JP6730792B2 - Thermophysical property measuring device and thermophysical property measuring method - Google Patents

Thermophysical property measuring device and thermophysical property measuring method Download PDF

Info

Publication number
JP6730792B2
JP6730792B2 JP2015190441A JP2015190441A JP6730792B2 JP 6730792 B2 JP6730792 B2 JP 6730792B2 JP 2015190441 A JP2015190441 A JP 2015190441A JP 2015190441 A JP2015190441 A JP 2015190441A JP 6730792 B2 JP6730792 B2 JP 6730792B2
Authority
JP
Japan
Prior art keywords
measured
laser light
infrared
thermal diffusivity
irradiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015190441A
Other languages
Japanese (ja)
Other versions
JP2017067508A (en
Inventor
羽鳥 仁人
仁人 羽鳥
孝昭 粟野
孝昭 粟野
関根 誠
誠 関根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bethel KK
Original Assignee
Bethel KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bethel KK filed Critical Bethel KK
Priority to JP2015190441A priority Critical patent/JP6730792B2/en
Publication of JP2017067508A publication Critical patent/JP2017067508A/en
Application granted granted Critical
Publication of JP6730792B2 publication Critical patent/JP6730792B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Description

本発明は、周期加熱放射測温法を用いた熱物性測定装置及び熱物性測定方法に関する。 The present invention relates to a thermophysical property measuring device and a thermophysical property measuring method using periodic heating radiation thermometry.

近年、電子機器、デバイスなどの開発において、それらの性能や安全性を向上させるために、材料の熱物性を正確に測定することの重要性が高まっている。熱物性の一つである熱拡散率を測定する装置としては、周波数変調されたレーザ光により被測定物を加熱し、被測定物の温度変化の周期とレーザ光の周期との位相差から、熱拡散率を測定する装置が知られている。 In recent years, in the development of electronic devices, devices, and the like, it is becoming more important to accurately measure thermophysical properties of materials in order to improve their performance and safety. As a device for measuring the thermal diffusivity, which is one of the thermophysical properties, the object to be measured is heated by frequency-modulated laser light, and the phase difference between the cycle of temperature change and the cycle of the laser light of the object to be measured, Devices for measuring thermal diffusivity are known.

例えば、特許文献1には、試料を非接触でスポット周期加熱し、加熱された試料から放射される熱エネルギを温度に換算して、温度分布として画像表示し、さらに、加熱周期と熱画像計測周期との位相差に基いて試料の面内方向の熱拡散率を演算することができる熱拡散率測定装置が記載されている。特許文献1の熱拡散率測定装置は、試料に一定の周波数のレーザ光を照射し、照射面とは反対側の面における試料の温度変化を赤外線サーモグラフィにより計測することによって、異方性のある試料であっても、試料全体の面内方向(レーザ光の照射方向と直交する面に平行な方向を面内方向という)の熱拡散率を測定することを可能としている。 For example, in Patent Document 1, a sample is heated in a spot cycle in a non-contact manner, thermal energy radiated from the heated sample is converted into a temperature, and an image is displayed as a temperature distribution. Further, a heating cycle and a thermal image measurement are performed. A thermal diffusivity measuring device capable of calculating the thermal diffusivity in the in-plane direction of the sample based on the phase difference from the period is described. The thermal diffusivity measuring device of Patent Document 1 has anisotropy by irradiating the sample with laser light having a constant frequency and measuring the temperature change of the sample on the surface opposite to the irradiation surface by infrared thermography. Even for a sample, it is possible to measure the thermal diffusivity in the in-plane direction of the entire sample (the direction parallel to the plane orthogonal to the laser light irradiation direction is referred to as the in-plane direction).

また、特許文献2には、試料に加熱用のレーザ光を周期的に照射し、試料の周期的な温度変化から熱拡散率の測定を行う熱物性測定装置が記載されている。特許文献2には、光ファイバを試料に対して所定の角度に配置し、光ファイバ光学系における試料表面側の加熱軸と、赤外線検出器における試料表面側の検出軸をずらすことで、試料表層全体の面内方向の熱拡散率を測定することが記載されている。 Further, Patent Document 2 describes a thermophysical property measuring device that periodically irradiates a sample with a laser beam for heating and measures the thermal diffusivity from the cyclic temperature change of the sample. In Patent Document 2, the optical fiber is arranged at a predetermined angle with respect to the sample, and the heating axis on the sample surface side in the optical fiber optical system and the detection axis on the sample surface side in the infrared detector are displaced from each other, so that the sample surface layer Measuring the overall in-plane thermal diffusivity is described.

特開2015−108546号公報JP, 2005-108546, A 特開2009−139163号公報JP, 2009-139163, A

ところで、例えば、炭素繊維強化プラスチック(CFRP)などの複合材料は、表層の繊維構造の一部分を見れば異方性を有しているが、材料全体としては異方性を有しないことがある。また、2種以上の材料を積層させた積層体などにおいては、積層体全体の熱拡散率と、各層における熱拡散率とは、当然に異なるものである。このように、測定面からの深さによって熱拡散率が異なる試料については、任意の深さにおける熱拡散率を測定することで、試料の熱物性をより正確に把握することができる。しかし、特許文献1に記載されている熱物性測定装置では、試料のレーザ光の照射された面を表面とすると、裏面にて熱エネルギーを検出しているため、材料の表層の異方性を評価することは困難であった。また、試料の厚さが厚くなると、精度の高い測定ができなくなるという課題も有していた。また、特許文献2に記載されている熱物性測定装置では、レーザ光の照射された試料の表面で赤外線を検知しているため、試料の厚さに関係なく、材料の表層の異方性を評価することができるが、光ファイバ光学系における試料表面側の加熱軸と、赤外線検出器における試料表面側の検出軸が同方向ではないため、異方性の測定が十分に正確に行われない、という課題を有した。 By the way, for example, a composite material such as carbon fiber reinforced plastic (CFRP) has anisotropy when a part of the fiber structure of the surface layer is seen, but the material as a whole may not have anisotropy. In addition, in a laminated body in which two or more materials are laminated, the thermal diffusivity of the entire laminated body and the thermal diffusivity of each layer are naturally different. As described above, for a sample having a different thermal diffusivity depending on the depth from the measurement surface, by measuring the thermal diffusivity at an arbitrary depth, the thermophysical properties of the sample can be grasped more accurately. However, in the thermophysical property measuring device described in Patent Document 1, assuming that the surface of the sample irradiated with the laser beam is the front surface, the thermal energy is detected on the back surface, so that the anisotropy of the surface layer of the material is It was difficult to evaluate. Further, there is also a problem that if the thickness of the sample becomes thick, it becomes impossible to perform highly accurate measurement. Further, in the thermophysical property measuring device described in Patent Document 2, since infrared rays are detected on the surface of the sample irradiated with the laser beam, the anisotropy of the surface layer of the material is detected regardless of the thickness of the sample. It can be evaluated, but the heating axis on the sample surface side in the optical fiber optical system and the detection axis on the sample surface side in the infrared detector are not in the same direction, so the anisotropy measurement is not sufficiently accurate. , Had the problem.

