JP6724859B2 - Micro coil with coating layer - Google Patents

Micro coil with coating layer Download PDF

Info

Publication number
JP6724859B2
JP6724859B2 JP2017096938A JP2017096938A JP6724859B2 JP 6724859 B2 JP6724859 B2 JP 6724859B2 JP 2017096938 A JP2017096938 A JP 2017096938A JP 2017096938 A JP2017096938 A JP 2017096938A JP 6724859 B2 JP6724859 B2 JP 6724859B2
Authority
JP
Japan
Prior art keywords
coating layer
microcoil
oxide
conductive metal
radio wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2017096938A
Other languages
Japanese (ja)
Other versions
JP2018193630A (en
Inventor
寛 大月
寛 大月
慎治 池田
慎治 池田
規夫 稲見
規夫 稲見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2017096938A priority Critical patent/JP6724859B2/en
Priority to CN201810437360.6A priority patent/CN108882423B/en
Priority to KR1020180054127A priority patent/KR20180125892A/en
Priority to US15/978,469 priority patent/US10493435B2/en
Priority to CA3004981A priority patent/CA3004981A1/en
Priority to AU2018203407A priority patent/AU2018203407A1/en
Priority to TW107116372A priority patent/TW201900954A/en
Priority to EP18172704.1A priority patent/EP3406872B1/en
Priority to MX2018006078A priority patent/MX2018006078A/en
Priority to PH12018050196A priority patent/PH12018050196A1/en
Priority to BR102018009923-0A priority patent/BR102018009923A2/en
Priority to ES18172704T priority patent/ES2779041T3/en
Publication of JP2018193630A publication Critical patent/JP2018193630A/en
Application granted granted Critical
Publication of JP6724859B2 publication Critical patent/JP6724859B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2006Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating
    • F01N3/2013Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating using electric or magnetic heating means
    • F01N3/202Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating using electric or magnetic heating means using microwaves
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/36Coil arrangements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/48Silver or gold
    • B01J23/50Silver
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9404Removing only nitrogen compounds
    • B01D53/9409Nitrogen oxides
    • B01D53/9431Processes characterised by a specific device
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/18Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/20Carbon compounds
    • B01J27/22Carbides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2006Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating
    • F01N3/2013Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating using electric or magnetic heating means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/04Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of carbon-silicon compounds, carbon or silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/08Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/17Protection against damage caused by external factors, e.g. sheaths or armouring
    • H01B7/29Protection against damage caused by extremes of temperature or by flame
    • H01B7/292Protection against damage caused by extremes of temperature or by flame using material resistant to heat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/90Physical characteristics of catalysts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/16Selection of particular materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Toxicology (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Biomedical Technology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Environmental & Geological Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Non-Insulated Conductors (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Inorganic Fibers (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)
  • Resistance Heating (AREA)

Description

本発明は、電波を吸収して発熱するマイクロコイルに関する。 The present invention relates to a microcoil that absorbs radio waves and generates heat.

従来、内燃機関の排気ガスを浄化する排気浄化触媒を加熱するための発熱部に電波吸収材を適用し、マイクロ波を当該電波吸収材に照射して電波吸収材を発熱させて、発生させた熱を排気浄化触媒の加熱に利用することが検討されている。電波吸収材は、照射される電波(マイクロ波)のエネルギーを熱エネルギーに変化させて熱を発生させる。 Conventionally, a radio wave absorbing material is applied to a heat generating portion for heating an exhaust gas purification catalyst for purifying exhaust gas of an internal combustion engine, and the radio wave absorbing material is irradiated with microwaves to generate heat by generating the radio wave absorbing material. Utilization of heat for heating an exhaust purification catalyst has been studied. The radio wave absorber changes the energy of the applied radio wave (microwave) into heat energy to generate heat.

一方、電波吸収材の一つとして、導電性を有する導電性マイクロコイルが知られている。導電性マイクロコイルとしては、コイル形状の炭素で構成されたカーボンマイクロコイルが知られている(例えば、特許文献1を参照。)。更に、導電性マイクロコイルとしては、コイル形状の炭化チタン(TiC)で構成されたTiCマイクロコイルが知られている。 On the other hand, as one of the radio wave absorbers, a conductive microcoil having conductivity is known. As a conductive microcoil, a carbon microcoil made of coil-shaped carbon is known (for example, see Patent Document 1). Further, as a conductive microcoil, a TiC microcoil composed of coil-shaped titanium carbide (TiC) is known.

特開2012−012736号公報JP 2012-012736 A

しかしながら、カーボンマイクロコイルは、高温環境(例えば、500℃以上)且つ酸化雰囲気下で使用されると酸化してガス化してしまう。一方、内燃機関の排気浄化触媒内は、流入する高温の排ガスのために高温であり且つ酸化雰囲気である。よって、カーボンマイクロコイルそのものを例えば排気浄化触媒に配置して当該触媒を加熱するための電波吸収材として使用することができない。他方、TiCマイクロコイルは、高温環境且つ酸化雰囲気下で使用されると、酸化してTiOマイクロコイルに変化して、導電性を失ってしまうため、電波吸収能が低減してしまう。よって、TiCマイクロコイルもまた、排気浄化触媒に配置して当該触媒を加熱するための電波吸収材として使用することができない。従って、高温環境且つ酸化雰囲気下であっても、電波吸収材として機能するマイクロコイルが求められていた。 However, the carbon microcoil is oxidized and gasified when used in a high temperature environment (for example, 500° C. or higher) and an oxidizing atmosphere. On the other hand, the inside of the exhaust purification catalyst of the internal combustion engine is at a high temperature and in an oxidizing atmosphere due to the high temperature exhaust gas flowing therein. Therefore, the carbon microcoil itself cannot be used as a radio wave absorber for heating the catalyst by arranging it on the exhaust gas purification catalyst, for example. On the other hand, when the TiC microcoil is used in a high temperature environment and in an oxidizing atmosphere, it is oxidized and converted into a TiO 2 microcoil, which loses its electrical conductivity, resulting in a reduced radio wave absorption capability. Therefore, the TiC microcoil cannot be used as a radio wave absorber for arranging the exhaust purification catalyst to heat the catalyst. Therefore, there has been a demand for a microcoil that functions as a radio wave absorber even in a high temperature environment and an oxidizing atmosphere.

本発明は上述した課題に対処するためになされた。即ち、本発明の目的の一つは、高温環境且つ酸化雰囲気下であっても、電波吸収材として機能するマイクロコイル(以下、「本発明被覆層付きマイクロコイル」と称呼される場合がある。)を提供することにある。 The present invention has been made to address the above-mentioned problems. That is, one of the objects of the present invention is that a microcoil that functions as a radio wave absorber even in a high temperature environment and an oxidizing atmosphere (hereinafter, may be referred to as "microcoil with a coating layer of the present invention"). ) Is to provide.

本発明被覆層付きマイクロコイルは、窒化ケイ素で構成された窒化ケイ素マイクロコイル(10)と、
500℃以上1000℃以下の温度環境である高温環境において熱分解及び融解を生じない耐熱性を有するとともに、前記高温環境且つ酸化雰囲気下で導電性を有する被覆層(11)と、
を備える被覆層付きマイクロコイルであって、
前記被覆層は、前記マイクロコイルの表面に、前記被覆層付きマイクロコイルが電波を受けた場合に当該電波の磁界成分に応じて誘導電流が生じる形状を有するように形成されている。
The microcoil with a coating layer of the present invention comprises a silicon nitride microcoil (10) composed of silicon nitride ,
A coating layer (11) having heat resistance that does not cause thermal decomposition and melting in a high temperature environment that is a temperature environment of 500° C. or higher and 1000° C. or lower, and having conductivity in the high temperature environment and an oxidizing atmosphere;
A microcoil with a coating layer comprising:
The coating layer is formed on the surface of the microcoil so that an induced current is generated according to the magnetic field component of the radio wave when the microcoil with the coating layer receives the radio wave.

本発明被覆層付きマイクロコイルによれば、導電性を有する被覆層は、マイクロコイルの表面に、電波が照射された場合に当該電波の磁界成分に応じて誘導電流が生じる形状を有するように形成されている。このため、被覆層付きマイクロコイルにマイクロ波等の電波(電磁波)が照射されると、電波の磁界成分に応じて誘導電流が、被覆に発生し、発生した誘導電流が、被覆を流れてジュール熱が発生する。従って、被覆層付きマイクロコイルは、高温環境且つ酸化雰囲気下であっても、電波吸収材として機能することができる。 According to the microcoil with a coating layer of the present invention, the coating layer having conductivity is formed on the surface of the microcoil so that an induced current is generated according to the magnetic field component of the radio wave when the radio wave is irradiated. Has been done. Therefore, when a microwave with a coating layer is irradiated with radio waves (electromagnetic waves), an induced current is generated in the coating layer according to the magnetic field component of the radio wave, and the generated induced current flows through the coating layer . And Joule heat is generated. Therefore, the microcoil with a coating layer can function as a radio wave absorber even in a high temperature environment and an oxidizing atmosphere.

更に、本発明被覆層付きマイクロコイルによれば、マイクロコイルが上記耐熱性を有し、被覆層が耐熱性を有し、且つ、高温環境且つ酸化雰囲気下であっても導電性を有する。このため、被覆層付きマイクロコイルが高温環境且つ酸化雰囲気下にある場合でも、被覆層が上記形状及び導電性を保持することができる。従って、被覆層付きマイクロコイルは、高温環境且つ酸化雰囲気下であっても、電波吸収材として機能することができる。 Furthermore, according to the microcoil with a coating layer of the present invention, the microcoil has the heat resistance described above, the coating layer has the heat resistance, and is conductive even in a high temperature environment and an oxidizing atmosphere. Therefore, even when the microcoil with a coating layer is in a high temperature environment and in an oxidizing atmosphere, the coating layer can maintain the above shape and conductivity. Therefore, the microcoil with a coating layer can function as a radio wave absorber even in a high temperature environment and an oxidizing atmosphere.

本発明被覆層付きマイクロコイルによれば、上記被覆層を有することにより、高温環境且つ酸化雰囲気下で、マイクロコイルが導電性を有していなくても、電波吸収材として機能することができる。 According to the microcoil with a coating layer of the present invention, by having the coating layer, the microcoil can function as a radio wave absorber in a high temperature environment and in an oxidizing atmosphere even if the microcoil does not have conductivity.

本発明の一態様において、前記被覆層は、導電性金属、導電性金属酸化物、及び、導電性金属複合酸化物の少なくとも一つで構成されている。 In one aspect of the present invention, the coating layer is composed of at least one of a conductive metal, a conductive metal oxide, and a conductive metal composite oxide.

上記の場合、被覆層が、被覆層に好適な上記導電性を有する導電性金属、導電性金属酸化物、又は、導電性金属複合酸化物の少なくとも一つで構成されており、高温環境且つ酸化雰囲気下であっても、電波吸収材として機能することができる。 In the above case, the coating layer is composed of at least one of a conductive metal having the above-mentioned conductivity suitable for the coating layer, a conductive metal oxide, or a conductive metal composite oxide, and a high temperature environment and oxidation. It can function as a radio wave absorber even in an atmosphere.

本発明の一態様において、前記導電性金属は、白金、金、亜鉛及び銀から選択される1種以上の金属を含み、
前記導電性金属酸化物は、酸化銀及び酸化亜鉛から選択される1種以上の金属酸化物を含み、
前記導電性金属複合酸化物は、ペロブスカイト型酸化物である。
In one aspect of the present invention, the conductive metal includes at least one metal selected from platinum, gold, zinc and silver,
The conductive metal oxide includes at least one metal oxide selected from silver oxide and zinc oxide,
The conductive metal complex oxide is a perovskite type oxide.

上記の場合、被覆層が、被覆層に好適な材料で構成されており、高温環境且つ酸化雰囲気下であっても、電波吸収材として機能することができる。 In the above case, the coating layer is made of a material suitable for the coating layer, and can function as a radio wave absorber even in a high temperature environment and an oxidizing atmosphere.

本発明の一態様において、前記ペロブスカイト型酸化物は、NOx浄化能を有するペロブスカイト型酸化物である。 In one aspect of the present invention, the perovskite type oxide is a perovskite type oxide having a NOx purifying ability.

上記一態様によれば、被覆層が、被覆層に好適なペロブスカイト型酸化物であって、NOx浄化能を更に有するペロブスカイト型酸化物で構成されているため、高温環境且つ酸化雰囲気下であっても、電波吸収材として機能すると共に、NOx浄化触媒としても機能することができる。 According to the above aspect, the coating layer is a perovskite-type oxide suitable for the coating layer, and is composed of a perovskite-type oxide that further has NOx purification ability. Can function as a radio wave absorber as well as a NOx purification catalyst.

上記説明においては、本発明の理解を助けるために、後述する実施形態に対応する発明の構成に対し、その実施形態で用いた名称及び/又は符号を括弧書きで添えている。しかしながら、本発明の各構成要素は、上記名称及び/又は符号によって規定される実施形態に限定されるものではない。本発明の他の目的、他の特徴及び付随する利点は、以下の図面を参照しつつ記述される本発明の実施形態についての説明から容易に理解されるであろう。 In the above description, in order to help understanding of the present invention, the names and/or reference numerals used in the embodiments are added in parentheses to the configurations of the invention corresponding to the embodiments described later. However, each component of the present invention is not limited to the embodiment defined by the above name and/or code. Other objects, other features and attendant advantages of the present invention will be easily understood from the description of the embodiments of the present invention described with reference to the following drawings.

図1(A)は、本発明の実施形態に係る被覆層付きマイクロコイルの構造を示した模式図である。図1(B)は、図1(A)中の1−1線に沿った平面にて被覆層付きマイクロコイルを切断したマイクロコイルの断面図である。FIG. 1A is a schematic diagram showing the structure of a microcoil with a coating layer according to an embodiment of the present invention. FIG. 1B is a cross-sectional view of the microcoil in which the microcoil with a coating layer is cut along a plane along the line 1-1 in FIG. 図2(A)は、マイクロコイルの構造を示した模式図である。図2(B)は、図2(B)中の線2−2に沿った平面にてマイクロコイルを切断した断面図である。FIG. 2A is a schematic diagram showing the structure of the microcoil. FIG. 2B is a cross-sectional view of the microcoil taken along a plane along line 2-2 in FIG. 図3は、被覆層付きマイクロコイルの作製に使用されるCVD装置の概略図である。FIG. 3 is a schematic view of a CVD apparatus used for producing a microcoil with a coating layer.

以下、本発明の実施形態に係る被覆層付きマイクロコイル(以下、「本被覆層付きマイクロコイル」と称呼される場合がある。)について図面を参照しながら説明する。本被覆層付きマイクロコイルは、例えば、内燃機関の排気浄化装置において、排気ガスを浄化する排気浄化触媒を加熱する発熱部であって、マイクロ波を照射することにより発熱する発熱部に含まれる電波吸収材に好適に用いることができる。 Hereinafter, a microcoil with a coating layer according to an embodiment of the present invention (hereinafter, may be referred to as “a microcoil with a coating layer”) will be described with reference to the drawings. The microcoil with a coating layer is, for example, in an exhaust gas purification device for an internal combustion engine, a heating portion that heats an exhaust purification catalyst that purifies exhaust gas, and a radio wave included in the heating portion that generates heat when irradiated with microwaves. It can be suitably used as an absorbent material.

(被覆層付きマイクロコイルの構成)
図1(A)及び図1(B)に示されたように、本被覆層付きマイクロコイルは、マイクロコイル10と、マイクロコイル10の表面に形成された被覆層11とを有する。
(Structure of micro coil with coating layer)
As shown in FIGS. 1(A) and 1(B), the present microcoil with a coating layer has a microcoil 10 and a coating layer 11 formed on the surface of the microcoil 10.

図2(A)に示されたように、マイクロコイル10はコイル形状(螺旋形状)を有する。マイクロコイル10は、例えば、そのコイル直径がサブミクロンから数十ミクロンの範囲内であり、その長さ(軸長)が数十ミクロンから数百ミクロンの範囲内であって、コイル形状の耐熱性及び絶縁性を有する材料で構成された、耐熱性及び絶縁性を有するマイクロコイル(以下、「耐熱絶縁性マイクロコイル」と称呼される。)である。 As shown in FIG. 2A, the microcoil 10 has a coil shape (spiral shape). The microcoil 10 has, for example, a coil diameter within the range of submicron to several tens of microns, and a length (axial length) within the range of several tens of microns to several hundreds of microns, and the heat resistance of the coil shape. And a heat-insulating and insulating microcoil (hereinafter referred to as "heat-resistant insulating microcoil") composed of an insulating material.

「耐熱性」とは、「高温環境(例えば、500℃以上1000℃以下の温度環境)で熱分解及び融解を生じない程度の耐熱性」のことをいう。「絶縁性」とは、「体積抵抗率が10Ωcm以上である程度の絶縁性」のことをいう。耐熱絶縁性マイクロコイルは、常温で絶縁性を有している。 “Heat resistance” means “heat resistance that does not cause thermal decomposition and melting in a high temperature environment (for example, a temperature environment of 500° C. or higher and 1000° C. or lower)”. The "insulating property" means "a certain amount of insulating property when the volume resistivity is 10 6 Ωcm or more". The heat-resistant insulating microcoil has an insulating property at room temperature.

マイクロコイル10に使用される耐熱性及び絶縁性を有する材料としては、金属酸化物(例えば、チタン酸化物(TiO))及び半金属窒化物(例えば、窒化ケイ素(Si))等から選ばれる1種以上の絶縁性無機材料(即ち、常温での体積抵抗率が10Ωcm以上である無機材料)が挙げられる。 Materials having heat resistance and insulation used for the microcoil 10 include metal oxides (eg, titanium oxide (TiO 2 )) and semimetal nitrides (eg, silicon nitride (Si 3 N 4 )). One or more insulating inorganic materials selected from the above (that is, an inorganic material having a volume resistivity at room temperature of 10 6 Ωcm or more).

具体的に述べると、マイクロコイル10としては、酸化チタン(TiO)で構成されたコイル形状のTiOマイクロコイル、窒化ケイ素(Si)で構成されたコイル形状のSiマイクロコイル等を用いることができる。尚、これらのマイクロコイル10は周知の方法によって作製することができる(例えば、特許文献:特開2011−148682号、非特許文献:Chemical Physics Letters 378(2003), 111-116、非特許文献:Journal of the Ceramic Society of Japan 116[9], 921-927 2008、を参照。)。 Describing in detail, as the microcoil 10, TiO 2 microcoil coil shape composed of titanium oxide (TiO 2), Si 3 N 4 micro coil shape made of a silicon nitride (Si 3 N 4) A coil or the like can be used. In addition, these microcoils 10 can be manufactured by a well-known method (for example, patent document: JP 2011-148682 A, non-patent document: Chemical Physics Letters 378 (2003), 111-116, non-patent document: Journal of the Ceramic Society of Japan 116[9], 921-927 2008,).

被覆層11は、マイクロコイル10の表面の全部に形成されており、マイクロコイル10の形状に沿ったコイル形状を形成している。尚、被覆層11は、その少なくとも一部がマイクロコイル10のコイル形状に沿ったコイル形状を有していれば、必ずしもマイクロコイル10の表面の全部に形成されていなくてもよく、マイクロコイル10の表面の一部に形成されていてもよい。換言すると、被覆層11は、本被覆層付きマイクロコイルに電波を照射したときに当該電波の磁界成分に応じて被覆層11に誘導電流が生じ、当該誘導電流が被覆層11を流れることによってジュール熱を発生するような形状であればよい。 The coating layer 11 is formed on the entire surface of the microcoil 10, and has a coil shape that follows the shape of the microcoil 10. The coating layer 11 is not necessarily formed on the entire surface of the microcoil 10 as long as at least a part thereof has a coil shape that conforms to the coil shape of the microcoil 10. It may be formed on a part of the surface of the. In other words, the coating layer 11 generates an induced current in the coating layer 11 according to the magnetic field component of the radio wave when the micro coil with the coating layer is irradiated with the radio wave, and the induced current flows through the coating layer 11 to cause a joule. Any shape may be used as long as it generates heat.

被覆層11の厚さは、例えば、0.1μm以上10μm以下であり、より好ましくは、0.2μm以上2μm以下である。但し、被覆層11の厚さは材料に応じて適宜設定され得る。誘導電流を発生できるようにマイクロコイル10の周囲に被覆されていれば、必ずしも、マイクロコイル10の全域を覆っている必要はない。 The coating layer 11 has a thickness of, for example, 0.1 μm or more and 10 μm or less, and more preferably 0.2 μm or more and 2 μm or less. However, the thickness of the coating layer 11 can be appropriately set according to the material. It is not always necessary to cover the entire area of the microcoil 10 as long as the microcoil 10 is covered so as to generate an induced current.

被覆層11は、耐熱性を有し、且つ、高温環境(例えば、500℃以上1000℃以下の温度環境)且つ酸化雰囲気下であっても導電性を有する材料の1種又は2種以上の混合物で構成されている。 The coating layer 11 has heat resistance and is one or a mixture of two or more materials that are electrically conductive even in a high temperature environment (for example, a temperature environment of 500° C. or higher and 1000° C. or lower) and an oxidizing atmosphere. It is composed of.

このような材料としては、導電性貴金属(例えば、銀(Ag)、白金(Pt)及び金(Au)等)、並びに、酸化物が導電性を有する金属(例えば、亜鉛(Zn))から選ばれる1種以上の導電性金属が挙げられる。尚、導電性金属は、耐熱性を有し、且つ、高温環境且つ酸化雰囲気下であっても導電性を有していれば、これらの金属を含む合金であってもよい。
更に、このような材料としては、導電性金属酸化物(例えば、酸化銀(AgO)、及び、酸化亜鉛(ZnO)等から選ばれる1種以上の酸化物)が挙げられる。
更に、このような材料としては、導電性金属複合酸化物(例えば、ペロブスカイト型酸化物)が挙げられる。ペロブスカイト型酸化物としては、NOx浄化能を有するペロブスカイト型酸化物(例えば、La0.8Sr0.2CoO、又は、La0.4Sr0.6Mn0.8Ni0.3)が挙げられる。尚、これらのペロブスカイト型酸化物がNOx浄化能を有することは周知である(例えば、非特許文献:“Reaction mechanism of direct decomposition of nitric oxide over Co-and Mn-based perovskite-type oxides”.J Chem.Soc.,Faraday T rans., 1998, Vol.94 1887-1891、非特許文献:“Resent progress in catalytic No decomposition”. Comptes Rendus Chimie, 19(2016), 1254-1265等を参照。)。
Examples of such a material include a conductive noble metal (for example, silver (Ag), platinum (Pt), and gold (Au)), and a metal whose oxide has conductivity (for example, zinc (Zn)). One or more conductive metals may be mentioned. The conductive metal may be an alloy containing these metals as long as it has heat resistance and has conductivity even in a high temperature environment and an oxidizing atmosphere.
Furthermore, examples of such a material include conductive metal oxides (for example, one or more kinds of oxides selected from silver oxide (Ag 2 O), zinc oxide (ZnO), and the like).
Further, as such a material, a conductive metal composite oxide (for example, a perovskite type oxide) can be mentioned. As the perovskite type oxide, a perovskite type oxide having NOx purification ability (for example, La 0.8 Sr 0.2 CoO 3 or La 0.4 Sr 0.6 Mn 0.8 Ni 0.3 ) is used. Can be mentioned. It is well known that these perovskite type oxides have NOx purifying ability (for example, non-patent document: “Reaction mechanism of direct decomposition of nitric oxide over Co-and Mn-based perovskite-type oxides”. J Chem. Soc., Faraday Trans., 1998, Vol.94 1887-1891, Non-Patent Document: "Resent progress in catalytic No decomposition". Comptes Rendus Chimie, 19(2016), 1254-1265, etc.).

本被覆層付きマイクロコイルは、被覆層11が導電性を有し、且つ、マイクロコイル10のコイル形状に沿ったコイル形状を有するようになっている。このため、本被覆層付きマイクロコイルにマイクロ波(電波、電磁波)を照射すると、マイクロ波の磁界成分に応じて誘導電流がコイル形状の被覆層11に発生し、その発生した誘導電流がコイル形状の被覆層11を流れてジュール熱が発生する。従って、マイクロコイル10が導電性を有していなくても(即ち、絶縁性を有していても)、本被覆層付きマイクロコイルは、電波のエネルギーが熱エネルギーに変化されて熱を発生する電波吸収材として機能することができる。 In the present microcoil with a coating layer, the coating layer 11 has conductivity and has a coil shape that conforms to the coil shape of the microcoil 10. Therefore, when a microwave (radio wave, electromagnetic wave) is applied to the micro coil with the coating layer, an induced current is generated in the coil-shaped coating layer 11 according to the magnetic field component of the microwave, and the generated induced current is generated in the coil shape. And flows through the coating layer 11 to generate Joule heat. Therefore, even if the microcoil 10 does not have conductivity (that is, has insulation), the microcoil with the coating layer generates heat by changing the energy of radio waves into heat energy. It can function as a radio wave absorber.

更に、本被覆層付きマイクロコイルは、マイクロコイル10が耐熱性を有し、且つ、被覆層11が「耐熱性を有し、且つ、高温環境且つ酸化雰囲気下であっても導電性を有する」。このため、本被覆層付きマイクロコイルが高温環境且つ酸化雰囲気下にある場合でも、被覆層11がコイル形状及び導電性を保持することができる。従って、本被覆層付きマイクロコイルは、高温環境且つ酸化雰囲気下であっても、電波吸収材として機能することができる。従って、本被覆層付きマイクロコイルは、高温環境且つ酸化雰囲気下となる「内燃機関の排気浄化触媒ユニット」内に配することができる。更に、この場合、排気浄化触媒ユニットには、その内部に配置された本被覆層付きマイクロコイルにマイクロ波(電磁波)を送信する装置が備えられる。 Furthermore, in the present microcoil with a coating layer, the microcoil 10 has heat resistance, and the coating layer 11 "has heat resistance and has conductivity even in a high temperature environment and an oxidizing atmosphere". .. Therefore, even when the microcoil with the present coating layer is in a high temperature environment and an oxidizing atmosphere, the coating layer 11 can maintain the coil shape and conductivity. Therefore, the microcoil with the coating layer can function as a radio wave absorber even in a high temperature environment and an oxidizing atmosphere. Therefore, the microcoil with the coating layer can be arranged in the "exhaust gas purification catalyst unit of the internal combustion engine" in a high temperature environment and in an oxidizing atmosphere. Further, in this case, the exhaust gas purification catalyst unit is provided with a device that transmits microwaves (electromagnetic waves) to the microcoil with the main coating layer arranged inside thereof.

(本被覆層付きマイクロコイルの製造方法)
本被覆層付きマイクロコイルは、典型的には、上述したマイクロコイル10の材料を用い、上述した周知の手法によってマイクロコイル10を作製する。次に、マイクロコイル10の表面上に、以下に述べるような周知の薄膜形成方法により、被覆層構成材料を薄膜状に形成することにより得ることができる。
(Manufacturing method of the micro coil with the covering layer)
In the present microcoil with a coating layer, typically, the material of the microcoil 10 described above is used, and the microcoil 10 is manufactured by the well-known method described above. Next, it can be obtained by forming the coating layer constituent material into a thin film on the surface of the microcoil 10 by a known thin film forming method as described below.

薄膜(被覆層11)は、例えば、CVD(Chemical Vapor Deposition:化学気相成長)法、及び、PVD(Physical Vapor Deposition:物理気相成長)法等から選ばれる気相法により形成できる。更に、薄膜(被覆層11)は、ゾル−ゲル法及び共沈法等から選ばれる液相法によっても形成できる。 The thin film (coating layer 11) can be formed by a vapor phase method selected from, for example, a CVD (Chemical Vapor Deposition) method and a PVD (Physical Vapor Deposition) method. Furthermore, the thin film (coating layer 11) can also be formed by a liquid phase method selected from a sol-gel method and a coprecipitation method.

CVD法は、ガスとして供給される薄膜の構成材料に対して、熱、光及びプラズマ等のエネルギーを加えて原料ガス分子の分解・反応・中間生成物を形成し、薄膜(被覆層11)の形成対象の表面での吸着、反応、離脱を経て薄膜を堆積させる方法である。 In the CVD method, energy such as heat, light and plasma is applied to the constituent material of the thin film supplied as a gas to form decomposition/reaction/intermediate products of the raw material gas molecules to form a thin film (coating layer 11). It is a method of depositing a thin film through adsorption, reaction and desorption on the surface of the formation target.

CVD法としては、例えば、熱CVD法、MOCVD(Metal Organic Chemical Vapor Deposition:有機金属気相成長)法、RFプラズマCVD法、光CVD法、レーザCVD法及びLPE(Liquid Phase Epitaxy)法等から選ばれる方法が挙げられる。 The CVD method is selected from, for example, a thermal CVD method, a MOCVD (Metal Organic Chemical Vapor Deposition) method, an RF plasma CVD method, a photo CVD method, a laser CVD method and an LPE (Liquid Phase Epitaxy) method. There is a method of doing.

PVD法は、薄膜化する薄膜原料を熱やプラズマ等のエネルギーで一旦蒸発・気化し、基板上に薄膜化する方法である。PVD法としては、例えば、真空蒸着法(抵抗加熱法、高周波誘導加熱蒸着法、電子ビーム蒸着法等)、スパッタリング法、イオンプレーティング法、MBE(分子線エキピタシー)法及びレーザアブレーション法等から選ばれる方法が挙げられる。 The PVD method is a method in which a thin film raw material to be thinned is once evaporated and vaporized by energy such as heat and plasma to form a thin film on a substrate. The PVD method is selected from, for example, a vacuum evaporation method (a resistance heating method, a high frequency induction heating evaporation method, an electron beam evaporation method, etc.), a sputtering method, an ion plating method, an MBE (molecular beam epitaxy) method, a laser ablation method and the like. There is a method of doing.

上述の薄膜形成方法を適宜選択して、マイクロコイル10の表面に上述した被覆層11の材料の薄膜を形成して被覆層11を形成する。以下、被覆層11の製造方法についてより具体的に説明する。 The thin film forming method described above is appropriately selected to form a thin film of the material of the coating layer 11 described above on the surface of the microcoil 10 to form the coating layer 11. Hereinafter, the method for manufacturing the coating layer 11 will be described more specifically.

(熱CVD装置を用いた被覆層付きマイクロコイルの製造方法)
本被覆層付きマイクロコイルは、熱CVD装置を用いて、作製することができる。図3に示されたように、熱CVD装置は、抵抗加熱炉20と、ガスシステム21と、制御部22と、冷却トラップ23と、圧力計24と、エアバルブ25と、ポンプ部26とを備える。
(Method for manufacturing micro coil with coating layer using thermal CVD device)
The present microcoil with a coating layer can be produced using a thermal CVD device. As shown in FIG. 3, the thermal CVD apparatus includes a resistance heating furnace 20, a gas system 21, a control unit 22, a cooling trap 23, a pressure gauge 24, an air valve 25, and a pump unit 26. ..

抵抗加熱炉20は、外気から遮断された内部空間(チャンバ)を有する石英反応管20a及び石英反応管20aの内部空間を加熱するためのヒータ20bを含む。制御部22は、ガスシステム21及び抵抗加熱炉20を制御する電子制御ユニットである。ポンプ部26は、メカニカルブースタポンプ26a及びロータリーポンプ26bを含む。 The resistance heating furnace 20 includes a quartz reaction tube 20a having an internal space (chamber) isolated from the outside air and a heater 20b for heating the internal space of the quartz reaction tube 20a. The control unit 22 is an electronic control unit that controls the gas system 21 and the resistance heating furnace 20. The pump unit 26 includes a mechanical booster pump 26a and a rotary pump 26b.

ポンプ部26を運転して、抵抗加熱炉20内のガスを、冷却トラップ23を介して吸引して排気することにより、内部空間(チャンバ)内を減圧することができる。更に、エアバルブ25によって、通過するガスの流量を制御することによって、内部空間(チャンバ)内の圧力を所望の圧力に制御することができる。 By operating the pump unit 26 and sucking and exhausting the gas in the resistance heating furnace 20 through the cooling trap 23, the pressure in the internal space (chamber) can be reduced. Furthermore, the pressure in the internal space (chamber) can be controlled to a desired pressure by controlling the flow rate of the passing gas by the air valve 25.

抵抗加熱炉20の内部空間内の所定位置にセットした耐熱皿30に、図2(A)及び図2(B)に示したマイクロコイル10を載置する。次に、ガスシステム21を用いて内部空間(チャンバ)内の雰囲気ガスを被覆層11形成に適した雰囲気ガス(例えば、酸素雰囲気又は不活性雰囲気)に置換する。 The microcoil 10 shown in FIGS. 2(A) and 2(B) is placed on the heat-resistant dish 30 set at a predetermined position in the internal space of the resistance heating furnace 20. Next, using the gas system 21, the atmospheric gas in the internal space (chamber) is replaced with an atmospheric gas suitable for forming the coating layer 11 (for example, an oxygen atmosphere or an inert atmosphere).

その後、内部空間を、被覆層11を形成するための原料ガス(後述)の分解温度以上まで加熱する。加熱完了後、ガスシステム21から少なくとも原料ガスを含むガスを内部空間に供給する。これにより、原料ガスが内部空間及びマイクロコイル10の表面にて分解して、原料ガスの分解成分がマイクロコイル10の表面上に堆積して、被覆層11である被覆膜を形成する。 Then, the internal space is heated to a temperature equal to or higher than the decomposition temperature of the raw material gas (described later) for forming the coating layer 11. After the heating is completed, a gas containing at least the raw material gas is supplied from the gas system 21 to the internal space. As a result, the source gas is decomposed in the internal space and the surface of the microcoil 10, and the decomposed component of the source gas is deposited on the surface of the microcoil 10 to form a coating film that is the coating layer 11.

原料ガスとしては、被覆層11を構成する成分(金属種)を含む無機金属化合物及び有機金属化合物の少なくとも一つを適宜選択して用いる。尚、被覆層11が導電性金属複合酸化物で構成される場合には、導電性金属複合化合物の複数の金属種に応じて、複数種の原料(例えば、複数種の有機金属化合物)を混合し、この混合した原料を気化させて原料ガスを調製する。 As the raw material gas, at least one of an inorganic metal compound and an organic metal compound containing a component (metal species) forming the coating layer 11 is appropriately selected and used. When the coating layer 11 is composed of a conductive metal composite oxide, a mixture of a plurality of raw materials (for example, a plurality of organometallic compounds) is mixed depending on the plurality of metal species of the conductive metal composite compound. Then, the mixed raw material is vaporized to prepare a raw material gas.

原料ガスとしては、例えば、酢酸銀(CHCOOAg)、酢酸亜鉛((CHCOO)Zn)、酢酸ランタン((CHCOO)La)、硝酸ストロンチウム(Sr(NO)、酢酸バリウム((CHCOO)Ba)及び酢酸鉄((CHCOO)Fe)等の金属酢酸塩から選ばれた1種以上を気化させたガスを用いることができる。 Examples of the raw material gas include silver acetate (CH 3 COOAg), zinc acetate ((CH 3 COO) 2 Zn), lanthanum acetate ((CH 3 COO) 3 La), strontium nitrate (Sr(NO 3 ) 2 ), A gas obtained by vaporizing one or more selected from metal acetates such as barium acetate ((CH 3 COO 2 )Ba) and iron acetate ((CH 3 COO) 2 Fe) can be used.

(共沈法による被覆層付きマイクロコイルの製造方法)
本被覆層付きマイクロコイルの製造方法の他の例として、共沈法による被覆層付きマイクロコイルの製造方法について説明する。この製造方法は、被覆層11が導電性金属複合酸化物で構成される場合に好適に使用される。まずマイクロコイル10と導電性金属複合酸化物の原料となる複数種の金属酢酸塩等を混合して水に溶解した溶液を調製する。次に、この溶液にアンモニア水(NH水)等を加えることにより、そのPHをPH12以上PH14以下の間に調整する。これにより、複数種の金属酢酸塩が水に溶解して生じた溶液中の各金属イオンが、金属水酸化物となってマイクロコイル10と共に共沈する。これらの金属水酸化物は、マイクロコイル10の表面に吸着する。次に、濾過又は遠心分離によってPHを調整した混合溶液から金属水酸化物が吸着したマイクロコイル10を回収する。次に、回収したマイクロコイル10を所定温度にて(温度の一例としては、500℃以上1200℃以下)焼成する。これにより、マイクロコイル10の表面に導電性金属複合酸化物で構成された被覆層11が形成される。
(Production method of microcoil with coating layer by coprecipitation method)
As another example of the method for producing the microcoil with a coating layer, a method for producing a microcoil with a coating layer by a coprecipitation method will be described. This manufacturing method is preferably used when the coating layer 11 is composed of a conductive metal composite oxide. First, the microcoil 10 and plural kinds of metal acetates, which are raw materials of the conductive metal composite oxide, are mixed to prepare a solution dissolved in water. Next, by adding ammonia water (NH 3 water) or the like to this solution, the pH is adjusted to be between PH12 and PH14. Thereby, each metal ion in the solution produced by dissolving a plurality of kinds of metal acetates in water becomes a metal hydroxide and coprecipitates with the microcoil 10. These metal hydroxides are adsorbed on the surface of the microcoil 10. Next, the microcoil 10 on which the metal hydroxide is adsorbed is collected from the mixed solution whose pH is adjusted by filtration or centrifugation. Next, the recovered microcoil 10 is fired at a predetermined temperature (an example of the temperature is 500° C. or more and 1200° C. or less). As a result, the coating layer 11 made of the conductive metal complex oxide is formed on the surface of the microcoil 10.

以上説明した本発明の実施形態に係る被覆層付きマイクロコイルによれば、マイクロコイル10が耐熱性を有し、被覆層11が高温環境且つ酸化雰囲気下であっても導電性を有するため、高温環境且つ酸化雰囲気下であっても、コイル形状の被覆層11の導電性を保持することができる。従って、被覆層付きマイクロコイルは、高温環境且つ酸化雰囲気下(例えば、内燃機関の排気浄化触媒装置内)であっても、電波吸収材として機能することができる。 According to the microcoil with a coating layer according to the embodiment of the present invention described above, the microcoil 10 has heat resistance, and the coating layer 11 has conductivity even in a high temperature environment and in an oxidizing atmosphere. The conductivity of the coil-shaped coating layer 11 can be maintained even in the environment and in an oxidizing atmosphere. Therefore, the microcoil with a coating layer can function as a radio wave absorber even in a high temperature environment and an oxidizing atmosphere (for example, in an exhaust gas purification catalyst device of an internal combustion engine).

<変形例>
以上、本発明の実施形態について具体的に説明したが、本発明は、上述の実施形態に限定されるものではなく、本発明の技術的思想に基づく各種の変形が可能である。
<Modification>
The embodiments of the present invention have been specifically described above, but the present invention is not limited to the above-described embodiments, and various modifications can be made based on the technical idea of the present invention.

例えば、マイクロコイル10として、導電性を有する材料からなるマイクロコイルを採用することもできる。例えば、カーボンマイクロコイル(カーボンからなるマイクロコイル)は、導電性を有するが、高温環境且つ酸化雰囲気下では酸化されてガス化してしまう。しかしながら、被覆層11によりカーボンマイクロコイルの全体(表面の全部)を被覆すれば、そのようなガス化が発生しないので、マイクロコイル10として使用することができる。更に、TiCマイクロコイル(炭化チタン(TiC)からなるマイクロコイル)は、導電性を有するが、高温環境且つ酸化雰囲気下では酸化されて導電性を失ってしまう。しかしながら、被覆層11によりTiCマイクロコイルの全体を被覆すれば、そのような酸化が発生しないので、導電性を維持したマイクロコイル10として使用することができる。 For example, as the microcoil 10, a microcoil made of a conductive material can be used. For example, carbon microcoils (microcoils made of carbon) have conductivity, but are oxidized and gasified in a high temperature environment and an oxidizing atmosphere. However, if the entire carbon microcoil (the entire surface) is covered with the coating layer 11, such gasification does not occur, and thus the carbon microcoil can be used as the microcoil 10. Further, the TiC microcoil (microcoil made of titanium carbide (TiC)) has conductivity, but is oxidized and loses conductivity in a high temperature environment and an oxidizing atmosphere. However, if the entire TiC microcoil is covered with the coating layer 11, such oxidation does not occur, so that the microcoil 10 can be used as the microcoil 10 that maintains conductivity.

これらの「カーボンマイクロコイル及びTiCマイクロコイル」のように、導電性を有するマイクロコイルをマイクロコイル10として使用した被覆層付きマイクロコイルにマイクロ波等の電波を照射すると、誘導電流が電波の磁界成分によって被覆層11のみならずマイクロコイル10にも発生する。そして、その発生した誘導電流が、マイクロコイル10及び被覆層11を流れてジュール熱が発生する。従って、被覆層付きマイクロコイルは、より効率よく「電波のエネルギーを熱エネルギーに変換する」ことができる。従って、エネルギー効率に優れた被覆層付きマイクロコイルになる。 When radio waves such as microwaves are applied to a micro coil with a coating layer that uses a conductive micro coil as the micro coil 10, such as “carbon micro coil and TiC micro coil”, an induced current causes a magnetic field component of the radio wave. Therefore, not only the coating layer 11 but also the microcoil 10 is generated. Then, the generated induced current flows through the microcoil 10 and the coating layer 11 to generate Joule heat. Therefore, the microcoil with a coating layer can more efficiently “convert the energy of radio waves into heat energy”. Therefore, the microcoil with a coating layer is excellent in energy efficiency.

更に、TiCマイクロコイルをマイクロコイル10として使用し且つ被覆層11によりTiCマイクロコイルの表面の一部を除いて被覆した場合、被覆層11によって被覆されていない部分は酸化して導電性を失う。しかしながら、そのような場合であっても、被覆層11は導電性を維持するので、高温環境且つ酸化雰囲気化において「電波のエネルギーを熱エネルギーに変換する」ことができるマイクロコイル(電波吸収材)として使用することができる。 Furthermore, when a TiC microcoil is used as the microcoil 10 and is covered with the coating layer 11 except a part of the surface of the TiC microcoil, the portion not covered by the coating layer 11 is oxidized and loses conductivity. However, even in such a case, since the coating layer 11 maintains the conductivity, the micro coil (radio wave absorbing material) capable of “converting radio wave energy into heat energy” in a high temperature environment and in an oxidizing atmosphere. Can be used as

更に、例えば、上述した本被覆層付きマイクロコイルは、被覆層11を2層以上の層により構成することができる。この場合、上述した被覆層11を構成する材料で2層以上の各層を構成してもよい。 Furthermore, for example, in the above-described microcoil with a coating layer, the coating layer 11 can be configured by two or more layers. In this case, two or more layers may be formed from the material forming the coating layer 11 described above.

更に、この場合、マイクロコイル10の表面上に形成される第1層を、導電性を有する層で構成して、第1層上に積層される1層以上の層を、その第1層を保護する耐熱性を有する保護層で構成してもよい。この場合、第1層は、保護層で覆われていることによって、直接酸化雰囲気に晒されることを避けることができる。従って、高温環境且つ酸化雰囲気下において第1層が変質して導電性が低下する可能性を低くすることができる。その結果、そのような保護層を有する被覆層付きマイクロコイルは、高温環境且つ酸化雰囲気下においても、電波吸収材として機能することができる。 Furthermore, in this case, the first layer formed on the surface of the microcoil 10 is composed of a conductive layer, and one or more layers laminated on the first layer are You may comprise from the protective layer which has heat resistance to protect. In this case, since the first layer is covered with the protective layer, direct exposure to an oxidizing atmosphere can be avoided. Therefore, it is possible to reduce the possibility that the first layer deteriorates in the high temperature environment and the oxidizing atmosphere to lower the conductivity. As a result, the microcoil with a coating layer having such a protective layer can function as a radio wave absorber even in a high temperature environment and an oxidizing atmosphere.

例えば、第1層を構成する材料としては、鉄(Fe)及び銅(Cu)等から選ばれる1種以上の導電性金属が挙げられる。保護層を構成する材料としては、上述した被覆層11を構成する材料、アルミニウム(Al)、クロム(Cr)及びチタン(Ti)等から選ばれる1種以上の金属の不動態(表面に酸化被膜を形成した金属)、表面に酸化被膜を形成可能な金属、又は、金属酸化物等の高温の酸化雰囲気に対して安定性を示す材料が挙げられる。 For example, as the material forming the first layer, one or more conductive metals selected from iron (Fe), copper (Cu), and the like can be given. As a material forming the protective layer, a passivation of one or more kinds of metal selected from the above-mentioned material forming the coating layer 11, aluminum (Al), chromium (Cr), titanium (Ti), etc. (oxide film on the surface) A metal capable of forming an oxide film on the surface thereof, or a material exhibiting stability in a high temperature oxidizing atmosphere such as a metal oxide.

更に、本被覆層付きマイクロコイルを製造するときに、意図的にマイクロコイル10の表面の一部にのみ、電波が照射されたときに誘導電流が発生する形状の被覆層11を形成する場合には、次のように被覆層11を形成してもよい。例えば、その被覆層11が形成される予定の部分以外の箇所にマスク材を形成しておき、その状態にて上述した方法にて、被覆層11をマイクロコイル10の表面に形成し、その後、マスク材を除去する。 Further, when the micro coil with the present coating layer is manufactured, when the coating layer 11 having a shape in which an induced current is generated when a radio wave is radiated is intentionally formed on only a part of the surface of the micro coil 10. The coating layer 11 may be formed as follows. For example, a mask material is formed on a portion other than the portion where the coating layer 11 is to be formed, and in that state, the coating layer 11 is formed on the surface of the microcoil 10 by the method described above, and then, Remove the mask material.

10…カーボンマイクロコイル、11…被覆層 10... Carbon micro coil, 11... Covering layer

Claims (4)

窒化ケイ素で構成された窒化ケイ素マイクロコイルと、
500℃以上1000℃以下の温度環境である高温環境において熱分解及び融解を生じない耐熱性を有するとともに、前記高温環境且つ酸化雰囲気下で導電性を有する被覆層と、
を備える被覆層付きマイクロコイルであって、
前記被覆層は、前記マイクロコイルの表面に、前記被覆層付きマイクロコイルが電波を受けた場合に当該電波の磁界成分に応じて誘導電流が生じる形状を有するように形成されている被覆層付きマイクロコイル。
A silicon nitride microcoil composed of silicon nitride ,
A coating layer that has heat resistance that does not cause thermal decomposition and melting in a high temperature environment that is a temperature environment of 500° C. or higher and 1000° C. or lower, and that has conductivity in the high temperature environment and an oxidizing atmosphere,
A microcoil with a coating layer comprising:
The coating layer is formed on the surface of the microcoil so that when the microcoil with the coating layer receives a radio wave, an induced current is generated according to a magnetic field component of the radio wave. coil.
請求項に記載の被覆層付きマイクロコイルにおいて、
前記被覆層は、導電性金属、導電性金属酸化物、及び、導電性金属複合酸化物の少なくとも一つで構成された、被覆層付きマイクロコイル。
The microcoil with a coating layer according to claim 1 ,
A microcoil with a coating layer, wherein the coating layer is composed of at least one of a conductive metal, a conductive metal oxide, and a conductive metal composite oxide.
請求項に記載の被覆層付きマイクロコイルにおいて、
前記導電性金属は、白金、金、亜鉛及び銀から選択される1種以上の金属を含み、
前記導電性金属酸化物は、酸化銀及び酸化亜鉛から選択される1種以上の金属酸化物を含み、
前記導電性金属複合酸化物は、ペロブスカイト型酸化物である、
被覆層付きマイクロコイル。
The microcoil with a coating layer according to claim 2 ,
The conductive metal includes at least one metal selected from platinum, gold, zinc and silver,
The conductive metal oxide includes at least one metal oxide selected from silver oxide and zinc oxide,
The conductive metal complex oxide is a perovskite type oxide,
Micro coil with coating layer.
請求項に記載の被覆層付きマイクロコイルにおいて、
前記ペロブスカイト型酸化物は、NOx浄化能を有するペロブスカイト型酸化物である、被覆層付きマイクロコイル。
The microcoil with a coating layer according to claim 3 ,
The microcoil with a coating layer, wherein the perovskite-type oxide is a perovskite-type oxide having NOx purification ability.
JP2017096938A 2017-05-16 2017-05-16 Micro coil with coating layer Expired - Fee Related JP6724859B2 (en)

Priority Applications (12)

Application Number Priority Date Filing Date Title
JP2017096938A JP6724859B2 (en) 2017-05-16 2017-05-16 Micro coil with coating layer
CN201810437360.6A CN108882423B (en) 2017-05-16 2018-05-09 Miniature coil
KR1020180054127A KR20180125892A (en) 2017-05-16 2018-05-11 Micro coil
US15/978,469 US10493435B2 (en) 2017-05-16 2018-05-14 Micro coil
AU2018203407A AU2018203407A1 (en) 2017-05-16 2018-05-15 Micro coil
TW107116372A TW201900954A (en) 2017-05-16 2018-05-15 Microcoil
CA3004981A CA3004981A1 (en) 2017-05-16 2018-05-15 Micro coil
EP18172704.1A EP3406872B1 (en) 2017-05-16 2018-05-16 Micro coil
MX2018006078A MX2018006078A (en) 2017-05-16 2018-05-16 Micro coil.
PH12018050196A PH12018050196A1 (en) 2017-05-16 2018-05-16 Micro coil
BR102018009923-0A BR102018009923A2 (en) 2017-05-16 2018-05-16 micro winding
ES18172704T ES2779041T3 (en) 2017-05-16 2018-05-16 Microcoil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017096938A JP6724859B2 (en) 2017-05-16 2017-05-16 Micro coil with coating layer

Publications (2)

Publication Number Publication Date
JP2018193630A JP2018193630A (en) 2018-12-06
JP6724859B2 true JP6724859B2 (en) 2020-07-15

Family

ID=62196375

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017096938A Expired - Fee Related JP6724859B2 (en) 2017-05-16 2017-05-16 Micro coil with coating layer

Country Status (12)

Country Link
US (1) US10493435B2 (en)
EP (1) EP3406872B1 (en)
JP (1) JP6724859B2 (en)
KR (1) KR20180125892A (en)
CN (1) CN108882423B (en)
AU (1) AU2018203407A1 (en)
BR (1) BR102018009923A2 (en)
CA (1) CA3004981A1 (en)
ES (1) ES2779041T3 (en)
MX (1) MX2018006078A (en)
PH (1) PH12018050196A1 (en)
TW (1) TW201900954A (en)

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001146644A (en) 1999-11-19 2001-05-29 Seiji Motojima Coiled carbon fiber having ferromagnetism, method for producing the same, coiled carbon fiber composite having ferromagnetism and electric wave absorber
JP2003003336A (en) * 2001-06-18 2003-01-08 Seiji Motojima Coil-shaped carbon fiber and use of the same
JP2003164765A (en) * 2001-11-30 2003-06-10 Toyota Motor Corp Ferromagnetic catalyst for cleaning exhaust gas and exhaust gas cleaning apparatus
US8029582B2 (en) * 2007-09-18 2011-10-04 GM Global Technology Operations LLC Wireless zoned particulate matter filter regeneration control system
JP2009147133A (en) * 2007-12-14 2009-07-02 Idemitsu Kosan Co Ltd Micro ceramic coil and its production process
JP2011148682A (en) * 2009-12-25 2011-08-04 Tokyo Univ Of Science Ceramic spring and method for manufacturing the same
JP5712381B2 (en) * 2010-07-02 2015-05-07 一般財団法人ファインセラミックスセンター Method for producing magnetic material-supported coiled carbon fiber as ultra-wideband wave absorber
EP2767691A4 (en) * 2011-09-15 2015-10-21 Imagineering Inc Heating device
WO2013042597A1 (en) 2011-09-22 2013-03-28 イマジニアリング株式会社 Plasma generating device, and internal combustion engine
CN103366916A (en) * 2012-03-31 2013-10-23 深圳光启创新技术有限公司 Wireless energy receiving coil and wireless energy transmission system
CN202832477U (en) * 2012-07-20 2013-03-27 中国石油集团长城钻探工程有限公司 Parallel plane coils used for induction logging and induction logging equipment
CN103573247B (en) * 2012-07-20 2019-05-17 中国石油集团长城钻探工程有限公司 Induction logging parallel plane coil and induction logging equipment
US9685269B2 (en) * 2012-10-18 2017-06-20 Ford Global Technologies, Llc Method of forming an insulated electric conductor
JP6328450B2 (en) 2014-03-12 2018-05-23 株式会社西澤 Electromagnetic wave absorbing coating agent, sheet coated with coating agent, and method for producing coating agent
CN204906753U (en) * 2015-06-30 2015-12-23 佛山市顺德区美的电热电器制造有限公司 Coil panel and contain electromagnetic heating equipment of this coil panel
CN106344396A (en) * 2015-12-03 2017-01-25 福建星宏新材料科技有限公司 Micro-carbon spring compound ceramic ball
CN106345060A (en) * 2016-10-25 2017-01-25 福建星宏新材料科技有限公司 Physical therapy combination body capable of adjusting biological electromagnetic field of human body and application product of physical therapy combination body

Also Published As

Publication number Publication date
US20180333700A1 (en) 2018-11-22
ES2779041T3 (en) 2020-08-13
AU2018203407A1 (en) 2018-12-06
BR102018009923A2 (en) 2018-12-04
PH12018050196A1 (en) 2019-01-28
CN108882423B (en) 2021-04-23
US10493435B2 (en) 2019-12-03
CN108882423A (en) 2018-11-23
CA3004981A1 (en) 2018-11-16
MX2018006078A (en) 2019-02-08
KR20180125892A (en) 2018-11-26
JP2018193630A (en) 2018-12-06
EP3406872B1 (en) 2020-02-19
TW201900954A (en) 2019-01-01
EP3406872A1 (en) 2018-11-28

Similar Documents

Publication Publication Date Title
JP6937404B2 (en) Pre-equilibrium systems and methods using nanodesign porous network structural materials and solid-state devices as energy transducers
US8815167B2 (en) Electrode, electrically heating type catalyst device using same, and manufacturing method of electrically heating type catalyst device
JP5648289B2 (en) Sputtering apparatus and method for manufacturing semiconductor light emitting device
JP6724859B2 (en) Micro coil with coating layer
JP2005264274A (en) Method for manufacturing porous material of intermetallic compound
JPH07161455A (en) Diamond heater
JPS60241281A (en) Method of oxidizing solid substance
García-Gutiérrez et al. Luminescence and structure of ZnO grown by physical vapor deposition
Boulat et al. Study of TaN and TaN-Ta-TaN thin films as diffusion barriers in CeFe4Sb12 skutterudite
JP5804489B2 (en) Catalyst and production method thereof
Yagyu et al. Adsorption of phenylphosphonic acid on gold and platinum surfaces
JPH0978237A (en) Production of thin film and device therefor
WO2004084321A1 (en) Thin-film thermoelectric conversion material and method of forming the same
US10245574B1 (en) Microwave reactor vessel
JP2018019052A (en) Method for manufacturing inductor
JP2575442B2 (en) Method for producing oxide-based superconducting wire
WO2020013243A1 (en) Semiconductor apparatus
JP2022147762A (en) Optical element and method for manufacturing optical element
CN115341173A (en) Deposition of LaCoO by DC metal co-sputtering 3 Film(s)
JP2951727B2 (en) Temperature sensor element, temperature sensor having the same, and method of manufacturing temperature sensor element
JPS5813006B2 (en) Sankabutsuhandoutaihakumakuno Seizouhouhou
JP2012056811A (en) Method and apparatus for manufacturing micro coil
Ojima et al. Solid-state source of atomic oxygen for low-temperature oxidation processes: Application to pulsed laser deposition of TiO2: N films
JPH01200518A (en) Manufacture of oxide superconducting wire material
JP2006164595A (en) Thin film heating element and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200526

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200608

R151 Written notification of patent or utility model registration

Ref document number: 6724859

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees