JP6726183B2 - 写真またはフィルムカメラ用の対物レンズ、およびそのような対物レンズの変調伝達関数の特定の空間周波数範囲の選択的減衰方法 - Google Patents

写真またはフィルムカメラ用の対物レンズ、およびそのような対物レンズの変調伝達関数の特定の空間周波数範囲の選択的減衰方法 Download PDF

Info

Publication number
JP6726183B2
JP6726183B2 JP2017530649A JP2017530649A JP6726183B2 JP 6726183 B2 JP6726183 B2 JP 6726183B2 JP 2017530649 A JP2017530649 A JP 2017530649A JP 2017530649 A JP2017530649 A JP 2017530649A JP 6726183 B2 JP6726183 B2 JP 6726183B2
Authority
JP
Japan
Prior art keywords
lens
wavefront manipulator
element arrangement
lens element
free
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017530649A
Other languages
English (en)
Other versions
JP2018503859A (ja
Inventor
ブラニク,ヴラダン
プレトリウス,マルコ
Original Assignee
カール・ツアイス・アーゲー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by カール・ツアイス・アーゲー filed Critical カール・ツアイス・アーゲー
Publication of JP2018503859A publication Critical patent/JP2018503859A/ja
Application granted granted Critical
Publication of JP6726183B2 publication Critical patent/JP6726183B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/20Soft-focus objectives
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0081Simple or compound lenses having one or more elements with analytic function to create variable power
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/33Immersion oils, or microscope systems or objectives for use with immersion fluids
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0025Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for optical correction, e.g. distorsion, aberration
    • G02B27/0068Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for optical correction, e.g. distorsion, aberration having means for controlling the degree of correction, e.g. using phase modulators, movable elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0075Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 with means for altering, e.g. increasing, the depth of field or depth of focus
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/02Simple or compound lenses with non-spherical faces
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/02Simple or compound lenses with non-spherical faces
    • G02B3/04Simple or compound lenses with non-spherical faces with continuous faces that are rotationally symmetrical but deviate from a true sphere, e.g. so called "aspheric" lenses
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B5/00Adjustment of optical system relative to image or object surface other than for focusing
    • G03B5/04Vertical adjustment of lens; Rising fronts
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B2205/00Adjustment of optical system relative to image or object surface other than for focusing
    • G03B2205/0046Movement of one or more optical elements for zooming

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Analytical Chemistry (AREA)
  • Lenses (AREA)
  • Blocking Light For Cameras (AREA)
  • Lens Barrels (AREA)

Description

本発明は、スチールまたはフィルムカメラ用のレンズ、およびスチールまたはフィルムカメラに関する。さらに、本発明は、スチールまたはフィルムカメラ用のレンズの変調伝達関数の特定の空間周波数に対象を絞った減衰方法に関する。
今では、最新のスチールおよびフィルムカメラは高解像度の画像センサーを有し(例えばいわゆる「4K」(フィルムカメラの場合約3840×2160ピクセル)またはさらには「8K」(約7680×4320ピクセル)、および一眼レフカメラの場合40メガピクセルまで)、最高画質のレンズと併せてそれにより達成される画像鮮鋭度は、様々な適用状況において厄介なものにもなり得る。画像の最大解像度は、特定のフィルムのジャンルまたは特定の場面、例えば自然や風景の記録では望まれるが、他の場面、例えばポートレートにおいては、厄介な影響を有し得る。
厄介な鮮鋭度を低減させるために、カメラは、例えば記録された画像を電子的にぼかすソフトウェアを使用して調整可能なソフトフォーカス効果を獲得するための装置を備え得る。しかしながら、光学的なぼかしの場合には、レンズからの物体の距離も純粋にぼかしの結果に組み込まれており、それゆえ、ある種の3次元効果が生じるため、電子的なぼかしは、純粋に光学的なぼかしと同様ではない。
純粋に光学的なぼかしは、一般にレンズに調整可能な空隙を有する、いわゆるソフトフォーカスレンズを使用して達成され得る。しかしながら、そのようなソフトフォーカスレンズはまた、コマ収差や非点収差などのフィールド依存性像収差が生成されるため、望まれない副作用を有する。さらに、この実装形態では、可変空隙があるため、所望の球面収差に加えてデフォーカスの発生を防止することが困難であり、データ表および複雑な構造のシステムによって、かなりの費用(outlay)をかけて、前記デフォーカスを補償することが可能なだけである。それゆえ、ソフトフォーカス効果とフィールド依存性像収差との間の既存の結合を理由として、調整可能な空隙を備えるレンズは、レンズの元の最大画像鮮鋭度に到達しないか、または著しい追加の費用をかけることによってのみ、すなわち追加的なレンズ素子によってのみ、そのようにする。
それゆえ、本発明の目的は、ソフトフォーカス効果が好都合な方法で実現され得る、スチールまたはフィルムカメラ用のレンズを提供することにある。
本発明のさらなる目的は、好都合なスチールまたはフィルムカメラを提供することにある。
最後に、本発明のさらなる目的は、スチールまたはフィルムカメラ用のレンズの変調伝達関数の特定の空間周波数領域に対象を絞って減衰させる、好都合な方法を提供することにある。
第1の目標は、請求項1に記載のレンズによって達成され、第2の目的は、請求項17に記載のスチールまたはフィルムカメラによって達成され、および第3の目的は、請求項18に記載の方法によって達成される。従属請求項は、本発明の好都合な構成を含む。
スチールまたはフィルムカメラ用の本発明によるレンズは、第1のレンズ素子配置構成、少なくとも第2のレンズ素子配置構成、および少なくとも波面マニピュレータを含む。ここで、第1のレンズ素子配置構成および第2のレンズ素子配置構成は、それぞれ、単一のレンズ素子、または好ましくは複数のレンズ素子のいずれかからなり得る。第1のレンズ素子配置構成および第2のレンズ素子配置構成は、レンズの光軸に沿って互いに離間して配置され、第1のレンズ素子ユニットと第2のレンズ素子ユニットとの間に間隙が存在するようにする。波面マニピュレータはこの間隙に置かれている。波面マニピュレータは、レンズの光軸に対して垂直方向に、互いに逆方向に、変位可能であるように配置されかつそれぞれ自由曲面を含む少なくとも2つの光学部品を含む。波面マニピュレータはゼロ点位置を含み、この位置では、その光学部品は、レンズの結像特性に像収差を全く引き起こさない。さらに、波面マニピュレータは実効位置を含み、この位置では、光学部品は、ゼロ点位置から、互いに対して逆方向に、レンズの光軸に対して垂直方向に変位され、および光学部品は、レンズの結像特性に少なくとも球面収差を引き起こす。
本発明によるレンズでは、波面マニピュレータは、対象を絞って、予め決められた基準波長において球面収差に影響を及ぼすことを可能にし、そのプロセスにおいて、他のコマ収差および非点収差などの単色像収差が影響を受けないままにする。特に、球面収差の様々な項を説明するゼルニケ係数(Z9、Z16、Z25およびまたおそらくはより高次の項)のいずれかで固定して予め決められた線形結合にも、波面マニピュレータを用いて、調整可能なように、影響を及ぼし得る。このようにして、本発明によるレンズの変調伝達関数(例えばミリメートル当たり10個を上回る線対)の特定の空間周波数領域に、対象を絞って影響を及ぼすことが可能であり、特に、また、これら空間周波数領域を、強度の点で調整可能であるソフトフォーカス効果が生じるように、好適な方法で減衰させることが可能である。さらに、生じた球面収差の符号は、問題なく、逆にしてもよく、その結果、前景および背景に異なる効果が現れ、これら効果は、同様に、芸術的な目的のために使用され得る。ここで、符号は、波面マニピュレータの光学部品の運動方向を逆にすることによって、逆にされる。対照的に、従来技術によるソフトフォーカスレンズは、しばしば、球面収差の符号が単純に逆にされることができないようにする。本発明によるレンズを用いて、非常に均質な結像特性を備える大きな調整範囲を獲得することが可能であり、およびこれは、実質的にどのレンズのタイプに対しても、従って焦点距離シリーズ全てに対して、獲得され得る。
さらに、本発明によるレンズの構成は、波面マニピュレータを用いて、第1のレンズ素子配置構成と第2のレンズ素子配置構成との間に好適な間隙を有する任意のレンズを、本発明によるレンズに変換することを可能にする。対照的に、従来技術によるソフトフォーカスレンズでは、調節可能な空隙が、光学的および機械的な構造に先験的に設けられる必要があるため、ソフトフォーカス効果のないレンズを、従来技術によるソフトフォーカスレンズを形成するように改良することは、不可能である。さらに、従来技術によるソフトフォーカスレンズを構成するときの構成の費用は、光学的および機械的な構造において空隙を先験的に考慮するために、本発明によるレンズの場合よりも高い。
像収差は、近軸光学から進んで分類される。近軸光学では、光軸から短い距離を有しかつ光軸に対して、たかだか、(近似式sinθ≒tanθ≒θを使用し得るような)小さな角度を有する光線のみが、考慮される。ここで、光軸に対する角度の正弦は、テイラー展開の第1の成分によって、近似される。この近似式では像収差は生じない。近軸光学の枠を超える場合、角度の正弦のテイラー展開のより高次の項が考慮される。ここで、次に高次の項は角度の3乗であり、それに続く次に高い項は角度の5乗である。角度のこれ以上の奇項は、さらなる展開で発生する。テイラー展開の第2の項から出現する球面収差、すなわち角度の3乗を備える項は、3次球面収差と称し、テイラー展開の第3の項から出現する球面収差、すなわち角度の5乗を備える項は、5次球面収差と称するなどである。
本発明によるレンズでは、波面マニピュレータは、その光学部品の実効位置において、レンズの結像特性に少なくとも3次球面収差を引き起こす。それに加えて、またはその代わりに、波面マニピュレータは、その光学部品の実効位置において、レンズの結像特性に少なくとも5次球面収差を引き起こす。
本発明によるレンズの好都合な構成では、自由曲面は、x軸、y軸、およびz軸を有するデカルト座標系において定義され、z軸はレンズの光軸を表し、および自由曲面のz座標は下記の形の多項式展開
Figure 0006726183
(式中、Cm,nは、x座標に対する次数mおよびy座標に対する次数nの、それぞれの自由曲面の多項式展開の展開係数を示す)
により、xおよびy座標に依存して説明される。ここで、自由曲面を備える光学部品の運動方向は、y軸に対して平行に延在する。自由曲面のこの式では、奇数次nおよび偶数次mの多項式のみが、ゼロとは異なる展開係数Cm,nを有する。自由曲面のこの式は、唯一の考えられる式ではなく、球面収差を引き起こすために必要な面の比較的単純な計算を容易にする。
少なくとも多項式x4y、x23およびy5の展開係数がゼロとは異なる場合、3次球面収差を引き起こすことが可能である。少なくとも多項式x6y、x43、x25およびy7の展開係数がゼロとは異なる場合に、5次球面収差が引き起こされ得る。特に、2つの上述の多項式の群が、ゼロとは異なる係数を有する場合、3次球面収差および5次球面収差の双方ともが引き起こされ得る。さらに、多項式x2yおよびy3の展開係数がゼロとは異なる場合、3次および/または5次球面収差に加えて、自由曲面を備える光学部品を、互いに対して逆方向に変位させることによって、デフォーカスを引き起こすことも可能になる。このデフォーカスによって、開口が変化する場合、リフォーカシングを回避することが可能である。デフォーカスに加えて、またはその代わりとして、多項式の展開係数yもゼロとは異なる場合、いわゆる傾斜角度項(tilt term)を実現することも可能である。光学的効果がゼロに近いそのような傾斜角度項は、平均プロファイル深さを小さく保ち、それゆえ、自由形態のプロファイルの平らな形に容易にするために使用され得る。
物理的な開口絞りは、本発明によるレンズの第1のレンズ素子配置構成と第2のレンズ素子配置構成との間の間隙に位置し得る。そこで、波面マニピュレータは、物理的な開口絞りの前またはその後ろに位置する。実質的に回折限界の結像性能(image quality)が波面マニピュレータのゼロ点位置において獲得される必要がある場合、波面マニピュレータは、絞りに可能な限り近くに、および、可能であれば、コリメートされたビーム経路に位置する。対照的に、補正が回折限界と遠方に離れているレンズの場合、開口絞りから波面マニピュレータの距離をより長くすることが可能である。コリメーション条件からの許容できる最大の偏差すなわちふれは、この場合、多数のパラメータ、例えば、特に、レンズのFナンバー、波面マニピュレータの調整範囲、および要求される結像性能に依存する。コリメートされたビーム経路に波面マニピュレータを配置することは、自由曲面への入射角が比較的小さくなり、およびそれにより誘発される非対称的な収差が最小限にされる場合、好都合である。誘発された非対称的な像収差は、第1の自由曲面および第2の自由曲面における光線の入射高さが、素子間の有限距離の場合にオフセットを有する場合、生じ得る。ここで、オフセットは、要素間の距離が増すにつれて、および自由曲面への光線の入射角が大きくなるにつれて、大きくなる。コリメートされたビーム経路への配置の場合、光線の入射角は、中心ビームではゼロに等しく、および、フィールド依存性ビームに対しては少なくとも最小限にされるため、誘発された非対称的な収差は抑制される。当業者には、光学系によって正確にコリメートされたビーム経路を生じることは不可能であるが、それは、近似的にのみ生じ得ることが明らかであることにここで留意されたい。
物理的な開口絞りの代わりに、仮想的な開口絞りが、第1のレンズ素子配置構成と第2のレンズ素子配置構成との間の間隙に位置してもよい。この場合、波面マニピュレータは、仮想的な開口絞りの位置にすぐ接して配置され得るため、この構成では、波面マニピュレータの近くに最大限可能な絞りが実現され得る。
本発明によるレンズの好都合な発展形態では、レンズは、レンズの少なくとも影響変数を検出するための検出ユニットを含み、影響変数は、波面マニピュレータの光学部品の好適な実効位置を確定することに関連している。さらに、レンズは、検出された影響変数および所望の程度の球面収差に基づいて、ゼロ点位置から進んで実効位置に達するための、波面マニピュレータの光学部品の変位経路を計算する計算ユニットを含むか、またはそのような計算ユニットは、レンズに割り当てられる。ここで、典型的な影響変数は、絞りの位置およびレンズの距離設定である。計算ユニットは、例えばレンズにしっかりと接続された、EPROMの形態の測定モジュールとし得、前記測定モジュールは、波面マニピュレータの所望の効果および絞りの位置およびいずれの場合にも存在する距離の位置に依存して、必要な被操作変数の特性を含む。あるいは、計算ユニットはまた、カメラの制御電子回路によって実行されるソフトウェアとし得る。
開口を変更する場合に、必要な場合には、リフォーカスできるようにするために、レンズは、レンズ素子配置構成のうちの一方の少なくとも一部を光軸に沿って変位させる作動システムを含み得る。好適な作動システムはまた、光学部品を互いに対して逆方向に、自由曲面が光軸に対して垂直な状態で変位させるために存在し得る。ここで、特に、これは、電気的に作動可能なアクチュエータを備える作動システムとし得、アクチュエータは、計算ユニットによって計算されたアクチュエータの移動を実現する。例として、マイクロモータ、超音波モータまたは圧電アクチュエータをアクチュエータとして使用し得る。
本発明によるレンズでは、自由曲面を備える光学部品は、屈折率分散に法線からのふれがある材料から生産され得る。法線からの屈折率分散のそのようなふれは、例えば、長いクラウンガラスまたは短いフリントガラスを使用することによって実現され得るような、異常な部分分散を生じる。この構成では、対象を絞った方法で二次色収差を設定することが可能になる。
浸漬媒体が、自由曲面を備える光学部品間に置かれ得る。その結果、波面マニピュレータによって引き起こされる球面収差の予め決められた波長依存性を設定することが可能になる。特に、例えば波面マニピュレータの色消し効果、すなわち波長領域の全波長に対して少なくとも実質的に等しい効果が、獲得され得る。ここで、浸漬媒体は、法線からふれた分散曲線を有してもよく、その結果、対象を絞った方法で二次色消し収差(secondary achromatic aberrations)を設定することが可能になる。異常な部分分散を有する光学部品の好適な材料と、異常な部分分散を有する浸漬媒体とを組み合わせることによって、波面マニピュレータを使用して三次色収差を設定することが可能になる。
原理上、本発明によるレンズでは、複数の波面マニピュレータを互いに組み合わせることが可能であり、例えば、3次球面収差を設定するための波面マニピュレータ、および5次球面収差を設定するためのさらなる波面マニピュレータが存在する。その結果、レンズを絞るときに5次球面収差が3次球面収差よりも早く減少されても、各絞り位置において、3次球面収差対5次球面収差の全く等しい比率を提供することが可能となる。しかしながら、追加的な波面マニピュレータはまた、レンズ素子配置構成間の間隙に導入されてもよく、例えば、縦色収差またはガウス収差などの色収差を設定することが可能になる。その場合、この追加的な波面マニピュレータはまた、異常な部分分散を備える材料で作製された光学部品および/または異常な部分分散を備えるまたは異常な部分分散を備えない浸漬媒体を含み得る。
本発明によるレンズでは、少なくとも1つの波面マニピュレータがレンズから除去可能であると、好都合である。それゆえ、レンズはまた、波面マニピュレータを用いずに使用されてもよく、前記レンズは、理想的な結像鮮鋭度を有する。そのため、波面マニピュレータは、球面収差を、対象を絞ってもたらすのを容易にするために、必要な場合には増設モジュールとしてレンズに挿入され得る。
既に説明したように、本発明によるレンズは、対象を絞った球面収差をもたらすことによって、ぼかすために使用され得る。しかしながら、ボケをもたらすことも可能である。特に、ここで強調すべきことは、本発明によるレンズは、負の球面収差または正の球面収差を用いて、自由曲面を備える光学部品の運動方向が逆方向にされるおかげで、物体の前景または背景のいずれかにぼかしを入れる可能性を開くということである。
最後に、対象を絞った球面収差をもたらすことはまた、アンチエイリアシングをもたらすために使用され得る。そこで、概して従来技術ではアンチエイリアシングに使用されるローパスフィルターをなしで済ますことが可能となる。あるいは、ローパスフィルターが使用される場合は、残っている残留構造が抑制され得る。さらに、特に、複屈折板のスタックで作製されたローパスフィルターをなしで済ますとき、記録する直前に既に好適なディスプレイまたはモニター上で干渉するモアレ効果または不要な細かい画像構造を抑制することが可能であり、それゆえ、対象を絞った方法で所望の像効果を設定することが可能である。
アンチエイリアシングのために、異なるカメラ製造者は、異なる厚さのフィルタープレート(または、屈折率が異なる材料で作製されたフィルタープレート)を使用するため、同じレンズが異なるカメラにおいて使用される場合、異なる球面収差が像の中心に残る。球面収差の設定を変えることができる、本発明によるレンズでは、この収差は、それぞれのカメラにおいて補償され得る。さらに、本発明によれば、本発明によるレンズの変調伝達関数の特定の空間周波数領域に対象を絞って減衰させる方法が、提供される。この方法では、球面収差、特に3次球面収差および/または5次球面収差が、自由曲面を互いに対して逆方向に、レンズの光軸に対して垂直方向に変位させることによって、対象を絞ってもたらされる。この方法によって獲得可能な利点は、本発明によるレンズを参照して既に説明した。
本発明のさらなる特徴、特性および利点は、添付図面を参照して、以下の例示的な実施形態から明らかになる。
波面マニピュレータを備える本発明によるレンズを含むスチールカメラを非常に概略的に示す。 本発明によるレンズの光学部品および電子部品を概略的に示す。 図1に示すレンズの波面マニピュレータを、その光学部品の様々な位置で示す。 本発明によるレンズのための第1の具体的な実施形態による波面マニピュレータの光学部品の自由曲面のプロファイルを示す。 ゼロ点位置にある波面マニピュレータを備える、第1の具体的な実施形態のレンズを示す。 実効位置にある波面マニピュレータを備える、第1の具体的な実施形態のレンズを示す。 本発明によるレンズのための第1の具体的な実施形態において利用法を見つけ得るような、修正された波面マニピュレータの自由曲面を示す。 本発明によるレンズのための第2の具体的な実施形態による波面マニピュレータの光学部品の自由曲面のプロファイルを示す。 ゼロ点位置にある波面マニピュレータを備える、第2の具体的な実施形態によるレンズを示す。 実効位置にある波面マニピュレータを備える、第2の具体的な実施形態によるレンズを示す。
以下、本発明によるレンズの具体的な例示的な実施形態を説明する前に、本発明によるレンズについて、図1〜5に基づいてその本質的要素に関して最初に説明する。
図1に、本発明によるレンズ100を、カメラ101と共に概略的に示す。レンズ100の光学部品および電子部品は、図2に、カメラの像平面と共に示す。レンズ100は、第1のレンズ素子配置構成1と、少なくとも第2のレンズ素子配置構成3と、例示的な本実施形態では開口絞り7のかなり近くに配置された少なくとも波面マニピュレータ5とを含む。波面マニピュレータ5および開口絞り7の双方とも、第1のレンズ素子配置構成1と第2のレンズ素子配置構成3との間の間隙9に位置する。さらに、像平面11が図示されている;しかしながら、像平面は、もはや、レンズの一部ではなく、既に、レンズ100が組み立てられているスチールカメラ101またはフィルムカメラの一部である。
図2に示す例示的な実施形態では、第1のレンズ素子配置構成1は、2つのレンズ素子13、15を含み、その物体側のレンズ素子13は収束レンズ素子であり、および像側のレンズ素子15は発散レンズ素子である。十分に大きい物体距離が存在する限りで、第1のレンズ素子配置構成1は、コリメートされた、すなわち平行なビーム経路を像側に生じ、前記ビーム経路は、最終的に、例示的な本実施形態では単に収束レンズ素子17を含むにすぎない第2のレンズ素子配置構成3によって、画像センサー11上にフォーカスされる。第2のレンズ素子配置構成3にはアクチュエータ34が割り当てられ、前記レンズ素子配置構成は、例えば、開口が変化する場合、必要な場合には、リフォーカスできるようにするために、前記アクチュエータによって、光軸に沿って変位されることができる。レンズ素子配置構成3の考えられる変位は、図2において、両矢印によって示されている。
開口絞り7および波面マニピュレータ5の双方とも、コリメートされたビーム経路が存在する間隙9に配置されている。コリメートされたビーム経路に、および開口絞り7の近くに配置することによって、図2に示すように、波面マニピュレータ5がゼロ点位置にあるとき、レンズによって、実質的に回折限界の結像性能を獲得することが可能になる。コリメーション条件、および波面マニピュレータ5の距離に関しては開口絞り7の双方からの比較的大きなふれは、補正が回折限界と遠方に離れているレンズの場合に、実現され得る。コリメーション条件からの許容できる最大の偏差、および開口絞りからの許容できる最大の距離の明確な計算は、例えば、レンズのFナンバー、マニピュレータの調整範囲、レンズで要求される結像性能などの多数のパラメータに基づいてのみ、可能である。
波面マニピュレータ5について、以下、図2〜5を参照してより詳細に説明する。波面マニピュレータは、第1の光学部品19および第2の光学部品21を含み、これら部品は、レンズの光軸OAに垂直な平面において、互いに逆方向に変位され得る。第1の光学部品19および第2の光学部品21は、それぞれ、自由曲面23、25を有する。さらに、自由曲面23、25から外方を向くそれぞれの光学部品19、21の面は、それぞれ平面27および29として供される。例示的な本実施形態では、光学部品19、21は、その自由曲面23、25が互いに対面するような向きにされている。ここで、物体から像の方向に見た自由曲面のプロファイルは、同一である。換言すると、プロファイルが、正の偏差が像の方向に定義されかつ負の偏差が物体の方向に定義される状態で、平均平面から1つの偏差であるとみなされる場合、2つの自由曲面23、25は、この平均平面から同じ偏差を有している。ここで、2つの自由曲面間の相違点は、第1の自由曲面23が第1の光学部品の材料から空気へ移り変わる境界を示し、および第2の自由曲面25が空気から第2の光学部品21の材料へ移り変わる境界を示しているという事実にのみある。ここで、図2〜5において、平均平面からの自由曲面からの偏差、および波面マニピュレータの光学部品間の距離は、見やすさを改善させるために、かなり誇張して示されていることに言及する。
図2および図4では、波面マニピュレータ5は、ゼロ点位置に示されている。この位置では、自由曲面23および25は互いに互いに向かい合って存在して、隙間の各位置において自由曲面23と25との間に同じ距離が存在する状態で、2つの面間に狭い隙間が形成されるようにしている。このようにして、波面マニピュレータ5は、第1の自由曲面23において発生する屈折が、第2の自由曲面25によって、再び、これとは反転するよう行われる屈折により補償されるため、光学的なゼロ素子の機能を果たす。それゆえ、光学的なゼロ素子として、ゼロ点位置にある波面マニピュレータ5は、レンズによって生成される像に対して、全く実質的効果を有しない。
波面マニピュレータ5の各光学部品19、21にはアクチュエータ31および33がそれぞれ割り当てられており、前記アクチュエータを用いて、光学部品19、21は、光軸OAに対して垂直な方向において、互いに対して逆方向に変位されることができる。この変位の方向は、図3〜5において矢印を付して示している。
波面マニピュレータが、図4に示すゼロ点位置から、図3に示す第1の実効位置へ変位される場合、波面マニピュレータ5は、波面マニピュレータ5を通過する光線束の軸から離れた領域において、距離が増加する。さらに、第1の実効位置にある自由曲面は、互いに反対に位置する複数の点において、異なる曲率を有する。図3に示す第1の実効位置では、曲率は、軸から離れた光線が、軸に近い光線よりも強くフォーカスされないようにして、軸から離れた光線のバックフォーカスが、軸に近い光線に対して増加するようになっている(図面では誇張して示されている)。このようにして、波面マニピュレータは、像に負の球面収差を引き起こす。
波面マニピュレータ5の光学部品19、21が同様に互いに対して逆方向であるが、図3の場合とは反対方向に変位されている、図5に示す実効位置では、自由曲面23、25は、光線束の軸から離れた光線が、軸に近い光線よりも強くフォーカスされるように、互いに向かい合って位置している(図面では誇張して示されている)。その結果、軸から離れた光線のバックフォーカスは、軸に近い光線のバックフォーカスと比べて減少されるため、正の球面収差が引き起こされる。それゆえ、自由曲面を互いに向かい合った状態で光学部品を変位させることによって、本発明による波面マニピュレータを用いて、第1の光学部品が負の方向に変位されかつ第2の光学部品が正の方向に変位されるかどうか、またはその逆も同様であることに依存して、正の球面収差または負の球面収差が引き起こされ得る。ここで、選択された自由形態のプロファイルに依存して、3次球面収差、5次球面収差またはより高次の球面収差が引き起こされ得る。さらに、3次球面収差と同時に、少なくとも5次球面収差も引き起こされるように、自由曲面を構成することが可能である。同様に、球面収差に加えて他の光学収差も引き起こされるように自由曲面を構成することが可能である。
図2に示す例示的な実施形態では、波面マニピュレータ5の光学部品19、21の自由曲面23、25間に任意選択的な浸漬媒体35が配置される。特に、この浸漬媒体は、液体または弾性高分子である。例として、超純水、食塩溶液、浸漬油などの液体、および弾性オプトキット(optokits)が浸漬媒体であるとみなされる。第1の光学部品および第2の光学部品の側方運動があるだけであるため、浸漬媒体を備える波面マニピュレータは、平坦な構成を有し得る、すなわち光軸OAの方向の広がりはわずかである。浸漬媒体の屈折率およびアッベ数を、光学部品が製造される材料の屈折率およびアッベ数に好適に適合させることによって、可変的に調整可能な波面マニピュレーションを達成することが可能になり、その効果は、広範な波長帯にわたる波長とは無関係であるため、波面マニピュレータ5は、色消し波面マニピュレータであるとみなされ得る。色消し波面マニピュレータを用いて、球面収差を引き起こすときに、色収差、特に縦色収差を十分に回避することが可能にある。
浸漬媒体35、または波面マニピュレータ5の第1の光学部品19および第2の光学部品21の材料が、法線からふれた分散曲線を有する場合、同様に、より高次の色収差、すなわち色収差の二次および三次スペクトルを補正することを可能にする。ここで、三次色収差を補正するために、浸漬媒体35、および波面マニピュレータ5の光学部品19、21の材料は双方とも、法線からふれた分散曲線を有する。浸漬媒体は、一般に炭化水素であり、これは、そのようなものとして、概して、法線からふれる分散曲線を有する。
波面マニピュレータ5を使用して、球面収差は、波面マニピュレータを通過するビームの波面のマニピュレーションを行うことによって、引き起こされる。ビームの波面は、同じ位相を有する電磁波の複数の点によって与えられる。数学的には、波面は、完全関数系の複数の関数の重なりによって表わされ得る。一般に、関数系としてゼルニケ多項式が使用され、個々のゼルニケ多項式は、様々な像収差を表す。ここで、波面の表現において、各ゼルニケ多項式はゼルニケ係数に割り当てられ、波面は、ゼルニケ係数によって説明される。波面マニピュレータ5の光学部品19、21の自由曲面23、25は、それらが、ゼルニケ多項式によって説明され得る波面のマニピュレーションを生成するように、選択され得る。関連のゼルニケ係数は、2つの光学部品19、21の相対変位の絶対値によって決定される。数学的に等しい説明はまた、他の完全関数系による展開によって、例えばテイラー展開によって獲得され得る。以下、自由形態のプロファイルを構成するための基本原理を、テイラー展開に基づいて説明する。
式z(x,y)で明確に面を表現する場合には、自由曲面は、光学部品19、21の運動方向に垂直なx座標においてxの偶数乗のみを有しかつ運動方向に平行なy座標においてyの奇数乗のみを有する多項式によって説明され得る。最初は、自由曲面のz(x,y)座標は、概して、例えば、下記の形の多項式展開
Figure 0006726183
(式中、Cm,nは、x方向については次数mおよびy方向については次数nの自由曲面の多項式展開の展開係数を示す)
によって説明され得る。ここで、x、yおよびzは、局所面関連の座標系内の面に位置するある点の3つのデカルト座標を示す。ここで、座標xおよびyは、いわゆるレンズユニット内の無次元指数として、式に挿入される必要がある。ここで、レンズユニットは、全ての長さ部分が最初に無次元数であると特定され、続いて、それらが、全体を通して同じ測定単位(nm、μm、mm、m)によって表わされると解釈されることを意味する。この背景は、幾何光学はスケールが不変であり、かつ、波動光学とは対照的に、長さの自然単位を有しないということである。
Alvarezによる教示によれば、純粋なデフォーカス効果は、光学部品19、21の自由曲面が、以下の3次多項式:
Figure 0006726183
によって説明される場合、獲得され得る。ここで、光学部品19、21の側方変位はy軸に沿って発生し、これは、それにより定義されるとの仮定が行われる。変位がx軸に沿って発生する場合、xおよびyの役割は、それに従って、上式において交換される。いわば、パラメータKは、プロファイル深さの測定量であり(scales)、それゆえ、側方変位経路sの、単位当たりの屈折力の、入手可能な変化を設定する。
光軸OAに対して平行に入射するビームでは、および2つの光学部品19、21間の空気(屈折率n=1)では、それゆえ、経路s=|±y|の光学部品の側方変位は、以下の式:
Figure 0006726183
に従う波面の変化、すなわち、放物線状波面成分と、これに加えて、いわゆるピストン項(piston term)とを変えることによって(j=1、n=0およびm=0のゼルニケ多項式)、焦点位置の変化を生じさせる。その場合、後者は、定位相に対応し、および正確には、本発明による光学素子が、無限のビーム経路、すなわちコリメートされたビームの領域に置かれている場合、結像特性に対する影響を有しない。そうでなければ、ピストン項も、通常、結像特性に関して無視され得る。可変屈折力の効果が得られ得る、自由曲面を構成するためのさらなる詳細は、米国特許第3,305,294号明細書に説明されている。自由曲面の構成に関し、この文献を参照する。
ズームレンズの機能を果たすそのような波面マニピュレータの面屈折力は、以下の式:
Φv=4・K・s・(n−1) (4)
によって与えられる。ここで、sは、y方向に沿った素子の側方変位経路であり、Kは、プロファイル深さのスケーリング係数であり、およびnは、それぞれの波長における、レンズが形成される材料の屈折率である。
互いに動く2つの光学部品19、21が、図2〜5に示されるような向きにされて、2つの自由曲面23、25が互いに対面するようにすることが可能である。この場合、ゼロ点位置の調整を始めることは(すなわち2つの光学部品19、21間の距離を、2つの部品が接触するまで短くすることによる)、特に単純である。光学部品のセンタリングは、この位置では自動的に発生する。続いて、軸方向の距離は、2つの光学部品19、21が意図するような動作中の側方運動の範囲内でちょうど接触しないように、再度大きくされてもよい。しかしながら、その代わりに、原則として、自由曲面23、25が互いに外方を向くように2つの光学部品19、21の向きを決定することも可能である。
本発明では、自由曲面は、個々の像収差に影響を及ぼすために、より高次の項を有する。これらは、それら自体に加えて、または他の項、例えば上述のデフォーカス項または上述のピストン項に加えて、存在し得る。例として、式
Figure 0006726183
の5次多項式は、主に、一次球面収差に影響を及ぼす。5次球面収差は、対応する7次多項式などによって説明される。
構造プロファイルは、自由に重ね合わせられ得る、すなわち屈折力を変化させる構造と、球面収差を変化させる構造とが、自由曲面23、25において重ね合わせられ得、対応する波長マニピュレータが、光学部品19、21が互いに逆方向に変位する最中に、屈折力の影響を変化させ、かつ、同時に、球面収差を変化させ、両変化とも、任意の比例因子によって互いに比例している(比例因子は前もって固定して選択される必要があるが)。
さらに、動かされた光学部品19、21の両側面が、上述の自由形態に従って効果的な形態を有することも可能である。例として、上式による部品の前面と後面との間の面プロファイルを対称的に再分割することは、各面のプロファイル深さを十分に小さいままにし得、例えば、一般に、領域の最大プロファイル深さ<10〜30μmを容易にするのみである素子のフォトリソグラフィー生産を、より簡単にする。より簡単な生産に加え、より小さなプロファイル深さはまた、原則として、より大きなプロファイル深さと比較して、それらが引き起こす不要な像収差がより少数であるという利点をもたらす。不要な像収差は、光学部品間の有限距離が原因で、自由形態の素子の、光学部品のプロファイルに生じ、第1の光学部品の自由曲面上の、光軸から一定の距離のところで、屈折されて、第2の自由曲面には、正確にそこに対応する点から入射しないで、むしろわずかにオフセットしているビームを生じる。ここで生じる収差は、プロファイル深さと共に、(線形よりも)急激に増大する。なぜなら、より大きなプロファイル深さは、より大きい屈折による影響を有するだけでなく、さらに、素子間により長い距離を必要とするためである。それゆえ、自由形態の素子の前側と後側との間の自由形態のプロファイルの分割は、常に、生産の点ではより複雑であるものの、光学的な観点から考えると、好都合である。
Lohmann(Appl.Opt.Vol.9,No7,(1970),p.1669−1671参照)によれば、Alvarezの教示と大体等しいズームレンズを提示することが可能であり、ここでは、例えば最低次の2つの自由曲面は、
z(x,y)=A・(x3+y3) (6)
の形の式によって説明され、および互いに対する光学部品の相対運動は、x軸およびy軸に対して45°で延びる光学系の軸に対して垂直な直線に沿って実施される。ここで、定数Aは、ここでも、自由スケーリング定数であり、これは、自由曲面の最大プロファイル深さ、その結果の、単位経路長当たりの屈折力変化を説明する。Lohmannによる説明は、独立した解決法ではなく、その代わりに、実質的に代替提示にすぎない。
以下、光学部品19、21間に位置する浸漬媒体35を、光学部品19、21の材料へ適合させることについて、説明する。
色消しズームレンズの提供に関し、浸漬媒体35の、波面マニピュレータ5内の光学部品19、21の材料へ適合させるための条件は、以下の通り導出され得る:
互いに対して動かされる2つの光学部品19、21は、屈折力Φ1=4・k・s・(n1−1)を形成する。プレート間の可変「浸漬媒体レンズ」、すなわち浸漬媒体35で満たされた可変間隙は、屈折力Φ2=4・k・s・(n2−1)を形成する。式中、kは、自由形態のプロファイル関数のスケーリング係数を示し、sは、素子の変位経路を示し、およびn1およびn2は、考慮されるスペクトル域の中間波長における、それぞれ光学部品19、21の材料および浸漬媒体35の屈折率を示す。
概して、互いに近くにある2つのレンズに対する色消しの条件は:
Figure 0006726183
である。ここで、v1およびv2は、それぞれ、光学部品19、21の材料のアッベ数、および浸漬媒体35のアッベ数である。屈折力Φ1およびΦ2の式を式(7)に挿入することによって、色消しズームレンズにおいて、以下の条件に到達し得る。
Figure 0006726183
当然、実際、本発明の範囲から逸脱することなく、特に耐久性、熱膨張などの特定の条件を考慮するときに、入手可能な光学材料の選択が制限されることみの理由で、上記の条件からわずかにずれることがあり得る。ズームレンズのパラメータ範囲は、以下の条件:
Figure 0006726183
によって、近似的に特徴付けられ得る。好ましくは、さらには、下記の式:
Figure 0006726183
も当てはまり得る。さらに一層好ましくは、下記の式:
Figure 0006726183
も当てはまり得る。
デフォーカスの代わりに、特定のゼルニケ項に影響を及ぼすはずの色消し波面マニピュレータは、同様に、同じ色消し条件(7)または(8a)〜(8c)を満たすはずである。例えば、波長と無関係に球面収差の特定の絶対値を提供する素子は、2つの光学部品19、21によって提供される必要があり、それらの自由曲面23、25は、例えば、式5に従って供され、かつ浸漬媒体35と共に、条件(7)または(8a)〜(8c)に適合するガラスから形成される。
既に述べたように、アクチュエータ31、33は、2つの光学部品19、21のための好適な変位経路を設定するために存在し、前記アクチュエータは、例えば、微小機械アクチュエータ、圧電アクチュエータ、超音波アクチュエータなどとして供されることができる。アクチュエータ31、33用の作動信号は、例示的な本実施形態ではレンズに組み込まれる計算ユニット37によって、計算される。しかしながら、代替的に、計算ユニット37を、カメラの制御電子回路によって実行されるソフトウェアとして構成することも可能である。最初の場合には、計算ユニットはレンズの一部であるが、後者の場合には、カメラの一部である。
計算ユニット37は、それと接続された検出ユニット39から、変位経路の計算に関連する影響変数を受信する。例として、絞り7の位置およびレンズのフォーカシングすなわち焦点調節の設定は、関連のある影響変数である。それゆえ、検出ユニット39は、これらの変数の検出に好適なセンサーに接続されている。一般に、そのようなセンサーは、標準として現代のレンズに存在し、それゆえ、ここではこれ以上詳細には説明しない。その後、検出ユニット39によって検出された影響変数に基づいて計算された作動信号は、計算ユニット37から、波面マニピュレータ5のアクチュエータ31、33へ出力され、後者は、作動信号を、作動信号によって指示される変位経路へと変換する。
図2のレンズは、波面マニピュレータ5が、第1のレンズ素子配置構成1と第2のレンズ素子配置構成3との間の間隙から除去され得るように構成される。これはまた、球面収差が誘発されるはずがない場合には(ゼロ点位置にある波面マニピュレータ)、波面マニピュレータのないレンズを使用するオプションを提案する。なぜなら、ゼロ点位置にある波面マニピュレータは、光学的なゼロ素子として、光学的機能を全く働かせないためである。さらに、波面マニピュレータを別の波面マニピュレータによって置き換えることが可能である。それゆえ、例として、少なくとも2つの波面マニピュレータを含む1組の波面マニピュレータがあってもよく、その一方の波面マニピュレータは、少なくとも1つのさらなる収差を伴った3次球面収差を引き起こし、および別の波面マニピュレータは、さらなる収差のない3次球面収差を引き起こす。例として、3次球面収差のみを引き起こす波面マニピュレータと、3次球面収差に加えて、5次球面収差および/またはデフォーカスも引き起こす波面マニピュレータとを提供することが可能であり、この場合、この5次球面収差および/またはこのデフォーカスは、3次球面収差に対して特定の関係を有する。同様に、球面収差に加えて、異なる単色収差を引き起こす波面マニピュレータを提供することが可能である。さらなるオプションでは、例えば異常な部分分散をもったガラス、および/または異常な部分分散をもった浸漬媒体を用いて、アクロマチック球面収差(achromatic spherical aberration)を引き起こす波面マニピュレータを提供することからなる。第1のレンズ素子配置構成1と第2のレンズ素子配置構成3との間の間隙9が十分に大きいことを条件にして、レンズに、2つのそのような波面マニピュレータを配置することも可能である。当然、これは、レンズが波面マニピュレータの除去を可能にしない場合にも当てはまる。しかしながら、除去可能な波面マニピュレータを備えるレンズの場合、レンズは、選択的に挿入可能な波面マニピュレータ一式を備え得る。
請求項1に記載の波面マニピュレータの光学部品19、21は、その自由曲面23、25が互いに対面するように配置されるが、その自由曲面が互いに外方を向くように光学部品を配置することも可能である。図2〜5では、その場合、自由曲面は、波面マニピュレータの外側に、および平面は、光学部品の相互に対面する側に配置される。さらに、2つの面間で自由曲面の光学的効果を分割し、これら光学部品の両側面が自由曲面を備え、光学部品の2つの自由曲面が一緒になって、図2〜5に説明されるような効果を引き起こすようにすることが可能である。
本発明による波面マニピュレータのための第1の具体的な例示的な実施形態について、図6〜8を参照して、以下説明する。この例示的な実施形態は、シネ用のレンズを特定していて、そのレンズは、本発明に従って構成される。図6は、自由曲面のプロファイルを示す一方で、図7および図8は、ゼロ点位置(図5)にある、および光学部品の最大変位をした実効位置にある(図8)、波面マニピュレータ5を備えるレンズを示す。
図2に示す例示的な実施形態からのレンズのように、第1の具体的な例示的な実施形態のレンズは、第1のレンズ素子配置構成1および第2のレンズ素子配置構成3を含むが、第2のレンズ素子配置構成3は、図2に示す例示的な実施形態とは対照的に、複数のレンズ素子から構成されている。波面マニピュレータ5および開口絞り7は、第1のレンズ素子配置構成1と第2のレンズ素子配置構成3との間の間隙9に配置されている。
第1の具体的な例示的な実施形態のレンズは、焦点距離135mmおよび比口径f/1.8を有する。主レンズのみが球面レンズを含み、その面は、球面の式(ここで:k=0)の従来の頂点の形態によって説明される。
Figure 0006726183
下記の表は、第1の例示的な実施形態の光学的な構成データを規定しており、図7および図8に示す図は、左から右へ番号が付されていて、ダミー面は省略されている。半径および距離は、表において、いわゆるレンズユニットにおいて無次元指数であると規定され、すなわち全ての半径および距離は、全体を通して同じ測定単位(nm、μm、mm、m)によって表わされるように、解釈され得る。この背景は、幾何光学のスケールが不変であり、波動光学とは対照的に、長さの自然単位を有しないことである。具体的な例示的な本実施形態では、測定単位はmmである。
Figure 0006726183
ここで、波面マニピュレータ5は、いずれの場合も、まさしく、平面および自由曲面を備える2つの自由形態の素子からなり、自由曲面は、概して、式(1)による多項式展開によって説明される。具体的な例示的な実施形態の2つの同一の自由曲面(面の番号9および10)の多項式係数は、以下の通りである:
y: −6.6000E−03 x2y: −2.8406E−05 y3: −9.4687E−06
4y: 1.6446E−07 x23: 1.0964E−07 y5: 3.2892E−08
ここで、例えば、項x23に割り当てられる値は、式(1)からの係数C2,3に対応する。この自由形態のプロファイルは、式(5)による3次球面収差の項の、式(2)によるデフォーカス項および傾斜角度項への重ね合わせを構成する。
この点において、再度、同じ面の、数学的には無限に多くの等価の表現があるため、本発明を明示的に面の表現に結び付けることは好都合ではないことを言及する。
図6に、第1の具体的な例示的な実施形態の波面マニピュレータの自由曲面のプロファイルが示されている。図6では、プロファイルは、自由曲面の上方領域において平均プロファイル平面から負の距離を有しているが、下方領域において平均プロファイル平面から正の距離を有する。平均プロファイル平面からの距離は、プロファイルの中心においては実質的にゼロである。平均プロファイル平面からの距離がゼロのこの領域は、プロファイルの左側の縁および右側の縁において広がり、平均プロファイル平面からの正の距離は、ここでも、上方左および右側の縁に存在し、および平均プロファイル平面からの負の距離は、下方の外側の左および右側の縁に存在する。
第1の具体的な例示的な実施形態におけるプロファイルは、絞りが2.8である場合において、および球面の補正不足が3次球面収差において設定されるときに、デフォーカス部品による関連のリフォーカシングが自由形態のプロファイルから自動的に出現するように、(任意に)選択されている。これを達成するために、自由曲面は、式(5)による面と、少なくとも式(2)による面との重ね合わせを構成する。他の絞りの位置に関し、または3次球面収差において補正しすぎた球面収差を供給するようにWFマニピュレータを設定することに関し、レンズは、面12からの後側のレンズ群(すなわち絞り7および第2のレンズ素子の組み合わせ3を含む)が変位されることによって、リフォーカスされる必要がある。
2つの自由形態の素子(面8および面9ならびに面10および面11)の側方運動範囲は、いずれの場合も±2.5mmであり、2つの光学部品は、常に、互いに対して正確に逆方向におよび系のy座標方向に沿って動く。(運動がx方向に選択された場合、自由曲面の説明におけるxおよびyの累乗は、それに従って交換される。系の座標系に対する変位軸の任意の位置の場合、完全に合同な自由曲面に対し異なる係数が生じるため、これら係数は、座標系と併せると意味を持つにすぎない。)
自由形態の素子の全変位範囲が利用される場合、開口1.8の場合の調整可能な波面収差±32λまたは開口2.8の場合の±5.4λまたは開口4.0の場合の1.3λは、3次球面収差に対して生じる。それぞれの絞り位置と組み合わせた波面マニピュレータの各位置において必要とされるレンズのリフォーカシングは、絞り7と、像側で絞り7に隣接するレンズ素子配置構成3とを含む後側のレンズ部分を変位することによって、もたらされる。
図7および図8は、ゼロ点位置、および波面マニピュレータ5が一方向において最大偏位状態にある実効位置の場合に、無限物体距離にあるレンズの断面図を示す。像の最大高さy’=15mmに属する中心光線束および斜光線束が示されている。図7では、中心光線束および斜光線束が正確に画像センサー11上にフォーカスされていることを特定することが可能である。対照的に、実効位置にある波面マニピュレータ5の場合(図8)、中心光線束のバックフォーカスは斜光線束に対して減少されているため、中心光線束は、既に、画像センサー11のセンサー平面の上流で交差している。従って、球面収差が存在する。
第1の具体的な例示的な実施形態の波面マニピュレータ5は、3次球面収差を引き起こすプロファイル面を備える自由形態のプロファイルを含む一方で、第1の具体的な例示的な実施形態においては、波面マニピュレータも使用され、そのプロファイル面が、3次球面収差と5次球面収差との組み合わせを引き起こすように、供される。そのような波面マニピュレータの自由曲面のプロファイル(これも依然としてデフォーカス項を含む)は、図9に示されている。図6に示すプロファイル面(負の距離が、プロファイル面の幅のかなりの部分にわたってプロファイル面の上方領域において平均プロファイル平面から延在し、同様に、正の距離が、プロファイル面の幅のかなりの部分にわたってプロファイル面の下方領域において平均プロファイル面から延在する)と比較して、図9に示すプロファイル面では、平均プロファイル平面から負の距離のプロファイル面は、平均プロファイル平面から正の距離の領域によって実質的に中断される。それゆえ、図9に示すプロファイルでは、平均プロファイル平面から正の距離の領域(プロファイルの下方領域)は、平均プロファイル平面から負の距離のセクションによって中断される。図9に示す自由形態のプロファイルは、以下の係数を有する:
y: 5.4000E−03 x2y: −1.1298E−04 y3: −3.7660E−05
4y: 4.8194E−07 x23: 3.2129E−07 y5: 9.6388E−08
6y: −5.5358E−10 x43: −5.5358E−10 x25: −3.3215E−10
7: −7.9083E−11
この例では、係数は、最大偏位(±2.5mm)の場合および全開口の場合に、波面マニピュレータは、±32λの寄与の3次球面収差に加えて、およびそれと同時に、±16λの寄与の5次球面収差を生じるように選択されるが、5次球面収差の寄与は、常に、3次球面収差の寄与とは逆の符号を有し、およびそれに対して1:−0.5の固定関係を有する。この組み合わせは、低空間周波数(ミリメートル当たり≦5本の線)の場合にはほんのわずかしか減少しないが、より高い空間周波数(ミリメートル当たり≧30本の線)の場合には非常に強く減少する変調伝達関数(MTF)を生じる。経験的に、特に感じがよいと受け止められる画像の印象は、3次球面収差の寄与対5次球面収差の寄与のこの比率において、生じることが分かった。
本発明によるレンズのための第2の具体的な例示的な実施形態を、下記で、図10〜12を参照して説明する。図6〜8を参照して説明する第1の具体的な例示的な実施形態とは対照的に、第2の具体的な例示的な実施形態の第1のレンズ素子配置構成1は、著しく多数のレンズを有する。対照的に、第2のレンズ素子配置構成3は、第1の具体的な例示的な実施形態の第2のレンズ素子配置構成に対してレンズの数が減少している。波面マニピュレータ5および開口絞り7が、第1のレンズ素子配置構成1と第2のレンズ素子配置構成3との間に位置している。図11では、ゼロ点位置にある波面マニピュレータを示す一方、図12では、実効位置にある波面マニピュレータ5を示す。
第2の具体的な例示的な実施形態の波面マニピュレータの自由曲面のプロファイルは、図10に示されている。これは、実質的に3次球面収差を生じるのに役立ち、それゆえ、図6からのプロファイルと構造の点で同様である。
第2の具体的な例示的な実施形態は、写真またはシネ用の、本発明に従って構成されたさらなるレンズを構成する。レンズは、焦点距離25mmおよび比口径f/1.75を有する。像の円の直径は、多くても18mmであり、および最大歪曲は約2%である。
自由形態の素子の最大限移動量が±2.0mmの場合の3次球面収差の設定可能な最大絶対値は、基準波長546.074nmにおいて約±14λである。下記の表は、光学系の構成データの概要を含み、ダミー面は省略されている。半径および距離は、ここでも、表において、いわゆるレンズユニットにおいて無次元指数であると規定され、すなわち全ての半径および距離は、全体を通して同じ測定単位(nm、μm、mm、m)によって表わされると解釈され得る。具体的な例示的な本実施形態では、測定単位はmmである。
Figure 0006726183
自由曲面の関連の係数は:
2y: −7.8039E−05 y3: −2.6810E−05 x4y: 4.5582E−07
23: 3.0371E−07 y5: 9.1119E−08
である。ここで、例えば、項x2y3に割り当てられた値は、式(1)からの係数C2,3に対応する。この自由形態のプロファイルは、式(5)による3次球面収差のための項と、式(2)によるデフォーカス項の重ね合わせを構成する。
この例では、プロファイルは、全開口(1.76の絞り)の場合、および球面の補正不足(3次球面収差)が設定されるとき、デフォーカス部品による関連のリフォーカシングが、自由形態のプロファイルから自動的に出現するように、(任意に)選択されている。自由曲面の関連のプロファイルは、図10に示す。他の物体距離へのレンズのフォーカシングは、レンズ素子5および6(物体側から数えられるように)によって形成された接合型素子を変位することによって実施され、この接合型素子は、内側焦点調節部材を表す。
図11および図12は、ゼロ点位置、および波面マニピュレータ5の一方の方向において最大偏位にある実効位置の場合に、無限物体距離にある、第2の具体的な例示的な実施形態によるレンズの断面図を示す。y’=10.7mmおよびy’=17.8mmの像の高さに関連付けられた中心光線束および斜光線束が示されている。図11では、中心光線束および斜光線束が正確に画像センサー11上にフォーカスされることを特定することが可能であるが、波面マニピュレータの実効位置にある光線束は、異なるバックフォーカスを有するため、球面収差が存在している。
本発明を、説明するために、例示的な実施形態に基づいて、詳細に記載した。ここで、異なる例示的な実施形態の個々の特徴を、互いに組み合わせることも可能であるため、本発明は、いくつかの例示的な実施形態において開示した特徴の組み合わせに制限されるべきではない。その代わりに、本発明は、添付の特許請求の範囲によってのみ、制限されるべきである。
1 レンズ素子配置構成
3 レンズ素子配置構成
5 波面マニピュレータ
7 開口絞り
9 間隙
11 画像センサー
13 収束レンズ
15 発散レンズ
17 収束レンズ
19 第1の光学部品
21 第2の光学部品
23 自由曲面>
25 自由曲面>
27 平面
29 平面
31 アクチュエータ
33 アクチュエータ
34 アクチュエータ
35 浸漬媒体
37 計算ユニット
39 検出ユニット

Claims (18)

  1. 第1のレンズ素子配置構成(1)、第2のレンズ素子配置構成(3)、および波面マニピュレータ(5)を含む、スチールまたはフィルムカメラ用のレンズの使用方法であって、前記レンズは、
    − 前記第1のレンズ素子配置構成(1)および前記第2のレンズ素子配置構成(3)は、前記レンズの光軸(OA)に沿って互いに離間して配置されて、前記第1のレンズ素子配置構成(1)と前記第2のレンズ素子配置構成(3)との間に間隙(9)が存在するようにされており、
    − 前記波面マニピュレータ(5)は、前記第1のレンズ素子配置構成(1)と前記第2のレンズ素子配置構成(3)との間の前記間隙(9)に位置しており、かつ前記レンズの前記光軸(OA)に対して垂直方向に、互いに対して逆方向に変位可能であるように配置されかつ少なくとも自由曲面(23、25)をそれぞれ含む少なくとも2つの光学部品(19、21)を含む、前記レンズにおいて、
    前記波面マニピュレータ(5)が、ゼロ点位置および実効位置を有し、そのゼロ点位置では、その前記光学部品(19、21)が前記レンズの結像特性において全く像収差を引き起こさず、その実効位置では、前記光学部品(19、21)が、前記レンズの前記光軸(OA)に対して垂直方向に、前記ゼロ点位置から互いに対して逆方向に変位され、および前記光学部品(19、21)が前記レンズの前記結像特性において少なくとも球面収差を引き起こすことを特徴とし、
    前記波面マニピュレータ(5)を前記実効位置へ変位させて、物体の前景または背景のいずれかにぼかしを入れるステップを有する、方法。
  2. 前記波面マニピュレータ(5)が、その光学部品(19、21)の前記実効位置において、前記レンズの前記結像特性に少なくとも3次球面収差を引き起こすことを特徴とする、請求項1に記載の方法。
  3. 前記波面マニピュレータ(5)が、その光学部品(19、21)の前記実効位置において、前記レンズの前記結像特性に少なくとも5次球面収差を引き起こすことを特徴とする、請求項1または2に記載の方法。
  4. 前記自由曲面(23、25)が、x軸、y軸、およびz軸を有するデカルト座標系において定義され、前記z軸は、前記レンズの前記光軸(OA)を表し、および自由曲面(23、25)のz座標は、下記の形の多項式展開
    Figure 0006726183
    (式中、Cm,nは、前記x座標に対する次数mおよび前記y座標に対する次数nの前記それぞれの自由曲面(23、25)の前記多項式展開の展開係数を示す)
    による、前記x座標およびy座標に依存して説明され、前記自由曲面(23、25)による前記光学部品(19、21)の運動方向は、前記y軸に対して平行に延在し、および奇数次nおよび偶数次mの多項式のみが、ゼロとは異なる展開係数Cm,nを有することを特徴とする、請求項1〜3のいずれか1項に記載の方法。
  5. 前記多項式x4y、x23およびy5の前記展開係数がゼロとは異なることを特徴とする、請求項4に記載の方法。
  6. 前記多項式x6y、x43、x25およびy7の前記展開係数がゼロとは異なることを特徴とする、請求項3、4、または5に記載の方法。
  7. さらに、前記多項式x2yおよびy3の前記展開係数がゼロとは異なることを特徴とする、請求項5または6に記載の方法。
  8. さらに、前記多項式yの前記展開係数がゼロとは異なることを特徴とする、請求項5〜7のいずれか1項に記載の方法。
  9. 前記レンズが、前記第1のレンズ素子配置構成(1)と前記第2のレンズ素子配置構成(3)との間の前記間隙(9)に物理的な開口絞り(7)を含み、および前記波面マニピュレータ(5)は、前記物理的な開口絞り(7)の前にまたはその後ろに位置していることを特徴とする、請求項1〜8のいずれか1項に記載の方法。
  10. 前記レンズが、前記第1のレンズ素子配置構成(1)と前記第2のレンズ素子配置構成(3)との間の前記間隙(9)に仮想的な開口絞りを含み、および前記波面マニピュレータ(5)は、前記仮想的な開口絞りの位置にあることを特徴とする、請求項1〜8のいずれか1項に記載の方法。
  11. − 前記レンズは、前記レンズの少なくとも影響変数を検出するための検出ユニット(39)を含み、その影響変数は、前記波面マニピュレータ(5)の前記光学部品(19、21)の好適な実効位置を確定することに関連し、および
    − 前記レンズは、前記検出された影響変数および所望の程度の球面収差に基づいて、前記ゼロ点位置から進んで前記実効位置に到達するための、前記波面マニピュレータ(5)の前記光学部品(19、21)の変位経路を計算するための計算ユニット(37)を含み、またはそのような計算ユニット(37)は前記レンズに割り当てられることを特徴とする、請求項1〜10のいずれか1項に記載の方法。
  12. 前記レンズが、前記レンズ素子配置構成(1、3)のうちの一方の少なくとも一部を前記光軸(OA)に沿って変位するための作動システム(34)を含むことを特徴とする、請求項1〜11のいずれか1項に記載の方法。
  13. 波面マニピュレータ(5)があり、その前記光学部品(19、21)は、前記自由曲面(23、25)を備えていて、異常部分分散を有する材料から生産されることを特徴とする、請求項1〜12のいずれか1項に記載の方法。
  14. 前記自由曲面(23、25)を備える前記光学部品(19、21)間に浸漬媒体(35)がある波面マニピュレータ(5)があることを特徴とする、請求項1〜13のいずれか1項に記載の方法。
  15. 前記浸漬媒体(35)が、炭化水素であることを特徴とする、請求項14に記載の方法。
  16. 前記少なくとも1つの波面マニピュレータ(5)が、前記レンズから除去可能であることを特徴とする、請求項1〜15のいずれか1項に記載の方法。
  17. 物体の像をスチールまたはフィルムに伝達するための対物レンズであって、前記対物レンズは、
    - 第1のレンズ素子配置構成と、
    - 第2のレンズ素子配置構成と、
    - 少なくとも1つの波面マニピュレータと、
    を備え、
    前記対物レンズは光軸を定め、および、結像特性を有し、
    前記第1のレンズ素子配置構成と前記第2のレンズ素子配置構成とは、前記第1のレンズ素子配置構成と前記第2のレンズ素子配置構成との間に間隙が存在するように、前記対物レンズの光軸に沿って互いに離間して配置され、
    前記波面マニピュレータは、前記第1のレンズ素子配置構成と前記第2のレンズ素子配置構成との間の前記間隙に置かれ、
    前記波面マニピュレータは、互いに逆方向に、および、前記対物レンズの光軸に対して垂直方向に、変位可能であるように配置される、少なくとも2つの光学部品を含み、
    前記波面マニピュレータの前記2つの光学部品のそれぞれは、少なくとも1つの自由曲面を含み、それぞれの前記少なくとも1つの自由曲面は、互いに隣接し、
    前記波面マニピュレータの前記2つの光学部品は、ゼロ点位置を有し、前記少なくとも2つの光学部品の前記自由曲面は、前記ゼロ点位置では前記対物レンズの結像特性に全く像収差を引き起こさないように構成され、
    前記波面マニピュレータの前記2つの光学部品は、さらに、実効位置を含み、前記実効位置では、前記少なくとも2つの光学部品は、ゼロ点位置から、互いに対して逆方向に、および、前記対物レンズの前記光軸に対して垂直方向に変位され、前記少なくとも2つの光学部品の互いに隣接した自由曲面は、前記2つの光学部品が前記実効位置にあるときに、前記対物レンズの結像特性に球面収差を意図的にもたらして、物体の前景または背景をぼかし、
    前記ゼロ点位置から進んで前記実効位置に達するための、前記波面マニピュレータの前記2つの光学部品の変位経路は、前記波面マニピュレータの前記2つの光学部品の好適な実効位置を確定することに関連する前記対物レンズの影響変数と、前記物体の前景または背景をぼかすために前記意図的にもたらされる球面収差とに基づいて計算される
    ことを特徴とする、前記対物レンズ。
  18. 請求項17に記載の対物レンズを備えるスチールまたはフィルムカメラ。
JP2017530649A 2014-12-11 2015-11-13 写真またはフィルムカメラ用の対物レンズ、およびそのような対物レンズの変調伝達関数の特定の空間周波数範囲の選択的減衰方法 Active JP6726183B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102014118383.5A DE102014118383B4 (de) 2014-12-11 2014-12-11 Objektiv für eine Foto- oder Filmkamera und Verfahren zum gezielten Dämpfen bestimmter Raumfrequenzbereiche der Modulations-Transfer-Funktion eines derartigen Objektivs
DE102014118383.5 2014-12-11
PCT/EP2015/076613 WO2016091537A1 (de) 2014-12-11 2015-11-13 Objektiv für eine foto- oder filmkamera und verfahren zum gezielten dämpfen bestimmter raumfrequenzbereiche der modulations-transfer-funktion eines derartigen objektivs

Publications (2)

Publication Number Publication Date
JP2018503859A JP2018503859A (ja) 2018-02-08
JP6726183B2 true JP6726183B2 (ja) 2020-07-22

Family

ID=54542270

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017530649A Active JP6726183B2 (ja) 2014-12-11 2015-11-13 写真またはフィルムカメラ用の対物レンズ、およびそのような対物レンズの変調伝達関数の特定の空間周波数範囲の選択的減衰方法

Country Status (5)

Country Link
US (1) US10746975B2 (ja)
JP (1) JP6726183B2 (ja)
DE (1) DE102014118383B4 (ja)
GB (1) GB2547590B (ja)
WO (1) WO2016091537A1 (ja)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014104977B4 (de) * 2014-04-08 2023-11-30 Carl Zeiss Microscopy Gmbh Anordnung zur Lichtblattmikroskopie sowie Mikroskopobjektiv für die Lichtblattmikroskopie
DE102019201467B4 (de) 2019-02-05 2023-03-02 Carl Zeiss Ag Verfahren zum Betrieb eines Kamerasystems und Kamerasystem
DE102019105125A1 (de) 2019-02-28 2020-09-03 Carl Zeiss Jena Gmbh Optische Baugruppe mit geführt bewegbaren optischen Elementen und Verfahren zum geführten Bewegen eines ersten optischen Elements und eines zweiten optischen Elements
DE102019204285A1 (de) * 2019-03-27 2020-10-01 Carl Zeiss Microscopy Gmbh Objektiv für ein Mikroskop
WO2020239480A1 (de) 2019-05-31 2020-12-03 Carl Zeiss Jena Gmbh Verfahren zum anpassen der fassung eines in einer fassung gefassten optischen elementes, optisches bauteil und optische baugruppe
DE102019211179A1 (de) * 2019-07-26 2021-01-28 Carl Zeiss Microscopy Gmbh Immersionsobjektiv
WO2021078641A1 (en) * 2019-10-24 2021-04-29 Sony Corporation A lens system, and a method and computer program product for controlling the lens system
DE102019129445A1 (de) * 2019-10-31 2021-05-06 Carl Zeiss Jena Gmbh Gemeinsame Führung beweglicher optischer Elemente
DE102021121562A1 (de) 2021-08-19 2023-02-23 Carl Zeiss Ag Wellenfrontmanipulator und optisches Gerät
DE102021121561A1 (de) * 2021-08-19 2023-02-23 Carl Zeiss Ag Wellenfrontmanipulator und optisches Gerät
DE102022102213B4 (de) 2022-01-31 2023-08-24 Carl Zeiss Ag Optisches System

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3305294A (en) 1964-12-03 1967-02-21 Optical Res & Dev Corp Two-element variable-power spherical lens
US3583790A (en) * 1968-11-07 1971-06-08 Polaroid Corp Variable power, analytic function, optical component in the form of a pair of laterally adjustable plates having shaped surfaces, and optical systems including such components
US4457592A (en) * 1981-12-03 1984-07-03 Polaroid Corporation Optical system utilizing a transversely movable plate for focusing
US4650292A (en) * 1983-12-28 1987-03-17 Polaroid Corporation Analytic function optical component
US4925281A (en) * 1988-02-16 1990-05-15 Polaroid Corporation Zoom lens
JPH04324809A (ja) * 1991-04-25 1992-11-13 Olympus Optical Co Ltd 収差可変光学系
US6167206A (en) * 1995-09-12 2000-12-26 Smartlens Corporation Image modifiers for use in photography
JP2005513517A (ja) * 2001-12-07 2005-05-12 スマートレンズ・コーポレイション 写真技術に使用するための選択的合焦システム
US7446946B2 (en) * 2005-06-27 2008-11-04 Canon Kabushiki Kaisha Zoom optical system
US7443601B2 (en) * 2005-06-27 2008-10-28 Canon Kabushiki Kaisha Zoom optical system
JP5312393B2 (ja) 2010-04-16 2013-10-09 キヤノン株式会社 撮像装置
US20120320257A1 (en) * 2011-06-17 2012-12-20 Gal Shabtay Auto-focus actuator for field curvature correction of zoom lenses
DE102011053630B4 (de) * 2011-09-15 2019-11-21 Carl Zeiss Microscopy Gmbh Verfahren und Vorrichtung zur Bildstabilisierung in einem optischen Beobachtungs- oder Messgerät
DE102011054087B4 (de) * 2011-09-30 2018-08-30 Carl Zeiss Microscopy Gmbh Optische Bildstabilisierungsvorrichtung und optisches Beobachtungsgerät
DE102013100680B4 (de) * 2013-01-23 2015-02-05 Carl Zeiss Ag Wellenfrontmanipulator und Optisches System mit einem Wellenfrontmanipulator
DE102013101711A1 (de) 2013-02-21 2014-08-21 Carl Zeiss Microscopy Gmbh Objektiv und optisches Beobachtungsgerät
DE102013102442B4 (de) * 2013-03-12 2014-11-27 Highyag Lasertechnologie Gmbh Optische Vorrichtung zur Strahlformung

Also Published As

Publication number Publication date
DE102014118383B4 (de) 2018-09-13
JP2018503859A (ja) 2018-02-08
GB201708101D0 (en) 2017-07-05
DE102014118383A1 (de) 2016-06-16
US10746975B2 (en) 2020-08-18
WO2016091537A1 (de) 2016-06-16
GB2547590A (en) 2017-08-23
US20170307860A1 (en) 2017-10-26
GB2547590B (en) 2019-09-18

Similar Documents

Publication Publication Date Title
JP6726183B2 (ja) 写真またはフィルムカメラ用の対物レンズ、およびそのような対物レンズの変調伝達関数の特定の空間周波数範囲の選択的減衰方法
JP5777592B2 (ja) ズームレンズ及びそれを有する撮像装置
TWI796477B (zh) 光學透鏡系統和成像系統
US9019597B2 (en) Device for short-distance projection at a reasonably large angle with zoom and focusing
JP5841844B2 (ja) 画像処理装置及び画像処理方法
JP5159986B2 (ja) 撮像装置および撮像方法
JP7117605B2 (ja) レンズ系、カメラシステム及び撮像システム
JP6261566B2 (ja) 立体撮像光学系、立体撮像装置及び内視鏡
JP6489857B2 (ja) 光学系および光学機器
JP5868275B2 (ja) ズームレンズ及びそれを有する撮像装置
JP4129972B2 (ja) 偏心光学系
JP2014010286A5 (ja)
JP2019066701A (ja) ズームレンズおよびそれを有する撮像装置
TW201502571A (zh) 光學成像系統
JP5345042B2 (ja) ズームレンズ
JP3166157B2 (ja) ズーム光学装置
JP6508879B2 (ja) ズームレンズ及びそれを有する撮像装置
JP2017219649A (ja) 撮像光学系およびそれを有する光学機器
JP2015197421A (ja) 三次元形状計測システムに用いられる投影装置および撮像装置
JP2011164517A (ja) ズームレンズ及びそれを有する撮像装置
JP2019144550A (ja) ファインダー光学系及び撮像装置
JP2009103790A (ja) ズームレンズ及びそれを有する撮像装置
JP7016763B2 (ja) 結像光学系、それを備える撮像装置及び投射装置
Fitzgerald et al. Two iris imaging over an extended depth of field with a mobile phone camera
Fitzgerald On extending depth of field in fast photographic lenses

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180814

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190731

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190806

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200518

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200602

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200626

R150 Certificate of patent or registration of utility model

Ref document number: 6726183

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250