本発明は、上記のような課題を鑑みてなされたものである。すなわち、本発明の課題は、試料の任意の深さにおける熱拡散率を測定し、試料の異方性を評価することが可能な熱物性測定装置を提供することを目的とする。 The present invention has been made in view of the above problems. That is, an object of the present invention is to provide a thermophysical property measuring device capable of measuring the thermal diffusivity at an arbitrary depth of a sample and evaluating the anisotropy of the sample.

本発明は、周波数変調された加熱用のレーザ光を被測定物に照射し、被測定物から放射される赤外線を検出することで、被測定物の周期的な温度変化から熱拡散率を測定する周期加熱放射測温法を用いた熱物性測定装置であって、被測定物に周波数変調された加熱用のレーザ光を照射するレーザ光照射手段と、レーザ光の照射によって被測定物から放射される赤外線を検出する赤外線検出手段と、赤外線検出手段によって測定される複数の測定点における被測定物の温度変化の周期と、レーザ光の周期との複数の位相差から熱拡散率を算出する熱拡散率演算手段と、レーザ光照射手段から照射されるレーザ光の変調周波数を制御する変調周波数制御手段とを備えた熱物性測定装置に関する。 The present invention irradiates a DUT with frequency-modulated laser light for heating and detects infrared rays emitted from the DUT, thereby measuring the thermal diffusivity from a periodic temperature change of the DUT. A thermophysical property measuring apparatus using periodic heating radiation thermometry, which irradiates a laser beam for heating a measured object with a frequency-modulated laser beam for heating, and radiates the laser beam from the measured object. Infrared detecting means for detecting infrared rays, a cycle of temperature change of the object to be measured at a plurality of measuring points measured by the infrared detecting means, and a thermal diffusivity are calculated from a plurality of phase differences with a cycle of laser light. The present invention relates to a thermophysical property measuring device including thermal diffusivity calculating means and modulation frequency control means for controlling the modulation frequency of laser light emitted from a laser light emitting means.

本発明は、さらに、レーザ光の照射によって被測定物から放射される赤外線を集光して赤外線検出手段に入力する赤外線集光手段を備え、レーザ光照射手段と、赤外線検出手段とが、被測定物に対して同一側に配置され、赤外線集光手段が、赤外線検出手段と被測定物とを結ぶ直線上に光軸を有するように配置され、該光軸上における赤外線集光手段と被測定物との間に、前記レーザ光照射手段から照射されたレーザ光を、該光軸と略平行な方向で被測定物へと反射するレーザ光反射手段を備えることが好ましい。 The present invention further comprises an infrared condensing means for condensing the infrared light emitted from the object to be measured by the irradiation of the laser light and inputting the infrared light to the infrared detecting means, wherein the laser light irradiating means and the infrared detecting means are The infrared ray condensing means is arranged on the same side with respect to the object to be measured, and the infrared ray condensing means is arranged so as to have an optical axis on a straight line connecting the infrared ray detecting means and the object to be measured. It is preferable to include a laser beam reflecting means for reflecting the laser beam emitted from the laser beam emitting means to the object to be measured in a direction substantially parallel to the optical axis, between the object and the object to be measured.

本発明は、さらに、被測定物の各測定点における前記位相差または前記熱拡散率を、色相、彩度、及び明度からなる群より選ばれた少なくとも1つ以上の色情報と対応させ、2次元的または3次元的にマッピングして表示する表示出力手段を備えることが好ましい。 The present invention further associates the phase difference or the thermal diffusivity at each measurement point of the object to be measured with at least one color information selected from the group consisting of hue, saturation, and lightness. It is preferable to provide a display output means for performing a two-dimensional or three-dimensional mapping and displaying.

本発明は、周波数変調された加熱用のレーザ光を被測定物に照射し、被測定物の温度変化を検出することで、被測定物の周期的な温度変化から熱拡散率を測定する周期加熱放射測温法を用いた熱物性測定方法であって、被測定物に周波数変調された加熱用のレーザ光を照射する照射ステップと、レーザ光の照射による被測定物の温度変化を検出する検出ステップと、検出された複数の測定点における被測定物の温度変化の周期と、レーザ光の周期との複数の位相差から熱拡散率を算出する算出ステップと、照射されるレーザ光の変調周波数を制御することで、温度波が被測定物に浸透する深さを制御する浸透深さ制御ステップとを備えた熱物性測定方法に関する。 The present invention irradiates an object to be measured with a frequency-modulated laser beam for heating, detects a temperature change of the object to be measured, and measures a thermal diffusivity from a periodic temperature change of the object to be measured. A thermophysical property measuring method using heating radiation thermometry, which comprises an irradiation step of irradiating an object to be measured with a frequency-modulated laser beam for heating, and detecting a temperature change of the object to be measured by the irradiation of the laser beam. A detection step, a calculation step of calculating the thermal diffusivity from a plurality of phase differences between the temperature change cycle of the object to be measured at the detected plurality of measurement points and the cycle of the laser light, and modulation of the irradiated laser light. And a permeation depth control step for controlling the depth at which the temperature wave permeates the object to be measured by controlling the frequency.

本発明は、さらに、前記検出ステップが、赤外線放射温度計、赤外線カメラ、またはサーモリフレクタンス法を用いて被測定物の温度変化を検出するステップであることが好ましい。 In the present invention, it is preferable that the detecting step is a step of detecting a temperature change of the object to be measured using an infrared radiation thermometer, an infrared camera, or a thermoreflectance method.

本発明は、さらに、前記照射ステップと、前記検出ステップと、前記算出ステップと、前記浸透深さ制御ステップとを、赤外線カメラを備えた熱物性測定装置により実行し、該熱物性測定装置が、被測定物に周波数変調された加熱用のレーザ光を照射するレーザ光照射手段と、レーザ光の照射によって被測定物から放射される赤外線を集光する赤外線集光手段と、赤外線集光手段によって集光された赤外線を検出する赤外線カメラと、赤外線カメラによって測定される複数の測定点における被測定物の温度変化の周期と、レーザ光の周期との複数の位相差から熱拡散率を算出する熱拡散率演算手段と、レーザ光照射手段から照射されるレーザ光の変調周波数を制御する変調周波数制御手段とを備え、レーザ光照射手段と、赤外線カメラとが、被測定物に対して同一側に配置され、赤外線集光手段が、赤外線カメラと被測定物とを結ぶ直線上に光軸を有するように配置され、さらに、該光軸上における赤外線集光手段と被測定物との間に、前記レーザ光照射手段から照射されたレーザ光を、該光軸と略平行な方向で被測定物へと反射するレーザ光反射手段を備えることが好ましい。 The present invention further executes the irradiation step, the detection step, the calculation step, and the penetration depth control step by a thermophysical property measuring device equipped with an infrared camera, and the thermophysical property measuring device, By the laser light irradiation means for irradiating the measured object with the frequency-modulated laser light for heating, the infrared condensing means for condensing infrared rays emitted from the measured object by the irradiation of the laser light, and the infrared condensing means The thermal diffusivity is calculated from the infrared camera that detects the collected infrared light, the cycle of temperature change of the object to be measured at the multiple measurement points measured by the infrared camera, and the multiple phase differences between the cycle of the laser light. The thermal diffusivity calculation means and the modulation frequency control means for controlling the modulation frequency of the laser light emitted from the laser light irradiation means are provided, and the laser light irradiation means and the infrared camera are on the same side of the object to be measured. The infrared condensing means is arranged so as to have an optical axis on a straight line connecting the infrared camera and the object to be measured, and further, between the infrared light converging means and the object to be measured on the optical axis. It is preferable to include a laser light reflecting means for reflecting the laser light emitted from the laser light emitting means toward the object to be measured in a direction substantially parallel to the optical axis.

