JP6732005B2 - 抽象的な関係及びスパースラベルに基づく物理的状況の機械学習 - Google Patents
抽象的な関係及びスパースラベルに基づく物理的状況の機械学習 Download PDFInfo
- Publication number
- JP6732005B2 JP6732005B2 JP2018501995A JP2018501995A JP6732005B2 JP 6732005 B2 JP6732005 B2 JP 6732005B2 JP 2018501995 A JP2018501995 A JP 2018501995A JP 2018501995 A JP2018501995 A JP 2018501995A JP 6732005 B2 JP6732005 B2 JP 6732005B2
- Authority
- JP
- Japan
- Prior art keywords
- signal data
- feature vectors
- classification
- processors
- clusters
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N20/00—Machine learning
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B13/00—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
- G05B13/02—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
- G05B13/0265—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric the criterion being a learning criterion
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B23/00—Testing or monitoring of control systems or parts thereof
- G05B23/02—Electric testing or monitoring
- G05B23/0205—Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
- G05B23/0259—Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterized by the response to fault detection
- G05B23/0283—Predictive maintenance, e.g. involving the monitoring of a system and, based on the monitoring results, taking decisions on the maintenance schedule of the monitored system; Estimating remaining useful life [RUL]
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N20/00—Machine learning
- G06N20/10—Machine learning using kernel methods, e.g. support vector machines [SVM]
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N5/00—Computing arrangements using knowledge-based models
- G06N5/01—Dynamic search techniques; Heuristics; Dynamic trees; Branch-and-bound
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B13/00—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
- G05B13/02—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
- G05B13/0205—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric not using a model or a simulator of the controlled system
- G05B13/0255—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric not using a model or a simulator of the controlled system the criterion being a time-optimal performance criterion
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B13/00—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
- G05B13/02—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
- G05B13/0205—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric not using a model or a simulator of the controlled system
- G05B13/026—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric not using a model or a simulator of the controlled system using a predictor
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B23/00—Testing or monitoring of control systems or parts thereof
- G05B23/02—Electric testing or monitoring
- G05B23/0205—Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
- G05B23/0259—Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterized by the response to fault detection
- G05B23/0275—Fault isolation and identification, e.g. classify fault; estimate cause or root of failure
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/048—Interaction techniques based on graphical user interfaces [GUI]
- G06F3/0484—Interaction techniques based on graphical user interfaces [GUI] for the control of specific functions or operations, e.g. selecting or manipulating an object, an image or a displayed text element, setting a parameter value or selecting a range
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N20/00—Machine learning
- G06N20/20—Ensemble learning
Landscapes
- Engineering & Computer Science (AREA)
- Software Systems (AREA)
- Theoretical Computer Science (AREA)
- Artificial Intelligence (AREA)
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- Evolutionary Computation (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Medical Informatics (AREA)
- General Engineering & Computer Science (AREA)
- Computing Systems (AREA)
- Mathematical Physics (AREA)
- Data Mining & Analysis (AREA)
- Automation & Control Theory (AREA)
- Health & Medical Sciences (AREA)
- Computational Linguistics (AREA)
- Information Retrieval, Db Structures And Fs Structures Therefor (AREA)
- Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
- Testing And Monitoring For Control Systems (AREA)
Applications Claiming Priority (5)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US201562193449P | 2015-07-16 | 2015-07-16 | |
| US62/193,449 | 2015-07-16 | ||
