely decompose chloramine, so-called discontinuous point chlorination is necessary, but the amount of chlorine consumed for this purpose is empirically about 8 to 10 times that of ammonia nitrogen, Ammonia nitrogen removal is also important to reduce the amount of chlorine used.

硝化は、アンモニアの酸化を行う亜硝酸菌による亜硝酸生成と、亜硝酸の酸化を行う硝酸菌による硝酸の生成によってなされるといわれている。活性炭吸着池ではアンモニア性窒素、無機溶解性炭素と溶存酸素がオゾン接触地から供給され、活性炭吸着池の活性炭に生息、担持された微生物が硝化を行う。吸着池内の活性炭には硝化を行う微生物群の担体としてよく機能することが望まれることになる。すなわち、新炭充填後の硝化反応の発現が早い、低水温時でも硝化率が下がりにくい、流入アンモニア性窒素濃度の変動に対して硝化率がよく追従するということが要求される特性である。本発明の活性炭は、これらの要求される特性を十分に満足している。   Nitrification is said to be performed by nitrite production by nitrite bacteria that oxidize ammonia and nitric acid production by nitrite bacteria that oxidize nitrite. In the activated carbon adsorption pond, ammonia nitrogen, inorganic soluble carbon and dissolved oxygen are supplied from the ozone contact area, and microorganisms that live and carry the activated carbon in the activated carbon adsorption pond perform nitrification. It is desired that the activated carbon in the adsorption pond functions well as a carrier for the microorganism group that performs nitrification. In other words, the nitrification reaction is quick after onset of new charcoal, the nitrification rate is not easily lowered even at low water temperatures, and the nitrification rate is required to follow the fluctuation of the inflowing ammonia nitrogen concentration well. The activated carbon of the present invention sufficiently satisfies these required characteristics.

本発明に使用する活性炭は、BET比表面積については1,100m/g以上、好ましくは1,200m/g以上、さらに好ましくは1,300m/g以上であることが望ましい。孔径2〜50nmのメソポア領域の細孔容積については0.10cm/g以上で、好ましくは0.12cm/g以上、さらに好ましくは0.15cm/g以上であることが望ましい。50nm以上のマクロポア領域の細孔容積については0.30cm/g以上で、好ましくは0.35cm/g以上、さらに好ましくは0.40cm/g以上であることが望ましい。また、JWWA A 103水道用ろ材試験方法による洗浄濁度が20度以下、さらには15度以下であることが好ましい。 The activated carbon used in the present invention has a BET specific surface area of 1,100 m 2 / g or more, preferably 1,200 m 2 / g or more, more preferably 1,300 m 2 / g or more. In the pore volume of the mesopore region of pore size of 2 to 50 nm 0.10 cm 3 / g or more, preferably 0.12 cm 3 / g or more, more preferably it is 0.15 cm 3 / g or more. The pore volume of more macropore region 50nm at 0.30 cm 3 / g or more, preferably 0.35 cm 3 / g or more, more preferably is 0.40 cm 3 / g or more. Moreover, it is preferable that the washing | cleaning turbidity by the filter medium test method for JWWA A103 water supply is 20 degrees or less, Furthermore, it is preferable that it is 15 degrees or less.

活性炭は、ビールや清涼飲料水などの生産において、製品そのものやユーティリティに使用される用水の製造工程で脱塩素を行うための材としても使用される。
飲料製品の製造に供される用水の製造は、たとえば1970年代であれば処理フローは浄水場と同様で、
取水⇒凝集沈殿⇒砂ろ過⇒活性炭吸着⇒消毒⇒脱塩素⇒処理水 を基本としていた。この場合、製造者は、pH、酸消費量、溶解塩類濃度、残留塩素濃度などについて水道水とは異なる管理基準を定めている。近年は、製品の多様化、消費者からの高い品質要求、安全安心の担保、原水取水源の水質悪化などへの対応が必要な背景を踏まえ、用水処理に膜分離技術が採用されることが増えている。最近設置された設備処理フローの例としては、
取水⇒RO膜処理⇒消毒⇒脱塩素⇒MF膜⇒処理水
などがあげられる。
新旧どのような処理を行うとしても、用水製造工程においては、望まれない物質の除去と共に、生物の繁殖によって引き起こされる汚染の防止が重要であるため、消毒用薬剤として次亜塩素酸ソーダが常用される。一方、用水が製品に加工される製造工程では製品品質を維持するため残留塩素を一定値以下に管理する必要があるため、製品化の前段で用水の脱塩素を行うために活性炭が使用される。
Activated carbon is also used as a material for dechlorination in the production process of water used for products and utilities in the production of beer and soft drinks.
For example, in the 1970s, the process flow is the same as that of a water purification plant.
It was based on water intake ⇒ coagulation sedimentation ⇒ sand filtration ⇒ activated carbon adsorption ⇒ disinfection ⇒ dechlorination ⇒ treated water. In this case, the manufacturer defines management standards different from tap water for pH, acid consumption, dissolved salt concentration, residual chlorine concentration, and the like. In recent years, membrane separation technology has been adopted for water treatment, taking into account the need to respond to diversification of products, high quality requirements from consumers, security and security, and deterioration of water quality of raw water intake sources. is increasing. As an example of recently installed equipment processing flow,
Water intake ⇒ RO membrane treatment ⇒ Disinfection ⇒ Dechlorination ⇒ MF membrane ⇒ Treated water.
Whatever the treatment, old or new, sodium hypochlorite is commonly used as a disinfectant because it is important to remove unwanted substances and prevent contamination caused by the growth of organisms in the water production process. Is done. On the other hand, in the manufacturing process in which water is processed into products, it is necessary to manage residual chlorine below a certain level in order to maintain product quality, so activated carbon is used to dechlorinate water before the commercialization. .

先に述べたように、脱塩素では食品としての安全を担保するため重金属などの含有量が少ない植物系原料を用いた粒状活性炭を選択することが多い。通常は活性炭を固定床に充填し通水して脱塩素する。ここでの技術的課題のひとつは、充填塔の逆洗工程で発生する活性炭微粉への対応である。逆洗による活性炭同士の揉み洗いで生じた微粉は、水洗工程で完全に除去することは出来ないため、通水工程の初期で微粉漏出がテイリングして処理水中に流出されることが避けられない。流出した微粉は、前述のフローでいえば脱塩素後段のMF膜で補足されるため、MF膜の逆洗頻度や逆洗水量が増加したり、膜が破損した場合には製品への混入の危険が生ずることになる。こうした理由から、逆洗時に微粉の発生しない、あるいは発生量の少ない脱塩素用活性炭の開発が望まれてきた。
本発明に用いる活性炭(ヤシ殻系球状炭)は、石炭系とヤシ殻系何れの粒状破砕炭よりも洗浄濁度が小さいことが特徴であることから、脱塩素能力が従来品と同程度でこれを食品系の用水工程に活用することは上記問題の解決ないし改善のために有効な手段となる。
As described above, in the dechlorination, granular activated carbon using a plant-based raw material having a low content of heavy metals or the like is often selected in order to ensure food safety. Normally, activated carbon is filled in a fixed bed and water is passed through to dechlorinate. One of the technical issues here is the response to the activated carbon fine powder generated in the backwashing process of the packed tower. Fine powder generated by scouring activated carbon by backwashing cannot be completely removed in the water washing process, so it is inevitable that fine powder leakage will be tailed and drained into the treated water at the beginning of the water flow process. . Since the spilled fine powder is supplemented by the MF membrane after dechlorination in the above flow, the frequency of backwashing of the MF membrane, the amount of backwashing water increases, or if the membrane is damaged, There will be danger. For these reasons, it has been desired to develop activated carbon for dechlorination that does not generate fine powder during backwashing or generates a small amount.
The activated carbon (coconut shell-based spherical coal) used in the present invention is characterized by having a smaller washing turbidity than either coal-based or coconut shell-based granular crushed coal. Utilizing this in a food-based irrigation process is an effective means for solving or improving the above problems.

実施例1
図4のフローの処理装置による有機物の除去性能について、従来装置(石炭系破砕炭:メソポア容積0.28cm/g、マクロポア容積0.40cm/g、BET比表面積1,070m/g)と、本発明装置(ヤシ殻系球状炭A:水蒸気賦活条件は、900℃、水蒸気濃度40% as molで3時間、メソポア容積0.12cm/g、マクロポア容積0.35cm/g、BET比表面積1,320m/g)、比較装置1(ヤシ殻系球状炭A−1:水蒸気賦活条件は850℃、水蒸気濃度30% as molで3時間、メソポア容積0.14cm/g、マクロポア容積0.23cm/g、BET比表面積1,070m/g)、比較装置2(ヤシ殻系球状炭A−2:水蒸気賦活条件は850℃、水蒸気濃度40% as molで5時間、メソポア容積0.08cm/g、マクロポア容積0.39cm/g、BET比表面積1,080m/g)、比較装置3(ヤシ殻系球状炭A−3:水蒸気賦活条件は950℃、水蒸気濃度40% as molで2時間、メソポア容積0.07cm/g、マクロポア容積0.21cm/g、BET比表面積1,240m/g)との比較を実施した。有機物の指標である紫外部吸光度E260、総トリハロメタン生成能(THMFP)の通水倍数と除去率の推移の比較を図7及び図8に示す。
Example 1
About the organic substance removal performance by the processing apparatus of the flow of FIG. 4, the conventional apparatus (coal crushed coal: mesopore volume 0.28 cm 3 / g, macropore volume 0.40 cm 3 / g, BET specific surface area 1,070 m 2 / g) And the present invention (coconut shell-based spherical coal A: steam activation conditions are 900 ° C., steam concentration 40% as mol for 3 hours, mesopore volume 0.12 cm 3 / g, macropore volume 0.35 cm 3 / g, BET Specific surface area 1,320 m 2 / g), comparative apparatus 1 (coconut shell-based spherical coal A-1: steam activation condition is 850 ° C., steam concentration 30% as mol for 3 hours, mesopore volume 0.14 cm 3 / g, macropore Volume 0.23 cm 3 / g, BET specific surface area 1,070 m 2 / g), comparative device 2 (coconut shell-based spherical coal A-2: steam activation condition is 850 ° C., steam concentration 40% as mol for 5 hours, mesopore volume 0.08 cm 3 / g, macropore volume 0.39 cm 3 / g, BET specific surface area 1,080 m 2 / g), comparison device 3 (coconut shell spherical coal A-3: steam activation The conditions were 950 ° C., water vapor concentration 40% as mol for 2 hours, mesopore volume 0.07 cm 3 / g, macropore volume 0.21 cm 3 / g, BET specific surface area 1,240 m 2 / g). 7 and 8 show a comparison of the transition of the water absorption multiple and removal rate of the ultraviolet absorbance E260, which is an indicator of organic substances, and the total trihalomethane production ability (THMFP).

本発明装置1(ヤシ殻系球状炭A)の通水倍率11,808倍、35,617倍におけるE260除去率がそれぞれ48%、28%であるのに対し、比較装置1(ヤシ殻系球状炭A−1)ではそれぞれ33%、15%、比較装置2(ヤシ殻系球状炭A−2)ではそれぞれ28%、14%、比較装置3(ヤシ殻系球状炭A−3)ではそれぞれ23%、9%、従来装置(石炭系破砕)ではそれぞれ42%、27%、本発明装置1の通水倍率14,876倍、34,987倍におけるTHMFP除去率がそれぞれ44%、32%であるのに対し、比較装置1ではそれぞれ34%、16%、比較装置2ではそれぞれ31%、14%、比較装置3ではそれぞれ26%、10%、従来装置ではそれぞれ44%、29%となった。紫外部吸光度E260、THMFP共に本発明装置(ヤシ殻球状(表2仕様))の除去性能が、従来装置(石炭破砕)と同等且つ、比較装置(ヤシ殻球状(表2仕様外)に対して優位性があることを確認した。
処理条件
・活性炭層高:2500mm
・活性炭粒度:有効径−1.2mm、均等係数−1.3
・空間速度[SV]:5.2/h(線速度[LV]13m/h)
・活性炭流入水水質:紫外部吸光度E260−0.029〜0.082Abs.
総トリハロメタン生成能THMFP−0.017〜0.035mg/L
While the E260 removal rate of the present invention device 1 (coconut shell-based spherical coal A) at a water flow rate of 11,808 times and 35,617 times is 48% and 28%, respectively, the comparison device 1 (coconut shell-based spherical coal A) 33% and 15% for charcoal A-1), 28% and 14% for comparative device 2 (coconut shell-based spherical coal A-2), and 23% for comparative device 3 (coconut-shell spherical carbon A-3), respectively. %, 9%, 42% and 27% for the conventional apparatus (coal-based crushing), respectively, and 44% and 32% of the THMFP removal rate at the water flow rate of 14,876 times and 34,987 times of the apparatus 1 of the present invention, respectively. On the other hand, the comparison device 1 has 34% and 16%, the comparison device 2 has 31% and 14%, the comparison device 3 has 26% and 10%, and the conventional device has 44% and 29%. The removal performance of the device of the present invention (coconut shell sphere (Table 2 specifications)) for both UV absorbance E260 and THMFP is equivalent to that of the conventional device (coal crushing), and compared to the comparative device (coconut shell spheres (outside of Table 2 specifications)). Confirmed that there is an advantage.
Treatment conditions / activated carbon layer height: 2500 mm
Activated carbon particle size: effective diameter -1.2 mm, uniformity coefficient -1.3
Space velocity [SV]: 5.2 / h (linear velocity [LV] 13 m / h)
Activated carbon influent water quality: UV absorbance E260-0.029-0.082 Abs.
Total trihalomethane production capacity THMFP-0.017-0.035 mg / L

実施例2
図4のフローの処理装置による有機物の除去性能について、従来装置(石炭系破砕炭:メソポア容積0.28cm/g、マクロポア容積0.40cm/g、BET比表面積1,070m/g)と本発明装置(ヤシ殻系球状炭A:水蒸気賦活条件は900℃、水蒸気濃度40% as molで3時間、メソポア容積0.12cm/g、マクロポア容積0.35cm/g、BET比表面積1,320m/g)、比較装置(ヤシ殻破砕炭:メソポア容積0.05cm/g、マクロポア容積0.15cm/g、BET比表面積1,240m/g)との比較を実施した。有機物の指標である紫外部吸光度E260、総トリハロメタン生成能(THMFP)の通水倍数と除去率の推移の比較を図9及び図10に示す。
Example 2
About the organic substance removal performance by the processing apparatus of the flow of FIG. 4, the conventional apparatus (coal crushed coal: mesopore volume 0.28 cm 3 / g, macropore volume 0.40 cm 3 / g, BET specific surface area 1,070 m 2 / g) And apparatus of the present invention (coconut shell-based spherical coal A: steam activation condition is 900 ° C., steam concentration 40% as mol for 3 hours, mesopore volume 0.12 cm 3 / g, macropore volume 0.35 cm 3 / g, BET specific surface area 1,320 m 2 / g), and comparison apparatus (coconut shell crushed charcoal: mesopore volume 0.05 cm 3 / g, macropore volume 0.15 cm 3 / g, BET specific surface area 1,240 m 2 / g) . 9 and 10 show a comparison of the transition of the water absorption multiple and the removal rate of the ultraviolet absorbance E260, which is an indicator of organic substances, and the total trihalomethane production ability (THMFP).

比較装置(ヤシ殻破砕)の通水倍率12,316倍、29,681倍におけるE260除去率がそれぞれ21%、14%であるのに対し、本発明装置(ヤシ殻球状)ではそれぞれ43%、27%、従来装置(石炭破砕)ではそれぞれ42%、27%、比較装置の通水倍率10,018倍、27,847倍におけるTHMFP除去率がそれぞれ25%、17%であるのに対し、本発明装置ではそれぞれ45%、29%、従来装置ではそれぞれ45%、28%となっており、紫外部吸光度E260、THMFP共に本発明装置(ヤシ殻球状)の除去性能が、従来装置(石炭破砕)と同等且つ比較装置(ヤシ殻破砕)に対して優位性があることを確認した。
・活性炭層高:2500mm
・活性炭粒度:有効径−1.2mm、均等係数−1.3
・空間速度[SV]:5.2/h(線速度[LV]13m/h)
・活性炭流入水水質:紫外部吸光度E260−0.037〜0.095Abs.
総トリハロメタン生成能THMFP−0.016〜0.038mg/L
The E260 removal rate at the water flow rate of 12,316 times and 29,681 times of the comparison device (coconut shell crushing) is 21% and 14%, respectively, whereas the device of the present invention (coconut shell sphere) is 43%, Compared to 27% for the conventional equipment (coal crushing), 42% and 27%, respectively, the THMf removal rates of the comparative equipment at 10,018 times and 27,847 times are 25% and 17%, respectively. Inventive devices are 45% and 29%, respectively, and conventional devices are 45% and 28%, respectively. Both the ultraviolet absorbance E260 and THMFP have the removal performance of the present device (coconut shell sphere) compared to the conventional device (coal crushing). And superiority to the comparative device (coconut shell crushing).
・ Activated carbon layer height: 2500mm
Activated carbon particle size: effective diameter -1.2 mm, uniformity coefficient -1.3
Space velocity [SV]: 5.2 / h (linear velocity [LV] 13 m / h)
Activated carbon influent water quality: UV absorbance E260-0.037-0.095 Abs.
Total trihalomethane production capacity THMFP-0.016-0.038mg / L

実施例3
図5のフローの処理装置による有機物の除去性能について、従来装置(石炭系破砕炭:メソポア容積0.26cm/g、マクロポア容積0.38cm/g、BET比表面積1,050m/g)と本発明装置(ヤシ殻系球状炭B:メソポア容積0.12cm/g、マクロポア容積0.32cm/g、BET比表面積1,280m/g)、比較装置(ヤシ殻破砕炭:メソポア容積0.06cm/g、マクロポア容積0.16cm/g、BET比表面積1,220m/g)との比較を実施した。有機物の指標である紫外部吸光度E260、総トリハロメタン生成能(THMFP)の通水倍数と除去率の推移の比較を図11及び図12に示す。
Example 3
About the organic substance removal performance by the processing apparatus of the flow of FIG. 5, conventional apparatus (coal-based crushed coal: mesopore volume 0.26 cm 3 / g, macropore volume 0.38 cm 3 / g, BET specific surface area 1,050 m 2 / g) And apparatus of the present invention (coconut shell-based spherical coal B: mesopore volume 0.12 cm 3 / g, macropore volume 0.32 cm 3 / g, BET specific surface area 1,280 m 2 / g), comparison device (coconut shell crushed coal: mesopore Comparison was made with a volume of 0.06 cm 3 / g, a macropore volume of 0.16 cm 3 / g, and a BET specific surface area of 1,220 m 2 / g). 11 and 12 show a comparison of the transition of the water absorption multiple and the removal rate of the ultraviolet absorbance E260, which is an indicator of organic substances, and the total trihalomethane production ability (THMFP).

比較装置(ヤシ殻破砕)の通水倍率9,131倍、35,917倍におけるE260除去率がそれぞれ34%、18%であるのに対し、本発明装置(ヤシ殻球状)ではそれぞれ59%、34%、従来装置(石炭破砕)ではそれぞれ56%、35%、比較装置の通水倍率12,021倍、35,521倍におけるTHMFP除去率がそれぞれ29%、18%であるのに対し、本発明装置ではそれぞれ49%、33%、従来装置ではそれぞれ47%、30%となっており、紫外部吸光度E260、THMFP共に本発明装置(ヤシ殻球状)の除去性能が、従来装置(石炭破砕)と同等且つ比較装置(ヤシ殻破砕)に対して優位性があることを確認した。
処理条件
・活性炭層高:2700mm
・活性炭粒度:平均径−1.0mm、均等係数−1.7
・空間速度[SV]:5.8/h(線速度[LV]15.7m/h)
・活性炭流入水水質:紫外部吸光度E260−0.016〜0.034Abs.
総トリハロメタン生成能THMFP−0.009〜0.023mg/L
The E260 removal rate at the water flow rate of 9,131 times and 35,917 times of the comparison device (coconut shell crushing) is 34% and 18%, respectively, whereas the device of the present invention (coconut shell sphere) is 59%, 34%, 56% and 35% for the conventional device (coal crushing), respectively, and the THMf removal rate of the comparison device at 12,021 times and 35,521 times is 29% and 18%, respectively. Inventive devices are 49% and 33%, respectively, and the conventional devices are 47% and 30%, respectively. Both the ultraviolet absorbance E260 and THMFP have the removal performance of the present device (coconut shell sphere) compared to the conventional device (coal crushing). And superiority to the comparative device (coconut shell crushing).
Treatment conditions / activated carbon layer height: 2700mm
Activated carbon particle size: average diameter -1.0 mm, uniformity coefficient -1.7
Space velocity [SV]: 5.8 / h (linear velocity [LV] 15.7 m / h)
Activated carbon influent water quality: UV absorbance E260-0.016-0.034 Abs.
Total trihalomethane production capacity THMFP-0.009-0.023mg / L

実施例4
図6のフローの処理装置による有機物の除去性能について、従来装置(石炭系破砕炭:メソポア容積0.25cm/g、マクロポア容積0.33cm/g、BET比表面積1,030m/g)と本発明装置(ヤシ殻系球状炭C:メソポア容積0.13cm/g、マクロポア容積0.35cm/g、BET比表面積1,300m/g)、比較装置(ヤシ殻破砕炭:メソポア容積0.04cm/g、マクロポア容積0.11cm/g、BET比表面積1,250m/g)との比較を実施した。有機物の指標である紫外部吸光度E260、総トリハロメタン生成能(THMFP)の通水倍数と除去率の推移の比較を図13及び図14に示す。
Example 4
About the organic substance removal performance by the processing apparatus of the flow of FIG. 6, conventional apparatus (coal-based crushed coal: mesopore volume 0.25 cm 3 / g, macropore volume 0.33 cm 3 / g, BET specific surface area 1,030 m 2 / g) And apparatus of the present invention (coconut shell-based spherical carbon C: mesopore volume 0.13 cm 3 / g, macropore volume 0.35 cm 3 / g, BET specific surface area 1,300 m 2 / g), comparison device (coconut shell crushed charcoal: mesopore volume 0.04 cm 3 / g, the macropore volume of 0.11 cm 3 / g, compared with the BET specific surface area of 1,250 m 2 / g) was carried out. 13 and 14 show a comparison of the transition of the water absorption multiple and removal rate of the ultraviolet absorbance E260, which is an indicator of organic substances, and the total trihalomethane production ability (THMFP).

比較装置(ヤシ殻破砕)の通水倍率12,424倍、38,152倍におけるE260除去率がそれぞれ39%、17%であるのに対し、本発明装置(ヤシ殻球状)ではそれぞれ53%、35%、従来装置(石炭破砕)ではそれぞれ50%、37%、比較装置の通水倍率14,426倍、38、429倍におけるTHMFP除去率がそれぞれ35%、20%であるのに対し、本発明装置ではそれぞれ54%、37%、従来装置ではそれぞれ55%、36%となっており、紫外部吸光度E260、THMFP共に本発明装置(ヤシ殻球状)の除去性能が、従来装置(石炭破砕)と同等且つ比較装置(ヤシ殻破砕)に対して優位性があることを確認した。
処理条件
・活性炭層高:2100mm
・活性炭粒度:有効径−0.4mm、均等係数−1.4
・空間速度[SV]:7.1/h(線速度[LV]14.9m/h)
・活性炭流入水水質:紫外部吸光度E260−0.036〜0.068Abs.
総トリハロメタン生成能THMFP−0.014〜0.031mg/L
The E260 removal rate at the water flow rate of 12,424 times and 38,152 times of the comparison device (coconut shell crushing) is 39% and 17%, respectively, whereas the device of the present invention (coconut shell sphere) is 53%, Compared to 35%, the conventional equipment (coal crushing) has 50% and 37%, respectively, and the THM removal rate of the comparison equipment at 14,426, 38, and 429 times is 35% and 20%, respectively. The inventive device is 54% and 37%, respectively, and the conventional device is 55% and 36%, respectively. Both the ultraviolet absorbance E260 and THMFP have the removal performance of the present device (coconut shell sphere) compared to the conventional device (coal crushing). And superiority to the comparative device (coconut shell crushing).
Treatment conditions / Activated carbon layer height: 2100mm
Activated carbon particle size: effective diameter -0.4mm, uniformity coefficient -1.4
Space velocity [SV]: 7.1 / h (Linear velocity [LV] 14.9 m / h)
Activated carbon influent water quality: UV absorbance E260-0.036 to 0.068 Abs.
Total trihalomethane production capacity THMFP-0.014-0.031mg / L

実施例5
図4のフローの処理装置による有機物の除去性能について、従来装置(石炭系破砕炭:メソポア容積0.28cm/g、マクロポア容積0.40cm/g、BET比表面積1,070m/g)と本発明装置(ヤシ殻系球状炭A:メソポア容積0.12cm/g、マクロポア容積0.35cm/g、BET比表面積1,320m/g)、比較装置1(ヤシ殻・木質混合系球状炭A:メソポア容積0.08cm/g、マクロポア容積0.33cm/g、BET比表面積1,160m/g)、比較装置2(木質系球状炭A:メソポア容積0.12cm/g、マクロポア容積0.33cm/g、BET比表面積1,060m/g)との比較を実施した。有機物の指標である紫外部吸光度E260、総トリハロメタン生成能(THMFP)の通水倍数と除去率の推移の比較を図15及び図16に示す。
Example 5
About the organic substance removal performance by the processing apparatus of the flow of FIG. 4, the conventional apparatus (coal crushed coal: mesopore volume 0.28 cm 3 / g, macropore volume 0.40 cm 3 / g, BET specific surface area 1,070 m 2 / g) And apparatus of the present invention (coconut shell-based spherical charcoal A: mesopore volume 0.12 cm 3 / g, macropore volume 0.35 cm 3 / g, BET specific surface area 1,320 m 2 / g), comparison apparatus 1 (coconut shell / wood mixed) Spherical coal A: Mesopore volume 0.08 cm 3 / g, Macropore volume 0.33 cm 3 / g, BET specific surface area 1,160 m 2 / g), Comparative device 2 (woody spherical coal A: Mesopore volume 0.12 cm 3 / G, macropore volume 0.33 cm 3 / g, and BET specific surface area 1,060 m 2 / g). 15 and 16 show a comparison of the transition of the water passage multiple and removal rate of the ultraviolet absorbance E260, which is an indicator of organic substances, and the total trihalomethane production ability (THMFP).

本発明装置1(ヤシ殻球状)の通水倍率12,136倍、29,681倍におけるE260除去率がそれぞれ43%、27%であるのに対し、比較装置1(ヤシ殻・木質混合球状)ではそれぞれ35%、20%、比較装置2(木質球状)ではそれぞれ34%、16%、従来装置(石炭系破砕)ではそれぞれ42%、27%、本発明装置1の通水倍率10,018倍、27,847倍におけるTHMFP除去率がそれぞれ45%、29%であるのに対し、比較装置1ではそれぞれ36%、21%、比較装置2ではそれぞれ33%、19%、従来装置ではそれぞれ45%、28%となった。紫外部吸光度E260、THMFP共に本発明装置(ヤシ殻球状)の除去性能が、従来装置(石炭破砕)と同等且つ比較装置(ヤシ殻・木質球状及び木質球状)に対して優位性があることを確認した。
処理条件
・活性炭層高:2500mm
・活性炭粒度:有効径−1.2mm、均等係数−1.3
・空間速度[SV]:5.2/h(線速度[LV]13m/h)
・活性炭流入水水質:紫外部吸光度E260−0.037〜0.095Abs.
総トリハロメタン生成能THMFP−0.016〜0.038mg/L
The E260 removal rate of the present invention device 1 (coconut shell sphere) at a water flow rate of 12,136 times and 29,681 times is 43% and 27%, respectively, while the comparison device 1 (coconut shell / wood mixed sphere) Are 35% and 20%, respectively, 34% and 16% for the comparison device 2 (woody spherical), 42% and 27% for the conventional device (coal-based crushing), respectively, and 10,018 times the water flow rate of the device 1 of the present invention , 27,847 times, the THMFP removal rates are 45% and 29%, respectively, while the comparison device 1 is 36% and 21%, the comparison device 2 is 33% and 19%, and the conventional device is 45%. , 28%. Both UV absorbance E260 and THMFP have the removal performance of the device of the present invention (coconut shell sphere) equivalent to the conventional device (coal crushing) and superior to the comparative device (coconut shell / woody sphere and woody sphere). confirmed.
Treatment conditions / activated carbon layer height: 2500 mm
Activated carbon particle size: effective diameter -1.2 mm, uniformity coefficient -1.3
Space velocity [SV]: 5.2 / h (linear velocity [LV] 13 m / h)
Activated carbon influent water quality: UV absorbance E260-0.037-0.095 Abs.
Total trihalomethane production capacity THMFP-0.016-0.038mg / L

実施例6
本発明ヤシ殻系球状活性炭A(メソポア容積0.12cm/g、マクロポア容積0.35cm/g、BET比表面積1,320m/g、有効径1.2mm、均等係数1.3)、本発明ヤシ殻系球状活性炭B(メソポア容積0.12cm/g、マクロポア容積0.32cm/g、BET比表面積1,280m/g、平均径1.0mm、均等係数1.7)と従来の石炭系破砕炭(メソポア容積0.28cm/g、マクロポア容積0.40cm/g、BET比表面積1,070m/g、有効径1.2mm、均等係数1.3)の洗浄濁度測定例を図17及び表3に示す。浄水場の活性炭吸着設備における逆洗工程は、水抜き/水・空気混合洗浄/水洗/捨水の手順を踏むが、下記データは新炭充填時における逆洗時の状況を模したものといえる。この試験結果では、本発明活性炭は石炭系破砕炭に比べ濁度の排出量が6回の積算で概ね1/3程度に低減された。なお、JWWA A 103水道用ろ材試験方法に記載されている試験方法では濁度標準列と比較して視認する視覚法で濁度を決定するものであるが、本発明の実施例のおいては、より精密な測定法である積分球式濁度計を使用し、光学的手法により計測を行った。
Example 6
Coconut shell spherical activated carbon A of the present invention (mesopore volume 0.12 cm 3 / g, macropore volume 0.35 cm 3 / g, BET specific surface area 1,320 m 2 / g, effective diameter 1.2 mm, uniformity coefficient 1.3), Coconut shell spherical activated carbon B of the present invention (mesopore volume 0.12 cm 3 / g, macropore volume 0.32 cm 3 / g, BET specific surface area 1,280 m 2 / g, average diameter 1.0 mm, uniformity coefficient 1.7) Washing turbidity of conventional coal-based crushed coal (mesopore volume 0.28 cm 3 / g, macropore volume 0.40 cm 3 / g, BET specific surface area 1,070 m 2 / g, effective diameter 1.2 mm, uniformity coefficient 1.3) A degree measurement example is shown in FIG. The backwashing process at the activated carbon adsorption facility at the water purification plant follows the procedures of draining / mixing water / air washing / washing / disposal, but the following data can be said to mimic the situation at the time of backwashing with fresh coal filling. . As a result of this test, the activated carbon of the present invention has reduced the turbidity discharge amount to about 1/3 in six accumulations compared to coal-based crushed coal. In addition, in the test method described in JWWA A 103 water filter medium test method, the turbidity is determined by a visual method compared with the turbidity standard sequence, but in the examples of the present invention, Using an integrating sphere turbidimeter, which is a more precise measurement method, measurement was performed by an optical method.

(測定方法:JWWA A 103) (Measurement method: JWWA A 103)

実施例7
図4のフローの処理装置による従来装置(石炭系粒状破砕炭:メソポア容積0.28cm/g、マクロポア容積0.40cm/g、BET比表面積1,070m/g、有効径1.2mm、均等係数1.3)と本発明装置(ヤシ殻系球状炭A:メソポア容積0.12cm/g、マクロポア容積0.35cm/g、BET比表面積1,320m/g、有効径1.2mm、均等係数1.3)における逆洗の比較を図18に示す。
図18に示すとおり、従来装置(石炭系粒状破砕炭)は濁度0.1度以下になるまでに捨水時間30分を要したが、本発明装置(ヤシ殻系球状炭)は微粉の発生が少なく20分で達した。これにより、本発明装置(ヤシ殻系球状炭A)は従来装置(石炭系粒状破砕炭)と比較し逆洗水量をおよそ2/3に削減する事が出来る事を確認した。
Example 7
FIG. 4 shows a conventional apparatus (coal-based granular crushed coal: mesopore volume 0.28 cm 3 / g, macropore volume 0.40 cm 3 / g, BET specific surface area 1,070 m 2 / g, effective diameter 1.2 mm. , Uniformity coefficient 1.3) and apparatus of the present invention (coconut shell-based spherical coal A: mesopore volume 0.12 cm 3 / g, macropore volume 0.35 cm 3 / g, BET specific surface area 1,320 m 2 / g, effective diameter 1 A comparison of backwashing at .2 mm, uniformity coefficient 1.3) is shown in FIG.
As shown in FIG. 18, the conventional apparatus (coal-based granular pulverized coal) required a water drainage time of 30 minutes until the turbidity became 0.1 degrees or less. Occurrence was low and reached in 20 minutes. Thereby, it was confirmed that the device of the present invention (coconut shell-based spherical coal A) can reduce the amount of backwash water to about 2/3 compared with the conventional device (coal-based granular crushed coal).

実施例8
図5のフローの処理装置による従来装置(石炭系粒状破砕炭:メソポア容積0.26cm/g、マクロポア容積0.38cm/g、BET比表面積1,050m/g、平均径1.0mm、均等係数1.7)と本発明装置(ヤシ殻系球状炭B:メソポア容積0.12cm/g、マクロポア容積0.32cm/g、BET比表面積1,280m/g、平均径1.0mm、均等係数1.7)における逆洗の比較を図19に示す。
図19に示すとおり、従来装置(石炭系粒状破砕炭)は濁度0.1度以下になるまでに捨水時間30分を要したが、本発明装置(ヤシ殻系球状炭)は微粉の発生が少なく20分で達した。これにより、本発明装置(ヤシ殻系球状炭B)は従来装置(石炭系粒状破砕炭)と比較し逆洗水量をおよそ2/3に削減する事が出来る事を確認した。
Example 8
FIG. 5 shows a conventional apparatus (coal-based granular crushed coal: mesopore volume 0.26 cm 3 / g, macropore volume 0.38 cm 3 / g, BET specific surface area 1,050 m 2 / g, average diameter 1.0 mm). , Uniformity coefficient 1.7) and device of the present invention (coconut shell-based spherical charcoal B: mesopore volume 0.12 cm 3 / g, macropore volume 0.32 cm 3 / g, BET specific surface area 1,280 m 2 / g, average diameter 1 Comparison of backwashing at 0.0 mm, uniformity coefficient 1.7) is shown in FIG.
As shown in FIG. 19, the conventional apparatus (coal-based granular pulverized coal) required a water drainage time of 30 minutes until the turbidity became 0.1 ° C. or less. Occurrence was low and reached in 20 minutes. Thereby, it was confirmed that the device of the present invention (coconut shell-based spherical coal B) can reduce the amount of backwash water to about 2/3 compared with the conventional device (coal-based granular crushed coal).

実施例9
図4の処理フローにおいて、本発明球状活性炭と従来の市販石炭系粒状破砕炭について、アンモニア性窒素の硝化性能を比較した結果を図20に示す。試験時の水温は室温である。
また、表4は各活性炭の性状を示すものである。
比較試験の結果、石炭系破砕炭よりは植物系球状活性炭の方が硝化反応の立ち上がりが早く、その中でもヤシ殻系球状炭が早期に硝化が立ち上がることが確認できた。
Example 9
FIG. 20 shows the result of comparing the nitrification performance of ammoniacal nitrogen for the spherical activated carbon of the present invention and the conventional commercial coal-based granular crushed coal in the processing flow of FIG. The water temperature during the test is room temperature.
Table 4 shows the properties of each activated carbon.
As a result of the comparative test, it was confirmed that the nitrification reaction of the plant-based spherical activated carbon started earlier than the coal-based crushed coal, and that the coconut shell-based spherical coal started nitrification earlier.

実施例10
表5は、本発明のヤシ殻球状炭A、B、ヤシ殻系破砕炭、石炭系粒状破砕炭の4者の脱塩素能力を評価した結果である。脱塩素能力の評価は、ドイツ規格DIN19603に従い塩素濃度の半減層厚で行った。以下の手順で通水カラム入り口の塩素濃度が半減するのに必要は活性炭層厚(Gg)を測定した。層厚は薄いほど塩素分解能の高いことを示す。
1) 粒状活性炭を蒸留水で煮沸処理し湿潤状態で外気との接触を断ち、内径役40m
mのガラスカラムに約10cm高さに充填する。
2) 塩素化合物及びアンモニア性窒素の含まれない蒸留水に次亜塩素酸ソーダを添加
し、有効塩素濃度を約5mg/lに調整する。pHは7.0〜7.5とする。
3) 充填カラムに調整した塩素溶液を室温において線速度36m/hで30分間通水
する。
4) 29分目の処理水と流入水の塩素濃度を同時に測定する。
Gg=0.301×t / log(u/V)
Gg:粒状活性炭の脱塩素半値幅(半減層厚)cm
t:活性炭層厚 cm
u:流入水の塩素濃度 mg/l
V:29分目の処理水の塩素濃度 mg/l
Example 10
Table 5 shows the results of evaluating the dechlorination ability of four of the coconut shell spherical coals A and B of the present invention, the coconut shell crushed coal, and the coal-based granular crushed coal. The evaluation of the dechlorination capacity was carried out according to the German standard DIN 19603 with a half-layer thickness of chlorine concentration. The activated carbon layer thickness (Gg) was measured in order to halve the chlorine concentration at the inlet of the water flow column by the following procedure. The thinner the layer thickness, the higher the chlorine resolution.
1) The granular activated carbon is boiled with distilled water and cut off from contact with the outside air in a wet state.
m glass column to a height of about 10 cm.
2) Add sodium hypochlorite to distilled water that does not contain chlorine compounds and ammonia nitrogen, and adjust the effective chlorine concentration to about 5 mg / l. The pH is 7.0-7.5.
3) Pass the prepared chlorine solution to the packed column at room temperature for 30 minutes at a linear velocity of 36 m / h.
4) Simultaneously measure the chlorine concentration of treated water and influent water at 29 minutes.
Gg = 0.301 × t / log (u / V)
Gg: Half width of dechlorination of granular activated carbon (half layer thickness) cm
t: Activated carbon layer thickness cm
u: Chlorine concentration in influent water mg / l
V: Chlorine concentration in treated water at the 29th minute mg / l

* DIN19603 * DIN19603

表5に示すように本発明ヤシ殻系球状活性炭は従来品と同様ないしそれ以上の塩素分解能力を有していることが確認できた。
表6は上記4銘柄の活性炭の洗浄濁度測定例である。本発明球状炭の洗浄濁度発生は破砕炭に比べ大幅に少なかった。
逆洗工程において微粉発生量の少ない本発明の球状炭を食品製造に関わる用水製造の脱塩素処理に適用することで設備運転管理の改善、簡素化、コスト低減に貢献できる。
As shown in Table 5, it was confirmed that the coconut shell-based spherical activated carbon of the present invention had the same or higher chlorine decomposition ability as the conventional product.
Table 6 is an example of washing turbidity measurement of the above four brands of activated carbon. The occurrence of washing turbidity of the present spherical coal was significantly less than that of crushed coal.
By applying the spherical coal of the present invention, which generates a small amount of fine powder in the backwashing process, to dechlorination treatment of water production for food production, it can contribute to improvement, simplification, and cost reduction of facility operation management.

浄水処理装置の通常処理フロー図。The normal process flow figure of a water purification apparatus. 浄水処理装置の粉末活性炭を使用する異臭味対策処理フロー図。Odor odor countermeasure processing flow diagram using powdered activated carbon of a water purification apparatus. 浄水処理装置の粒状粉砕活性炭を使用する異臭味対策処理フロー図。The off-flavor countermeasure processing flow diagram using the granular pulverized activated carbon of the water purification apparatus. 浄水処理装置の大粒径粒状活性炭を使用する高度浄水処理フロー図。The advanced water purification process flow figure which uses the large particle-size granular activated carbon of a water purification apparatus. 浄水処理装置の中粒径粒状活性炭を使用する高度浄水処理フロー図。Advanced water purification treatment flow diagram using medium-sized granular activated carbon in water purification equipment. 浄水処理装置の小粒径粒状活性炭を使用する高度浄水処理フロー図。The advanced water purification process flow figure which uses the small particle-size granular activated carbon of a water purification apparatus. 実施例1の比較結果を示す紫外部吸光度E260 通水倍数と除去率の推移のグラフ。The ultraviolet part light absorbency E260 which shows the comparison result of Example 1 is a graph of transition of a water passage multiple and a removal rate. 実施例1の比較結果を示す総トリハロメタン生成能THMFP 通水倍数と除去率の推移のグラフ。The graph of the transition of the total trihalomethane production | generation capability THMFP water passage multiple and removal rate which shows the comparison result of Example 1. FIG. 実施例2の比較結果を示す紫外部吸光度E260 通水倍数と除去率の推移のグラフ。The ultraviolet part light absorbency E260 which shows the comparison result of Example 2 is a graph of transition of a water passage multiple and a removal rate. 実施例2の比較結果を示す総トリハロメタン生成能THMFP 通水倍数と除去率の推移のグラフ。The graph of transition of the total trihalomethane production | generation capability THMFP water passage multiple and removal rate which shows the comparison result of Example 2. FIG. 実施例3の比較結果を示す紫外部吸光度E260 通水倍数と除去率の推移のグラフ。The ultraviolet part light absorbency E260 which shows the comparison result of Example 3 is a graph of transition of a water passage multiple and a removal rate. 実施例3の比較結果を示す総トリハロメタン生成能THMFP 通水倍数と除去率の推移のグラフ。The graph of the transition of the total trihalomethane production | generation capability THMFP water passage multiple and removal rate which shows the comparison result of Example 3. FIG. 実施例4の比較結果を示す紫外部吸光度E260 通水倍数と除去率の推移のグラフ。The ultraviolet part light absorbency E260 which shows the comparison result of Example 4 is a graph of transition of a water passage multiple and a removal rate. 実施例4の比較結果を示す総トリハロメタン生成能THMFP 通水倍数と除去率の推移のグラフ。The graph of the transition of the total trihalomethane production | generation capability THMFP water passage multiple and removal rate which shows the comparison result of Example 4. FIG. 実施例5の比較結果を示す紫外部吸光度E260 通水倍数と除去率の推移のグラフ。The ultraviolet part absorbance E260 which shows the comparison result of Example 5 is a graph of a transition of a water flow rate multiple and a removal rate. 実施例5の比較結果を示す総トリハロメタン生成能THMFP 通水倍数と除去率の推移のグラフ。The graph of the transition of the total trihalomethane production | generation capability THMFP water passage multiple and removal rate which shows the comparison result of Example 5. FIG. 実施例6の結果を示す洗浄濁度の比較グラフ。The comparison graph of the washing | cleaning turbidity which shows the result of Example 6. FIG. 実施例7の結果を示す逆洗時捨水工程における濁度変化の比較グラフ。The comparative graph of the turbidity change in the water-washing process at the time of backwashing which shows the result of Example 7. 実施例8の結果を示す逆洗時捨水工程における濁度変化の比較グラフ。The comparative graph of the turbidity change in the water-washing process at the time of backwashing which shows the result of Example 8. 実施例9の結果を示すアンモニア性窒素の硝化反応の立ち上がりの比較グラフ。10 is a comparative graph of rising of nitrification reaction of ammoniacal nitrogen showing the results of Example 9. FIG.

Claims (4)

塩素消毒により消毒副生成物を生成する消毒副生成物前駆有機物を含有する水の浄水処理装置であって、凝集沈澱処理装置と、砂ろ過装置と、オゾン酸化処理装置と、活性炭吸着処理装置とを順次接続して有すると共に、該活性炭吸着処理装置に使用する活性炭が、ヤシ殻系材料を原料とする活性炭で、BET比表面積が1300±200m/g、孔径2〜50nmのメソポア領域の細孔容積が0.15±0.05cm/g、かつ50nm以上のマクロポア領域の細孔容積が0.40±0.10cm/gである球状成形活性炭であることを特徴とする浄水処理装置。 A water purification apparatus for water containing a disinfection by-product precursor organic substance that generates disinfection by-products by chlorine disinfection, a coagulation sedimentation treatment apparatus, a sand filtration apparatus, an ozone oxidation treatment apparatus, an activated carbon adsorption treatment apparatus, The activated carbon used in the activated carbon adsorption treatment apparatus is activated carbon made from coconut shell material, and has a BET specific surface area of 1300 ± 200 m 2 / g and a mesopore region with a pore diameter of 2 to 50 nm. A water purification apparatus characterized by being a spherical activated carbon having a pore volume of 0.15 ± 0.05 cm 3 / g and a pore volume of a macropore region of 50 nm or more of 0.40 ± 0.10 cm 3 / g . 塩素消毒により消毒副生成物を生成する消毒副生成物前駆有機物を含有する水の浄水処理装置であって、凝集沈澱処理装置と、オゾン酸化処理装置と、活性炭吸着処理装置と、砂ろ過装置とを順次接続して有すると共に、該活性炭吸着処理装置に使用する活性炭が、ヤシ殻系材料を原料とする活性炭で、BET比表面積が1300±200m/g、孔径2〜50nmのメソポア領域の細孔容積が0.15±0.05cm/g、かつ50nm以上のマクロポア領域の細孔容積が0.40±0.10cm/gである球状成形活性炭であることを特徴とする浄水処理装置。 A water purification apparatus for water containing a disinfection by-product precursor organic material that generates disinfection by-products by chlorine disinfection, a coagulation precipitation treatment apparatus, an ozone oxidation treatment apparatus, an activated carbon adsorption treatment apparatus, a sand filtration apparatus, The activated carbon used in the activated carbon adsorption treatment apparatus is activated carbon made from coconut shell material, and has a BET specific surface area of 1300 ± 200 m 2 / g and a mesopore region with a pore diameter of 2 to 50 nm. A water purification apparatus characterized by being a spherical activated carbon having a pore volume of 0.15 ± 0.05 cm 3 / g and a pore volume of a macropore region of 50 nm or more of 0.40 ± 0.10 cm 3 / g . 塩素消毒により消毒副生成物を生成する消毒副生成物前駆有機物を含有する水の浄水処理方法であって、該被処理水を、凝集沈澱工程と、砂ろ過工程と、オゾン酸化工程と、活性炭吸着工程とを順次通して処理するに際し、該活性炭吸着工程に使用する活性炭が、ヤシ殻系材料を原料とする活性炭で、BET比表面積が1300±200m/g孔径2〜50nmのメソポア領域の細孔容積が0.15±0.05cm/g、かつ50nm以上のマクロポア領域の細孔容積が0.40±0.10cm/gである球状成形活性炭であることを特徴とする浄水処理方法。 A water purification method for water containing a disinfection by-product precursor organic material that generates a disinfection by-product by chlorine disinfection, the treated water comprising a coagulation precipitation step, a sand filtration step, an ozone oxidation step, and activated carbon When processing through the adsorption step sequentially, the activated carbon used in the activated carbon adsorption step is activated carbon made from coconut shell material, and has a BET specific surface area of 1300 ± 200 m 2 / g in a mesopore region having a pore diameter of 2 to 50 nm. Purified water treatment characterized by being a spherical shaped activated carbon having a pore volume of 0.15 ± 0.05 cm 3 / g and a macropore region having a pore size of 50 nm or more of 0.40 ± 0.10 cm 3 / g Method. 塩素消毒により消毒副生成物を生成する消毒副生成物前駆有機物を含有する水の浄水処理方法であって、該被処理水を、凝集沈澱工程と、オゾン酸化工程と、活性炭吸着工程と、砂ろ過工程とを順次通して処理するに際し、該活性炭吸着工程に使用する活性炭が、ヤシ殻系材料を原料とする活性炭で、BET比表面積が1300±200m/g孔径2〜50nmのメソポア領域の細孔容積が0.15±0.05cm/g、かつ50nm以上のマクロポア領域の細孔容積が0.40±0.10cm/gである球状成形活性炭であることを特徴とする浄水処理方法。 A water purification method for water containing a disinfection by-product precursor organic material that generates a disinfection by-product by chlorine disinfection, wherein the treated water includes a coagulation precipitation step, an ozone oxidation step, an activated carbon adsorption step, a sand When processing through the filtration step sequentially, the activated carbon used in the activated carbon adsorption step is activated carbon made from coconut shell material, and has a BET specific surface area of 1300 ± 200 m 2 / g in a mesopore region having a pore diameter of 2 to 50 nm. Purified water treatment characterized by being a spherical shaped activated carbon having a pore volume of 0.15 ± 0.05 cm 3 / g and a macropore region having a pore size of 50 nm or more of 0.40 ± 0.10 cm 3 / g Method.
JP2009198068A 2009-08-28 2009-08-28 Water purification apparatus and method Active JP4934177B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009198068A JP4934177B2 (en) 2009-08-28 2009-08-28 Water purification apparatus and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009198068A JP4934177B2 (en) 2009-08-28 2009-08-28 Water purification apparatus and method

Publications (2)

Publication Number Publication Date
JP2011045853A JP2011045853A (en) 2011-03-10
JP4934177B2 true JP4934177B2 (en) 2012-05-16

Family

ID=43832712

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009198068A Active JP4934177B2 (en) 2009-08-28 2009-08-28 Water purification apparatus and method

Country Status (1)

Country Link
JP (1) JP4934177B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103663770A (en) * 2012-09-13 2014-03-26 上海三卿环保科技有限公司 Device for advanced treatment of wastewater employing coordination of ozone and activated carbon and preparation of device

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2794059B1 (en) * 2011-12-22 2018-11-07 3M Innovative Properties Company Method of removing chloramine with a filtration medium comprising a metal sulfide
CN103373746A (en) * 2012-04-19 2013-10-30 江苏正本净化节水科技实业有限公司 Water purifying bag and using method thereof
KR101455048B1 (en) 2012-11-20 2014-10-28 광주과학기술원 Non-biodegradable materials removing installation and non-biodegradable materials removing method using the same
KR101650415B1 (en) * 2013-10-14 2016-08-23 주식회사 엘지화학 Apparatus for estimating voltage of hybrid secondary battery and Method thereof
JP6165598B2 (en) * 2013-11-13 2017-07-19 水ing株式会社 Regeneration method of plant-based spherical activated carbon and reuse method of the regenerated plant-based spherical activated carbon in water purification treatment
CN103613228B (en) * 2013-12-17 2016-01-20 四川省银河化学股份有限公司 A kind of method processing vitamin K3 factory effluent
JP6250431B2 (en) * 2014-02-21 2017-12-20 メタウォーター株式会社 Water treatment process control method and control apparatus
US20170348618A1 (en) * 2015-01-06 2017-12-07 Mitsubishi Heavy Industries, Ltd. Filter medium, process for producing filter medium, filtration device, method for operating filtration device, and filtration system
JP6517137B2 (en) * 2015-12-11 2019-05-22 水ing株式会社 Operation management method of water purification equipment
CN105502608A (en) * 2016-01-28 2016-04-20 吴江华衍水务有限公司 Method for removing precusor substance of disinfection by-product in water
CN108046466A (en) * 2017-12-07 2018-05-18 重庆精创联合环保工程有限公司 The processing method of sanitary sewage
CN113727943A (en) * 2019-04-26 2021-11-30 株式会社可乐丽 Carbonaceous material, method for producing same, filter for water purification, and water purifier
CN112456679A (en) * 2020-11-18 2021-03-09 安徽汇泽通环境技术有限公司 Device and method for treating disinfection byproducts by mesoporous carbon reinforced carbon sand filter

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2693616B2 (en) * 1990-02-28 1997-12-24 阪神水道企業団 Advanced treatment method for clean water
JP3461514B2 (en) * 1991-05-13 2003-10-27 株式会社明電舎 Advanced water treatment system and method of starting advanced water treatment system
JP4334404B2 (en) * 2004-04-28 2009-09-30 株式会社東芝 Water treatment method and water treatment system
JP4621132B2 (en) * 2005-12-20 2011-01-26 荏原エンジニアリングサービス株式会社 Water purification activated carbon information management center and activated carbon management system equipped with the center

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103663770A (en) * 2012-09-13 2014-03-26 上海三卿环保科技有限公司 Device for advanced treatment of wastewater employing coordination of ozone and activated carbon and preparation of device

Also Published As

Publication number Publication date
JP2011045853A (en) 2011-03-10

Similar Documents

Publication Publication Date Title
JP4934177B2 (en) Water purification apparatus and method
US11111165B2 (en) Process and apparatus for treating water
DeSilva Activated carbon filtration
Fatta-Kassinos et al. Advanced treatment technologies for urban wastewater reuse
CN105384316B (en) A kind of processing method of the fluorine-containing nitrogen-containing wastewater of electronics industry
JP2005320548A (en) Foam containing iron oxy-hydroxide granule and its use
KR100877805B1 (en) Advanced water purification system and method using ultraviolet absorbance
JP6165598B2 (en) Regeneration method of plant-based spherical activated carbon and reuse method of the regenerated plant-based spherical activated carbon in water purification treatment
JP2013184132A (en) Regeneration method for used activated carbon and activated carbon and method for manufacturing the same
JP6517137B2 (en) Operation management method of water purification equipment
Yang et al. The approaches and prospects for natural organic matter-derived disinfection byproducts control by carbon-based materials in water disinfection progresses
CN104649456A (en) Drinking water terminal sterilizing water purifier
CN103896436A (en) Water depth treatment technology using filter material synergistically modified with ultraviolet (UV) and ozone and equipment thereof
EP3009405A1 (en) Method for treating water by adsorption on activated carbon and clarification, and corresponding facility
KR101426704B1 (en) an activated carbon watertreatment device and the watertreatment system and the method using thereof
CN101134630A (en) Air-float filtration integral water conditioning process
JPH03249990A (en) High-degree treatment of service water
Thiel et al. Activated carbon vs anthracite as primary dual media filters–a pilot plant study
Moussavi et al. Study of adsorption isotherms and adsorption kinetics of reactive blue 19 dyes from aqueous solutions by multi-wall carbon nanotubes.
CN102849882A (en) Treatment technology for beer brewing water
CN205472754U (en) Grid type active glass filtering filler
KR101110709B1 (en) Multi-step water purification system including filtering step using dna on solid support catalyst
KR101417303B1 (en) Method for purifying water including metal ions
JP6762459B1 (en) Porous carbon material and its manufacturing method and application
TWI419848B (en) Device for removing the organic compounds in water and the method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110425

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120130

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120217

R150 Certificate of patent or registration of utility model

Ref document number: 4934177

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150224

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250