本発明は、さらに、被測定物の各測定点における前記位相差または前記熱拡散率を、色相、彩度、及び明度からなる群より選ばれた少なくとも1つ以上の色情報と対応させ、2次元的または3次元的にマッピングして表示出力する表示出力ステップを備えることが好ましい。 The present invention further associates the phase difference or the thermal diffusivity at each measurement point of the object to be measured with at least one color information selected from the group consisting of hue, saturation, and lightness. It is preferable to include a display output step for performing a display output by performing a dimensional or three-dimensional mapping.

本発明の熱物性測定装置によれば、試料の表層の一部分に存在するような異方性を熱物性によって評価することができ、また、試料の任意の深さまでにおける熱拡散率を測定することが可能である。 According to the thermophysical property measuring device of the present invention, anisotropy such as existing in a part of the surface layer of a sample can be evaluated by thermophysical property, and the thermal diffusivity up to an arbitrary depth of the sample can be measured. Is possible.

本発明の実施の形態にかかる、熱物性測定装置の構成を表す模式図である。It is a schematic diagram showing the structure of the thermophysical property measuring apparatus concerning embodiment of this invention. 測定例1及び2における、熱拡散率の測定方法を示す模式図である。It is a schematic diagram which shows the measuring method of the thermal diffusivity in the measurement examples 1 and 2. 測定例1における、試料の位相分布図、及び加熱点からの距離Lと位相差との関係を示すグラフである。5 is a graph showing a phase distribution diagram of a sample and a relationship between a distance L from a heating point and a phase difference in Measurement Example 1. FIG. 測定例2における、試料の位相分布図、及び加熱点からの距離Lと位相差との関係を示すグラフである。5 is a graph showing a phase distribution diagram of a sample and a relationship between a distance L from a heating point and a phase difference in Measurement Example 2. 測定例3及び4における、試料の位相分布図である。It is a phase distribution diagram of the sample in the measurement examples 3 and 4.

以下、図面を参照して本発明の実施の形態について説明するが、本発明の趣旨に反しない限り、以下の実施の形態に限定されない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings, but the present invention is not limited to the following embodiments unless it is contrary to the gist of the present invention.

(熱物性測定装置)
図1は、本発明の実施の形態にかかる、熱物性測定装置の構成を表す模式図である。本実施の形態における熱物性測定装置は、被測定物21の表面加熱用のレーザ光照射手段1と、ビームスプリッタ2と、ミラー3と、楕円形ミラー4と、赤外線集光手段5と、赤外線検出手段6と、可視用レンズ7と、可視カメラ8と、被測定物21の裏面加熱用のレーザ光照射手段9と、ミラー10と、レーザ光照射手段から照射されるレーザ光の変調周波数を制御する変調周波数制御手段(図示せず)と、熱拡散率演算手段(図示せず)を備えている。
(Thermophysical property measuring device)
FIG. 1 is a schematic diagram showing the configuration of a thermophysical property measuring device according to an embodiment of the present invention. The thermophysical property measuring apparatus according to the present embodiment is provided with a laser beam irradiating means 1 for heating the surface of an object to be measured 21, a beam splitter 2, a mirror 3, an elliptical mirror 4, an infrared condensing means 5, and an infrared ray. The detection means 6, the visible lens 7, the visible camera 8, the laser light irradiation means 9 for heating the back surface of the DUT 21, the mirror 10, and the modulation frequency of the laser light emitted from the laser light irradiation means. A modulation frequency control means (not shown) for controlling and a thermal diffusivity calculating means (not shown) are provided.

レーザ光照射手段1は、被測定物21に対して赤外線検出手段6と同一側に配置され、変調周波数制御手段により周波数変調されたレーザ光を発生させる。該レーザ光は、ミラー3及び楕円形ミラー4を介して、赤外線集光手段5の光軸と略平行な方向で、被測定物21へとスポット照射される。本実施の形態では、赤外線検出手段6と被測定物21を結ぶ線分上にレーザ光照射手段1を配置せず、ミラー3及び楕円形ミラー4を介して、レーザ光を照射することで、赤外線検出手段6と被測定物21を結ぶ線分上の遮蔽物を減らし、赤外線検出手段6の赤外線検出感度を向上させている。また、赤外線集光手段5の光軸と略平行な方向でレーザ光を照射することにより、被測定物21におけるレーザ光の照射位置と、赤外線検出手段6の検出軸(赤外線集光手段5の光軸)を一致させること、及び特定の距離だけずらすことが容易となり、熱拡散率の測定精度を向上させている。 The laser light irradiating means 1 is arranged on the same side as the infrared detecting means 6 with respect to the DUT 21, and generates the laser light frequency-modulated by the modulation frequency controlling means. The laser light is spot-irradiated onto the object to be measured 21 through the mirror 3 and the elliptical mirror 4 in a direction substantially parallel to the optical axis of the infrared condensing means 5. In the present embodiment, by irradiating the laser light through the mirror 3 and the elliptical mirror 4 without disposing the laser light irradiation means 1 on the line segment connecting the infrared detection means 6 and the object to be measured 21, The shield on the line segment connecting the infrared detecting means 6 and the object to be measured 21 is reduced to improve the infrared detecting sensitivity of the infrared detecting means 6. Further, by irradiating the laser light in a direction substantially parallel to the optical axis of the infrared light collecting means 5, the irradiation position of the laser light on the DUT 21 and the detection axis of the infrared detecting means 6 (of the infrared light collecting means 5). It becomes easy to match the optical axes) and to shift them by a specific distance, which improves the measurement accuracy of the thermal diffusivity.

楕円形ミラー4は、例えば、被測定物21の測定面に対して45度傾けた際に、被測定物21及びミラー3から見て略正円形となるような楕円形であることが好ましい。このような構成により、レーザ光の反射効率を向上させ、また、レーザ光の照射軸の調整を容易にすることができる傾向にある。 The elliptical mirror 4 is preferably, for example, an elliptical shape that becomes a substantially perfect circle when viewed from the object to be measured 21 and the mirror 3 when tilted at 45 degrees with respect to the measurement surface of the object to be measured 21. With such a configuration, there is a tendency that the reflection efficiency of the laser light can be improved and the irradiation axis of the laser light can be easily adjusted.

また、楕円形ミラー4の径は、赤外線集光手段5の径よりも十分に小さいものであることが好ましい。このような構成により、被測定物21から放射される赤外線を赤外線集光手段5によって十分に集光することができ、熱拡散率の測定誤差を低下させることができる傾向にある。楕円形ミラー4の径としては、例えば、赤外線集光手段5の径の1/3以下とすることが好ましく、1/5以下とすることがより好ましい。仮に、楕円形ミラー4の代わりにビームスプリッタを配置した場合、ビームスプリッタによる赤外線の減衰が大きく、熱拡散率の測定に誤差が生じやすくなる。また、ジンクセレン等の高価な材料を用いる必要があるため、装置作成のコストが上昇するといった問題もある。 Further, the diameter of the elliptical mirror 4 is preferably sufficiently smaller than the diameter of the infrared ray focusing means 5. With such a configuration, the infrared rays radiated from the object to be measured 21 can be sufficiently condensed by the infrared ray condensing means 5, and the measurement error of the thermal diffusivity tends to be reduced. The diameter of the elliptical mirror 4 is, for example, preferably ⅓ or less, more preferably ⅕ or less of the diameter of the infrared light converging means 5. If a beam splitter is provided instead of the elliptical mirror 4, the beam splitter causes a large attenuation of infrared rays, and errors in the measurement of the thermal diffusivity are likely to occur. Further, since it is necessary to use an expensive material such as zinc selenium, there is a problem that the cost for manufacturing the device increases.

周波数変調されたレーザ光によってスポット加熱された被測定物21では、該レーザ光による加熱点から被測定物21の内部へと温度波が伝播し、周期的な温度変化を生じる。その際に被測定物21から放射される赤外線を赤外線集光手段5によって集光し、赤外線検出手段6によって検出することで、被測定物21の周期的な温度変化を測定する。 In the DUT 21 spot-heated by the frequency-modulated laser light, a temperature wave propagates from the heating point of the laser light to the inside of the DUT 21, causing a periodic temperature change. At that time, infrared rays emitted from the object to be measured 21 are collected by the infrared light condensing means 5 and detected by the infrared ray detecting means 6, whereby the periodic temperature change of the object to be measured 21 is measured.

赤外線集光手段5としては、被測定物21から放射される赤外線を集光し、赤外線検出手段6に入力できるものであれば、特に限定はされないが、メニスカスレンズを用いることが好ましい。赤外線集光手段5としてメニスカスレンズを用いることで、レンズの球面収差を小さくすることができ、赤外線検出手段6における赤外線の検出感度が向上する傾向にある。 The infrared ray condensing means 5 is not particularly limited as long as it can condense the infrared rays emitted from the object to be measured 21 and input to the infrared ray detecting means 6, but a meniscus lens is preferably used. By using a meniscus lens as the infrared ray focusing means 5, the spherical aberration of the lens can be reduced, and the infrared ray detection sensitivity of the infrared ray detecting means 6 tends to be improved.

ここで、周波数変調されたレーザ光によって被測定物21に生じる温度波について詳述する。温度波とは、ほぼ1周期で減衰する温度の波である。温度波の1周期の長さを熱拡散長といい、熱拡散長μは、以下の式(1)で表すことができる。
Here, the temperature wave generated in the DUT 21 by the frequency-modulated laser light will be described in detail. The temperature wave is a temperature wave that attenuates in approximately one cycle. The length of one cycle of the temperature wave is called a thermal diffusion length, and the thermal diffusion length μ can be expressed by the following equation (1).

上記の式(1)から、熱拡散長μは、熱拡散率kが高くなるほど長くなり、また、加熱周波数fが低くなるほど長くなることがわかる。つまり、加熱周波数を制御することによって、熱拡散長μを制御することができる。上述のように、温度波は、ほぼ1周期で減衰するものであるため、熱拡散長μを制御することで、温度波が被測定物21に浸透する深さを制御することが可能となる。本実施の形態の熱物性測定装置では、変調周波数制御手段により、レーザ光照射手段から照射されるレーザ光の変調周波数を制御することで、温度波が被測定物21に浸透する深さ、及び被測定物21の面内方向への伝播距離を制御している。例えば、レーザ光の変調周波数を高くすれば、温度波が被測定物21に浸透する深さは浅くなり、また、温度波が被測定物21の面内方向へと伝播する距離は短くなる。このような構成により、本実施の形態の熱物性測定装置は、被測定物の表層の一部分に存在するような異方性を熱物性によって評価することや、被測定物の任意の深さまでにおける熱拡散率を測定することを可能としている。なお、変調周波数制御手段としては、特に限定はされないが、ファンクションジェネレータなどを用いることができる。 From the above formula (1), it can be seen that the thermal diffusion length μ becomes longer as the thermal diffusivity k becomes higher, and becomes longer as the heating frequency f becomes lower. That is, the thermal diffusion length μ can be controlled by controlling the heating frequency. As described above, since the temperature wave is attenuated in almost one cycle, it is possible to control the depth of penetration of the temperature wave into the DUT 21 by controlling the thermal diffusion length μ. .. In the thermophysical property measuring apparatus according to the present embodiment, the modulation frequency control unit controls the modulation frequency of the laser light emitted from the laser light irradiation unit, so that the depth at which the temperature wave penetrates into the DUT 21, and The propagation distance of the DUT 21 in the in-plane direction is controlled. For example, if the modulation frequency of the laser light is increased, the depth of penetration of the temperature wave into the object to be measured 21 becomes shallow, and the distance that the temperature wave propagates in the in-plane direction of the object to be measured 21 becomes short. With such a configuration, the thermophysical property measuring device of the present embodiment evaluates anisotropy such as existing in a part of the surface layer of the object to be measured by thermophysical properties, and in an arbitrary depth of the object to be measured. It is possible to measure the thermal diffusivity. The modulation frequency control means is not particularly limited, but a function generator or the like can be used.

赤外線検出手段6による被測定物21の周期的な温度変化についての測定結果は、熱拡散率演算手段へと入力される。熱拡散率演算手段は、複数の測定点における被測定物21の温度変化の周期と、レーザ光の周期との複数の位相差から、被測定物21の熱拡散率を算出する。 The measurement result of the periodic temperature change of the DUT 21 by the infrared detecting means 6 is input to the thermal diffusivity calculating means. The thermal diffusivity calculating means calculates the thermal diffusivity of the object to be measured 21 from the plurality of phase differences between the cycle of temperature change of the object to be measured 21 at the plurality of measurement points and the cycle of the laser light.