| US15/195,873 US10552762B2 (en) | 2015-07-16 | 2016-06-28 | Machine learning of physical conditions based on abstract relations and sparse labels |
| US15/195,873 | 2016-06-28 | ||
| PCT/US2016/042465 WO2017011734A1 (en) | 2015-07-16 | 2016-07-15 | Machine learning of physical conditions based on abstract relations and sparse labels |
Publications (3)
| Publication Number | Publication Date |
|---|---|
| JP2018533096A JP2018533096A (ja) | 2018-11-08 |
| JP2018533096A5 JP2018533096A5 (enExample) | 2019-08-29 |
| JP6732005B2 true JP6732005B2 (ja) | 2020-07-29 |
Family
ID=57758163
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2018501995A Active JP6732005B2 (ja) | 2015-07-16 | 2016-07-15 | 抽象的な関係及びスパースラベルに基づく物理的状況の機械学習 |
Country Status (5)
| Country | Link |
|---|---|
| US (1) | US10552762B2 (enExample) |
| EP (1) | EP3323052A4 (enExample) |
| JP (1) | JP6732005B2 (enExample) |
| CA (1) | CA2992297C (enExample) |
| WO (1) | WO2017011734A1 (enExample) |
Families Citing this family (26)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US10296430B2 (en) * | 2016-04-06 | 2019-05-21 | Nec Corporation | Mobile phone with system failure prediction using long short-term memory neural networks |
| US11138514B2 (en) | 2017-03-23 | 2021-10-05 | Futurewei Technologies, Inc. | Review machine learning system |
| EP3619649A4 (en) * | 2017-05-05 | 2021-03-17 | Arimo, LLC | ANALYSIS OF SEQUENCE DATA USING NEURAL NETWORKS |
| US10474667B2 (en) * | 2017-07-29 | 2019-11-12 | Vmware, Inc | Methods and systems to detect and correct outliers in a dataset stored in a data-storage device |
| JP6648078B2 (ja) * | 2017-08-03 | 2020-02-14 | 株式会社toor | 状態判定装置、状態判定方法及び状態判定プログラム |
| JP6826021B2 (ja) * | 2017-11-20 | 2021-02-03 | 株式会社日立製作所 | ストレージシステム |
| US11074272B1 (en) | 2017-12-21 | 2021-07-27 | Seeq Corporation | System and method for managing streaming calculations |
| RO133453A2 (ro) * | 2017-12-28 | 2019-06-28 | Siemens Aktiengesellschaft | Motor de procesare a semnalelor şi evenimentelor |
| JP6871877B2 (ja) * | 2018-01-04 | 2021-05-19 | 株式会社東芝 | 情報処理装置、情報処理方法及びコンピュータプログラム |
| US11972178B2 (en) * | 2018-02-27 | 2024-04-30 | Falkonry Inc. | System and method for explanation of condition predictions in complex systems |
| JP7081953B2 (ja) * | 2018-03-28 | 2022-06-07 | 株式会社日立システムズ | アラート通知装置およびアラート通知方法 |
| US10635984B2 (en) * | 2018-07-23 | 2020-04-28 | Falkonry Inc. | System and method for the assessment of condition in complex operational systems based on multi-level pattern recognition |
| WO2020026332A1 (ja) * | 2018-07-31 | 2020-02-06 | 三菱電機株式会社 | 情報処理装置、プログラム及び情報処理方法 |
| CN113287072B (zh) * | 2018-11-09 | 2024-08-09 | 奥格瑞系统有限公司 | 非平稳机器性能的自动分析 |
| KR20210100699A (ko) * | 2018-12-12 | 2021-08-17 | 제네럴 일렉트릭 컴퍼니 | 하이브리드 발전소 |
| CN109974835B (zh) | 2018-12-29 | 2021-06-04 | 无锡联河光子技术有限公司 | 一种基于光纤信号特征的振动检测识别和时空定位方法和系统 |
| US11821973B2 (en) * | 2019-05-22 | 2023-11-21 | Raytheon Company | Towed array superposition tracker |
| JP6641056B1 (ja) * | 2019-07-16 | 2020-02-05 | 株式会社東芝 | 機器の異常診断方法および機器の異常診断システム |
| CN110795703B (zh) * | 2019-09-20 | 2024-04-16 | 华为技术有限公司 | 数据防窃取方法和相关产品 |
| JP7003334B2 (ja) * | 2019-09-30 | 2022-01-20 | 三菱電機株式会社 | 情報処理装置、プログラム及び情報処理方法 |
| JPWO2021079472A1 (enExample) * | 2019-10-24 | 2021-04-29 | ||
| US12093901B2 (en) * | 2020-08-25 | 2024-09-17 | ANI Technologies Private Limited | Predictive maintenance of vehicle components |
| JP7017654B2 (ja) * | 2021-01-14 | 2022-02-08 | 株式会社日立製作所 | ストレージシステム |
| US11809375B2 (en) | 2021-07-06 | 2023-11-07 | International Business Machines Corporation | Multi-dimensional data labeling |
| US20230206058A1 (en) * | 2021-12-29 | 2023-06-29 | Fidelity Information Services, Llc | Processing sequences of multi-modal entity features using convolutional neural networks |
| US20240187319A1 (en) * | 2022-12-01 | 2024-06-06 | Liveperson, Inc. | Methods and systems for implementing dynamic-action systems in real-time data streams |
Family Cites Families (11)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US7373283B2 (en) | 2001-02-22 | 2008-05-13 | Smartsignal Corporation | Monitoring and fault detection system and method using improved empirical model for range extrema |
| US20020183971A1 (en) | 2001-04-10 | 2002-12-05 | Wegerich Stephan W. | Diagnostic systems and methods for predictive condition monitoring |
| US7451003B2 (en) | 2004-03-04 | 2008-11-11 | Falconeer Technologies Llc | Method and system of monitoring, sensor validation and predictive fault analysis |
| US8386401B2 (en) * | 2008-09-10 | 2013-02-26 | Digital Infuzion, Inc. | Machine learning methods and systems for identifying patterns in data using a plurality of learning machines wherein the learning machine that optimizes a performance function is selected |
| US8620853B2 (en) | 2011-07-19 | 2013-12-31 | Smartsignal Corporation | Monitoring method using kernel regression modeling with pattern sequences |
| EP2555019B1 (de) * | 2011-08-05 | 2015-08-05 | Sick Ag | Induktiver Näherungssensor |
| US8886574B2 (en) | 2012-06-12 | 2014-11-11 | Siemens Aktiengesellschaft | Generalized pattern recognition for fault diagnosis in machine condition monitoring |
| US20150095247A1 (en) * | 2013-10-02 | 2015-04-02 | Eventbrite, Inc. | Classifying Fraud on Event Management Systems |
| GB201320216D0 (en) * | 2013-11-15 | 2014-01-01 | Microsoft Corp | Predicting call quality |
| EP3120204A1 (en) * | 2014-03-19 | 2017-01-25 | Northern VO ApS | Method and system for monitoring a vehicle |
| US20160352759A1 (en) * | 2015-05-25 | 2016-12-01 | Yan Zhai | Utilizing Big Data Analytics to Optimize Information Security Monitoring And Controls |
-
2016
- 2016-06-28 US US15/195,873 patent/US10552762B2/en active Active
- 2016-07-15 JP JP2018501995A patent/JP6732005B2/ja active Active
- 2016-07-15 WO PCT/US2016/042465 patent/WO2017011734A1/en not_active Ceased
- 2016-07-15 CA CA2992297A patent/CA2992297C/en active Active
- 2016-07-15 EP EP16825240.1A patent/EP3323052A4/en not_active Ceased
Also Published As
| Publication number | Publication date |
|---|---|
| JP2018533096A (ja) | 2018-11-08 |
| EP3323052A4 (en) | 2018-10-10 |
| CA2992297A1 (en) | 2017-01-19 |
| CA2992297C (en) | 2021-06-29 |
| WO2017011734A1 (en) | 2017-01-19 |
| US10552762B2 (en) | 2020-02-04 |
| US20170017901A1 (en) | 2017-01-19 |
| EP3323052A1 (en) | 2018-05-23 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP6732005B2 (ja) | 抽象的な関係及びスパースラベルに基づく物理的状況の機械学習 | |
| US11295238B2 (en) | Data orchestration platform management | |
| Angelopoulos et al. | Tackling faults in the industry 4.0 era—a survey of machine-learning solutions and key aspects | |
| US11409962B2 (en) | System and method for automated insight curation and alerting | |
| US20210142143A1 (en) | Artificial intelligence systems and methods | |
| Alongi et al. | Tiny neural networks for environmental predictions: An integrated approach with miosix | |
| US20200210881A1 (en) | Cross-domain featuring engineering | |
| CN113158664B (zh) | 用于神经语言行为识别系统的词法分析器 | |
| WO2017034512A1 (en) | Interactive analytics on time series | |
| EP4500386A1 (en) | Recommendation for operations and asset failure prevention background | |
| WO2021069073A1 (en) | Event detection in a data stream | |
| WO2025171281A1 (en) | Detection of electronic device presence using emitted wi-fi signals | |
| EP4031838A1 (en) | Runtime assessment of sensors | |
| WO2024043888A1 (en) | Real time detection, prediction and remediation of machine learning model drift in asset hierarchy based on time-series data | |
| WO2025042753A1 (en) | Time-series data forecasting via multi-modal augmentation and fusion | |
| US20230206111A1 (en) | Compound model for event-based prognostics | |
| Dhinakaran et al. | Intelligent IoT-Driven Advanced Predictive Maintenance System for Industrial Applications | |
| JP7654086B2 (ja) | 降雨林における違法伐採のためのセンサ融合を伴う動的音響シグネチャシステム | |
| WO2019168625A1 (en) | System and method for explanation of condition predictions in complex systems | |
| Le et al. | An Internet of Things-Integrated Deep Learning Model for Fault Diagnosis in Industrial Rotating Machines | |
| US11610140B2 (en) | Predicting fatigue of an asset that heals | |
| Priyadarshini | An Explainable Autoencoder-Based Feature Extraction Combined with CNN-LSTM-PSO Model for Improved Predictive Maintenance. | |
| Mascolini et al. | VARADE: a Variational-based AutoRegressive model for Anomaly Detection on the Edge | |
| Dalmia et al. | Anomalous Sound Pattern Detection for Machine Health Monitoring | |
| Abdulkareem | Predictive Maintenance in Industrial Equipment Using IoT Devices |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20190716 |
|
| A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20190716 |
|
| TRDD | Decision of grant or rejection written | ||
| A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20200610 |
|
| A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20200707 |
|
| R150 | Certificate of patent or registration of utility model |
Ref document number: 6732005 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |