JP4547551B2 - Thermal sensing remote sensing method and apparatus for thermal insulation properties - Google Patents

Thermal sensing remote sensing method and apparatus for thermal insulation properties Download PDF

Info

Publication number
JP4547551B2
JP4547551B2 JP2005115350A JP2005115350A JP4547551B2 JP 4547551 B2 JP4547551 B2 JP 4547551B2 JP 2005115350 A JP2005115350 A JP 2005115350A JP 2005115350 A JP2005115350 A JP 2005115350A JP 4547551 B2 JP4547551 B2 JP 4547551B2
Authority
JP
Japan
Prior art keywords
thermal
heat insulating
insulating material
sample
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005115350A
Other languages
Japanese (ja)
Other versions
JP2006292604A (en
Inventor
貴広 水本
広敏 安藤
雄次 長坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Keio University
Original Assignee
Keio University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Keio University filed Critical Keio University
Priority to JP2005115350A priority Critical patent/JP4547551B2/en
Publication of JP2006292604A publication Critical patent/JP2006292604A/en
Application granted granted Critical
Publication of JP4547551B2 publication Critical patent/JP4547551B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)
  • Radiation Pyrometers (AREA)

Description

本発明は、断熱材の断熱特性リモートセンシング方法及び装置に関し、特に、フォトサーマル赤外検知法を用いたリモートセンシング可能な断熱材の断熱特性測定方法及び装置に関するものである。   TECHNICAL FIELD The present invention relates to a heat sensing property remote sensing method and apparatus for a heat insulating material, and more particularly to a heat insulation property measuring method and device for a heat insulating material capable of remote sensing using a photothermal infrared detection method.

オゾン層破壊や地球温暖化の原因物質であるフロンは、近年使用が禁止され、回収の方向に向かっている。日本において、冷媒用フロンの回収・処理が義務付けられている一方、断熱材に含まれるフロンは、回収・処理に関する具体的な規制や対策までには至っていない。しかし、断熱材内に残存しているフロンの量は、冷媒用フロンの1.5〜2倍程度と推定されており、今後、断熱材内残存フロンを回収・処理する動きは活発になると予想される。   Freon, a substance that causes ozone layer destruction and global warming, has been banned in recent years and is moving toward recovery. In Japan, it is obliged to collect and dispose of refrigerant chlorofluorocarbons, but chlorofluorocarbons contained in heat insulating materials have not yet reached specific regulations and measures for collection and treatment. However, the amount of chlorofluorocarbon remaining in the heat insulating material is estimated to be about 1.5 to 2 times that of refrigerant chlorofluorocarbon, and it is expected that movement to collect and treat the chlorofluorocarbon remaining in the heat insulating material will become active in the future. Is done.

特に建築用断熱材は、施工方法や使用環境によってフロン残存量が大きく異なり、発泡断熱材内のフロンを回収・処理する際には、フロン残存量に応じた適切な処理プロセスが必要となる。そのため、判定の段階でフロン残存量を測定することが非常に重要となり、断熱材内フロン残存量を現場で簡易に測定できる検査方法が望まれている。   In particular, the amount of remaining chlorofluorocarbons in the heat insulating material for buildings varies greatly depending on the construction method and use environment, and when collecting and processing the chlorofluorocarbon in the foamed heat insulating material, an appropriate treatment process according to the chlorofluorocarbon remaining amount is required. For this reason, it is very important to measure the residual amount of CFCs at the determination stage, and an inspection method that can easily measure the CFC residual amount in the heat insulating material on site is desired.

断熱材内フロンの分析法に関して、JIS、ISO及び主要諸国においても規格化したものは存在しない。フロン残存量の現場簡易測定法に求められることは、(1)装置が小型、(2)高精度、(3)短時間測定、(4)安価といった特徴である。   There is no standardized analysis method for chlorofluorocarbon in insulation materials in JIS, ISO and major countries. What is required for the on-site simple measurement method for the remaining amount of CFCs is that (1) the apparatus is small, (2) high precision, (3) short-time measurement, and (4) low cost.

フロン残存量の測定法としてガスクロマトグラフィが注目されている。ガスクロマトグラフィは一般に普及しているため比較的安価に入手可能であるが、高い精度を得ようとすると装置が大掛かりになるため、その場測定には不向きである。また、試料を切り出して測定する必要があるが、試料を切り出すと切断面からフロンが放散し精度良く測定することが困難となる。   Gas chromatography has attracted attention as a method for measuring the amount of residual chlorofluorocarbon. Since gas chromatography is generally prevalent, it can be obtained at a relatively low cost. However, if high accuracy is to be obtained, the apparatus becomes large and is not suitable for in-situ measurement. Moreover, it is necessary to cut out and measure the sample. However, when the sample is cut out, chlorofluorocarbon is diffused from the cut surface, and it is difficult to measure with high accuracy.

ところで、断熱材内フロンの分析法とは直接関係ないが、本出願人は、特許文献1において、試料の断熱材の表面に金属箔を押し付け、その金属箔を介して加熱光を照射すると共に、熱放射光を検出して断熱材の断熱特性をリモートセンシングするフォトサーマル赤外検知法を提案している。
特開2002−340828号公報 J. Appl. Phys., 47-1, (1976), 649.
By the way, although it is not directly related to the analysis method of the chlorofluorocarbon in the heat insulating material, in the patent document 1, the present applicant presses a metal foil against the surface of the heat insulating material of the sample and irradiates the heating light through the metal foil. We have proposed a photothermal infrared detection method that detects thermal radiation and remotely senses the thermal insulation properties of thermal insulation.
Japanese Patent Laid-Open No. 2002-340828 J. Appl. Phys., 47-1, (1976), 649.

断熱材の気泡内にはフロンガスの減少に伴い、空気が流入すると考えられる。フロンと空気では熱物性値に大きな違いがあり(空気の熱伝導率はフロンの一種のCFC11の約3倍、温度伝導率は約9倍)、断熱材の空隙率が90%を超えることを考慮すると、断熱材内部のフロン濃度の減少に伴って断熱材の熱物性値が大きく変化すると考えられる。   It is considered that air flows into the air bubbles of the heat insulating material with the decrease of the chlorofluorocarbon gas. There is a big difference in the thermal properties between chlorofluorocarbon and air (the thermal conductivity of air is about three times that of CFC11, which is a kind of chlorofluorocarbon, and the temperature conductivity is about nine times). Considering it, it is considered that the thermophysical property value of the heat insulating material greatly changes with the decrease of the chlorofluorocarbon concentration inside the heat insulating material.

本発明は従来技術のこのような状況に鑑みてなされたものであり、その目的は、フォトサーマル赤外検知法を用いてリモートセンシング可能な断熱材の断熱特性測定方法及び装置において、断熱材の断熱特性を正確に測定可能にして、例えば断熱材内フロンの残存量の測定に適用できるようにすることである。   The present invention has been made in view of such a situation in the prior art, and an object of the present invention is to provide a thermal insulation characteristic measuring method and apparatus for a thermal insulation capable of remote sensing using a photothermal infrared detection method. It is to make it possible to accurately measure the heat insulation characteristics and to apply it to, for example, the measurement of the remaining amount of CFC in the heat insulating material.

上記目的を達成する本発明の断熱材の断熱特性リモートセンシング方法は、周期的に変調した加熱光を試料に照射し、試料から放出される熱放射光を検出し、加熱光に対する検出信号の周波数−位相差特性を測定し、その周波数−位相差特性の解析を行うことにより試料の熱伝導率及び温度伝導率(熱拡散率)を求める断熱材の断熱特性リモートセンシング方法において、
試料の断熱材の表面に加熱光を全部又は一部透過し、熱放射光を透過しないフォトセレクティブフィルムを密着させ、そのフォトセレクティブフィルムを介して前記加熱光を照射すると共に、前記熱放射光を検出することを特徴とする方法である。
The thermal insulation property remote sensing method of the thermal insulation material of the present invention that achieves the above object irradiates a sample with periodically modulated heating light, detects thermal radiation emitted from the sample, and detects the frequency of the detection signal for the heating light -In the thermal insulation remote sensing method for thermal insulation, the thermal conductivity and temperature conductivity (thermal diffusivity) of the sample are determined by measuring the phase difference characteristics and analyzing the frequency-phase difference characteristics.
A photoselective film that transmits all or part of the heating light to the surface of the heat insulating material of the sample and that does not transmit heat radiation light is adhered, and the heating light is irradiated through the photoselective film, and the heat radiation light is irradiated. It is a method characterized by detecting.

この場合、測定された周波数−位相差特性に対して理論式をカーブフィッティングすることにより試料の断熱材の熱伝導率及び温度伝導率を求めるようにすることが望ましい。   In this case, it is desirable to obtain the thermal conductivity and temperature conductivity of the heat insulating material of the sample by curve fitting a theoretical formula with respect to the measured frequency-phase difference characteristics.

なお、フォトセレクティブフィルムとしては例えばホウケイ酸ガラスを用いることができる。   For example, borosilicate glass can be used as the photoselective film.

また、以上の方法は、例えば、熱伝導率及び温度伝導率を求めることにより、試料のフロンを含む発泡断熱材中のフロン残存量を測定するのに適用できる。   Further, the above method can be applied to, for example, measuring the residual amount of CFC in the foamed heat insulating material containing CFC of the sample by determining the thermal conductivity and the temperature conductivity.

本発明の断熱材の断熱特性リモートセンシング装置は、試料の断熱材の表面に加熱光を全部又は一部透過し、熱放射光を透過しないフォトセレクティブフィルムを密着させ、そのフォトセレクティブフィルムを介して周期的に変調した加熱光を試料に照射し、そのフォトセレクティブフィルムを介して試料の断熱材から放出される熱放射光を検出し、加熱光に対する検出信号の周波数−位相差特性を測定し、その周波数−位相差特性の解析を行うことにより試料の熱伝導率及び温度伝導率を求める断熱材の断熱特性リモートセンシング装置であって、前記の周期的に変調した加熱光を試料に照射する加熱光照射手段と、前記熱放射光を検出する熱放射光検出手段と、前記加熱光に対する前記熱放射光の検出信号の周波数−位相差特性を測定する周波数−位相差特性測定手段と、前記フォトセレクティブフィルムの物性値と前記断熱材の吸収係数を入力する物性値入力手段と、前記フォトセレクティブフィルムの物性値と前記断熱材の吸収係数に基づいて理論式を決定する理論式決定手段と、測定された周波数−位相差特性に対して理論式をカーブフィッティングするカーブフィッティング手段とを備えていることを特徴とするものである。   The heat insulating property remote sensing device of the heat insulating material of the present invention has a photoselective film that transmits all or part of the heating light and does not transmit heat radiation light on the surface of the heat insulating material of the sample, and through the photoselective film Irradiate the sample with periodically modulated heating light, detect the thermal radiation emitted from the thermal insulation of the sample through the photoselective film, measure the frequency-phase difference characteristics of the detection signal for the heating light, A heat insulation characteristic remote sensing device for a heat insulating material for obtaining a thermal conductivity and a temperature conductivity of a sample by analyzing the frequency-phase difference characteristic, wherein the sample is irradiated with the periodically modulated heating light. Measuring a frequency-phase difference characteristic of a detection signal of the thermal radiation light with respect to the heating light; a light irradiation means; a thermal radiation light detection means for detecting the thermal radiation light; Based on the frequency-phase difference characteristic measuring means, the physical property value input means for inputting the physical property value of the photoselective film and the absorption coefficient of the heat insulating material, and the physical property value of the photoselective film and the absorption coefficient of the heat insulating material. It is characterized by comprising a theoretical formula determining means for determining the formula and a curve fitting means for curve fitting the theoretical formula to the measured frequency-phase difference characteristic.

この場合に、物性値入力手段において入力する物性値は、フォトセレクティブフィルムの温度伝導率、熱伝導率、厚み、吸収係数、断熱材の吸収係数が必要である。   In this case, the physical property value input by the physical property value input means requires the temperature conductivity, the thermal conductivity, the thickness, the absorption coefficient, and the absorption coefficient of the heat insulating material of the photoselective film.

以上の説明から明らかなように、本発明の断熱材の断熱特性リモートセンシング方法及び装置によると、試料の断熱材の表面に加熱光を全部又は一部透過し、熱放射光を透過しないフォトセレクティブフィルムを密着させ、そのフォトセレクティブフィルムを介して加熱光を照射すると共に、熱放射光を検出するので、高精度で断熱材の熱伝導率と温度伝導率を同時に求めることができ、また、測定試料の断熱材の厚さに制限がなく、しかも、現場で非破壊で断熱材の断熱特性を測定することが可能になる。そして、この方法と装置は、例えばフロンを含む発泡断熱材中のフロン残存量を測定するのに利用できる。   As is apparent from the above description, according to the heat sensing property remote sensing method and apparatus of the heat insulating material of the present invention, the photoselective light that transmits all or part of the heating light to the surface of the heat insulating material of the sample and does not transmit the heat radiation light. The film is brought into close contact and irradiated with heating light through the photoselective film, and the heat radiation is detected, so the heat conductivity and temperature conductivity of the heat insulating material can be determined at the same time with high accuracy. There is no limitation on the thickness of the heat insulating material of the sample, and it becomes possible to measure the heat insulating characteristics of the heat insulating material in a non-destructive manner on site. This method and apparatus can be used to measure the amount of remaining chlorofluorocarbon in a foam insulation including, for example, chlorofluorocarbon.

従来の特許文献1で提案したフォトサーマル赤外検知法を用いた断熱特性測定方法は、断熱材表面に金属箔を貼り付けて測定を行うものであり、試料の厚さによらない測定、3次元熱伝導や対流の影響を受け難い高周波領域での測定を可能にしているが、フロン濃度の変化に敏感な温度伝導率や熱伝導率の正確な測定には必ずしも十分なものではない。   The conventional heat insulation characteristic measurement method using the photothermal infrared detection method proposed in Patent Document 1 is performed by attaching a metal foil to the surface of a heat insulating material, and does not depend on the thickness of the sample. Although measurement in a high-frequency region that is not easily affected by dimensional heat conduction or convection is possible, it is not necessarily sufficient for accurate measurement of temperature conductivity and heat conductivity that are sensitive to changes in CFC concentration.

そこで、本発明においては、金属箔に代えて、加熱光を全部又は一部透過し、熱放射光を透過しない例えばホウケイ酸ガラスの薄板(以下、フォトセレクティブフィルムと呼ぶ。)を用いることを考えた。このような特性のフォトセレクティブフィルムを断熱材の表面に密着して加熱光を照射すると、試料内部での光の吸収と発熱が起こり、測定される位相差に試料の熱物性値に起因した情報が増え、熱伝導率と温度伝導率の同時測定が可能となる。   Therefore, in the present invention, instead of the metal foil, it is considered to use, for example, a thin plate of borosilicate glass (hereinafter referred to as a photoselective film) that transmits all or part of the heating light and does not transmit the heat radiation. It was. When a photoselective film with such characteristics is in close contact with the surface of the heat insulating material and irradiated with heating light, light absorption and heat generation inside the sample occur, and the measured phase difference is caused by the thermophysical property value of the sample. This increases the simultaneous measurement of thermal conductivity and thermal conductivity.

以下、フォトサーマル赤外検知法と原理的に同じ光音響法(RG理論:非特許文献1)を変形した本発明のフォトサーマル赤外検知法の理論を説明する。この理論は次の仮定を前提としている。
1)加熱光の光強度は正弦波状に変化する。
2)試料以外(気体)は光を吸収しない。
3)試料に吸収された光は全て熱に変わる。
4)熱の移動は光軸と平行な1次元方向のみである。
5)試料と気体の界面に熱抵抗はない。
6)気体中で対流は起こらない。
Hereinafter, the theory of the photothermal infrared detection method of the present invention, which is a modification of the photoacoustic method (RG theory: Non-Patent Document 1) that is fundamentally the same as the photothermal infrared detection method, will be described. This theory assumes the following assumptions:
1) The light intensity of the heating light changes in a sine wave shape.
2) Other than the sample (gas) does not absorb light.
3) All the light absorbed by the sample is converted into heat.
4) The movement of heat is only in the one-dimensional direction parallel to the optical axis.
5) There is no thermal resistance at the interface between the sample and the gas.
6) Convection does not occur in the gas.

図1に本発明の理論の1次元モデルを示す。図1(a)がAC温度振幅の減衰の様子、図1(b)が光の吸収の様子を示している。図1に示すように、測定対象の断熱材1の表面にフォトセレクティブフィルム2を密着させてそのフォトセレクティブフィルム2にガス3側から正弦波変調したレーザー光4を照射するようにした。以下の議論において、各記号の意味は後記の表1の記号表参照。   FIG. 1 shows a one-dimensional model of the theory of the present invention. FIG. 1A shows how the AC temperature amplitude is attenuated, and FIG. 1B shows how the light is absorbed. As shown in FIG. 1, a photoselective film 2 is brought into close contact with the surface of a heat insulating material 1 to be measured, and the photoselective film 2 is irradiated with laser light 4 that is sine-wave modulated from the gas 3 side. In the following discussion, see the symbol table in Table 1 below for the meaning of each symbol.

波長λ、光強度I0 の加熱光4を角周波数ωで正弦波状に変調して試料に照射すると、加熱光強度Iの時間変化は、試料と入射する光強度時間の関数で(1)式のように表すことができる。 When the sample is irradiated with the heating light 4 having the wavelength λ and the light intensity I 0 which is modulated into a sine wave at the angular frequency ω, the time change of the heating light intensity I is a function of the light intensity time incident on the sample and the expression (1). It can be expressed as

I=1/2×I0 (1+cosωt) ・・・(1)
この加熱光4は試料内部まで進入し、減衰する。その減衰の度合いを表すパラメータが吸収係数βp 、βs であり、加熱光4はβp 、βs を用いて次式のように減衰する。
I = 1/2 × I 0 (1 + cos ωt) (1)
The heating light 4 enters the sample and attenuates. The parameters representing the degree of attenuation are the absorption coefficients β p and β s , and the heating light 4 is attenuated as follows using β p and β s .