被測定物の面内方向の熱拡散率kは、横軸にレーザ光による加熱点から測定点までの距離L、縦軸に該測定点における位相差をプロットしたグラフの傾きaを用いて、以下の式(2)から算出することができる。なお、熱拡散率kは、被測定物の比熱と密度の値を用いることにより、熱伝導率又は熱浸透率などの熱物性値に換算することが可能である。熱拡散率演算手段は、熱拡散率kを、熱伝導率又は熱浸透率に換算する機能を有していることが好ましい。
The thermal diffusivity k in the in-plane direction of the object to be measured is calculated by using the distance a from the heating point by the laser beam to the measurement point on the horizontal axis and the slope a of the graph plotting the phase difference at the measurement point on the vertical axis, It can be calculated from the following equation (2). The thermal diffusivity k can be converted into a thermophysical property value such as thermal conductivity or thermal effusivity by using the values of specific heat and density of the object to be measured. It is preferable that the thermal diffusivity calculation means has a function of converting the thermal diffusivity k into a thermal conductivity or a thermal permeability.

被測定物21の映像は、楕円形ミラー4、ミラー3、ビームスプリッタ2、及び可視用レンズ7を介して、可視カメラ8によって観察できる。 The image of the DUT 21 can be observed by the visible camera 8 through the elliptical mirror 4, the mirror 3, the beam splitter 2, and the visible lens 7.

本実施の形態の熱物性測定装置は、被測定物21におけるレーザ光の周期との位相差を、色相、彩度、及び明度からなる群より選ばれた少なくとも1つ以上の色情報と対応させ、2次元的または3次元的にマッピングして表示する表示出力手段を備えることが好ましい。位相差または熱拡散率をマッピングすることで、被測定物21の表面構造を容易に把握することができる。また、被測定物の内部における欠陥の検出や均質性の評価、積層体の層間における密着性の評価なども容易となる。 The thermophysical property measuring apparatus of the present embodiment associates the phase difference with the period of the laser light in the object to be measured 21 with at least one color information selected from the group consisting of hue, saturation, and lightness. It is preferable to provide a display output means for displaying the two-dimensionally or three-dimensionally mapped. By mapping the phase difference or the thermal diffusivity, the surface structure of the DUT 21 can be easily grasped. Further, it becomes easy to detect defects inside the object to be measured, evaluate homogeneity, evaluate adhesion between layers of the laminate, and the like.

本実施の形態の熱物性測定装置は、被測定物21の裏面加熱用のレーザ光照射手段9と、ミラー10とを備えている。レーザ光照射手段9は、被測定物21の表面加熱用のレーザ光照射手段1と同様に、変調周波数制御手段により周波数変調されたレーザ光を発生させ、該レーザ光は、ミラー10を介して被測定物の裏面へとスポット照射される。被測定物21の裏面から被測定物をスポット加熱することにより、被測定物21の厚み方向の熱拡散率を測定することができる。また、変調周波数制御手段によりレーザ光の変調周波数を制御することにより、温度波が被測定物21に浸透する深さ、及び被測定物21の面内方向への伝播距離を制御することができる。なお、本発明の熱物性測定装置は、レーザ光照射手段9及びミラー10を備えていることが好ましいが、レーザ光照射手段9及びミラー10を備えない構成とした場合でも、本発明の課題を解決することは可能である。 The thermophysical property measuring apparatus according to the present embodiment includes a laser beam irradiation means 9 for heating the back surface of the object to be measured 21, and a mirror 10. The laser light irradiating means 9 generates the laser light frequency-modulated by the modulation frequency control means, similarly to the laser light irradiating means 1 for heating the surface of the object to be measured 21, and the laser light is passed through the mirror 10. Spot irradiation is performed on the back surface of the object to be measured. The thermal diffusivity in the thickness direction of the object to be measured 21 can be measured by spot heating the object to be measured from the back surface of the object to be measured 21. Further, by controlling the modulation frequency of the laser light by the modulation frequency control means, it is possible to control the depth of penetration of the temperature wave into the object to be measured 21 and the propagation distance of the object to be measured 21 in the in-plane direction. .. Note that the thermophysical property measuring apparatus of the present invention preferably includes the laser light irradiation unit 9 and the mirror 10, but even when the laser light irradiation unit 9 and the mirror 10 are not provided, the problem of the present invention is not solved. It is possible to solve.

本実施の形態の熱物性測定装置は、被測定物21の温度変化を検出する手段として、赤外線検出器6(例えば、赤外線カメラ)を用いているが、例えば、赤外線放射温度計やサーモリフレクタンス法を用いてもよい。赤外線放射温度計やサーモリフレクタンス法の場合も、レーザ光による加熱点から測定点までの距離Lを変えながら、各測定点における位相差を測定することで、熱拡散率を算出することができる。 The thermophysical property measuring apparatus of the present embodiment uses the infrared detector 6 (for example, an infrared camera) as a means for detecting the temperature change of the object to be measured 21, but for example, an infrared radiation thermometer or a thermoreflectance is used. The method may be used. Also in the case of the infrared radiation thermometer or the thermoreflectance method, the thermal diffusivity can be calculated by measuring the phase difference at each measurement point while changing the distance L from the heating point by the laser beam to the measurement point. ..

赤外線放射温度計やサーモリフレクタンス法を用いた場合であっても、被測定物21に照射されるレーザ光の変調周波数を制御することで、温度波が被測定物21に浸透する深さ、及び被測定物21の面内方向への伝播距離を制御でき、被測定物21の表層の一部分に存在するような異方性を熱物性によって評価することや、被測定物21の任意の深さまでにおける熱拡散率を測定することが可能である。 Even when the infrared radiation thermometer or the thermoreflectance method is used, by controlling the modulation frequency of the laser light with which the measured object 21 is irradiated, the depth at which the temperature wave penetrates the measured object 21, Also, the in-plane propagation distance of the object to be measured 21 can be controlled, and anisotropy such as existing in a part of the surface layer of the object to be measured 21 can be evaluated by thermophysical properties, or an arbitrary depth of the object to be measured 21 can be evaluated. It is possible to measure the thermal diffusivity up to that point.

本実施の形態の熱物性測定装置を用いて、試料の熱拡散率を測定した。図2に、熱拡散率測定の模式図を示す。試料としては、厚み125μmのポリイミドシート(熱拡散率:0.4×10−6−1)と、厚み10μmのタンタル箔(熱拡散率:25×10−6−1)を張り合わせて積層させたものを用いた。該試料の表面に周波数変調されたレーザ光を照射し、赤外線カメラ(赤外線検出手段6)によって、該試料の表面における温度の周期的な変化を測定した。横軸にレーザ光による加熱点からの距離L、縦軸に加熱点から距離L離れた測定点における試料の温度変化の周期とレーザ光の周期との位相差をプロットしたグラフの傾きを用いて、熱拡散率を算出した。 The thermal diffusivity of the sample was measured using the thermophysical property measuring device of the present embodiment. FIG. 2 shows a schematic diagram of thermal diffusivity measurement. As samples, a 125 μm thick polyimide sheet (thermal diffusivity: 0.4×10 −6 m 2 s −1 ) and a 10 μm thick tantalum foil (thermal diffusivity: 25×10 −6 m 2 s −1 ). Was laminated and used. The surface of the sample was irradiated with frequency-modulated laser light, and the infrared camera (infrared detecting means 6) measured the periodic change in temperature on the surface of the sample. Using the slope of the graph in which the horizontal axis represents the distance L from the heating point by the laser light, and the vertical axis represents the phase difference between the cycle of the temperature change of the sample and the cycle of the laser light at the measurement point separated by the distance L from the heating point. The thermal diffusivity was calculated.

(測定例1)
図3に、レーザ光の変調周波数を0.1Hzとして測定した場合における、試料の位相分布、及び加熱点からの距離Lと位相差との関係をプロットしたグラフを示す。該グラフの傾き(グラフの太線部分の傾き)を上記の式(2)に代入して算出された熱拡散率は、2.2×10−6−1であった。また、上記の式(1)により算出された熱拡散長は、2.65mmであった。
(Measurement example 1)
FIG. 3 shows a graph in which the phase distribution of the sample and the relationship between the distance L from the heating point and the phase difference are plotted when the modulation frequency of the laser light is set to 0.1 Hz. The thermal diffusivity calculated by substituting the slope of the graph (the slope of the thick line portion of the graph) into the above equation (2) was 2.2×10 −6 m 2 s −1 . The thermal diffusion length calculated by the above formula (1) was 2.65 mm.

(測定例2)
図4に、レーザ光の変調周波数を5Hzとして測定した場合における、試料の位相分布、及び加熱点からの距離Lと位相差との関係をプロットしたグラフを示す。測定例1と同様の方法により算出された熱拡散率は0.4×10−6−1であり、熱拡散長は0.16mmであった。
(Measurement example 2)
FIG. 4 shows a graph in which the phase distribution of the sample and the relationship between the distance L from the heating point and the phase difference are plotted when the modulation frequency of the laser beam is 5 Hz. The thermal diffusivity calculated by the same method as in Measurement Example 1 was 0.4×10 −6 m 2 s −1 , and the thermal diffusion length was 0.16 mm.

図3及び4に示す位相分布から、周波数5Hzのレーザ光を照射した測定例2は、周波数0.1Hzのレーザ光を照射した測定例1と比べて、温度波の伝播距離が短いことがわかる。また、測定例1と測定例2とでは、算出された熱拡散率が異なっており、測定例2で測定された熱拡散率はポリイミドシートの熱拡散率と一致したのに対して、測定例1で測定された熱拡散率は、ポリイミドシート及びタンタル箔のどちらの熱拡散率とも一致していないことがわかる。これは、レーザ光の周波数を変えることにより、温度波が試料に伝搬する距離が変化し、評価できる深さが変化したためである。レーザ光の周波数5Hzである測定例2では、温度波が試料に伝搬する距離が短いため、ポリイミドシート層の熱拡散率が測定され、レーザ光の周波数0.1Hzである測定例1では、温度波が試料に伝搬する距離が長いため、ポリイミドシート層のみではなく、タンタル箔層を含む試料全体の平均的な熱拡散率が測定されたといえる。 From the phase distributions shown in FIGS. 3 and 4, it can be seen that the measurement example 2 irradiated with the laser light having the frequency of 5 Hz has a shorter propagation distance of the temperature wave than the measurement example 1 irradiated with the laser light having the frequency of 0.1 Hz. .. Further, the calculated thermal diffusivities are different between the measurement example 1 and the measurement example 2, and the thermal diffusivity measured in the measurement example 2 coincides with the thermal diffusivity of the polyimide sheet, whereas the measured example It can be seen that the thermal diffusivity measured in 1 does not match the thermal diffusivity of either the polyimide sheet or the tantalum foil. This is because by changing the frequency of the laser light, the distance that the temperature wave propagates to the sample changes and the depth that can be evaluated also changes. In measurement example 2 in which the frequency of the laser light is 5 Hz, the thermal diffusivity of the polyimide sheet layer is measured because the distance over which the temperature wave propagates to the sample is short, and in measurement example 1 in which the frequency of the laser light is 0.1 Hz, It can be said that the average thermal diffusivity of not only the polyimide sheet layer but the entire sample including the tantalum foil layer was measured because the distance that the wave propagates to the sample is long.

(測定例3及び4)
表層の繊維構造に異方性のある、厚み500μmのCFRP(株式会社エービーシーホビー製、CFRP板)を試料として用い、測定例1と同様の手法により、該試料の表面における温度の周期的な変化を測定した。レーザ光の周波数を0.1Hzとした場合を測定例3とし、レーザ光の周波数を5Hzとした場合を測定例4とした。図5に、測定例3における、試料の位相分布を示し、図6に、測定例4における、試料の位相分布を示す。
(Measurement examples 3 and 4)
By using CFRP (CFRP plate manufactured by ABC Hobby Co., Ltd.) having a thickness of 500 μm, which has anisotropy in the fiber structure of the surface layer, as a sample, and by the same method as in Measurement Example 1, a periodic change in temperature on the surface of the sample Was measured. The measurement example 3 was a case where the frequency of the laser beam was 0.1 Hz, and the measurement example 4 was a case where the frequency of the laser beam was 5 Hz. FIG. 5 shows the phase distribution of the sample in Measurement Example 3, and FIG. 6 shows the phase distribution of the sample in Measurement Example 4.

図5に示すように、レーザ光の周波数を0.1Hzとした測定例3では、温度波の広がりが大きく、試料の表層の構造に存在する異方性を確認することは困難である。一方、レーザ光の周波数を5Hzとした測定例4では、温度波の広がりが小さく、試料の表層の構造に異方性があることが確認できる。 As shown in FIG. 5, in Measurement Example 3 in which the frequency of the laser light was 0.1 Hz, the temperature wave spreads widely and it is difficult to confirm the anisotropy present in the structure of the surface layer of the sample. On the other hand, in Measurement Example 4 in which the frequency of the laser light was 5 Hz, the spread of the temperature wave was small and it was confirmed that the structure of the surface layer of the sample was anisotropic.

1 レーザ光照射手段(表面加熱用)
2 ビームスプリッタ
3 ミラー
4 楕円形ミラー
5 赤外線集光手段
6 赤外線検出手段
7 可視用レンズ
8 可視カメラ
9 レーザ光照射手段(裏面加熱用)
10 ミラー
21 試料
22 ポリイミドシート層
23 タンタル箔層
1 Laser light irradiation means (for surface heating)
2 Beam Splitter 3 Mirror 4 Elliptical Mirror 5 Infrared Condensing Means 6 Infrared Detecting Means 7 Visible Lens 8 Visible Camera 9 Laser Light Irradiating Means (for Backside Heating)
10 Mirror 21 Sample 22 Polyimide sheet layer 23 Tantalum foil layer

Claims (7)

周波数変調された加熱用のレーザ光を被測定物に照射し、被測定物から放射される赤外線を検出することで、被測定物の周期的な温度変化から熱拡散率を測定する周期加熱放射測温法を用いた熱物性測定装置であって、
被測定物に周波数変調された加熱用のレーザ光を照射するレーザ光照射手段と、
レーザ光の照射によって被測定物から放射される赤外線を検出する赤外線検出手段と、
赤外線検出手段によって測定される複数の測定点における被測定物の温度変化の周期と、レーザ光の周期との複数の位相差から熱拡散率を算出する熱拡散率演算手段と、
レーザ光照射手段から照射されるレーザ光の変調周波数を制御する変調周波数制御手段と
前記レーザ光照射手段から照射されたレーザ光を、赤外線検出手段と被測定物とを結ぶ直線と略平行な方向で被測定物へと反射するレーザ光反射手段を備え、
レーザ光照射手段と、赤外線検出手段とが、被測定物に対して同一側に配置される、熱物性測定装置。
Periodic heating radiation that measures the thermal diffusivity from the periodic temperature change of the DUT by irradiating the DUT with frequency-modulated laser light for heating and detecting the infrared rays emitted from the DUT. A thermophysical property measuring device using a temperature measuring method,
Laser light irradiating means for irradiating an object to be measured with a frequency-modulated laser light for heating,
Infrared detecting means for detecting infrared rays emitted from the object to be measured by irradiation with laser light,
Thermal diffusivity calculation means for calculating the thermal diffusivity from a plurality of phase differences between the temperature change of the object to be measured at a plurality of measurement points measured by the infrared detecting means, and the cycle of the laser light,
Modulation frequency control means for controlling the modulation frequency of the laser light emitted from the laser light irradiation means ,
The laser light emitted from the laser light irradiating means is provided with laser light reflecting means for reflecting the laser light to the object to be measured in a direction substantially parallel to a straight line connecting the infrared detecting means and the object to be measured,
A thermophysical property measuring device in which a laser beam irradiating means and an infrared detecting means are arranged on the same side with respect to an object to be measured .
さらに、レーザ光の照射によって被測定物から放射される赤外線を集光して赤外線検出手段に入力する赤外線集光手段を備え、
赤外線集光手段が、赤外線検出手段と被測定物とを結ぶ直線上に光軸を有するように配置され、
レーザ光反射手段が、
該光軸上における赤外線集光手段と被測定物との間に、前記レーザ光照射手段から照射されたレーザ光を、該光軸と略平行な方向で被測定物へと反射する、請求項1に記載の熱物性測定装置。
Furthermore, an infrared condensing unit for condensing infrared rays emitted from the object to be measured by the irradiation of the laser light and inputting the infrared rays to the infrared detecting unit
Is infrared-ray focusing means, it disposed so as to have an optical axis on a straight line connecting the a object to be measured infrared detection means,
Laser light reflection means,
Between the infrared condensing means and the object to be measured on the optical axis, the laser beam emitted from the laser beam irradiation means, you reflected to the object to be measured in a direction substantially parallel to the optical axis, wherein Item 1. The thermophysical property measuring device according to item 1.
さらに、被測定物の各測定点における前記位相差または前記熱拡散率を、色相、彩度、及び明度からなる群より選ばれた少なくとも1つ以上の色情報と対応させ、2次元的または3次元的にマッピングして表示する表示出力手段を備える、請求項1または2に記載の熱物性測定装置。 Furthermore, the phase difference or the thermal diffusivity at each measurement point of the object to be measured is made to correspond to at least one or more color information selected from the group consisting of hue, saturation, and lightness, two-dimensionally or three-dimensionally. The thermophysical property measuring device according to claim 1 or 2, further comprising a display output means for dimensionally mapping and displaying. 周波数変調された加熱用のレーザ光を被測定物に照射し、被測定物の温度変化を検出することで、被測定物の周期的な温度変化から熱拡散率を測定する周期加熱放射測温法を用いた熱物性測定方法であって、
レーザ光の照射において利用するレーザ光照射手段と、赤外線の検出において利用する赤外線検出手段とが、被測定物に対して同一側に配置され、
被測定物に周波数変調された加熱用のレーザ光を照射する照射ステップと、
前記照射ステップで照射されたレーザ光を、赤外線検出手段と被測定物とを結ぶ直線と略平行な方向で被測定物へと反射する反射ステップと、
レーザ光の照射による被測定物の温度変化を検出する検出ステップと、
検出された複数の測定点における被測定物の温度変化の周期と、レーザ光の周期との複数の位相差から熱拡散率を算出する算出ステップと、
照射されるレーザ光の変調周波数を制御することで、温度波が被測定物に浸透する深さを制御する浸透深さ制御ステップとを有する、熱物性測定方法。
Periodic heating radiation thermometry that measures the thermal diffusivity from the periodic temperature change of the measured object by irradiating the measured object with the frequency-modulated laser light for heating and detecting the temperature change of the measured object. A method for measuring thermophysical properties using a method,
Laser light irradiation means used in laser light irradiation, and infrared detection means used in infrared detection, are arranged on the same side with respect to the DUT,
An irradiation step of irradiating the measured object with a frequency-modulated laser beam for heating,
The laser light emitted in the irradiation step, a reflection step of reflecting to the object to be measured in a direction substantially parallel to the line connecting the infrared detecting means and the object to be measured,
A detection step of detecting a temperature change of the measured object due to the irradiation of the laser beam,
A cycle of temperature change of the object to be measured at the plurality of detected measurement points, and a calculation step of calculating the thermal diffusivity from a plurality of phase differences between the cycle of the laser light,
By controlling the modulation frequency of the irradiated laser light, and a penetration depth control step of controlling the depth to which the temperature wave to penetrate the object to be measured, thermal property measurement methods.
前記検出ステップが、赤外線放射温度計、赤外線カメラ、またはサーモリフレクタンス法を用いて被測定物の温度変化を検出するステップである、請求項4に記載の熱物性測定方法。 The thermophysical property measuring method according to claim 4, wherein the detecting step is a step of detecting a temperature change of the object to be measured using an infrared radiation thermometer, an infrared camera, or a thermoreflectance method. 前記照射ステップと、前記検出ステップと、前記算出ステップと、前記浸透深さ制御ステップとを、赤外線カメラを備えた熱物性測定装置により実行する熱物性測定方法であって、
前記熱物性測定装置が、
被測定物に周波数変調された加熱用のレーザ光を照射するレーザ光照射手段と、
レーザ光の照射によって被測定物から放射される赤外線を集光する赤外線集光手段と、
赤外線集光手段によって集光された赤外線を検出する赤外線カメラと、
赤外線カメラによって測定される複数の測定点における被測定物の温度変化の周期と、レーザ光の周期との複数の位相差から熱拡散率を算出する熱拡散率演算手段と、
レーザ光照射手段から照射されるレーザ光の変調周波数を制御する変調周波数制御手段とを備え、
レーザ光照射手段と、赤外線カメラとが、被測定物に対して同一側に配置され、
赤外線集光手段が、赤外線カメラと被測定物とを結ぶ直線上に光軸を有するように配置され、
さらに、該光軸上における赤外線集光手段と被測定物との間に、前記レーザ光照射手段から照射されたレーザ光を、該光軸と略平行な方向で被測定物へと反射するレーザ光反射手段を備える、請求項5に記載の熱物性測定方法。
A thermophysical property measurement method for executing the irradiation step, the detection step, the calculation step, and the penetration depth control step by a thermophysical property measurement device including an infrared camera,
The thermophysical property measuring device,
Laser light irradiating means for irradiating an object to be measured with a frequency-modulated laser light for heating,
Infrared condensing means for condensing infrared rays emitted from the object to be measured by irradiation with laser light,
An infrared camera that detects the infrared light collected by the infrared light collecting means,
Thermal diffusivity calculation means for calculating thermal diffusivity from a plurality of phase differences between the temperature change of the object to be measured at a plurality of measurement points measured by the infrared camera and the period of the laser light,
A modulation frequency control means for controlling the modulation frequency of the laser light emitted from the laser light irradiation means,
The laser light irradiation means and the infrared camera are arranged on the same side with respect to the object to be measured,
The infrared condensing means is arranged so as to have an optical axis on a straight line connecting the infrared camera and the object to be measured,
Further, a laser that reflects the laser light emitted from the laser light irradiating means between the infrared light converging means and the object to be measured on the optical axis to the object to be measured in a direction substantially parallel to the optical axis. The thermophysical property measuring method according to claim 5, further comprising a light reflecting means.
さらに、被測定物の各測定点における前記位相差または前記熱拡散率を、色相、彩度、及び明度からなる群より選ばれた少なくとも1つ以上の色情報と対応させ、2次元的または3次元的にマッピングして表示出力する表示出力ステップを備える、請求項4〜6のいずれかに記載の熱物性測定方法。
Furthermore, the phase difference or the thermal diffusivity at each measurement point of the object to be measured is made to correspond to at least one or more color information selected from the group consisting of hue, saturation, and lightness, two-dimensionally or three-dimensionally. The thermophysical property measuring method according to any one of claims 4 to 6, further comprising a display output step of dimensionally mapping and displaying and outputting.
JP2015190441A 2015-09-28 2015-09-28 Thermophysical property measuring device and thermophysical property measuring method Active JP6730792B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015190441A JP6730792B2 (en) 2015-09-28 2015-09-28 Thermophysical property measuring device and thermophysical property measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015190441A JP6730792B2 (en) 2015-09-28 2015-09-28 Thermophysical property measuring device and thermophysical property measuring method

Publications (2)

Publication Number Publication Date
JP2017067508A JP2017067508A (en) 2017-04-06
JP6730792B2 true JP6730792B2 (en) 2020-07-29

Family

ID=58492225

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015190441A Active JP6730792B2 (en) 2015-09-28 2015-09-28 Thermophysical property measuring device and thermophysical property measuring method

Country Status (1)

Country Link
JP (1) JP6730792B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101833445B1 (en) * 2017-06-27 2018-02-28 한국기초과학지원연구원 Detection device of thermal diffusion use laser lock-in thermography
JP6955758B2 (en) * 2017-09-07 2021-10-27 国立大学法人東海国立大学機構 Orientation state identification device, orientation state identification method and program
JP7100880B2 (en) * 2018-03-30 2022-07-14 国立大学法人東海国立大学機構 Content rate information acquisition device, density information acquisition device, content rate information acquisition method, density information acquisition method, and program

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006308513A (en) * 2005-05-02 2006-11-09 Nec Electronics Corp Inspection device and method
JP5288533B2 (en) * 2007-12-05 2013-09-11 株式会社ベテル Periodic heating radiation thermometry thermophysical property measuring apparatus and thermophysical property measuring method using the same
JP5403618B2 (en) * 2010-01-14 2014-01-29 独立行政法人産業技術総合研究所 Thermophysical property measuring apparatus and heat conduction imaging apparatus
JP5650578B2 (en) * 2010-12-24 2015-01-07 株式会社アイフェイズ Data image recording apparatus, thermal analysis apparatus, data image recording method, image data normalization method, thermophysical quantity calculation method, and recorded image display method
FR2995989B1 (en) * 2012-09-24 2014-09-05 Centre Nat Rech Scient METHOD OF EVALUATING THE DEPTH OF A CRACK
JP6183948B2 (en) * 2013-02-20 2017-08-23 国立大学法人茨城大学 Thermal diffusivity measuring device
JP2015108546A (en) * 2013-12-04 2015-06-11 国立大学法人名古屋大学 Thermal diffusivity measuring apparatus

Also Published As

Publication number Publication date
JP2017067508A (en) 2017-04-06

Similar Documents

Publication Publication Date Title
Sun Analysis of pulsed thermography methods for defect depth prediction
JP6730792B2 (en) Thermophysical property measuring device and thermophysical property measuring method
KR102019035B1 (en) Thermographic examination means and method for non-destructive examination of a near-surface structure at a test object
JP6545765B2 (en) Thermal diffusivity measurement device
Gaverina et al. Pulsed flying spot with the logarithmic parabolas method for the estimation of in-plane thermal diffusivity fields on heterogeneous and anisotropic materials
JP2015108546A (en) Thermal diffusivity measuring apparatus
Montinaro et al. Evaluation of interlaminar delaminations in titanium-graphite fibre metal laminates by infrared NDT techniques
JP5403618B2 (en) Thermophysical property measuring apparatus and heat conduction imaging apparatus
JP4980147B2 (en) Thermophysical property measuring device, thermophysical property measuring method
Müller et al. Optimizing thermographic testing of thick GFRP plates by assessing the real energy absorbed within the material
JP6620499B2 (en) Optical nondestructive inspection apparatus and optical nondestructive inspection method
JP4547551B2 (en) Thermal sensing remote sensing method and apparatus for thermal insulation properties
JP6127019B2 (en) Method for measuring thermal diffusivity of translucent materials
JP6604210B2 (en) Optical nondestructive inspection method and optical nondestructive inspection apparatus
CN109416332B (en) Thermal diffusivity measuring device, thermal diffusivity measuring method, and program
JP7351503B2 (en) Thermal resistance information acquisition device, thermal resistance information acquisition method, program, and contact information acquisition device
JP5490628B2 (en) Measurement method of thermal constant using light heating method
JP6955758B2 (en) Orientation state identification device, orientation state identification method and program
Winfree et al. Improved sizing of impact damage in composites based on thermographic response
Müller et al. Determining the material parameters for the reconstruction of defects in carbon fiber reinforced polymers from data measured by flash thermography
JP7100880B2 (en) Content rate information acquisition device, density information acquisition device, content rate information acquisition method, density information acquisition method, and program
RU223970U1 (en) Device for measuring TPC of wood
Maierhofer et al. Characterisation of artificial and natural defects in fibre reinforced plastics designed for energy applications using active thermography
JP2016024083A (en) Method for measuring physical property by steady state method, and measurement device therefor
JP2021181924A (en) Density information acquisition device, impregnation information acquisition device, density information acquisition method, and program

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180914

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190828

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190903

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20191105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200609

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200703

R150 Certificate of patent or registration of utility model

Ref document number: 6730792

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250