JP6732448B2 - Organic wastewater treatment method - Google Patents

Organic wastewater treatment method Download PDF

Info

Publication number
JP6732448B2
JP6732448B2 JP2015256855A JP2015256855A JP6732448B2 JP 6732448 B2 JP6732448 B2 JP 6732448B2 JP 2015256855 A JP2015256855 A JP 2015256855A JP 2015256855 A JP2015256855 A JP 2015256855A JP 6732448 B2 JP6732448 B2 JP 6732448B2
Authority
JP
Japan
Prior art keywords
carrier
reaction tank
biofilm
attached
organic wastewater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015256855A
Other languages
Japanese (ja)
Other versions
JP2017119248A (en
Inventor
太一 山本
太一 山本
長谷部 吉昭
吉昭 長谷部
雄基 市川
雄基 市川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=59271324&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP6732448(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Organo Corp filed Critical Organo Corp
Priority to JP2015256855A priority Critical patent/JP6732448B2/en
Publication of JP2017119248A publication Critical patent/JP2017119248A/en
Application granted granted Critical
Publication of JP6732448B2 publication Critical patent/JP6732448B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Description

本発明は、有機性排水を流動床式反応槽により嫌気条件で生物処理する有機性排水の処理方法の技術に関する。 TECHNICAL FIELD The present invention relates to a technique of a method for treating organic wastewater by biological treatment in a fluidized bed reactor under anaerobic conditions.

嫌気性流動床式排水処理は、担体に嫌気性微生物を付着させ、反応槽内で流動させることにより、排水と担体との接触効率を高め、安定且つ高効率な処理を可能とする処理方法である。しかし、このような方法では、担体への嫌気性微生物の付着に時間が掛かり、生物処理の立ち上げに多大な時間を要するという問題がある。 The anaerobic fluidized bed wastewater treatment is a treatment method that allows the anaerobic microorganisms to adhere to the carrier and makes them flow in the reaction tank to increase the contact efficiency between the wastewater and the carrier, enabling stable and highly efficient treatment. is there. However, such a method has a problem that it takes a long time to attach the anaerobic microorganisms to the carrier, and it takes a lot of time to start the biological treatment.

例えば、特許文献1には、遠心装置に嫌気性微生物の母液と担体とを入れ、これら母液と担体とを遠心処理することによって担体に嫌気性微生物を付着させ、嫌気性微生物を付着させた担体を固定床として用いる有機性排水の処理方法が開示されている。 For example, in Patent Document 1, a mother liquor of an anaerobic microorganism and a carrier are placed in a centrifuge, and the mother liquor and the carrier are centrifuged to attach the anaerobic microorganism to the carrier, and the carrier to which the anaerobic microorganism is attached. There is disclosed a method for treating organic wastewater using as a fixed bed.

また、例えば、特許文献2,3には、担体を保持する反応槽の立ち上げに際して、該反応槽に担体と嫌気性グラニュールとを共存させて、有機性排水の通水を開始し、その後、有機性排水の通水を継続することにより、反応槽内のグラニュールの一部を解体、分散化させる有機性排水の処理方法が開示されている。 In addition, for example, in Patent Documents 2 and 3, when the reaction tank holding the carrier is started up, the carrier and the anaerobic granules are allowed to coexist in the reaction tank, and then the passage of the organic waste water is started, and thereafter, There is disclosed a method for treating organic wastewater, in which a part of the granules in the reaction tank is disassembled and dispersed by continuing the passage of the organic wastewater.

特開2003−190985号公報JP, 2003-190985, A 特開2012−110821号公報JP, 2012-110821, A 特開2014−100680号公報JP, 2014-100680, A

しかし、特許文献1の遠心処理では、担体から嫌気性微生物が剥がれやすい。特に、流動床式で用いた場合には、固定床式より担体の流動性が高くなるため、嫌気性微生物の剥離がより進行する可能性がある。そして、剥離した嫌気性微生物が処理水と共に流出すれば、処理水の水質悪化に繋がる場合がある。また、反応槽内の微生物量が変動するため、例えば、過負荷となった場合には、嫌気性微生物の成長が阻害され、結果的に生物処理の立ち上げに多くの時間を要する場合がある。 However, in the centrifugal treatment of Patent Document 1, anaerobic microorganisms are easily peeled off from the carrier. In particular, when used in a fluidized bed system, the carrier has a higher fluidity than in a fixed bed system, and thus the exfoliation of anaerobic microorganisms may proceed further. If the separated anaerobic microorganisms flow out together with the treated water, the quality of the treated water may deteriorate. In addition, because the amount of microorganisms in the reaction tank fluctuates, for example, when overloaded, the growth of anaerobic microorganisms is inhibited, and as a result, it may take a lot of time to start up the biological treatment. ..

また、特許文献2,3の方法では、嫌気性グラニュールが解体、分散化しているため、処理水と共に嫌気性グラニュールが流出すれば、前述の通り、処理水の水質悪化に繋がり、また、生物処理の立ち上げに多くの時間を要する場合がある。 Further, in the methods of Patent Documents 2 and 3, since the anaerobic granules are disassembled and dispersed, if the anaerobic granules flow out together with the treated water, the water quality of the treated water deteriorates, as described above. It may take a long time to start up the biological treatment.

そこで、本発明は、有機性排水を流動床式反応槽により嫌気条件で生物処理する有機性排水の処理方法において、生物処理の立ち上げ時に排出される処理水の水質悪化を抑えると共に、生物処理の立ち上げ期間の長期化を抑制することが可能な有機性排水の処理方法を提供することを目的とする。 Therefore, the present invention provides a method for treating organic wastewater in a fluidized bed reaction tank under anaerobic conditions for biological treatment, while suppressing deterioration of the quality of treated water discharged at the start of biological treatment, as well as biological treatment. It is an object of the present invention to provide a method for treating organic wastewater capable of suppressing a long start-up period.

本発明は、有機性排水を流動床式反応槽により嫌気条件で生物処理する有機性排水の処理方法であって、前記生物処理を立ち上げる際には、前記反応槽内に、嫌気性微生物が生物膜となって付着している担体と、前記生物膜が付着していない担体とを共存させ、嫌気性グラニュール汚泥を共存させずに、前記有機性排水を通水し、担体あたりのCODcr負荷を30kg/m3/day以上に立上げ、前記担体はゲル状担体であり、前記反応槽は、撹拌型反応槽であり、前記担体に付着している前記生物膜の厚みは20μm以上である有機性排水の処理方法である。 The present invention is a method of treating organic wastewater by biological treatment in a fluidized bed type reaction tank under anaerobic conditions, wherein when the biological treatment is started up, anaerobic microorganisms are present in the reaction tank. CODcr per carrier is obtained by allowing the carrier attached as a biofilm and the carrier not adhered by the biofilm to pass through the organic wastewater without the presence of anaerobic granule sludge. The load is raised to 30 kg/m3/day or more, the carrier is a gel carrier, the reaction tank is a stirring reaction tank, and the thickness of the biofilm attached to the carrier is 20 μm or more. This is a method of treating organic wastewater.

前記有機性排水の処理方法において、前記反応槽へ投入する前記生物膜が付着している担体の投入率は、前記反応槽へ投入する担体の総量に対して20%〜95%の範囲であることが好ましい。 In the method for treating organic wastewater, the loading ratio of the carrier with the biofilm attached to the reaction tank is in the range of 20% to 95% with respect to the total amount of the carrier to be added to the reaction tank. It is preferable.

前記有機性排水の処理方法において、前記反応槽へ投入する前記生物膜が付着している担体の投入率は、前記反応槽へ投入する担体の総量に対して20%〜70%の範囲であることが好ましい。 In the method for treating organic wastewater, the loading rate of the carrier with the biofilm attached to the reaction tank is in the range of 20% to 70% with respect to the total amount of the carrier to be loaded into the reaction tank. It is preferable.

本発明によれば、有機性排水を流動床式反応槽により嫌気条件で生物処理する有機性排水の処理方法において、生物処理の立ち上げ時に排出される処理水の水質悪化を抑えると共に、生物処理の立ち上げ期間の長期化を抑制することが可能な有機性排水の処理方法を提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, in the treatment method of the organic wastewater which carries out biological treatment of anaerobic wastewater by a fluidized-bed type reaction tank on anaerobic conditions, while suppressing the water quality deterioration of the treated water discharged at the time of the start of biological treatment, It is possible to provide a method for treating organic wastewater capable of suppressing a long start-up period.

本実施形態の有機性排水の処理方法に用いる排水処理装置の構成の一例を示す模式図である。It is a schematic diagram which shows an example of a structure of the wastewater treatment equipment used for the organic wastewater treatment method of this embodiment. 本実施形態の有機性排水の処理方法に用いる排水処理装置の構成の他の一例を示す模式図である。It is a schematic diagram which shows another example of a structure of the wastewater treatment equipment used for the organic wastewater treatment method of this embodiment.

以下、本発明の実施の形態について説明する。なお、本実施形態は本発明を実施する一例であって、本発明は本実施形態に限定されるものではない。 Hereinafter, embodiments of the present invention will be described. The present embodiment is an example for carrying out the present invention, and the present invention is not limited to this embodiment.

図1は、本実施形態の有機性排水の処理方法に用いる排水処理装置の構成の一例を示す模式図である。図1に示す排水処理装置1は、流動床式反応槽10を備えており、流動床式反応槽10内には、担体12が投入されている。流動床式反応槽10の入口には、排水流入ライン14が設置され、流動床式反応槽10の出口には、処理水排出ライン16が設置されている。 FIG. 1 is a schematic diagram showing an example of the configuration of a wastewater treatment device used in the method for treating organic wastewater according to the present embodiment. The wastewater treatment apparatus 1 shown in FIG. 1 includes a fluidized bed reaction tank 10, and a carrier 12 is put in the fluidized bed reaction tank 10. A drainage inflow line 14 is installed at the inlet of the fluidized bed reaction tank 10, and a treated water discharge line 16 is installed at the outlet of the fluidized bed reaction tank 10.

図1に示す流動床式反応槽10は、槽内の担体12を流動させながら、嫌気条件下で、有機性排水を生物処理するものである。図1に示す流動床式反応槽10は、撹拌型反応槽であり、槽内に略垂直に設置され上下が開口したドラフトチューブ18と、槽内の担体12を撹拌する撹拌装置20とを備える。図1に示す撹拌装置20は、モータ22、撹拌翼24、モータ22と撹拌翼24を接続するシャフト26を備えており、撹拌翼24がドラフトチューブ18内に配置されている。撹拌装置20は、流動床式反応槽10内の担体12を撹拌することが可能な装置構成であれば、上記構成に制限されるものではない。また、担体12の流動性を向上させる点で、ドラフトチューブ18を設置することが好ましいが、必ずしもドラフトチューブ18を設置する必要はない。 The fluidized bed reactor 10 shown in FIG. 1 biologically treats organic wastewater under anaerobic conditions while flowing the carrier 12 in the tank. The fluidized bed type reaction tank 10 shown in FIG. 1 is a stirring type reaction tank, and is provided with a draft tube 18 installed substantially vertically in the tank and having upper and lower openings, and a stirring device 20 for stirring the carrier 12 in the tank. .. The stirring device 20 shown in FIG. 1 includes a motor 22, a stirring blade 24, and a shaft 26 that connects the motor 22 and the stirring blade 24, and the stirring blade 24 is arranged inside the draft tube 18. The agitation device 20 is not limited to the above configuration as long as the device configuration is capable of agitating the carrier 12 in the fluidized bed reactor 10. Further, from the viewpoint of improving the fluidity of the carrier 12, it is preferable to install the draft tube 18, but it is not always necessary to install the draft tube 18.

担体12は、嫌気性微生物が生物膜となって付着している担体と、該生物膜が付着していない担体とを含む。ここで、生物膜とは、嫌気性微生物と、嫌気性微生物が産出する菌体外多糖等の生産物等が集合した膜状構造体であって、少なくとも10μm以上の膜厚、好ましくは20μm以上の膜厚を有するものである。上記膜厚は、担体12表面上からの厚みであり、10個〜20個の担体12の平均値である。なお、菌体外多糖等の生産物は、アルカリを用いて生物膜から多糖類を抽出し、抽出液中の糖濃度をAnthrone法により測定することが可能である。菌体外多糖等の生産物は粘着性を有し、生物膜の付着性に影響を与えるものであると考えられ、例えば、生物膜中に20ppm以上存在していることが好ましく、50ppm以上存在していることがより好ましい。一方、生物膜が付着していない担体とは、10μm未満の膜厚の膜状構造体が付着した担体12を含む概念であるが、処理水の水質悪化を抑制する観点等から、嫌気性微生物が付着していない担体であることが望ましい。 The carrier 12 includes a carrier to which anaerobic microorganisms are attached as a biofilm and a carrier to which the biofilm is not attached. Here, the biofilm is a membranous structure in which anaerobic microorganisms and products such as extracellular polysaccharides produced by the anaerobic microorganisms are aggregated, and has a film thickness of at least 10 μm or more, preferably 20 μm or more. It has a film thickness of. The film thickness is the thickness from the surface of the carrier 12 and is an average value of 10 to 20 carriers 12. In the case of products such as extracellular polysaccharides, it is possible to extract the polysaccharide from the biofilm using alkali and measure the sugar concentration in the extract by the Anthrone method. It is considered that products such as extracellular polysaccharides have stickiness and affect the adherence of biofilms. For example, it is preferable that the biofilms be present at 20 ppm or more, and at least 50 ppm. Is more preferable. On the other hand, a carrier to which a biofilm is not attached is a concept including a carrier 12 to which a film-like structure having a film thickness of less than 10 μm is attached, but from the viewpoint of suppressing deterioration of the quality of treated water, anaerobic microorganisms are used. It is desirable that the carrier does not adhere to.

本実施形態の排水処理装置1は、例えば、流動床式反応槽10の排出口を囲むように設置されるスクリーン(不図示)を備えることが好ましい。当該スクリーンにより、流動床式反応槽10からの担体12の流出を防ぐことが可能となる。スクリーンは、例えば、ウエッジワイヤースクリーン、金網、パンチングメタル等が挙げられる。 The wastewater treatment device 1 of the present embodiment preferably includes, for example, a screen (not shown) installed so as to surround the outlet of the fluidized bed reaction tank 10. The screen makes it possible to prevent the carrier 12 from flowing out of the fluidized bed reactor 10. Examples of the screen include a wedge wire screen, a wire mesh, and punching metal.

図1に示す排水処理装置1を用いて、本実施形態の有機性排水の処理方法を説明する。 A method for treating organic wastewater according to this embodiment will be described using the wastewater treatment apparatus 1 shown in FIG.

本実施形態の処理対象である有機性排水は、例えば、食品製造工場、電子産業工場、パルプ製造工場、化学工場等から排出される有機物を含有する排水である。有機物は、生分解可能な有機物であり、例えば、可溶性タンパク質、糖類、アミノ酸類、アルコール類、有機酸類、脂肪酸類等が挙げられる。 The organic wastewater to be treated in the present embodiment is, for example, wastewater containing organic substances discharged from a food manufacturing factory, an electronic industry factory, a pulp manufacturing factory, a chemical factory, or the like. The organic substance is a biodegradable organic substance, and examples thereof include soluble proteins, sugars, amino acids, alcohols, organic acids, and fatty acids.

生物処理の立ち上げにおいて、有機性排水が、排水流入ライン14から流動床式反応槽10に導入される。この有機性排水の通水開始前又は後において、流動床式反応槽10に、担体12が投入される。流動床式反応槽10内では、撹拌装置20により、担体12及び有機性排水が撹拌されながら、嫌気条件で生物処理が行われる。なお、本実施形態では、撹拌翼24がドラフトチューブ18内で撹拌されるため、ドラフトチューブ18内に下向流が形成され、ドラフトチューブ18の外壁面と流動床式反応槽10の内壁面との間に上向流が形成されている。流動床式反応槽10で生物処理された処理水は、処理水排出ライン16から系外へ排出される。このような処理を継続して、予め設定した負荷に達した段階で、生物処理の立ち上げが終了となる。生物処理の立ち上げが終了した後は、例えば、生物処理の立ち上げ期間で到達した負荷を維持しながら、有機性排水の生物処理(本処理)が実行される。生物処理立ち上げ期間における到達負荷は、例えば、CODcr容積負荷で2kg/m/day以上に設定されることが好ましく、10kg/m/day以上に設定されることがより好ましい。 In starting up the biological treatment, organic waste water is introduced into the fluidized bed reactor 10 from the waste water inflow line 14. Before or after starting the passage of the organic waste water, the carrier 12 is put into the fluidized bed type reaction tank 10. In the fluidized bed reactor 10, the biological treatment is performed under anaerobic conditions while the carrier 12 and the organic waste water are stirred by the stirring device 20. In addition, in this embodiment, since the stirring blade 24 is stirred in the draft tube 18, a downward flow is formed in the draft tube 18, and the outer wall surface of the draft tube 18 and the inner wall surface of the fluidized bed reactor 10 are formed. An upflow is formed between. The treated water biologically treated in the fluidized bed reaction tank 10 is discharged from the treated water discharge line 16 to the outside of the system. When such processing is continued and the preset load is reached, the start-up of the biological treatment is completed. After the start-up of the biological treatment is completed, for example, the biological treatment (main treatment) of the organic wastewater is executed while maintaining the load reached during the start-up period of the biological treatment. The ultimate load during the biological treatment start-up period is, for example, preferably set to 2 kg/m 3 /day or more in CODcr volume load, and more preferably set to 10 kg/m 3 /day or more.

一般的に、担体が流動することによって、担体から生物膜が剥離すると、生物膜は処理水と共に流動床式反応槽から排出されるため、処理水のSS濃度が上昇し、処理水の水質が悪化する。しかし、本実施形態では、生物処理の立ち上げにおいて、嫌気性微生物が生物膜となって付着している担体と、該生物膜が付着していない担体とを投入(担体12を投入)し、これらの担体を共存させているため、担体から剥離した生物膜の一部は、生物膜が付着してない担体側へ付着すると考えられる。そのため、投入した担体全てが、嫌気性微生物が生物膜となって付着している担体である場合と比較して、生物膜の流出が抑えられるため、処理水の水質悪化を抑制することが可能となる。さらに、生物膜の流出が抑えられることで、流動床式反応槽内の微生物量の変動も抑えられるため、投入した担体全てが、嫌気性微生物が生物膜となって付着している担体である場合と比較して、過負荷になり難く、嫌気性微生物の成長が阻害され難くなると考えられる。そのため、投入した担体全てが、嫌気性微生物が生物膜となって付着している担体である場合と比較して、生物処理の立ち上げ期間が長期化することを抑制することが可能となる。なお、生物膜中に含まれる菌体外多糖等の生産物は粘着性を有するため、単に分散状態の嫌気性微生物を吸着させただけの担体と比較して、流動している担体からの嫌気性微生物の剥離は抑えられる。 Generally, when the biofilm separates from the carrier due to the flow of the carrier, the biofilm is discharged from the fluidized bed reaction tank together with the treated water, so that the SS concentration of the treated water increases and the quality of the treated water is improved. Getting worse. However, in the present embodiment, at the start of biological treatment, a carrier to which anaerobic microorganisms are attached as a biofilm and a carrier to which the biofilm is not attached are charged (the carrier 12 is charged), Since these carriers coexist, it is considered that a part of the biofilm separated from the carrier adheres to the carrier side to which the biofilm is not adhered. Therefore, compared to the case where all the added carriers are carriers in which anaerobic microorganisms are attached as a biofilm, the outflow of the biofilm is suppressed, and it is possible to suppress deterioration of the quality of the treated water. Becomes Further, since the outflow of the biofilm is suppressed, the fluctuation of the amount of microorganisms in the fluidized bed reaction tank is also suppressed, and therefore all the loaded carriers are carriers to which the anaerobic microorganisms adhere as a biofilm. Compared with the case, it is considered that overload is less likely to occur and the growth of anaerobic microorganisms is less likely to be inhibited. Therefore, it is possible to prevent the start-up period of the biological treatment from being prolonged as compared with the case where all the introduced carriers are carriers in which the anaerobic microorganisms are attached as a biofilm. Since the products such as extracellular polysaccharides contained in the biofilm are sticky, the anaerobic gas from the flowing carrier is higher than that of the carrier simply adsorbing the anaerobic microorganisms in the dispersed state. Exfoliation of sexual microbes is suppressed.

また、一般的に、嫌気性微生物を含む汚泥(グラニュール汚泥も含む)等を主汚泥として投入した場合、通水開始直後に反応槽内に嫌気性微生物を多く保持できるという利点があるが、通水の継続に伴い、汚泥は解体し分散化して槽外へ流出し、処理水の水質が悪化する場合がある。また、反応槽内の嫌気性微生物量を適切に把握できず、反応槽内が過負荷状態となって、嫌気性微生物の成長が阻害され、結果的に生物処理の立ち上げ期間が長期化する場合がある。一方、嫌気性微生物が生物膜となって付着している担体と、該生物膜が付着していない担体とを投入(担体12を投入)し、これらの担体を共存させた本実施形態は、前述したように生物膜の流出が抑えられるため、生物膜が付着していない担体と嫌気性微生物を含む汚泥(グラニュール汚泥も含む)の主汚泥とを共存させた場合と比較して、処理水の水質悪化を抑制し、また、生物処理の立ち上げ期間の長期化を抑えることが可能となる。但し、本実施形態では、嫌気性微生物が生物膜となって付着している担体と、該生物膜が付着していない担体とを共存させた上で、さらに嫌気性微生物を含む汚泥(グラニュール汚泥も含む)等の主汚泥の投入を制限するものではない。担体から剥離した生物膜は、前述したように粘着性を有するため、例えば、主汚泥が剥離した生物膜に付着しながら、生物膜が付着していない担体に付着する等して、処理水の水質悪化及び生物処理の立ち上げ期間の長期化が抑えられる。本実施形態において投入する主汚泥の量は、例えば、反応槽容積に対して1〜30%の範囲が好ましく、5〜20%の範囲がより好ましい。主汚泥の投入量が1%未満の場合には主汚泥を投入する利点が得られない場合があり、30%を超える場合には、処理水の水質悪化等が引き起こされる場合がある。 In addition, generally, when sludge containing anaerobic microorganisms (including granule sludge) is added as the main sludge, there is an advantage that many anaerobic microorganisms can be retained in the reaction tank immediately after the start of water passage, As water continues to flow, sludge may be disassembled, dispersed, and flow out of the tank, and the quality of treated water may deteriorate. Moreover, the amount of anaerobic microorganisms in the reaction tank cannot be properly grasped, the reaction tank becomes overloaded, the growth of anaerobic microorganisms is inhibited, and as a result, the start-up period of biological treatment is prolonged. There are cases. On the other hand, the present embodiment in which a carrier to which anaerobic microorganisms are attached as a biofilm and a carrier to which the biofilm is not attached are introduced (the carrier 12 is introduced) and these carriers coexist, As described above, since the outflow of biofilm is suppressed, the treatment compared to the case where the carrier without biofilm adhering and the main sludge containing anaerobic microorganisms (including granule sludge) coexist It is possible to suppress deterioration of the water quality of the water, and to suppress the extension of the start-up period of biological treatment. However, in the present embodiment, a carrier to which anaerobic microorganisms are attached as a biofilm and a carrier to which the biofilm is not attached are allowed to coexist, and then sludge (granule containing anaerobic microorganisms) is added. It does not limit the input of main sludge such as sludge). Since the biofilm peeled from the carrier has adhesiveness as described above, for example, while the main sludge is attached to the peeled biofilm, the biofilm is attached to the carrier to which the biofilm is not attached, thereby treating the treated water. Deterioration of water quality and extension of start-up period of biological treatment can be suppressed. In the present embodiment, the amount of main sludge added is, for example, preferably in the range of 1 to 30%, more preferably in the range of 5 to 20% with respect to the reaction tank volume. If the input amount of the main sludge is less than 1%, the advantage of adding the main sludge may not be obtained, and if it exceeds 30%, the water quality of the treated water may be deteriorated.

嫌気性微生物が生物膜となって付着している担体の投入率は、流動床式反応槽10に投入する担体12の総量に対して20%〜95%の範囲が好ましく、20%〜70%の範囲がより好ましい。嫌気性微生物が生物膜となって付着している担体の投入率が95%を超えると、上記範囲を満たす場合と比較して、生物膜が、生物膜の付着していない担体に付着する確率が低くなり、処理水の水質悪化を抑制する効果が低減する場合がある。また、嫌気性微生物が生物膜となって付着した担体は、一般的に製造コストが高いため、結果的に生物処理に掛かるコストも高くなる場合がある。一方、嫌気性微生物が生物膜となって付着している担体の投入率が20%未満であると、上記範囲を満たす場合と比較して、流動床式反応槽10内を十分な嫌気条件に維持することが困難となり、生物処理の立ち上げ期間の長期化を抑制する効果が低減する場合がある。 The loading rate of the carrier to which the anaerobic microorganisms are attached as a biofilm is preferably in the range of 20% to 95%, and preferably 20% to 70% with respect to the total amount of the carriers 12 charged in the fluidized bed reactor 10. Is more preferable. When the input rate of the carrier with anaerobic microorganisms attached as a biofilm exceeds 95%, the probability that the biofilm will attach to the carrier without the biofilm attached is higher than that when the above range is satisfied. May decrease, and the effect of suppressing deterioration of the quality of treated water may be reduced. In addition, since the carrier to which the anaerobic microorganisms are attached as a biofilm is generally high in manufacturing cost, the cost for biological treatment may be high as a result. On the other hand, when the loading rate of the carrier to which the anaerobic microorganisms are attached as a biofilm is less than 20%, the inside of the fluidized bed reaction tank 10 is provided with sufficient anaerobic conditions as compared with the case where the above range is satisfied. It may be difficult to maintain, and the effect of suppressing the extension of the biological treatment start-up period may be reduced.

嫌気性微生物が生物膜となって付着している担体は、例えば、有機性排水に、微生物が付着していない担体を浸漬させて長期間馴養している馴養装置等から確保される。また、例えば、担体を用いた有機性排水の嫌気処理を長期に行っている別系統の処理装置から確保される。 The carrier to which the anaerobic microorganisms are attached as a biofilm is secured from, for example, an acclimatization device in which the carrier to which the microorganisms are not adhered is immersed in organic waste water and is acclimatized for a long period of time. In addition, for example, it is secured from a separate-system treatment device that performs anaerobic treatment of organic wastewater using a carrier for a long period of time.

流動床式反応槽10内に投入する担体12の総量は、槽容積に対して10〜50%の範囲が好ましい。担体12の総量が槽容積に対して10%未満であると反応速度が小さくなる場合があり、50%を超えると担体12の流動性が低下し、長期運転における汚泥の閉塞等で有機性排水がショートパスし、処理水の水質が悪化する場合がある。 The total amount of the carriers 12 charged in the fluidized bed reaction tank 10 is preferably in the range of 10 to 50% with respect to the tank volume. If the total amount of the carrier 12 is less than 10% with respect to the tank volume, the reaction rate may be reduced, and if it exceeds 50%, the fluidity of the carrier 12 is reduced, and organic sludge is blocked due to sludge clogging during long-term operation. May short-pass, and the quality of treated water may deteriorate.

流動床式反応槽10内に投入する担体12の沈降速度は、100〜200m/hrであることが好ましい。沈降速度が100m/hr未満であると、槽内に投入された担体12が浮上し、槽内から流出しやすくなり、200m/hrを超えると、流動状態が悪くなり、有機性排水がショートパスしたり、撹拌のエネルギーが大きくなったりする場合がある。 The settling speed of the carrier 12 charged into the fluidized bed reactor 10 is preferably 100 to 200 m/hr. When the sedimentation speed is less than 100 m/hr, the carrier 12 charged in the tank floats up and easily flows out of the tank. When the sedimentation speed exceeds 200 m/hr, the flow state deteriorates and the organic waste water has a short path. Or the agitation energy may increase.

流動床式反応槽10内に投入する担体12の比重は、槽内部で流動状態を形成するために、例えば、1.0より大きく、真比重として、1.1以上、あるいは見かけ比重として1.01以上のものが好ましい。 The specific gravity of the carrier 12 charged into the fluidized bed reaction tank 10 is, for example, larger than 1.0 in order to form a fluidized state inside the tank, the true specific gravity is 1.1 or more, or the apparent specific gravity is 1. Those of 01 or more are preferable.

生物膜を付着させる前の担体(以下、素担体と称する場合がある)は、従来嫌気性生物処理で使用される担体であれば特に制限されるものではなく、例えば、プラスチック製担体、スポンジ状担体、ゲル状担体等が挙げられる。これらの中では、例えば、生物膜の付着性、担体の流動性等の点、高負荷処理が可能である点等から、ゲル状担体が好ましい。ゲル状担体としては、特に限定されるものではないが、ポリビニルアルコール、ポリエチレングリコール、ポリウレタン等を含んでなる吸水性高分子ゲル状担体等が挙げられる。 The carrier before attaching the biofilm (hereinafter sometimes referred to as elementary carrier) is not particularly limited as long as it is a carrier conventionally used in anaerobic biological treatment, and examples thereof include a plastic carrier and a sponge carrier. Examples thereof include carriers and gel carriers. Among these, the gel-like carrier is preferable from the viewpoints of, for example, the adhesiveness of the biofilm, the fluidity of the carrier, the high load treatment and the like. The gel carrier is not particularly limited, and examples thereof include a water-absorbent polymer gel carrier containing polyvinyl alcohol, polyethylene glycol, polyurethane and the like.

素担体の形状は、特に限定されるものではないが、0.5mm〜20mm程度の径の球状または立方体状(キューブ状)、長方体、円筒状等のものが好ましい。特に、3〜8mm程度の径の球状、または円筒状のゲル状担体が好ましい。 The shape of the base carrier is not particularly limited, but a spherical or cubic shape (cube shape), a rectangular shape, a cylindrical shape having a diameter of about 0.5 mm to 20 mm is preferable. In particular, a spherical or cylindrical gel carrier having a diameter of about 3 to 8 mm is preferable.

本実施形態では、有機性排水を生物処理するに当たり、排水のpHは6.0〜8.0の範囲が好ましく、7.0〜8.0の範囲がより好ましい。排水のpH調整は、例えば、pH調整剤供給ライン(図示せず)から、有機性排水を貯留した原水槽(図示せず)にpH調整剤を供給することにより行われる。有機性排水のpHが上記範囲外であると、生物処理による有機物の分解反応速度が低下する場合がある。 In this embodiment, when biologically treating the organic wastewater, the pH of the wastewater is preferably in the range of 6.0 to 8.0, and more preferably in the range of 7.0 to 8.0. The pH adjustment of the wastewater is performed, for example, by supplying the pH adjustment agent from a pH adjustment agent supply line (not shown) to a raw water tank (not shown) that stores the organic wastewater. If the pH of the organic waste water is out of the above range, the decomposition reaction rate of organic substances by biological treatment may decrease.

pH調整剤としては、塩酸等の酸剤、水酸化ナトリウム等のアルカリ剤等、特に制限されるものではない。また、pH調整剤は、例えば、緩衝作用を持つ重炭酸ナトリウム、燐酸緩衝液等であってもよい。 The pH adjusting agent is not particularly limited, and may be an acid agent such as hydrochloric acid or an alkali agent such as sodium hydroxide. Further, the pH adjustor may be, for example, sodium bicarbonate having a buffering effect, a phosphate buffer solution or the like.

本実施形態では、有機性排水を生物処理するに当たり、嫌気性微生物の分解活性を良好に維持する点等から、例えば、有機性排水に栄養剤を添加することが好ましい。栄養剤としては、特に制限されるものではないが、例えば、炭素源、窒素源、その他無機塩類(Ni,Co,Fe等)等が挙げられる。 In the present embodiment, for biological treatment of organic wastewater, for example, it is preferable to add a nutrient to the organic wastewater from the viewpoint of maintaining good decomposition activity of anaerobic microorganisms. The nutrients are not particularly limited, and examples thereof include carbon sources, nitrogen sources, and other inorganic salts (Ni, Co, Fe, etc.).

本実施形態では、流動床式反応槽10内の水温を20℃以上となるように温度調整することが好ましい。通常、20℃未満であると、分解反応速度が低下する傾向にある。流動床式反応槽10内の水温の温度調整方法は、特に制限されるものではないが、例えば、流動床式反応槽10にヒータ等の加熱装置を設置して、ヒータ等の熱により流動床式反応槽10内の水温を調整する方法等が挙げられる。 In the present embodiment, it is preferable to adjust the temperature of the water in the fluidized bed reactor 10 to 20° C. or higher. Usually, if the temperature is lower than 20°C, the decomposition reaction rate tends to decrease. The method for adjusting the temperature of the water temperature in the fluidized bed reaction tank 10 is not particularly limited. For example, a heating device such as a heater is installed in the fluidized bed reaction tank 10 and the fluidized bed is heated by the heater. Examples include a method of adjusting the water temperature in the reaction chamber 10.

図2は、本実施形態の有機性排水の処理方法に用いる排水処理装置の構成の他の一例を示す模式図である。図2に示す排水処理装置2において、図1に示す排水処理装置1と同様の構成については同一の符号を付し、その説明を省略する。図2に示す排水処理装置2は、上向流型の流動床式反応槽38を備えており、流動床式反応槽38内には、前述の担体12が投入されている。図2に示す流動床式反応槽38は、槽内の底部付近に設けられる排水供給部40を供え、排水供給部40には排水流入ライン14が接続されており、排水流入ライン14及び排水供給部40を通して槽内に有機性排水が通水される。また、図2に示す流動床式反応槽38は、槽内の上部に設けられる越流式の処理水取出部42を備え、処理水取出部42には、処理水排出ライン16が接続されおり、排水を嫌気処理することで得られた処理水が処理水取出部42、処理水排出ライン16を通して系外に排出される。また、図2に示す流動床式反応槽38は、循環ライン44及び循環ポンプ46を備えている。循環ライン44の一端は流動床式反応槽38に接続され、他端は、排水流入ライン14に接続されており、槽内の有機性排水が、循環ライン44を介して循環されるように構成されている。なお、上向流型の流動床式反応槽は、有機性排水を上向流で嫌気処理する装置構成であれば、図2に示す流動床式反応槽38の装置構成に限定されるものではない。 FIG. 2 is a schematic diagram showing another example of the configuration of the wastewater treatment equipment used in the method for treating organic wastewater according to the present embodiment. In the wastewater treatment device 2 shown in FIG. 2, the same components as those of the wastewater treatment device 1 shown in FIG. 1 are designated by the same reference numerals, and the description thereof will be omitted. The wastewater treatment apparatus 2 shown in FIG. 2 includes an upward flow type fluidized bed reaction tank 38, and the above-mentioned carrier 12 is put in the fluidized bed reaction tank 38. The fluidized bed reaction tank 38 shown in FIG. 2 is provided with a drainage supply section 40 provided near the bottom of the tank, and the drainage inflow line 14 is connected to the drainage supply section 40. Organic wastewater is passed through the portion 40 into the tank. Further, the fluidized bed type reaction tank 38 shown in FIG. 2 is provided with an overflow type treated water withdrawal section 42 provided in the upper part of the tank, and the treated water discharge line 16 is connected to the treated water withdrawal section 42. The treated water obtained by anaerobically treating the wastewater is discharged to the outside of the system through the treated water take-out section 42 and the treated water discharge line 16. Further, the fluidized bed reactor 38 shown in FIG. 2 includes a circulation line 44 and a circulation pump 46. One end of the circulation line 44 is connected to the fluidized bed type reaction tank 38, and the other end is connected to the waste water inflow line 14, so that the organic waste water in the tank is circulated through the circulation line 44. Has been done. The upward-flow type fluidized-bed reaction tank is not limited to the apparatus configuration of the fluidized-bed reaction tank 38 shown in FIG. 2 as long as it has an apparatus configuration for anaerobically treating organic wastewater in an upward flow. Absent.

図2に示す排水処理装置2では、有機性排水が、排水供給部40から流動床式反応槽38内に導入され、また、循環ポンプ46の作動により、循環ライン44を介して循環されることで、担体12が流動されて、有機性排水が嫌気処理される。 In the waste water treatment device 2 shown in FIG. 2, the organic waste water is introduced from the waste water supply unit 40 into the fluidized bed reaction tank 38, and is circulated through the circulation line 44 by the operation of the circulation pump 46. Then, the carrier 12 is fluidized and the organic waste water is anaerobically treated.

本実施形態で用いられる流動床式反応槽としては、有機性排水と担体12との接触効率が高い点、高い油脂濃度やSS濃度を有する有機性排水でも処理が可能である点等から、上向流型より撹拌型の流動床式反応槽が好ましい。また、流動床式反応槽は、上向流型、撹拌型に制限されるものではなく、担体12が流動する形式のものであれば特に制限されるものではない。 The fluidized bed reactor used in the present embodiment has a high contact efficiency between the organic wastewater and the carrier 12, and can treat even organic wastewater having a high oil and fat concentration or an SS concentration. A stirred fluidized bed reactor is preferred to a countercurrent reactor. Further, the fluidized bed type reaction tank is not limited to the upward flow type and the stirring type, and is not particularly limited as long as the carrier 12 can flow.

以下、実施例を挙げ、本発明をより具体的に詳細に説明するが、本発明は、以下の実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to the following examples.

(実施例1)
図1に示す排水処理装置を用いて試験を行った。容積600mLのアクリル製反応槽に、嫌気性微生物が生物膜となって付着している担体を担体総量に対して5%投入し、生物膜が付着していない担体(素担体)を担体総量に対して95%投入した(担体の総量は反応槽容積に対して30%)。生物膜付着前の担体(素担体)として、球状のポリビニルアルコール性ゲル状担体(細孔径4〜20μm、直径4mm、比重1.025、沈降速度4cm/sec)を用いた。生物処理の対象排水として、スクロース、カツオエキスを主成分とした食品工場排水(CODcr2500〜3000mg/L)を使用し、上記反応槽への通水を開始した。
(Example 1)
A test was conducted using the wastewater treatment equipment shown in FIG. In an acrylic reaction tank with a volume of 600 mL, 5% of the carrier with anaerobic microorganisms attached as a biofilm is added to the total amount of the carrier, and the carrier with no biofilm attached (base carrier) is added to the total amount of the carrier. On the other hand, 95% was charged (the total amount of the carrier was 30% with respect to the reaction tank volume). A spherical polyvinyl alcohol gel carrier (pore size 4 to 20 μm, diameter 4 mm, specific gravity 1.025, sedimentation speed 4 cm/sec) was used as the carrier (raw carrier) before attachment of the biofilm. As a target wastewater for biological treatment, a wastewater from a food factory mainly containing sucrose and bonito extract (CODcr 2500 to 3000 mg/L) was used, and water passage to the reaction tank was started.

(実施例2)
容積600mLのアクリル製反応槽に、嫌気性微生物が生物膜となって付着している担体を担体総量に対して20%投入し、生物膜が付着していない担体(素担体)を担体総量に対して80%投入した(担体の総量は反応槽容積に対して30%)こと以外は、実施例1と同様の条件とした。
(Example 2)
20% of the carrier to which anaerobic microorganisms are attached as a biofilm is added to the total amount of the carrier in an acrylic reaction tank having a volume of 600 mL, and the carrier to which the biofilm is not attached (base carrier) is added to the total amount of the carrier On the other hand, the same conditions as in Example 1 were used except that 80% was added (the total amount of the carrier was 30% with respect to the reaction tank volume).

(比較例)
嫌気性微生物が生物膜となって付着している担体を投入する代わりに、嫌気性グラニュール汚泥を反応槽容積に対して10%投入し、生物膜が付着していない担体(素担体)を反応槽容積に対して30%投入したこと以外は、実施例1と同様の条件とした。
(Comparative example)
Instead of introducing a carrier to which anaerobic microorganisms are attached as a biofilm, 10% of anaerobic granule sludge is added to the reaction tank volume, and a carrier (biological carrier) to which no biofilm is attached is added. The conditions were the same as in Example 1 except that 30% was added to the reaction tank volume.

<生物処理立ち上げ期間の結果>
実施例1では、有機性排水の通水開始から3週間で、CODcr負荷が、運転安定化の基準となる2kg/m/dayに達した。また、槽内の汚泥量が大きく変化することがなかったため、CODcr負荷を段階的に上昇させ、運転80日目には、10kg/m/dayとなった。実施例2では、有機性排水の通水開始から1週間で、CODcr負荷が、運転安定化の基準となる2kg/m/dayに達した。また、槽内の汚泥量が大きく変化することがなかったため、CODcr負荷を段階的に上昇させ、運転70日目には、18kg/m/dayとなった。これに対し、比較例では、CODcr負荷が運転安定化の基準となる2kg/m/dayに達するまでに、有機性排水の通水開始から約1か月の期間を要した。また、有機性排水の通水開始直後から、嫌気性グラニュールが反応槽から流出したため、負荷設定が困難となり、40日目以降、負荷の上昇が停滞した。最終的に、運転開始から80日経過しても、CODcr負荷は、6kg/m/dayであった。以上により、実施例1、2は、比較例より短期間で生物処理の立ち上げを終了することが可能であることが言える。すなわち、実施例1、2は、生物処理の立ち上げ期間の長期化を抑えることが可能であると言える。
<Results of the start-up period for biological treatment>
In Example 1, the CODcr load reached 2 kg/m 3 /day, which is the standard for operation stabilization, within 3 weeks from the start of water flow of the organic waste water. Further, since the amount of sludge in the tank did not change significantly, the CODcr load was increased stepwise, resulting in 10 kg/m 3 /day on the 80th day of operation. In Example 2, the CODcr load reached 2 kg/m 3 /day, which is the standard for operation stabilization, within one week from the start of water flow of the organic waste water. Further, since the amount of sludge in the tank did not change significantly, the CODcr load was increased stepwise, and 18 kg/m 3 /day was obtained on the 70th day of operation. On the other hand, in the comparative example, it took about one month from the start of water flow of the organic waste water until the CODcr load reached 2 kg/m 3 /day, which is the standard for operation stabilization. Immediately after the start of the passage of the organic waste water, the anaerobic granules flowed out of the reaction tank, which made it difficult to set the load, and after 40 days, the increase in the load stagnated. Finally, the CODcr load was 6 kg/m 3 /day even after 80 days from the start of operation. From the above, it can be said that Examples 1 and 2 can complete the start-up of the biological treatment in a shorter period of time than the comparative example. That is, it can be said that Examples 1 and 2 can suppress the extension of the start-up period of the biological treatment.

<処理水SS濃度の結果>
実施例及び比較例における処理水SS濃度を測定した。処理水SS濃度は、下水試験法にしたがって、生物処理の立ち上げ直後から15日目までに測定した処理水SS濃度の平均値である。実施例1の処理水SS濃度は9.4mg/Lであり、実施例2の処理水SS濃度は、15.8mg/Lであった。一方、比較例の処理水SS濃度は867mg/Lであった。以上により、実施例1〜2は、比較例より、処理水の水質悪化を抑制することが可能であると言える。実施例1〜2の結果から、生物膜が付着している担体の投入率を70%、95%、100%とした場合、各処理水SS濃度は39.0mg/L、49.5mg/L、51.6mg/Lと推定された。ここで、一般的な放流基準は50mg/L以下に設定されることを考慮すれば、生物膜が付着している担体の投入率は、担体の総量に対して95%以下であることが好ましい。また、放流基準を40mg/Lとより厳しく設定した場合には、生物膜が付着している担体の投入率は、担体の総量に対して70%以下であることがより好ましい。これに加えて、前述の生物処理の立ち上げ期間を考慮すれば、生物膜が付着している担体の投入率は、担体の総量に対して20%〜95%の範囲であることが好ましく、20%〜70%の範囲であることがより好ましいと言える。
<Results of SS concentration of treated water>
The SS concentration of the treated water in the examples and comparative examples was measured. The SS concentration of the treated water is an average value of the SS concentration of the treated water measured 15 days after the start of the biological treatment according to the sewage test method. The SS concentration of the treated water of Example 1 was 9.4 mg/L, and the SS concentration of the treated water of Example 2 was 15.8 mg/L. On the other hand, the SS concentration of the treated water of Comparative Example was 867 mg/L. From the above, it can be said that Examples 1 and 2 can suppress deterioration of the water quality of the treated water as compared with the Comparative Example. From the results of Examples 1 and 2, when the input rates of the carrier to which the biofilm is attached are 70%, 95%, and 100%, the SS concentrations of the treated waters are 39.0 mg/L and 49.5 mg/L, respectively. It was estimated to be 51.6 mg/L. Here, considering that the general release standard is set to 50 mg/L or less, the input rate of the carrier to which the biofilm is attached is preferably 95% or less with respect to the total amount of the carrier. .. Further, when the release standard is set to 40 mg/L, which is more strict, the loading rate of the carrier to which the biofilm is attached is more preferably 70% or less with respect to the total amount of the carrier. In addition to this, considering the start-up period of the biological treatment described above, the input rate of the carrier to which the biofilm is attached is preferably in the range of 20% to 95% with respect to the total amount of the carrier, It can be said that the range is more preferably 20% to 70%.

1,2 排水処理装置、10,38 流動床式反応槽、12 担体、14 排水流入ライン、16 処理水排出ライン、18 ドラフトチューブ、20 撹拌装置、22 モータ、24 撹拌翼、26 シャフト、40 排水供給部、42 処理水取出部、44 循環ライン、46 循環ポンプ。 1, 2 waste water treatment equipment, 10, 38 fluidized bed type reaction tank, 12 carrier, 14 waste water inflow line, 16 treated water discharge line, 18 draft tube, 20 stirring device, 22 motor, 24 stirring blades, 26 shaft, 40 drainage Supply section, 42 treated water extraction section, 44 circulation line, 46 circulation pump.

Claims (3)

有機性排水を流動床式反応槽により嫌気条件で生物処理する有機性排水の処理方法であって、
前記生物処理を立ち上げる際には、前記反応槽内に、嫌気性微生物が生物膜となって付着している担体と、前記生物膜が付着していない担体とを共存させ、嫌気性グラニュール汚泥を共存させずに、前記有機性排水を通水し、担体あたりのCODcr負荷を30kg/m /day以上に立ち上げ、
前記担体はゲル状担体であり、
前記反応槽は、撹拌型反応槽であり、
前記担体に付着している前記生物膜の厚みは20μm以上であることを特徴とする有機性排水の処理方法。
A method of treating organic wastewater by anaerobic conditions in a fluidized bed reactor,
When starting up the biological treatment, in the reaction tank, a carrier to which anaerobic microorganisms are attached as a biofilm and a carrier to which the biofilm is not attached are allowed to coexist, and anaerobic granules are used. The organic wastewater is passed through without coexisting sludge, and the CODcr load per carrier is raised to 30 kg/m 3 /day or more,
The carrier is a gel carrier,
The reaction tank is a stirred reaction tank,
The method for treating organic wastewater, wherein the thickness of the biofilm attached to the carrier is 20 μm or more .
前記反応槽へ投入する前記生物膜が付着している担体の投入率は、前記反応槽へ投入する担体の総量に対して20%〜95%の範囲であることを特徴とする請求項1記載の有機性排水の処理方法。 2. The loading rate of the carrier having the biofilm attached to the reaction tank is in the range of 20% to 95% with respect to the total amount of the carriers charged to the reaction tank. Method for treating organic wastewater. 前記反応槽へ投入する前記生物膜が付着している担体の投入率は、前記反応槽へ投入する担体の総量に対して20%〜70%の範囲であることを特徴とする請求項1記載の有機性排水の処理方法。 The loading rate of the carrier with the biofilm attached to the reaction tank is in the range of 20% to 70% with respect to the total amount of the carriers to be added to the reaction tank. Method for treating organic wastewater.
JP2015256855A 2015-12-28 2015-12-28 Organic wastewater treatment method Active JP6732448B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015256855A JP6732448B2 (en) 2015-12-28 2015-12-28 Organic wastewater treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015256855A JP6732448B2 (en) 2015-12-28 2015-12-28 Organic wastewater treatment method

Publications (2)

Publication Number Publication Date
JP2017119248A JP2017119248A (en) 2017-07-06
JP6732448B2 true JP6732448B2 (en) 2020-07-29

Family

ID=59271324

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015256855A Active JP6732448B2 (en) 2015-12-28 2015-12-28 Organic wastewater treatment method

Country Status (1)

Country Link
JP (1) JP6732448B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7263075B2 (en) * 2019-03-25 2023-04-24 オルガノ株式会社 water treatment method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3894329B2 (en) * 2004-06-18 2007-03-22 株式会社日立プラントテクノロジー Method of operating anaerobic ammonia oxidation tank and anaerobic ammonia oxidation apparatus
JP2006061879A (en) * 2004-08-30 2006-03-09 Hitachi Plant Eng & Constr Co Ltd Waste water treatment method and device
JP6196767B2 (en) * 2012-11-21 2017-09-13 株式会社クラレ Anaerobic wastewater treatment method using carrier
JP6046991B2 (en) * 2012-11-21 2016-12-21 株式会社クラレ Anaerobic wastewater treatment method using carrier

Also Published As

Publication number Publication date
JP2017119248A (en) 2017-07-06

Similar Documents

Publication Publication Date Title
JP5963668B2 (en) Wastewater treatment method
JP6761245B2 (en) How to treat organic wastewater
JP6241187B2 (en) Anaerobic treatment method and anaerobic treatment apparatus
JP5994253B2 (en) Biological treatment apparatus and method for organic wastewater
JP5685902B2 (en) Organic wastewater treatment method
JP2014024032A (en) Anaerobic biological treatment method and anaerobic biological treatment device
WO2012169381A1 (en) Method and apparatus for biological treatment of organic wastewater
JP6732448B2 (en) Organic wastewater treatment method
JP6821498B2 (en) How to set up a nitrogen-containing wastewater treatment system
JP6442856B2 (en) Biological treatment method and apparatus for organic wastewater
TWI526403B (en) Wastewater treating apparatus
JP6422683B2 (en) Anaerobic biological treatment apparatus and anaerobic biological treatment method
JP5869208B2 (en) Waste water treatment method and waste water treatment apparatus
JP2013230413A (en) Method and apparatus for treating nitrogen-containing waste water
JP2012076000A (en) One tank type anaerobic wastewater treatment apparatus
JP5620188B2 (en) Anaerobic digestion method
JP6899104B2 (en) Wastewater treatment method and wastewater treatment equipment
JP2015160202A (en) Method and apparatus for biological treatment of 1,4-dioxane-containing organic waste water
WO2019244969A1 (en) Water treatment method and water treatment apparatus
JP7263075B2 (en) water treatment method
JP6675283B2 (en) Anaerobic treatment of organic wastewater
JP6644586B2 (en) Anaerobic wastewater treatment method using carrier
JP2019217449A (en) Wastewater treatment method
JP6960269B2 (en) Organic matter-containing water treatment method and organic matter-containing water treatment equipment
JP2014198284A (en) Anaerobic treatment apparatus for organic waste water

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180822

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190613

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190702

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20190830

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191018

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200310

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200630

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200708

R150 Certificate of patent or registration of utility model

Ref document number: 6732448

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250