I(x)=Iexp(βp x) 〔−Lp ≦x≦0〕 ・・・(2)
I(x)=Iexp(−βp p )exp{βs (x+Lp )} 〔x≦−Lp
・・・(3)
この結果、生じる熱流束qは(4)、(5)式のように表せる。
I (x) = Iexp (β p x) [−L p ≦ x ≦ 0] (2)
I (x) = Iexp (−β p L p ) exp {β s (x + L p )} [x ≦ −L p ]
... (3)
As a result, the resulting heat flux q can be expressed as in equations (4) and (5).

q=1/2×βp 0 exp(βp x)(1+cosωt) 〔−Lp ≦x≦0〕
・・・(4)
q=1/2×βs 0 exp{βs (x+Lp )−βp p
×(1+cosωt) 〔x≦−Lp 〕 ・・・(5)
吸収された光が全て熱に変わり、この熱がx軸1次元方向のみに伝わるという仮定3)、4)により、フォトセレクティブフィルム、試料、気体(ガス)に対する1次元熱伝導方程式は、複素数を考慮に入れた複素温度Φを用いて次式のように表すことができる。
q = 1/2 × β p I 0 exp (β p x) (1 + cos ωt) [−L p ≦ x ≦ 0]
... (4)
q = 1/2 × β s I 0 exp {β s (x + L p) -β p L p}
× (1 + cosωt) [x ≦ −L p ] (5)
Assuming that all absorbed light is converted into heat and this heat is transmitted only in the one-dimensional direction of the x-axis 3), 4), the one-dimensional heat conduction equation for photoselective film, sample, and gas (gas) is a complex number. The complex temperature Φ taken into account can be expressed as:

2 Φg /∂x2 =1/ag ×∂Φg /∂t 〔0≦x〕 ・・・(6)
2 Φp /∂x2 =1/ap ×∂Φp /∂t
−βp 0 /(2λp )×exp(βp x){1+exp(jωt)}
〔−Lp ≦x≦0〕 ・・・(7)
2 Φs /∂x2 =1/as ×∂Φs /∂t
−βs 0 /(2λs )×exp{βs (x+Lp )−βp p
×{1+exp(jωt)} 〔x≦−Lp 〕 ・・・(8)
また、境界条件は温度と熱流束の連続の条件から次のようになる。
∂ 2 Φ g / ∂x 2 = 1 / a g × ∂Φ g / ∂t [0 ≦ x] (6)
2 Φ p / ∂ x 2 = 1 / ap × ∂Φ p / ∂t
−β p I 0 / (2λ p ) × exp (β p x) {1 + exp (jωt)}
[−L p ≦ x ≦ 0] (7)
∂ 2 Φ s / ∂x 2 = 1 / a s × ∂Φ s / ∂t
−β s I 0 / (2λ s ) × exp {β s (x + L p ) −β p L p }
X {1 + exp (jωt)} [x ≦ −L p ] (8)
The boundary condition is as follows from the condition of continuous temperature and heat flux.

Φg (0,t)=Φp (0,t) ・・・(9)
Φp (−Lp ,t)=Φs (−Lp ,t) ・・・(10)
−λg ×∂Φg (0,t)/∂x=−λp ×∂Φp (0,t)/∂x
・・・(11)
−λp ×∂Φp (−Lp ,t)/∂x=−λs ×∂Φs (−Lp ,t)/∂x
・・・(12)
Φg (∞,t)=0 ・・・(13)
Φs (−∞,t)=0 ・・・(14)
以上の式を解いて試料−ガス界面での複素温度振幅θ1 を求めると次のようになる。
Φ g (0, t) = Φ p (0, t) (9)
Φ p (−L p , t) = Φ s (−L p , t) (10)
−λ g × ∂Φ g (0, t) / ∂x = −λ p × ∂Φ p (0, t) / ∂x
(11)
−λ p × ∂Φ p (−L p , t) / ∂x = −λ s × ∂Φ s (−L p , t) / ∂x
(12)
Φ g (∞, t) = 0 (13)
Φ s (−∞, t) = 0 (14)
Solving the above equation, the complex temperature amplitude θ 1 at the sample-gas interface is obtained as follows.

θ1 =βp 0 /{2λp (βp 2 −σp 2 )}
×{(b+1)(γp −1)exp(σp p )−(b−1)(γp +1)
×exp(−σp p )+2(b−γp )exp(−βp p )}
÷{(b+1)(g+1)exp(σp p
−(b−1)(g−1)exp(−σp p )}
+βs 0 /{2λs (βs 2 −σs 2 )}
×{2b(γs −1)exp(−βp p )}
÷{(b+1)(g+1)exp(σp p )−(b−1)(g−1)
×exp(−σp p )} ・・・(15)
ここで、試料表面でのAC温度変化は、
ΦAC(0,t)=θ1 exp(jωt) ・・・(16)
となる。実際に測定される温度は(16)式の実部であるから、θ1 を(17)式のようにおくと、実際の温度変化δTは(18)式のように表される。
θ 1 = β p I 0 / {2λ pp 2 −σ p 2 )}
× {(b + 1) (γ p −1) exp (σ p L p ) − (b−1) (γ p +1)
× exp (-σ p L p) +2 (b-γ p) exp (-β p L p)}
÷ {(b + 1) (g + 1) exp (σ p L p )
- (b-1) (g -1) exp (-σ p L p)}
+ Β s I 0 / {2λ ss 2 −σ s 2 )}
× {2b (γ s −1) exp (−β p L p )}
÷ {(b + 1) (g + 1) exp (σ p L p ) − (b−1) (g−1)
× exp (−σ p L p )} (15)
Here, the AC temperature change on the sample surface is
Φ AC (0, t) = θ 1 exp (jωt) (16)
It becomes. Since the actually measured temperature is the real part of equation (16), when θ 1 is set as in equation (17), the actual temperature change δT is expressed as in equation (18).

θ1 =θR +jθI =Aexp(−jφ) ・・・(17)
δT=Acos(ωt−Δφ) ・・・(18)
ここで、Δφ、Aは次のようにおく。
θ 1 = θ R + jθ I = Aexp (−jφ) (17)
δT = Acos (ωt−Δφ) (18)
Here, Δφ and A are set as follows.

Δφ=tan-1(Imθ1 /Reθ1 )=tan-1(−θI /θR ) ・・・(19)
A=√(θR 2 +θI 2 ) ・・・(20)
また、(19)式を詳しく書くと以下のようになる。
Δφ = tan −1 (Imθ 1 / Reθ 1 ) = tan −1 (−θ I / θ R ) (19)
A = √ (θ R 2 + θ I 2 ) (20)
Further, the equation (19) is written in detail as follows.

Δφ=tan-1{(E×Q+F×P+G×N+H×M)
÷(E×P−F×Q+G×M−H×N)} ・・・(21)
P=(b+1)2 (g+1)(Bp −1)exp(2kp p
+(b2 −1)(g+1){Bp sin(2kp p
−(Bp +1)cos(2kp p )}
+2(b+1)(g+1)exp(kp p )exp(−βp p
×{Bp sin(kp p )+(b−Bp )cos(kp p )}
+(b−1)2 (g−1)(Bp +1)exp(−2kp p
−(b2 −1)(g−1){Bp sin(2kp p
+(Bp −1)cos(2kp p )}
+2(b−1)(g−1)exp(−kp p )exp(−βp p
×{Bp sin(kp p )−(b−Bp )cos(kp p )}
・・・(22)
Q=−Bp (b+1)2 (g+1)exp(2kp p
+(b2 −1)(g+1){(Bp +1)sin(2kp p
+Bp cos(2kp p )}
+2(b+1)(g+1)exp(kp p )exp(−βp p
×{−(b−Bp )sin(kp p )+Bp cos(kp p )}
−Bp (b−1)2 (g−1)exp(−2kp p
−(b2 −1)(g−1){(Bp −1)sin(2kp p
−Bp cos(2kp p )}
−2(b−1)(g−1)exp(−kp p )exp(−βp p
×{(b−Bp )sin(kp p )+Bp cos(kp p )}
・・・(23)
M=2b(b+1)(g+1)exp(kp p )exp(−βp p
×{−Bs sin(kp p )+(Bs −1)cos(kp p )}
−2b(b−1)(g−1)exp(−kp p )exp(−βp p
×{Bs sin(kp p )+(Bs −1)cos(kp p )}
・・・(24)
N=−2b(b+1)(g+1)exp(kp p )exp(−βp p
×{(Bs −1)sin(kp p )+Bs cos(kp p )}
+2b(b−1)(g−1)exp(−kp p )exp(−βp p
×{−(Bs −1)sin(kp p )+Bs cos(kp p )}
・・・(25)
E=(Zp βp 2 )/(βp 4 +4kp 4 ) ・・・(26)
F=(2Zp kp 2 )/(βp 4 +4kp 4 ) ・・・(27)
G=(Zs βs 2 )/(βs 4 +4ks 4 ) ・・・(28)
H=(2Zs ks 2 )/(βs 4 +4ks 4 ) ・・・(29)
ただし、Bp 、Bs 、Zp 、Zs は次のようにおく。
Δφ = tan −1 {(E × Q + F × P + G × N + H × M)
÷ (E × PF × Q + G × M−H × N)} (21)
P = (b + 1) 2 (g + 1) (Bp −1) exp (2k p L p )
+ (B 2 −1) (g + 1) {B p sin (2k p L p )
- (Bp +1) cos (2k p L p)}
+2 (b + 1) (g + 1) exp (k p L p ) exp (−β p L p )
× {Bp sin (k p L p) + (b-Bp) cos (k p L p)}
+ (B-1) 2 ( g-1) (Bp +1) exp (-2k p L p)
-(B 2 -1) (g-1) {B p sin (2k p L p )
+ (Bp −1) cos (2k p L p )}
+2 (b-1) (g -1) exp (-k p L p) exp (-β p L p)
× {Bp sin (k p L p) - (b-Bp) cos (k p L p)}
···(twenty two)
Q = -Bp (b + 1) 2 (g + 1) exp (2k p L p)
+ (B 2 −1) (g + 1) {(Bp + 1) sin (2k p L p )
+ Bp cos (2k p L p )}
+2 (b + 1) (g + 1) exp (k p L p ) exp (−β p L p )
× {- (b-Bp) sin (k p L p) + Bp cos (k p L p)}
-Bp (b-1) 2 ( g-1) exp (-2k p L p)
-(B 2 -1) (g-1) {(Bp -1) sin (2k p L p )
-Bp cos (2k p L p) }
-2 (b-1) (g -1) exp (-k p L p) exp (-β p L p)
× {(b-Bp) sin (k p L p) + Bp cos (k p L p)}
···(twenty three)
M = 2b (b + 1) (g + 1) exp (k p L p ) exp (−β p L p )
× {-Bs sin (k p L p) + (Bs -1) cos (k p L p)}
-2b (b-1) (g -1) exp (-k p L p) exp (-β p L p)
× {Bs sin (k p L p) + (Bs -1) cos (k p L p)}
···(twenty four)
N = -2b (b + 1) (g + 1) exp (k p L p) exp (-β p L p)
× {(Bs -1) sin ( k p L p) + Bs cos (k p L p)}
+ 2b (b-1) ( g-1) exp (-k p L p) exp (-β p L p)
× {- (Bs -1) sin (k p L p) + Bs cos (k p L p)}
···(twenty five)
E = (Zp β p 2 ) / (β p 4 +4 k p 4 ) (26)
F = (2Zp k p 2 ) / (β p 4 +4 k p 4 ) (27)
G = (Zs β s 2) / (β s 4 + 4k s 4) ··· (28)
H = (2Z s k s 2 ) / (β s 4 +4 k s 4 ) (29)
However, Bp, Bs, Zp, Zs are set as follows.

Bp =βp /(2kp ) ・・・(30)
Bs =βs /(2ks ) ・・・(31)
Zp =βp 0 /(2λp ) ・・・(32)
Zs =βs 0 /(2λs ) ・・・(33)
測定される振幅A、位相差Δφには、試料の熱物性値、吸収係数、厚みの情報が含まれており、ある周波数領域で測定し適当な解析をすることにより、試料の厚み方向に関する熱物性値の情報を得ることができる。
Bp = β p / (2k p ) ··· (30)
Bs = β s / (2 k s ) (31)
Zp = β p I 0 / (2λ p ) (32)
Zs = β s I 0 / (2λ s ) (33)
The measured amplitude A and phase difference Δφ contain information on the thermophysical value, absorption coefficient, and thickness of the sample. By measuring in a certain frequency region and performing appropriate analysis, the heat in the thickness direction of the sample can be measured. Information on physical property values can be obtained.

表1 (記号表)
────────────────────────────────────
記号 式 意味〔単位〕
────────────────────────────────────
i λi /ρi i 物質iの温度伝導率〔m2 /s〕
b es /ep 試料とフォトセレクティブフィルムの熱浸透率の比
i 物質iの定圧比熱〔J/(kg・K)〕
i √(λi ρi i ) 物質iの熱浸透率〔Ws0.5 /(m2 ・K)〕
f 変調周波数〔Hz〕
g eg /ep 空気とフォトセレクティブフィルムの熱浸透率の比
h 対流熱伝達率〔W/(m2 ・K)〕
0 照射光強度〔W/m2
j 虚数単位
i √(πf/ai ) 物質iの温度波の波数〔m-1
i 物質iの厚み〔m〕
i 物質iに流入する熱流束〔W/m2
T 温度〔K〕
βi 物質iの吸収係数〔m-1
Φ 複素温度
Δφ 変調光と熱放射信号との位相差〔°〕
γi βi /σi
λi 物質iの熱伝導率〔W/(m・K)〕
θ 複素温度係数
ρi 物質iの密度〔kg/m3
σi (1+j)ki 物質iの複素温度波の波数 〔m-1
ω 2πf 変調角周波数〔rad/s〕
────────────────────────────────────
サブスクリプトのiは、g:気体、p:フォトセレクティブフィルム、s:試料
を意味する。
Table 1 (Symbol table)
────────────────────────────────────
Symbol Expression Meaning [Unit]
────────────────────────────────────
a i λ i / ρ i c i Temperature conductivity of material i [m 2 / s]
b e s / e p samples and specific heat at constant pressure ratio c i substance i the thermal effusivity of the photo Selective Film [J / (kg · K)]
e i √ (λ i ρ i c i ) Thermal permeability of substance i [Ws 0.5 / (m 2 · K)]
f Modulation frequency [Hz]
g e g / e p air ratio h convective heat transfer coefficient of the thermal effusivity of the photo Selective film [W / (m 2 · K)]
I 0 irradiation light intensity [W / m 2 ]
j Imaginary unit k i √ (πf / a i ) Wave number [m −1 ] of temperature wave of substance i
Li material i thickness [m]
q i Heat flux flowing into material i [W / m 2 ]
T temperature [K]
β i absorption coefficient of substance i [m -1 ]
Φ Complex temperature
Δφ Phase difference between modulated light and thermal radiation signal [°]
γ i β i / σ i
λ i Thermal conductivity of substance i [W / (m · K)]
θ Complex temperature coefficient
The density of [rho i substance i [kg / m 3]
σ i (1 + j) k i Wave number of complex temperature wave of material i [m -1 ]
ω 2πf Modular angular frequency [rad / s]
────────────────────────────────────
I in the subscript means g: gas, p: photoselective film, s: sample.

────────────────────────────────────
────────────────────────────────────
.

本発明においては、図1に示すように、測定対象の断熱材1の表面にフォトセレクティブフィルム2を密着させてそのフォトセレクティブフィルム2にガス3側から正弦波変調したレーザー光4を照射し、変調光4とフォトセレクティブフィルム2表面からの熱放射光5との周波数fに対する位相差Δφ特性を測定し、その測定値に理論式がフィットするようにして、as とλs を決めることにより、断熱材1の温度伝導率(熱拡散率)as と熱伝導率λs を求めるものである。 In the present invention, as shown in FIG. 1, the photoselective film 2 is brought into close contact with the surface of the heat insulating material 1 to be measured, and the photoselective film 2 is irradiated with the laser light 4 that is sinusoidally modulated from the gas 3 side. By measuring the phase difference Δφ characteristic of the modulated light 4 and the thermal radiation light 5 from the surface of the photoselective film 2 with respect to the frequency f, and determining a s and λ s so that the theoretical equation fits the measured value. The temperature conductivity (thermal diffusivity) a s and the thermal conductivity λ s of the heat insulating material 1 are obtained.

本発明の上記理論を適用するに当たっては、測定対象の断熱材1の表面に密着させてガス3側から正弦波変調したレーザー光4を照射するフォトセレクティブフィルム2としては、ビオ数が小さく対流による影響を抑制するものを用いる。   In applying the above-described theory of the present invention, the photoselective film 2 that irradiates the laser beam 4 that has been sinusoidally modulated from the gas 3 side in close contact with the surface of the heat insulating material 1 to be measured has a small bio number and is based on convection. Use one that suppresses the effect.

ここで、ビオ数Bi とは、
Bi =hL/λ ・・・(34)
で定義されるもので、hは対流熱伝達率〔W/(m2 ・K)〕、λは固体の熱伝導率〔W/(m・K)〕、L〔m〕は代表長さ(一般的には、L=体積/表面積)である。
Here, the bio number Bi is
Bi = hL / λ (34)
Where h is the convective heat transfer coefficient [W / (m 2 · K)], λ is the thermal conductivity of the solid [W / (m · K)], and L [m] is the representative length ( In general, L = volume / surface area).

すなわち、ビオ数は、物体表面の熱伝達による熱抵抗(1/h)と、物体内部の熱伝導による熱抵抗(L/λ)の比であり、熱損失の寄与を表す。ビオ数が無限大のときは、熱伝達率hが大きく、この場合、流体(ここでは空気)に熱が逃げて一定の動きをするので、対流の影響を大きく受けることになる。そして、試料の表面温度と媒体の流体温度は等しくなる。逆に、ビオ数が0に近いときは、対流の影響が内部の熱伝達現象に影響を与え難くなる。   That is, the bio number is the ratio of the thermal resistance (1 / h) due to heat transfer on the surface of the object to the thermal resistance (L / λ) due to heat conduction inside the object, and represents the contribution of heat loss. When the number of bioses is infinite, the heat transfer coefficient h is large. In this case, heat escapes to the fluid (here, air) and moves constant, so that it is greatly affected by convection. And the surface temperature of a sample and the fluid temperature of a medium become equal. Conversely, when the bio number is close to 0, the effect of convection hardly affects the internal heat transfer phenomenon.

断熱材のような低熱伝導性の試料のビオ数は大きく、対流の影響を受けやすい。   Samples with low thermal conductivity, such as thermal insulation, have a large bionumber and are susceptible to convection.

これに対して、図1に示すように、断熱材1の表面にホウケイ酸ガラスのようなフォトセレクティブフィルム2を密着させ、固体(すなわち測定対象)のビオ数を小さくすると、対流による影響を受け難くでき、上記のようなRG理論を変形した本発明の理論の(1)〜(33)式が正確に適用できるようになる。   On the other hand, as shown in FIG. 1, when a photoselective film 2 such as borosilicate glass is brought into close contact with the surface of the heat insulating material 1 and the bio number of solids (that is, measurement objects) is reduced, it is affected by convection. This makes it difficult to apply the equations (1) to (33) of the theory of the present invention, which is a modification of the RG theory as described above.

さて、(21)式の変調光4と熱放射光5との位相差Δφは、次式のように表現される。ただし、fは変調周波数である。   Now, the phase difference Δφ between the modulated light 4 and the thermal radiation light 5 in the equation (21) is expressed as the following equation. Where f is the modulation frequency.

Δφ=F(f:g,b,kp ,ks ,Lp ,βp ,βs ) ・・・(35)
ここで、
b=√(λs ρs s )/√(λp ρp p ):フォトセレクティブフィルムと試料の熱浸透率の比、
g=√(λg ρg g )/√(λp ρp p ):フォトセレクティブフィルムと空気の熱浸透率の比、
i =√(πf/ai ):温度波の波数、
p :フォトセレクティブフィルムの厚み、
i =λi /ρi i :温度伝導率、
ρi :密度、
i :定圧比熱、
λi :熱伝導率、
βi :吸収係数、
である。ただし、サブスクリプトのiは、g:気体、p:フォトセレクティブフィルム、p:試料を意味する。
Δφ = F (f: g, b, k p , k s , L p , β p , β s ) (35)
here,
b = √ (λ s ρ s c s) / √ (λ p ρ p c p): Photo Selective film and the ratio of the thermal effusivity of the sample,
g = √ (λ g ρ g c g ) / √ (λ p ρ p c p ): ratio of thermal permeation rate between photoselective film and air,
k i = √ (πf / a i ): temperature wave number,
L p : the thickness of the photoselective film,
a i = λ i / ρ i c i : temperature conductivity,
ρ i : density,
c i : constant pressure specific heat,
λ i : thermal conductivity,
β i : absorption coefficient,
It is. However, i of the subscript means g: gas, p: photoselective film, and p: sample.

(35)式を以下のように書き換えることができる。   Equation (35) can be rewritten as follows.

Δφ=F(f:g,b,kp ,ks ,Lp ,βp ,βs
=F(f:√(λg ρg g )/√(λp ρp p ),
√(λs ρs s )/√(λp ρp p ),
√(πf/ap ),√(πf/as ),Lp ,βp ,βs
=F(f:√(λg ρg g )/√(λp ρp p ),
(λs /√as )/(λp /√ap ),
√(πf/ap ),√(πf/as ),Lp ,βp ,βs
・・・(36)
となる。フォトセレクティブフィルム2の物性値であるap 、λp 、Lp 、βp は既知であり、また、試料の断熱材1の吸収係数βs は他の方法で測定できて既知であり、g=√(λg ρg g )/√(λs ρs s )≒0とみなせるので、
Δφ=F(f:λs ,as ) ・・・(37)
と、変調光4と熱放射光5との位相差Δφは、加熱光4の変調周波数fと測定対象の断熱材1の温度伝導率as と熱伝導率λs との関数の形になる。この(37)式が、理論的な測定対象の断熱材1の周波数−位相差曲線を与えることになる。
Δφ = F (f: g, b, k p , k s , L p , β p , β s )
= F (f: √ (λ g ρ g c g ) / √ (λ p ρ p c p ),
√ (λ s ρ s c s ) / √ (λ p ρ p c p ),
√ (πf / a p ), √ (πf / a s ), L p , β p , β s )
= F (f: √ (λ g ρ g c g ) / √ (λ p ρ p c p ),
s / √a s ) / (λ p / √a p ),
√ (πf / a p ), √ (πf / a s ), L p , β p , β s )
... (36)
It becomes. The physical property values a p , λ p , L p , β p of the photoselective film 2 are known, and the absorption coefficient β s of the heat insulating material 1 of the sample is known by other methods, g = √ (λ g ρ g c g ) / √ (λ s ρ s c s ) ≈0,
Δφ = F (f: λ s , a s ) (37)
The phase difference Δφ between the modulated light 4 and the thermal radiation light 5 is in the form of a function of the modulation frequency f of the heating light 4 and the temperature conductivity a s and thermal conductivity λ s of the heat insulating material 1 to be measured. . This equation (37) gives a frequency-phase difference curve of the heat insulating material 1 to be theoretically measured.

さて、本発明においては、例えば図2のような配置で、測定対象の断熱材1に関して変調光4と熱放射光5との周波数fに対する位相差Δφ特性を測定し、その測定値に上記(37)式がフィットするように、as とλs を決めることにより、断熱材1の温度伝導率as と熱伝導率λs を求めるものである。 In the present invention, for example, in the arrangement as shown in FIG. 2, the phase difference Δφ characteristic with respect to the frequency f of the modulated light 4 and the thermal radiation light 5 is measured with respect to the heat insulating material 1 to be measured. The temperature conductivity a s and the thermal conductivity λ s of the heat insulating material 1 are determined by determining a s and λ s so that the equation 37) fits.

図2において、符号10はパソコン、11はパソコン10の制御により任意の周波数fの正弦波の信号を生成するファンクションジェネレーター、12は近赤外の例えば波長810nmのレーザー光を発振する半導体レーザーで、ファンクションジェネレーター11により周波数fで正弦波状に変調されたレーザー光を発振する。13は半導体レーザー12から発振されたレーザー光を所定位置にガイドする光ファイバー、14は光ファイバー先端に設けられた光学系で、測定対象の断熱材1表面に密着されたフォトセレクティブフィルム2上の測定点を含む広い範囲に光ファイバー13内をガイドされた加熱レーザー光4を照射する。このように測定点を含む広い範囲に変調光4を照射する理由は、3次元熱伝導による誤差の影響を緩和するためである。15は焦点が加熱光4照射範囲の中心に位置するように配置されたZnSeレンズで、フォトセレクティブフィルム2上の加熱光4照射位置から放射された熱放射光5を集めて平行に射出させる。16は焦点が赤外線検出器18の検出面に一致する別のZnSeレンズで、ZnSeレンズ15で平行にされた熱放射光5を赤外線検出器18の検出面に集光する。17は赤外線検出器18の検出面の前に配置された赤外線フィルターで、熱放射光5、例えば波長10μmの赤外線を透過し、フォトセレクティブフィルム2で反射された加熱レーザー光4、散乱光等を阻止する。19は赤外線検出器18で検出された信号を増幅するプリアンプ、20はプリアンプ19で増幅された検出信号とファンクションジェネレーター11からの変調信号とを入力して両者の位相差Δφと信号強度を出力するロックインアンプである。ロックインアンプ20からの位相差Δφと信号強度はパソコン10に入力される。   In FIG. 2, reference numeral 10 is a personal computer, 11 is a function generator that generates a sine wave signal having an arbitrary frequency f under the control of the personal computer 10, and 12 is a semiconductor laser that oscillates near-infrared laser light having a wavelength of 810 nm, for example. The function generator 11 oscillates a laser beam modulated into a sine wave at a frequency f. Reference numeral 13 denotes an optical fiber for guiding laser light emitted from the semiconductor laser 12 to a predetermined position. Reference numeral 14 denotes an optical system provided at the tip of the optical fiber, which is a measurement point on the photoselective film 2 in close contact with the surface of the heat insulating material 1 to be measured. The heating laser beam 4 guided in the optical fiber 13 is irradiated over a wide range including The reason for irradiating the modulated light 4 over a wide range including the measurement point in this way is to mitigate the influence of errors due to three-dimensional heat conduction. A ZnSe lens 15 is arranged so that the focal point is located at the center of the irradiation range of the heating light 4. The thermal radiation light 5 emitted from the irradiation position of the heating light 4 on the photoselective film 2 is collected and emitted in parallel. Reference numeral 16 denotes another ZnSe lens whose focal point coincides with the detection surface of the infrared detector 18, and condenses the heat radiation light 5 made parallel by the ZnSe lens 15 on the detection surface of the infrared detector 18. Reference numeral 17 denotes an infrared filter disposed in front of the detection surface of the infrared detector 18, which transmits the heat radiation light 5, for example, infrared light having a wavelength of 10 μm, and reflects the heating laser light 4 and the scattered light reflected by the photoselective film 2. Stop. Reference numeral 19 denotes a preamplifier for amplifying the signal detected by the infrared detector 18, and 20 denotes a detection signal amplified by the preamplifier 19 and a modulation signal from the function generator 11, and outputs a phase difference Δφ between them and a signal intensity. It is a lock-in amplifier. The phase difference Δφ and signal strength from the lock-in amplifier 20 are input to the personal computer 10.

したがって、パソコン10によりファンクションジェネレーター11で生成される正弦波の信号の周波数fが所定範囲で順次変更され、半導体レーザー12から発振される加熱レーザー光4はその周波数fで変調され、断熱材1表面に密着したフォトセレクティブフィルム2を照射して周波数fで周期的に加熱するようになっている。加熱された断熱材1からフォトセレクティブフィルム2を経て放出される熱放射光5は、2個のZnSeレンズ15、16と赤外線フィルター17を介して赤外線検出器18の検出面に集光され、赤外線検出器18の検出信号はプリアンプ19により電圧信号に変換され、ファンクションジェネレータ11からの変調信号と共にロックインアンプ20に入力され、変調光4と熱放射光5との位相差Δφと信号強度が測定される。この位相差Δφと信号強度はパソコン10に入力され、以下に説明するような解析が行われる。   Therefore, the frequency f of the sine wave signal generated by the function generator 11 by the personal computer 10 is sequentially changed within a predetermined range, and the heating laser light 4 oscillated from the semiconductor laser 12 is modulated by the frequency f, and the surface of the heat insulating material 1 The photoselective film 2 in close contact with the film is irradiated and periodically heated at a frequency f. Thermal radiation light 5 emitted from the heated heat insulating material 1 through the photoselective film 2 is condensed on the detection surface of the infrared detector 18 via the two ZnSe lenses 15 and 16 and the infrared filter 17, and is infrared rays. The detection signal of the detector 18 is converted into a voltage signal by the preamplifier 19 and input to the lock-in amplifier 20 together with the modulation signal from the function generator 11, and the phase difference Δφ and the signal intensity between the modulation light 4 and the thermal radiation light 5 are measured. Is done. The phase difference Δφ and the signal intensity are input to the personal computer 10 and analyzed as described below.

図3は、パソコン10内での処理とそのディスプレイ等への出力を示すフローチャートであり、ステップST1で、(35)式の基礎式:Δφ=F(f:g,b,kp ,ks ,Lp ,βp ,βs )、すなわち、(21)式が読み出され、ステップST2で、既知のフォトセレクティブフィルム2のap 、λp 、Lp 、βp と、断熱材1のβs を入力し、その基礎式:Δφ=F(f:g,b,kp ,ks ,Lp ,βp ,βs )にそのap 、λp 、Lp 、βp 、βs を代入して、ステップST3で、(37)式の理論式:Δφ=F(f:λs ,as )を決定する。一方、図2で説明したようにして測定した測定値ΔφをステップST4で入力する。また、ステップST5で、断熱材1のλs ,as の初期値と、ステップST6のカーブフィッティングの収束条件を入力する。ここで、λs ,as の初期値としては、具体的な断熱材1の種類に応じて知られた熱伝導率、温度伝導率の推定値若しくは近似値を用いるのが普通である。なお、ステップST4とステップST5の入力は、ステップST5以前の何れの時期に入力してもよい。その後、ステップST6で、ステップST3で得た理論式:Δφ=F(f:λs ,as )を、ステップST4で入力した測定値Δφへカーブフィッティングする。このカーブフィッティングの手法としては、シンプレックス法、最小二乗法等周知の何れのカーブフィッティング法を用いてもよい。このカーブフィッティングの結果、理論式:Δφ=F(f:λs ,as )中のλs とas が決定される。その後、ステップST7で、ステップST4で入力した測定値ΔφとステップST6のカーブフィッティング結果とをCRT、プリンター等にグラフィカルに表示する。そして、最後にステップST8で、解析結果の断熱材1のλs ,as を表示する。 FIG. 3 is a flowchart showing the processing in the personal computer 10 and the output to the display or the like. In step ST1, the basic formula of the formula (35): Δφ = F (f: g, b, k p , k s , L p , β p , β s ), that is, equation (21) is read out, and in step ST2, a p , λ p , L p , β p of the known photoselective film 2 and the heat insulating material 1 β s is input, and its basic expression: Δφ = F (f: g, b, k p , k s , L p , β p , β s ) is input to its a p , λ p , L p , β p , β Substituting s , the theoretical formula (Δφ = F (f: λ s , a s )) of the formula (37) is determined in step ST3. On the other hand, the measured value Δφ measured as described with reference to FIG. 2 is input in step ST4. In step ST5, the initial values of λ s and a s of the heat insulating material 1 and the curve fitting convergence condition in step ST6 are input. Here, as the initial values of λ s and a s , it is common to use known thermal conductivity, estimated value or approximate value of thermal conductivity according to the specific type of heat insulating material 1. Note that the input of step ST4 and step ST5 may be input at any time before step ST5. After that, in step ST6, the theoretical formula obtained in step ST3: Δφ = F (f: λ s , a s ) is curve-fitted to the measured value Δφ input in step ST4. As the curve fitting method, any known curve fitting method such as a simplex method or a least square method may be used. The result of this curve fitting, the theoretical expression: Δφ = F (f: λ s, a s) in the lambda s and a s are determined. Thereafter, in step ST7, the measured value Δφ input in step ST4 and the curve fitting result in step ST6 are graphically displayed on a CRT, a printer or the like. Finally, in step ST8, λ s and a s of the heat insulating material 1 as an analysis result are displayed.

以上のようにして、本発明のリモートセンシング方法により、断熱材1の熱伝導率λs と温度伝導率as とが正確に求まる。 As described above, the thermal conductivity λ s and the temperature conductivity a s of the heat insulating material 1 can be accurately obtained by the remote sensing method of the present invention.

ここで、断熱材1の密着させるフォトセレクティブフィルム2に求められる条件は、以下のようになる。
(1)加熱光(試料が吸収する波長なら波長は限定されない。ただし、検知波長と重複しないこと。)を全部又は一部透過するもの。
Here, the conditions required for the photoselective film 2 to which the heat insulating material 1 is adhered are as follows.
(1) The light that transmits all or part of the heating light (the wavelength is not limited as long as the sample absorbs the wavelength, but does not overlap with the detection wavelength).

試料の熱物性値を感度良く測定するには、加熱光に対する適度な吸収係数を持つことが望ましい。
(2)熱放射光(検知波長5.5〜11.0μm)を透過しないもの。
In order to measure the thermophysical property value of a sample with high sensitivity, it is desirable to have an appropriate absorption coefficient for heating light.
(2) Those which do not transmit heat radiation light (detection wavelength 5.5 to 11.0 μm).

1層目表面の温度変化を熱放射として検知しているため、熱放射を透過する材料では1層目の表面温度のみを検知することができない。
(3)全半球放射率が大きいもの
熱放射を信号として検知しているため、放射率の大きな材料を用いることで放射エネルギーが大きくなり、信号が安定しやすい。
(4)熱伝導率が大きいもの
測定系のビオ数が小さくなり、対流の影響を抑制できる。ちなみに、ホウケイ酸ガラスを用いた測定系のビオ数は断熱材の場合の1/25程度となり、十分に小さく、対流の影響はそれ程大きくないと考えられる。
(5)薄く加工しやすいもの
1層目の材料が薄い材料の場合、熱拡散長が小さくなる高周波領域での測定が可能となり、3次元熱伝導や対流の影響を受け難くなる。
(6)単層構造のもの。
Since the temperature change on the surface of the first layer is detected as thermal radiation, only the surface temperature of the first layer cannot be detected with a material that transmits thermal radiation.
(3) Large hemispherical emissivity Since heat radiation is detected as a signal, the use of a material with a large emissivity increases the radiant energy and makes the signal easy to stabilize.
(4) Large thermal conductivity The number of bios in the measurement system is reduced, and the influence of convection can be suppressed. By the way, the number of bios in the measurement system using borosilicate glass is about 1/25 that of the heat insulating material, which is sufficiently small, and the influence of convection is not so great.
(5) Thin and easy to process When the material of the first layer is thin, measurement in a high frequency region where the thermal diffusion length is small becomes possible, and it is difficult to be affected by three-dimensional heat conduction and convection.
(6) Single layer structure.

フォトサーマル赤外検知法は薄いコーティング材であっても、その情報が位相差に敏感に現れるため、誤差要因となる。
(7)取り扱いが容易なもの。
Even if the photothermal infrared detection method is a thin coating material, the information appears sensitive to the phase difference, which causes an error.
(7) Easy to handle.

最終的に現場測定を考えた際に求められる特質である。   It is a characteristic that is required when considering field measurement in the end.

次に、実際に断熱材1として、フロン残存量の異なるポリスチレンフォームを測定した。その結果を図4に示す。フロン残存量は、(財)建材試験センターでガスクロマトグラフィにより測定を行っている。フォトセレクティブフィルム2として厚み70μmホウケイ酸ガラス(SCHOTT GLAS,D263T)を用いた。加熱は波長810nmのレーザー光で行い、検知波長は5.5〜11.0μmである。また、その温度伝導率(熱拡散率)の測定結果を図5に示す。   Next, as the heat insulating material 1, polystyrene foams having different amounts of remaining chlorofluorocarbon were measured. The result is shown in FIG. The remaining amount of chlorofluorocarbon is measured by gas chromatography at the Building Materials Testing Center. As the photoselective film 2, a 70 μm-thick borosilicate glass (SCHOTT GLAS, D263T) was used. Heating is performed with a laser beam having a wavelength of 810 nm, and the detection wavelength is 5.5 to 11.0 μm. Moreover, the measurement result of the temperature conductivity (thermal diffusivity) is shown in FIG.

フォトセレクティブフィルム2の物性値に関して、この測定では熱物性値既知の標準試料を測定し、逆算して求めている。また、本発明の方法は接触熱抵抗の影響を大きく受けることが理論的に分かっているが、得られた周波数−位相差曲線の最大位相差の周波数より、接触熱抵抗の影響を見積もることが可能であり、解析の際にはその値を利用している。   With respect to the physical property values of the photoselective film 2, in this measurement, a standard sample having a known thermophysical property value is measured and calculated backward. Although it is theoretically known that the method of the present invention is greatly affected by the contact thermal resistance, the influence of the contact thermal resistance can be estimated from the frequency of the maximum phase difference of the obtained frequency-phase difference curve. It is possible and the value is used in the analysis.

図4より、フロン残存量に対応した系統的な信号が得られていることが分かる。また、図5より、フロン残存量の減少に伴って温度伝導率が上昇する傾向を捉えていることが分かる。図4、図5の測定において、測定と推算式の両者に誤差を含むと考えられ、特に測定の誤差要因として、接触熱抵抗が正確に見積もられていないこと、ホウケイ酸ガラスが測定波長領域の赤外線を若干透過していること、試料表面での加熱光の散乱の影響等が考えられる。しかし、フロン残存量に対応した温度伝導率の系統的傾向を捉えられていることから、本発明の測定方法によりフロン残存量センシングが可能となることが分かる。   FIG. 4 shows that a systematic signal corresponding to the remaining amount of chlorofluorocarbon is obtained. In addition, it can be seen from FIG. 5 that the temperature conductivity tends to increase with a decrease in the remaining amount of fluorocarbon. In the measurement of FIGS. 4 and 5, it is considered that both the measurement and the estimation formula include an error. Especially, as a measurement error factor, the contact thermal resistance is not accurately estimated, and the borosilicate glass is in the measurement wavelength region. It is considered that the infrared ray is slightly transmitted, the influence of scattering of heating light on the sample surface, and the like. However, since the systematic tendency of the temperature conductivity corresponding to the remaining amount of chlorofluorocarbon is captured, it can be seen that sensing of the chlorofluorocarbon remaining amount is possible by the measurement method of the present invention.

以上、本発明の断熱材の断熱特性リモートセンシング方法の実施例として、特に発泡断熱材中のフロン残存量の測定を例にあげて説明してきたが、本発明はこの実施例に限定されず種々の断熱材の断熱特性を現場で非破壊で正確に測定することができる。   As described above, the embodiment of the remote sensing method for the heat insulation property of the heat insulating material according to the present invention has been described by taking the measurement of the remaining amount of fluorocarbon in the foam heat insulating material as an example, but the present invention is not limited to this example and various It is possible to accurately measure the thermal insulation characteristics of the thermal insulation material in the field, non-destructively.

本発明の断熱材の断熱特性リモートセンシング方法を説明するためのモデル図である。It is a model figure for demonstrating the heat insulation characteristic remote sensing method of the heat insulating material of this invention. 本発明の断熱材の断熱特性リモートセンシング方法を実施するための配置の1例を示す図である。It is a figure which shows one example of arrangement | positioning for implementing the heat insulation characteristic remote sensing method of the heat insulating material of this invention. 本発明の断熱材の断熱特性を求めるためフローチャートの1例を示す図である。It is a figure which shows one example of the flowchart in order to obtain | require the heat insulation characteristic of the heat insulating material of this invention. 本発明に基づく測定結果とフィッティングカーブとの例を示す図である。It is a figure which shows the example of the measurement result and fitting curve based on this invention. 本発明に基づく温度伝導率の測定結果と推算式との例を示す図である。It is a figure which shows the example of the measurement result and estimation formula of the temperature conductivity based on this invention.

符号の説明Explanation of symbols

1…断熱材(試料)
2…フォトセレクティブフィルム
3…ガス
4…レーザー光(加熱光、変調光)
5…熱放射光
10…パソコン
11…ファンクションジェネレーター
12…半導体レーザー
13…光ファイバー
14…光学系(集光光学系)
15、16…ZnSeレンズ
17…赤外線フィルター
18…赤外線検出器
19…プリアンプ
20…ロックインアンプ
1 ... Insulation (sample)
2 ... Photoselective film 3 ... Gas 4 ... Laser light (heating light, modulated light)
5 ... thermal radiation 10 ... PC 11 ... function generator 12 ... semiconductor laser 13 ... optical fiber 14 ... optical system (condensing optical system)
15, 16 ... ZnSe lens 17 ... Infrared filter 18 ... Infrared detector 19 ... Preamplifier 20 ... Lock-in amplifier

Claims (6)

周期的に変調した加熱光を試料に照射し、試料から放出される熱放射光を検出し、加熱光に対する検出信号の周波数−位相差特性を測定し、その周波数−位相差特性の解析を行うことにより試料の熱伝導率及び温度伝導率(熱拡散率)を求める断熱材の断熱特性リモートセンシング方法において、
試料の断熱材の表面に加熱光を全部又は一部透過し、熱放射光を透過しないフォトセレクティブフィルムを密着させ、そのフォトセレクティブフィルムを介して前記加熱光を照射すると共に、前記熱放射光を検出することを特徴とする断熱材の断熱特性リモートセンシング方法。
The sample is irradiated with periodically modulated heating light, the thermal radiation emitted from the sample is detected, the frequency-phase difference characteristic of the detection signal for the heating light is measured, and the frequency-phase difference characteristic is analyzed. In the thermal sensing remote sensing method of thermal insulation properties to obtain the thermal conductivity and temperature conductivity (thermal diffusivity) of the sample,
A photoselective film that transmits all or part of the heating light to the surface of the heat insulating material of the sample and that does not transmit heat radiation light is adhered, and the heating light is irradiated through the photoselective film, and the heat radiation light is irradiated. A method for remote sensing a thermal insulation property of a thermal insulation material, characterized by detecting.
前記の測定された周波数−位相差特性に対して理論式をカーブフィッティングすることにより試料の断熱材の熱伝導率及び温度伝導率を求めることを特徴とする請求項1記載の断熱材の断熱特性リモートセンシング方法。 The heat insulating property of the heat insulating material according to claim 1, wherein the thermal conductivity and the temperature conductivity of the heat insulating material of the sample are obtained by curve fitting a theoretical formula with respect to the measured frequency-phase difference characteristic. Remote sensing method. 前記フォトセレクティブフィルムがホウケイ酸ガラスからなることを特徴とする請求項1又は2記載の断熱材の断熱特性リモートセンシング方法。 The method for remote sensing thermal insulation characteristics according to claim 1 or 2, wherein the photoselective film is made of borosilicate glass. 熱伝導率及び温度伝導率を求めることにより、試料のフロンを含む発泡断熱材中のフロン残存量を測定することを特徴とする請求項1から3の何れか1項記載の断熱材の断熱特性リモートセンシング方法。 The heat insulation property of the heat insulating material according to any one of claims 1 to 3, wherein the residual amount of freon in the foamed heat insulating material containing the Freon of the sample is measured by obtaining thermal conductivity and temperature conductivity. Remote sensing method. 試料の断熱材の表面に加熱光を全部又は一部透過し、熱放射光を透過しないフォトセレクティブフィルムを密着させ、そのフォトセレクティブフィルムを介して周期的に変調した加熱光を試料に照射し、そのフォトセレクティブフィルムを介して試料の断熱材から放出される熱放射光を検出し、加熱光に対する検出信号の周波数−位相差特性を測定し、その周波数−位相差特性の解析を行うことにより試料の熱伝導率及び温度伝導率を求める断熱材の断熱特性リモートセンシング装置であって、前記の周期的に変調した加熱光を試料に照射する加熱光照射手段と、前記熱放射光を検出する熱放射光検出手段と、前記加熱光に対する前記熱放射光の検出信号の周波数−位相差特性を測定する周波数−位相差特性測定手段と、前記フォトセレクティブフィルムの物性値と前記断熱材の吸収係数を入力する物性値入力手段と、前記フォトセレクティブフィルムの物性値と前記断熱材の吸収係数に基づいて理論式を決定する理論式決定手段と、測定された周波数−位相差特性に対して理論式をカーブフィッティングするカーブフィッティング手段とを備えていることを特徴とする断熱材の断熱特性リモートセンシング装置。 The entire surface of the sample heat insulating material is partially or partially transmitted with heating light, and a photoselective film that does not transmit heat radiation light is adhered, and the sample is irradiated with periodically modulated heating light through the photoselective film, By detecting the thermal radiation emitted from the heat insulating material of the sample through the photoselective film, measuring the frequency-phase difference characteristic of the detection signal with respect to the heating light, and analyzing the frequency-phase difference characteristic A thermal sensing remote sensing device for a thermal insulation material for obtaining a thermal conductivity and a thermal conductivity of a heating material, a heating light irradiation means for irradiating a sample with the periodically modulated heating light, and heat for detecting the thermal radiation light Synchrotron radiation detection means, frequency-phase difference characteristic measurement means for measuring a frequency-phase difference characteristic of a detection signal of the thermal radiation light with respect to the heating light, and the photoselector A physical property value input means for inputting the physical property value of the film and the absorption coefficient of the heat insulating material, a theoretical expression determining means for determining a theoretical formula based on the physical property value of the photoselective film and the absorption coefficient of the heat insulating material, A heat insulation characteristic remote sensing device for heat insulation, comprising: curve fitting means for curve fitting a theoretical formula for the frequency-phase difference characteristic. 前記物性値入力手段において入力する物性値が、前記フォトセレクティブフィルムの温度伝導率、熱伝導率、厚み、吸収係数、前記断熱材の吸収係数を含むことを特徴とする請求項5記載の断熱材の断熱特性リモートセンシング装置。 6. The heat insulating material according to claim 5, wherein the physical property value input in the physical property value input means includes temperature conductivity, thermal conductivity, thickness, absorption coefficient, and absorption coefficient of the heat insulating material of the photoselective film. Thermal insulation remote sensing device.
JP2005115350A 2005-04-13 2005-04-13 Thermal sensing remote sensing method and apparatus for thermal insulation properties Expired - Fee Related JP4547551B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005115350A JP4547551B2 (en) 2005-04-13 2005-04-13 Thermal sensing remote sensing method and apparatus for thermal insulation properties

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005115350A JP4547551B2 (en) 2005-04-13 2005-04-13 Thermal sensing remote sensing method and apparatus for thermal insulation properties

Publications (2)

Publication Number Publication Date
JP2006292604A JP2006292604A (en) 2006-10-26
JP4547551B2 true JP4547551B2 (en) 2010-09-22

Family

ID=37413320

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005115350A Expired - Fee Related JP4547551B2 (en) 2005-04-13 2005-04-13 Thermal sensing remote sensing method and apparatus for thermal insulation properties

Country Status (1)

Country Link
JP (1) JP4547551B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107683409A (en) * 2015-06-10 2018-02-09 国立大学法人名古屋大学 It is orientated identification apparatus, orientation authentication method and distribution identification apparatus

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5646973B2 (en) * 2010-12-01 2014-12-24 エスペック株式会社 Thermal conductivity measurement device, thermal conductivity calculation device, thermal conductivity calculation program, and thermal conductivity measurement method
CN104040327A (en) * 2011-12-23 2014-09-10 西格里碳素欧洲公司 Method for measuring thermal conductivity
RU2707387C1 (en) * 2019-02-28 2019-11-26 Федеральное государственное казенное военное образовательное учреждение высшего образования "Военный учебно-научный центр Военно-воздушных сил "Военно-воздушная академия имени профессора Н.Е. Жуковского и Ю.А. Гагарина" (г. Воронеж) Министерства обороны Российской Федерации Method for remote determination of spatial distribution of thermophysical parameters of the earth's surface
CN111060555B (en) * 2019-12-30 2021-05-18 武汉大学 Method and device for measuring thermal conductivity and thermal diffusivity of thin film material under strain
RU2760528C1 (en) * 2021-03-01 2021-11-26 Федеральное государственное казенное военное образовательное учреждение высшего образования "Военный учебно-научный центр Военно-воздушных сил "Военно-воздушная академия имени профессора Н.Е. Жуковского и Ю.А. Гагарина" (г. Воронеж) Министерства обороны Российской Федерации Method for remote estimation of spatial distribution of thermophysical parameters of objects and backgrounds

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000346818A (en) * 1999-06-04 2000-12-15 Shinku Riko Kk Thermal diffusivity measuring method of thin film by means of laser heating angstrom method and measuring device therefor
JP2002340828A (en) * 2001-05-11 2002-11-27 Keio Gijuku Method and device for remote-sensing heat insulating characteristic of heat insulating material

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000346818A (en) * 1999-06-04 2000-12-15 Shinku Riko Kk Thermal diffusivity measuring method of thin film by means of laser heating angstrom method and measuring device therefor
JP2002340828A (en) * 2001-05-11 2002-11-27 Keio Gijuku Method and device for remote-sensing heat insulating characteristic of heat insulating material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107683409A (en) * 2015-06-10 2018-02-09 国立大学法人名古屋大学 It is orientated identification apparatus, orientation authentication method and distribution identification apparatus

Also Published As

Publication number Publication date
JP2006292604A (en) 2006-10-26

Similar Documents

Publication Publication Date Title
JP4547551B2 (en) Thermal sensing remote sensing method and apparatus for thermal insulation properties
Almond et al. An analytical study of the pulsed thermography defect detection limit
EP0165711B1 (en) Method and apparatus for detecting thermal waves
Junyan et al. Experimental study on active infrared thermography as a NDI tool for carbon–carbon composites
Ibarra-Castanedo et al. Infrared thermography
Maierhofer et al. Evaluation of different techniques of active thermography for quantification of artificial defects in fiber-reinforced composites using thermal and phase contrast data analysis
JPH0358443B2 (en)
Yang et al. Modeling optical absorption for thermoreflectance measurements
Gaverina et al. Constant Velocity Flying Spot for the estimation of in-plane thermal diffusivity on anisotropic materials
Almond et al. Thermal imaging of composites
Zeng et al. Specified value based defect depth prediction using pulsed thermography
Vavilov et al. IR thermographic characterization of low energy impact damage in carbon/carbon composite by applying optical and ultrasonic stimulation
Qiu et al. Experimental evaluation on the effectiveness of acoustic-laser technique towards the FRP-bonded concrete system
Zhang et al. Research on modulated thermal wave radar imaging technique for photothermal properties of semi-transparent materials
Lee et al. Thermographic inspection of CLP defects on the subsurface based on binary image
Bedoya et al. On the thermal characterization of insulating solids using laser-spot thermography in a front detection configuration
Flizikowski et al. Influence of edge effects on laser-induced surface displacement of opaque materials by photothermal interferometry
JP6730792B2 (en) Thermophysical property measuring device and thermophysical property measuring method
JP6620499B2 (en) Optical nondestructive inspection apparatus and optical nondestructive inspection method
Wang et al. Frequency domain photothermal radiometry with spherical solids
Yang et al. Combination of terahertz radiation method and thermal probe method for non-destructive thermal diagnosis of thick building walls
Zhang et al. Experimental study of the effective BRDF of a copper foam sheet
Andre et al. Modulated photothermal radiometry applied to semitransparent samples: Models and experiments
JP2002340828A (en) Method and device for remote-sensing heat insulating characteristic of heat insulating material
Seidel et al. Quantitative characterization of material inhomogeneities by thermal waves

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080402

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100524

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100526

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100617

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130716

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees