JP6718619B2 - 光合分波器、光トランシーバ - Google Patents

光合分波器、光トランシーバ Download PDF

Info

Publication number
JP6718619B2
JP6718619B2 JP2016224800A JP2016224800A JP6718619B2 JP 6718619 B2 JP6718619 B2 JP 6718619B2 JP 2016224800 A JP2016224800 A JP 2016224800A JP 2016224800 A JP2016224800 A JP 2016224800A JP 6718619 B2 JP6718619 B2 JP 6718619B2
Authority
JP
Japan
Prior art keywords
light
optical
light input
demultiplexer
interference film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016224800A
Other languages
English (en)
Other versions
JP2018081254A (ja
JP2018081254A5 (ja
Inventor
勝博 岩崎
勝博 岩崎
加藤 隆司
隆司 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kohoku Kogyo Co Ltd
Original Assignee
Kohoku Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kohoku Kogyo Co Ltd filed Critical Kohoku Kogyo Co Ltd
Priority to JP2016224800A priority Critical patent/JP6718619B2/ja
Priority to US15/815,711 priority patent/US10187175B2/en
Priority to CN201711145296.6A priority patent/CN108072979B/zh
Publication of JP2018081254A publication Critical patent/JP2018081254A/ja
Publication of JP2018081254A5 publication Critical patent/JP2018081254A5/ja
Application granted granted Critical
Publication of JP6718619B2 publication Critical patent/JP6718619B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Couplings Of Light Guides (AREA)

Description

この発明は光合分波器および光トランシーバに関する。具体的には、干渉膜フィルタを用いた光合分波器およびその光合分波器を備えた光トランシーバの小型化技術に関する。
光波長多重(WDM)伝送方式による光通信では、複数の異なる波長の光信号を一本の光ファイバで伝送することで高速かつ大容量のデータ伝送が可能となっている。そのため新規の光ファイバケーブルを敷設することなく、既存の光ファイバケーブル網を利用しながら伝送容量を増大させることができる。
光通信網内の各所には、光信号と電気信号を相互変換したり、複数の光信号伝送路に対する合流、中継、分岐などを行ったりする光伝送装置が設置されている。光伝送装置には他の光伝送装置や光伝送路に対して入出力する光信号を送受信するための光トランシーバが組み込まれている。そしてWDM伝送方式に対応する光トランシーバを構成する主要な光素子が光合分波器であり、光合分波器は、光トランシーバの送信側では波長の異なる複数の光信号を合波する光合波器として機能し、受信側では1本の光伝送路(光ファイバなど)を伝搬してきた複数の波長の光信号が多重化された信号を各波長の光ごとに分波して複数の光伝送路に送出する光分波器として機能する。
光合分波器における光の合波と分波の方式としては、回折格子を用いた方式やアレイ導波路グレーティング(AWG)を用いた方式などもあるが、誘電体多層膜からなる干渉膜を備えた干渉膜フィルタを用いた方式は、構造が簡素であり他の方式に比べて安価である。そして多重化される光信号の各波長間の間隔が大きく、伝送チャネル数があまり多くない光トランシーバにはこの干渉膜フィルタを用いた光合分波器がよく用いられている。
以下の特許文献1には、干渉膜フィルタを用いた光合分波器が記載されており、この文献にも記載されているように、干渉膜フィルタを用いた一般的な光合分波器は、光ファイバコリメータの開口端など、外部からの光信号の出入り口(以下、光入出力部とも言う)の全てが直線状に配置される。図1に、一般的な光合分波器1の概略を示した。図示した光合分波器1は、光ファイバコリメータ(C1〜C5)の開口端を光入出力部としている。この例では、四つの伝送チャンネルに対応する4種類の単一波長の光(以下、単色光とも言う)を個別に入出力する光合分波器1を示した。この光合分波器1は、各波長の単色光の出入り口となる光入出力部として4個の光ファイバコリメータ(以下、分波コリメータC1〜C4とも言う)を備えている。また4種類の単色光を合波した光(以下、多重化光とも言う)の入出力部となる1個の光ファイバコリメータ(以下、合波コリメータC5とも言う)を備えている。そして図1では、光合分波器1が光合波器として動作しているときの光路が示されている。
図中に示したように、分波コリメータC1〜C4における単色光L1〜L4の入出方向を前後方向とし、光合波器として機能する際は、単色光L1〜L4は後方から前方に向かって出射しているものとする。そして後方から前方に向かう方向をz軸の正の方向としている。また全ての光ファイバコリメータC1〜C5は平板状の基板10上に固定された状態で配置されている。そして基板10の法線方向を上下方向として、下方から上方に向かう方向をy軸方向とするとともに、図中に右手系のxyz座標系を設定することとする。したがって、図1(A)は光合分波器1を上方から見たときのzx平面図となり、図1(B)は光合分波器1を右後方から見たときの側面図となる。
図1(A)に示したように、各分波コリメータC1〜C4の後端側に接続されている光ファイバFb1、Fb2、Fb3、およびFb4を伝搬する単色光L1、L2、L3、およびL4の波長は、それぞれλ、λ、λ、およびλであり、光合分波器1が光合波器として動作するときは、それらの単色光L1、L2、L3、およびL4が分波コリメータC1、C2、C3、およびC4の開口端から前方に向かって出射する。各分波コリメータC1〜C4の前方にはそれぞれの分波コリメータC1〜C4のそれぞれに対応して波長λ〜λの単色光L1〜L4を選択的に透過させ、透過波長以外の光を反射させる干渉膜フィルタF1〜F4が配置されている。干渉膜フィルタF1〜F4は、石英ガラスなどからなる平行平板状の透明基板の表面に干渉膜が形成されたものである。各分波コリメータC1〜C4から出射する単色光L1〜L4は、各干渉膜フィルタF1〜F4に対して所定の入射角θで入射し、出射角θで出射する。
各干渉膜フィルタF1〜F4からの出射光(L11、L13、L15、L17)の光路上には石英ガラスなどからなる透明基板の表面に誘電体多層膜や金属薄膜を形成してなるミラーM1〜M4が配置されている。ミラーM1、M2、およびM3は、それぞれ各干渉膜フィルタF1、F2、およびF3から前方に向かう光(L11、L13、L15)を反射角θで正反射させて、それぞれ干渉膜フィルタF2、F3、およびF4に入射させる。また干渉膜フィルタF4から前方に向かう光L17はミラーM4により正反射され、その正反射された光L18の光路上に合波コリメータC5の開口端があり、合波コリメータC5の光軸方向は、ミラーM4にて反射された光L18の入射方向に一致している。
そして光合分波器1における干渉膜フィルタF1〜F4およびミラーM1〜M4からなる光学系では、干渉膜フィルタF1〜F4による透過光と、ミラーM1〜M4による反射光と、干渉膜フィルタF2〜F4の前方の面における透過波長以外の反射とによって透過と反射を繰り返し、合波コリメータC5の開口端に波長λ〜λのそれぞれの単色光が合波された多重化光が入射され、その多重化光が合波コリメータC5の後端側に接続されている光ファイバFb5を介してWDM方式の光通信網に送出される。すなわち光通信網における光伝送路や光通信網内に設置される各種装置における光素子(フォトダイオードなど)に入力される。
なお図1に示した光合分波器1が光分波器として動作する際は、合波コリメータC5に接続されている光ファイバFb5を伝搬する多重化光L5が光合分波器1の光学系に入力され、上述したL11〜L18を昇順に辿る光路を降順となるように逆に辿り、干渉膜フィルタF4〜F1に対して前方から後方に向かって入射した光から各干渉膜フィルタF4〜F1のそれぞれが透過する波長の単色光が分波コリメータC4〜C1に入力する。そしてこれらの単色光は、分波コリメータC4〜C1に接続されている光ファイバFb4〜Fb1を介して光通信網内に設置されている各種装置に入力される。例えば、各単色光に重畳されている光信号が電気信号に変換される。なお本発明に関連して、以下の非特許文献1には、上記光トランシーバの規格や光トランシーバの構成などについて記載されている。
米国特許出願公開第2003/0099434号明細書
神杉秀昭,石井邦幸,村山哲,田中弘巳,倉島宏実,石橋博人,津村英志、「データセンタ用低消費電力光トランシーバ」、2013年7月・SEIテクニカルレビュー 第183号、 pp.60-64
近年、スマートフォンに代表される携帯型情報端末、あるいはクラウドコンピューティング(SaaS、PaaS、HaaS、ネットワークストレージなど)の普及により、データ通信ネットワークの基幹となる光通信網における通信トラフィックが急激に増大している。そのため光通信網内に設定される各種機器、特にデータセンタ向けの光伝送装置には、高速化、低消費電力化などに対する要求に加え、小型化も求められている。したがって光伝送装置に組み込まれる光トランシーバにも小型化が要求されている。
現状では、WDM伝送方式にも対応する40Gbpsあるいは100Gbpsの大容量の光通信網に介在する光トランシーバは、CFP(C form-factor pluggable、長さ144.75×幅82×高さ13.6mm)と呼ばれる規格のものが普及している。このCFP規格の光トランシーバは、小容量の10Gbpsに対応した小型の光トランシーバと比較してサイズが大きい。そのため、データセンタなどにおいて、従前の小容量の光伝送用の光トランシーバを大容量のCFP規格の光トランシーバに置き換えることが難しい。
そこで大容量かつ小型の光トランシーバとして、CFPに代わる新たな規格の光トランシーバの開発が進んでいる。具体的には、上記非特許文献1に記載されているように、CFPに対して4倍の高密度搭載が可能なQSFP+(Quad Small Form-factor Pluggable Plus、長さ72.4×幅18.35×高さ8.5mm)やCFP4(長さ92×幅21.5×高さ9.5mm)といった新規格の小型光トランシーバの開発が進んでいる。そしてこれら新規格の光トランシーバは、従来のCFP規格の光トランシーバに対して長さ、幅、高さの全てが縮小している。特に幅は、長さや高さに対して大きく縮小しており、CFP規格の82mmに対して1/4程度となっている。
ところで小型の新規格の光トランシーバに対応して、その光トランシーバに組み込まれる光合分波器にも小型化が求められる。特に幅方向のサイズを小さくすることが求められる。しかしながら上記特許文献1に記載されている従来の光合分波器では、図1に示したように光ファイバコリメータなどの光入出力部が直線上に配置される。また単色光を入出力する光入出力部(図1、符号C1〜C4)における単色光(同図、符号L1〜L4)の入出力方向と、多重化光を入出力する光入出力部(図1、符号C5)における光の入出力方向(同図、符号L5またはL18)とが所定の角度(同図、符号2θ)で互いに交差する。したがって従来の光合分波器は、光トランシーバにおける幅方向に対応するサイズが大きくなり、新規格の光トランシーバに内蔵させることが難しい。
そこで本発明は、小型の光トランシーバに組み込むことができる小型の光合分波器、およびその光合分波器を備えた光トランシーバを提供することを目的としている。
上記目的を達成するための本発明は、nを自然数として、波長の異なるn種類の単一波長の光を合波あるいは分波する光合分波器であって、
外部に対する光の出入り口を光入出力部として、それぞれが異なる単一波長の光を入出力するための第1〜第nの分波光入出力部と、
前記波長の異なるn種類の光を合波した光を入出力するための1個の合波光入出力部と、
第2〜第nの分波光入出力部のそれぞれに対応する第2〜第nの干渉膜フィルタと、
第1〜第n−1の分波光入出力部のそれぞれに対応する第1〜第n−1のミラーと、
を有し、
前記第1〜第nの分波光入出力部から出力される光の進行方向を前後方向として、
前記第2〜第nの干渉膜フィルタは、それぞれに対応する前記分波光入出力部の前方に配置されて、対応する分波光入出力部に入出力される単一波長の光を選択的に透過させ、他の波長の光を反射し、
前記第1〜第nの分波光入出力部は、後方から見て前後方向を法線とした同一の平面に二次元配置され、
第1の分波光入出力部の入出力光の光路上に第1のミラーが配置され、
kを2〜n−1の自然数として、第kの分波光入出力部の入出力光の光路上に、後方から前方に向かって、第kの干渉膜フィルタと第kのミラーがこの順に配置され、
第1のミラーは、第1の分波光入出力部から前方に向かって出力された光を第2の干渉膜フィルタの方向へ反射させるように配置され、
第kのミラーは、第kの分波光入出力部から前方に向かって出力されて第kの干渉膜フィルタを透過してきた光を第k+1の干渉膜フィルタの方向へ反射させるように配置され、
第kの干渉膜フィルタは、第k−1のミラーから入射してきた光を前方に向けて反射させるように配置され、
第nの分波光入出力部から前方に向かって出力されて、第nの干渉膜フィルタを透過した光の光路上に前記合波光入出力部が配置され、
第1の分波光入出力部から出力された光は、第1〜第n−1のミラーと第2〜第nの干渉膜フィルタを交互に昇順に辿って前記合波光入出力部に入力し、
mを2〜nの自然数として、
第mの干渉膜フィルタは、前方から後方に向かう光から単一波長の光を透過させて第mの分波光入出力部に入力させるとともに、当該単一波長以外の波長の光を第m−1のミラーに向けて反射させるように配置され、
合波光入出力部から出力された光は、第2〜第nの干渉膜フィルタと第1〜第n−1のミラーを交互に降順に辿って第mの分波光入出力部に入力するとともに、第1のミラーにて反射された光が第1の分波光入出力部に入力し、
第1の分波光入出力部から合波光入出力部に至る光、および合波光入出力部から第1の分波光入出力部に至る光は、それぞれ、第1の分波光入出力部と第2の干渉膜フィルタとの間に形成される光路の途上、および第kの干渉膜フィルタと第k+1の干渉膜フィルタとの間に形成される光路の途上で、一回のみ反射する、
ことを特徴とする光合分波器としている。
第1の光入出力部が入出力する単一波長の光を選択的に透過する第1の干渉膜フィルタが当該第1の分波光入出力部の前方に配置されて、当該第1の干渉膜フィルタの前方に第1のミラーが配置されている光合分波器とすることもできる。
前記第1〜第nの光入出力部は、同一の平面上にn角形の頂点を形成する位置に配置されているとともに、昇順に前記n角形を一方向に周回する方向に順番に配置されている光合分波器としてもよい。
あるいは、前記第1〜第nの分波光入出力部が配置されている面をxy面として、
当該第1〜第nの分波光入出力部は、x軸方向を行方向として、y軸方向に平行に複数行を形成するように配置されているとともに、第1行に配置された第1の光入出力部を起点として、昇順に折れとなる位置に順番に配置され、
第nの分波光入出力部が配置されている最終行には、最終行以外の行に配置されている分波光入出力部の数以下の分波光入出力部が配置されているとともに、当該最終行以外の各行には同数の複数の分波光入出力部が配置されている光合分波器とすることもできる。
さらに前記分波光入出力部は、n≧4の偶数であるとともに、第1行と第2行に配置され、
第1行に第1〜第n/2の分波光入出力部が配置され、
第2行に第n/2+1〜第nの分波光入出力部が配置され、
前記干渉膜フィルタと前記ミラーは、行間に配置された基板の上面と下面に固定されている光合分波器とすることもできる。
前後方向をz軸方向として、zx面に平行な同一の面に配置された第m−1のミラーと第mの干渉膜フィルタは、前記基板上に積層された同一の補助基板上に固定され、
前記補助基板は、y軸周りに回動可能に構成されているともに、所定の回転位置で固定されている、
光合分波器としてもよい。
前記基板は、yz面に平行な面を有する固定板を備え、行を跨いで配置された第m−1のミラーと第mの干渉膜フィルタは、yz面に平行な側面を有し、当該側面が前記固定板に固定されている光合分波器とすることもできる。
前記第1の分波光入出力部は、前記第1のミラーが後方に向かって反射した光の光路上に配置され、前記第kの分波光入出力部は、前記第kの干渉フィルタを前方から後方に透過する光の光路上に配置され、前記合波光入出力部は、第nの干渉膜フィルタを後方から前方に透過する光の光路上に配置されている光合分波器とすることもできる。前記ミラー及び/又は干渉膜フィルタは、光の入射面に対面する裏面側を反射面としている光合分波器としてもよい。
後方から前方を見て、第1〜第nの光入出力部が配置されている領域の内方に前記合波光入出力部が配置され、前記第nの干渉膜フィルタと前記合波光入出力部との間に屈曲した光路を形成させる光路偏向部を備える光合分波器とすることもできる。さらに前記合波光入出力部は、前端に光の入出力口を有し、前記光路偏向部は、前記第nの光入出力部から出力された光を後方に折り返す光合分波器とすることもできる。
また本発明の範囲には、筐体内に二つの光合分波器が収納され、一方の光合分波器を光合波器とし、他方の光合分波器を光分波器とした光トランシーバも含んでおり、当該光トランシーバは、前記二つの光合分波器の内、少なくとも一方が上記いずれかに記載の光合分波器であることを特徴とする光トランシーバとしている。
本発明に係る光合分波器によれば、小型化を達成し、小型の光トランシーバに組み込むことができる。その他の効果については以下の記載で明らかにする。
干渉膜フィルタを用いた一般的な光合分波器の構成を示す図である。 本発明の第1の実施例に係る光合分波器の光学系の概略を示す図である。 第1の実施例に係る光合分波器の構成を示す図である。 本発明の第2の実施例に係る光合分波器の構成を示す図である。 本発明の第3の実施例に係る光合分波器の構成を示す図である。 本発明の第4の実施例に係る光合分波器の構成を示す図である。 本発明の第4の実施例に係る光合分波器の第1の変形例を示す図である。 本発明の第4の実施例に係る光合分波器の第2の変形例を示す図である。 本発明の第4の実施例に係る光合分波器の第3の変形例を示す図である。 本発明の第5の実施例に係る光合分波器の変形例を示す図である。 本発明のその他の実施例に係る光合分波器を示す図である。 本発明のその他の実施例に係る光合分波器を示す図である。 本発明の実施例に係る光トランシーバの構成を示す概略図である。
本発明の実施例について、以下に添付図面を参照しつつ説明する。なお以下の説明に用いた図面において、同一または類似の部分に同一の符号を付して重複する説明を省略することがある。ある図面において符号を付した部分について、不要であれば他の図面ではその部分に符号を付さない場合もある。
===実施例===
上述したように、干渉膜フィルタを用いた一般的な光合分波器では、幅が狭い新規格の光トランシーバ内に組み込むことが難しい。そこで本発明の実施例に係る光合分波器では、光入出力部の配置に特徴を有して、光入出力部の並び方向である幅方向のサイズを小さくすることができる。それによって新規格の光トランシーバ内にも容易に組み込むことができるようになっている。以下に本発明の実施例に係る光合分波器について説明する。
===第1の実施例===
図2は、本発明の第1の実施例に係る光合分波器1aの光学系を示す斜視図である。図2では当該光合分波器1aが光合波器として動作しているときの光路も示した。第1の実施例に係る光合分波器1aでは、4種類の波長λ、λ、λ、およびλのそれぞれの単色光についての光入出力部となる4個の分波コリメータC1〜C4と、1個の合波コリメータC5を備え、光学系を構成する光学部品として3個のミラーM1〜M3、および分波コリメータC1〜C4のそれぞれに対応して波長λ、λ、λ、およびλの単色光を選択的に透過させる4個の干渉膜フィルタF1〜F4を備えている。ここで各分波コリメータC1〜C4に入出力する単色光L1〜L4の進行方向を前後方向とし、4個の分波コリメータC1〜C4は前端に開口端を有することとして前後の各方向を規定することとする。そして後方から前方に向かう方向をz軸の正の方向として右手系のxyz座標系を規定することとする。
4個の分波コリメータC1〜C4の開口端は、同一のxy面に2次元配置されており、この例では、この同一面内に形成される矩形SQの各頂点に配置されている。ここでさらに、上記矩形SQを後方から前方に向かって見たときに、分波コリメータC1とC2、および分波コリメータC4とC3が並ぶ方向をx軸方向とし、分波コリメータC1とC4、および分波コリメータC2とC3が並ぶ方向をy軸方向とする。そしてx軸方向を左右方向とし、y軸方向を上下方向とする。左右上下の各方向については、図中に示したように、右方から左方に向かう方向をx軸の正の方向とし、下方から上方に向かう方向をy軸の正の方向としている。なお第1の実施例を含め、以下に説明する各実施例においても、上述した座標系や前後上下左右の各方向を採用することとする。また座標系の原点については特に規定せず、xy面、yz面、およびzx面に平行な面は、全てxy面、yz面、zx面と称することとする。さらに分波コリメータC1〜C4、および合波コリメータC5はz軸方向に光軸を有するものとする。
図2に示したように、各分波コリメータC1〜C4の前方には、それぞれ波長λ〜λを選択的に透過する干渉膜フィルタF1〜F4が配置され、分波コリメータC1〜C3に対応する干渉膜フィルタF1〜F3の前方には、さらにミラーM1〜M3が配置されている。また干渉膜フィルタF4の前方には合波コリメータC5が配置されている。
ここで分波コリメータC1〜C4と合波コリメータC5、および光学系を構成する各光学部品の配置を図中に示した光路に基づいて説明すると、ミラーM1は、分波コリメータC1から前方に向かって出射されて干渉膜フィルタF1を透過してきた光L11を干渉膜フィルタF2の方向へ反射させるように配置されている。なお分波コリメータC1が入出力する単色光L1が、単一波長λにおいて極めて急峻な波長特性を有しているのであれば、干渉膜フィルタF1は必須の構成ではない。
干渉膜フィルタF2は、ミラーM1から入射してきた光L12をz軸に沿って前方に向かって反射する。そしてその反射光L13がミラーM2に入射する。それによって分波コリメータC1からの波長λの単色光L1は同一のzx面内の光路(L11〜L13)を辿って、ミラーM1、干渉膜フィルタF2で順次反射されてミラーM2に至る。また分波コリメータC2からの波長λの単色光L2は、干渉膜フィルタF2を透過する際に、ミラーM1から当該干渉膜フィルタF2に入射する光L12と合波して波長λとλのそれぞれの単色光が合波された光としてミラーM2方向に向かう。
ミラーM2は、z軸に沿って前方に向かって入射してきた光を、yz面内下方に向けて反射するように配置され、ミラーM2による反射光L14がコリメータC2の下方に配置されたコリメータC3の前方に配置された干渉膜フィルタF3に入射する。干渉膜フィルタF3は、ミラーM2から入射した光L14をz軸に沿って前方に向かって反射させるとともに、分波コリメータC3からの波長λの単色光L3を透過させる。それによって、干渉膜フィルタF3における後方からの透過光と前方からの入射光L14が合波されて、波長λ〜λの各単色光を含む光L15がミラーM3に向かう。
ミラーM3は、干渉膜フィルタF3から前方に向かって入射してきた光L15を干渉膜フィルタF4の方向へ反射させるように配置されている。干渉膜フィルタF4は、ミラーM3から入射してきた波長λ〜λの光の多重化光L16をz軸に沿って前方に向かって反射させるとともに、分波コリメータC4からの波長λの単色光L4を透過させる。それによって波長λの単色光L4と波長λ〜λを含む光L16とが合波されて波長λ〜λを含む多重化光L17がz軸に沿って前方に向かう。この干渉膜フィルタF4からの光L17は合波コリメータC5に入力され、この光L17がこの光合分波器1aの出力光として合波コリメータC5の前端に接続されている光ファイバFb5を介して光通信網に送出される。そして以上の光学系を備えた光合分波器1aでは、分波コリメータC1から前方に向かって出射した単色光L1が、後方から見たときに、分波コリメータC1〜C4まで上述した矩形領域SQの輪郭を時計回りに縁取るコの字形の光路を辿りながら他の波長の単色光L2〜L4と合波されていく。なお光合分波器1aが光分波器として動作するときは、全ての波長λ〜λが合波された多重化光L5が、コリメータC5から後方に向かって出射したのち、光路L11〜L17を降順に逆方向に辿る。干渉膜フィルタF4、F3、F2、およびF1には、その逆方向に辿る光路の途上で、それぞれ光L17、L15、L13、およびL11に対応してz軸に沿って前方から後方に向かう光が入射する。そして干渉膜フィルタF4、F3、F2、およびF1は、それぞれ波長λ、λ、λ、およびλの単色光を透過させ、その透過光をコリメータC4、C3、C2、およびC1に入力させる。
次に第1の実施例に係る光合分波器1aのより具体的な構成について説明する。図3は第1の実施例に係る光合分波器1aの構成を示す図であり、図3(A)、(B)、(C)、および(D)は、それぞれ、その光合分波器1aを後方から見たときの背面図、上方から見たときの平面図、右方から見たときの側面図、および下方から見たときの平面図を示している。ここでも光合分波器1aが光合波器として動作しているときの光路を示した。
第1の実施例に係る光合分波器1aの光学系を構成する干渉膜フィルタF1〜F4とミラーM1〜M3は、xz面を有する平板状の基板10の上下両面(11、12)に配置されている。上面11側には干渉膜フィルタF1、F2、およびミラーM1、M2が固定された状態で配置されている。また分波コリメータC1、C2も基板10の上面側に図示しない適宜な保持構造によって固定された状態で配置されている。下面12側には分波コリメータC3、C4、合波コリメータC5、干渉膜フィルタF3、F4、およびミラーM3が固定された状態で配置されている。分波コリメータC1〜C4は前端を開口端とし、合波コリメータC5は後端を開口端としている。そして、これらの開口端が当該光合分波器1aにおける光入出力部となる。なお基板10の右端側には、ミラーM2と干渉膜フィルタF3との間に形成されるyz面内の光路を通すために上下両面(11−12)を連絡する矩形状の切欠部13が形成されている。
図3(B)に示したように、干渉膜フィルタF1は、xy面に光の入出射面を有し、ミラーM1における反射面は、上方から下方を見てxy面をy軸周りに反時計回りに角度θで回転させた状態で傾いている。すなわちミラーM1には、光L11が入射角θで入射される。干渉膜フィルタF2における光の入出射面は、上方から下方を見て、ミラーM1と対面するようにxy面をy軸周りに反時計回りの方向に角度θで傾けた方向を向いている。
なわち干渉膜フィルタF2における光の入出射面は、分波コリメータC2の光軸に対してy軸周りに反時計回りの方向に角度θで傾いている。それによって干渉膜フィルタF2にはミラーM1からの光L12が入射角θで入射する。なお角度θは基板上面11におけるミラーM2と干渉膜フィルタF2との前後方向の距離Dおよび、基板上面11の分波コリメータC1とC2の左右方向の距離Pに基づいて設定されている。
図3(C)に示したように、ミラーM2の反射面は、右方から左方を見て、法線方向が下方後方に向くようにxy面をx軸周りに反時計回りの方向に角度φで傾けた方向に向いている。それによってミラーM2に入射した光L13は、基板10に形成された切欠部13を介して基板10の下面12に配置されている干渉膜フィルタF3方向に向かう。なお角度φは基板上面11におけるミラーM2と干渉膜フィルタF2との前後方向の距離Dおよび、基板上面11の分波コリメータC2と基板下面12の分波コリメータC3の上下方向の距離Phに基づいて設定されている。そして干渉膜フィルタF3における光の入出射面は、右方から左方を見て、基板10の上面11に配置されているミラーM2と対面するようにxy面をx軸周りに反時計回りに角度φで傾けた方向を向いている。したがって基板上面11から切欠部13を介して基板下面12に向かう光L14と分波コリメータC3の光軸とのなす角が図中に示したように2φとなる。
図3(D)に示したように、基板下面12に配置されているミラーM3における反射面は、下方から上方を見て、xy面をy軸周りに反時計回りに角度θで傾けた方向に向いている。すなわちミラーM3には、干渉膜フィルタF3からの光L15が入射角θで入射される。そして干渉膜フィルタF4の光の入出射面は、下方から上方を見て、ミラーM3と対面するようにxy面をy軸周りに反時計回りに角度θで傾けた方向を向いている。すなわち干渉膜フィルタF4にはミラーM3からの光L16が入射角θで入射する。そのため干渉膜フィルタF4に入射した光L16はz軸方向に沿って前方に反射する。そしてその反射光L17の光路上に合波コリメータC5が配置されている。第1の実施例に係る光合分波器1aでは、分波コリメータC1〜C4、干渉膜フィルタF1〜F4、ミラーM1〜M3、および合波コリメータC5が、以上のように配置されていることで、図3(A)に示したように、当該光合分波器1aを後方から見たときの光路Lが分波コリメータC1〜C4の位置をこの順にコの字形に辿るように形成される。
なお上記構成の光合分波器1aでは、干渉膜フィルタF2〜F4はそれぞれに対応する分波コリメータC2〜C4の光軸に対して傾いて配置されているが、一般的に、干渉膜フィルタは、膜面が光の透過方向に対して大きく傾いていると、光が透過する過程で互いに直交する方向に振動するP波とS波の光強度に差が生じる、すなわち挿入損失に偏光依存性が生じる。またP波とS波の伝搬速度に差が生じる偏波モード分散が生じる。ミラーについては、反射膜が誘電体膜であれば、反射率に波長依存性と角度依存性がある。そして本実施例では、上記の各種依存性などを考慮して、θ≦15゜、φ≦15゜に設定している。
次に第1の実施例に係る光合分波器1aによって分波および合波される光の波長や、光合分波器1aにおける各部の具体的なサイズや角度などについて説明する。まず、分波コリメータC1、C2、C3、およびC4が入出力する単色光の波長は、それぞれλ=1271nm、λ=1291nm、λ=1311nm、およびλ=1331nmである。左右方向における分波コリメータ間(C1−C2、C3−C4)の距離PはP=4mmである。
干渉膜フィルタF1〜F4における干渉膜面、およびミラーM1〜M3の反射面は、w1.4mm×h1.4mmの矩形状で、それぞれ屈折率n=1.5で厚さt=1mmの透明基板の表面に干渉膜面や反射面が形成されたものである。なお干渉膜面や反射面は透明基板の厚さtに対して無視できるほど薄い。そして干渉膜フィルタF1〜F4が配置されている位置と、ミラーM1〜M3が配置されている位置の前後方向の中心間距離Dは約8.5mmとなっている。それによって上記角度θは、上記距離Pと中心間距離Dからθ=13.5゜に設定されている。もちろんθを設定した上で、上記P、Dを設定することとしてもよい。なお分波コリメータの上下方向の距離Phについては、P=Phとなるように角度φ=θ=13.5゜に設定してあり、Ph=P=4mmとなっている。このように第1の実施例に係る光合分波器1aでは、上述したQSFP+やCFP4規格の光トランシーバ内に十分に組み込めるサイズとなっている。また光分波器と光合波器のそれぞれに対応して二つの光合分波器1aを光トランシーバ内に左右に並列に組み込むことも可能となっている。
===第2の実施例===
干渉膜フィルタは透明基板の表面に干渉膜を形成した構造を有し、干渉膜フィルタの干渉膜面に斜めに入射する光は透明基板の屈折率によって入射した光と出射した光のxy面での位置がずれる。すなわち干渉膜フィルタを透過する光の光路がその透過の前後でシフトする。そこで第2の実施例に係る光合分波器では、その光路のシフトを考慮した位置に分波コリメータや合波コリメータを配置することとしている。
図4に本発明の第2の実施例に係る光合分波器1bにおける各光学部品の配置を示した。図4(A)は第2の実施例に係る光合分波器1bを上方から見たときの平面図であり、図4(B)は光合分波器1bを右方から見たときの側面図である。また図4(C)は当該光合分波器1bを下方から見たときの平面図である。なお図4(A)に示したように、第2の実施例に係る光合分波器1bでは分波コリメータC1に対応する干渉膜フィルタF1を省略しているが、それ以外の基本的な構造や、光学系を構成する光学部品は、図3に示した第1の実施例と同様である。また図4に示した光合分波器1bは、光合波器として動作している。
以下に、第2の実施例に係る光合分波器1bにおける分波コリメータC1〜C4、および合波コリメータ5の配置について説明する。まず図4(A)に示したように、基板10の上面11に配置されている分波コリメータC1とC2は、距離Pで配置されている。それぞれの分波コリメータC1、C2からは波長λとλの単色光L1とL2が入射されるが、干渉膜フィルタF2に入射する単色光L2は、透明基板内で屈折し、干渉膜フィルタF2を透過する前後で透明基板の屈折率と厚さtに応じた距離ΔPだけシフトする。そのため、ミラーM1と干渉膜フィルタF2は、干渉膜フィルタF2における単色光L2の出射位置にミラーM1から干渉膜フィルタF2に向かう光L12を入射させるように配置されている。そして分波コリメータC1からミラーM1に向かう光L11と干渉膜フィルタF2からミラーM2に向かう光L13との左右方向の距離がP−ΔPとなる。
次に、干渉膜フィルタF2からミラーM2に向かう光L13は、ミラーM2に反射されて干渉膜フィルタF3に入射する。図4(B)に示したように、干渉膜フィルタF3における光の入出射面は、対応する分波コリメータC3の光軸に対してx軸周りに回転しているが、y軸周りには回転していない。したがって分波コリメータC3から干渉膜フィルタF3に入射した単色光L3は、干渉膜フィルタF3の透過前後でx軸方向にシフトしない。しかし、干渉膜フィルタF3の光の入出射面がx軸周りに回転した状態で傾いているため、分波コリメータC3から出射した単色光L3は干渉膜フィルタF3を透過する前後でy軸方向に上方にシフトする。そして基板上面11のミラーM2が分波コリメータC2の光軸に対してx軸周りに角度θで傾いているとすると、基板下面12の分波コリメータC3の光軸に対して干渉膜フィルタF3も角度θで傾いていることになる。したがって、分波コリメータC3から入力された単色光L3は干渉膜フィルタF3を透過する前後でΔPだけ上方にシフトすることになる。またミラーM3の反射面は、x軸周りには傾いていないため、その後に干渉膜フィルタF4を経由して合波コリメータC5に至る光L16、L17は上下方向にシフトしない。したがって、基板10の上面11と下面12にある分波コリメータC1とC4の距離はP−ΔPに設定され、分波コリメータC2とC3の距離はPに設定されている。
図4(C)に示したように、下方から上方を見て、ミラーM3の反射面は、xy面をy軸周りに反時計回りに角度θで回転させ方向に傾いている。また干渉膜フィルタF4における光の入出射面は、下方から上方を見て、xy面をy軸周りに反時計回りに角度θで回転させた方向に傾いている。そして干渉膜フィルタF4から合波コリメータC5に向かう光L17は分波コリメータC4の光軸に平行となる。したがって、基板上面11における干渉膜フィルタF2を単色光L2が透過するときと同様に、分波コリメータC4から出射する単色光L4は右方に距離ΔPだけシフトする。すなわち基板下面12において左右方向に距離Pで離間している分波コリメータC3およびC4は、それぞれ、基板上面11の分波コリメータC1およびC2に対して左方にΔPだけずれた位置に配置されている。
また分波コリメータC3と合波コリメータC5の左右方向の距離はP―ΔPに設定されている。なお干渉膜フィルタF2〜F4における上記ΔPの数値を具体的に挙げると、分波コリメータC1とC2の距離P=4mm、各干渉膜フィルタF2〜F3の透明基板の厚さt=1mm、当該透明基板の屈折率n=1.5とした場合、ΔPは約0.1mmとなる。
このように本発明の第2の実施例に係る光合分波器1bにおける光学系では、干渉膜フィルタF〜F4を透過する光のシフトを考慮して各光ファイバコリメータC1〜C5が最適な位置に配置されて、各光ファイバコリメータC1〜C5に入力される光の結合損失を低減させることができる。もちろん後方から前方を見て、分波コリメータC1 〜C4を一辺がPの正方形の頂点に配置し、合波コリメータC5を分波コリメータC4と同じ位置に配置する場合には、各ミラーM1〜M3の反射面および干渉膜フィルタF2〜F4の光の入出射面の傾き角度をそれぞれ個別に設定すればよい。いずれにしても干渉膜フィルタF2〜F4における光路のシフトを考慮した位置に分波コリメータC1〜C4および合波コリメータC5を配置することで光損失を低減させることができる。
===第3の実施例===
上記第1、第2の実施例に係る光合分波器では、後方から見て分波コリメータが同一面内で2行2列に配置されて、左右方向の幅を小さくすることができた。第3の実施例に係る光合分波器は、さらに前後方向のサイズも小さくすることができる構成を備えている。
図5に第3の実施例に係る光合分波器を示した。図5(A)は先に示した第1の実施例に係る光合分波器1aを上方から見たときの平面図であり、図5(B)は第3の実施例に係る光合分波器1cを上方から見たときの平面図である。図5(A)に示した第1の実施例に係る光合分波器1aではミラーM1、M2、および図示しないミラーM3は、所定の厚さを有する透明基板において光が入射される側の面に形成された表面反射型のミラーであった。また干渉膜フィルタF1、F2、および図示しない干渉膜フィルタF3、F4も表面反射型であった。すなわち透明基板において干渉膜が形成される面を反射面Rとして、当該反射面Rは、ミラーM1〜M3からの反射光が入射される側の面であった。
一方、図5(B)に示した第3の実施例に係る光合分波器1cでは、ミラーM1、M2、および図示しないミラーM3、さらには干渉膜フィルタF1、F2、および図示しない干渉膜フィルタF3、F4の反射面Rが光の入射面に対面する裏面側に形成された裏面反射型となっている。それによってミラーM1〜M3および干渉膜フィルタF1〜F4に入射した光は透明基板の内部を透過し裏面側の反射面Rで反射される。結果として、第3の実施例に係る光合分波器1cでは第1の実施例に係る光合分波器1aに対して前後方向のサイズを短くすることができる。上述したように、第1の実施例に係る光合分波器1aでは、上記中心間距離Dが約8.5mmであったが、第3の実施例に係る光合分波器1cにおける中心間距離dは7.2mmとなり、約1.3mmも短くすることができた。もちろん、ミラーと干渉膜フィルタの双方を裏面反射型とせず、ミラーと干渉膜フィルタの一方の光学部品を裏面反射型にしてもよい。
なお裏面反射型のミラーや干渉膜フィルタでは、透明基板の裏面で反射した光が透明基板の内部で多重反射し、光損失が発生する可能性がある。そこで光損失が懸念される場合には、透明基板の表裏両面を互いに平行にせず、微少な角度(例えば0.1゜)だけ平行状態からずらせばよい。なお透明基板の表裏両面を平行状態からずらすと、第2の実施例と同様の原理で透明基板に入射した光が屈折し、光路がシフトする。しかし平行状態からのずれが微小な角度であれば光路のシフトは実質的に無視できる。もちろん第2の実施例と同様に光路のシフトを考慮して各分波コリメータを配置してもよい。
===第4の実施例===
上記各実施例に係る光合分波器は、合波コリメータC5が、分波コリメータC1〜C4の位置、ミラーM1〜M3、および干渉膜フィルタF2〜F4の配置に応じて決まった位置に配置されていた。また合波コリメータC5は後方に開口端を有していた。そこで本発明の第4の実施例に係る光合分波器では、合波コリメータC5の配置を自由に設定できる構成を備えている。
図6に第4の実施例に係る光合分波器の概略構成を示した。図6(A)と図6(B)は、光合分波器(1d、1e)を下方から見たときの平面図である。そして図6(A)と図6(B)に示した光合分波器(1d、1e)は、干渉膜フィルタF4から合波コリメータC5の間に形成される光路の途上にその光路を屈曲させる光路偏向部(20a、20b)を備えている。
図6(A)に示した光合分波器1dは、分波コリメータC4と合波コリメータC5との間の光路に菱形プリズムからなる光路偏向部20aが介在している。そして、干渉膜フィルタF4から合波コリメータC5に向かう光L17が右方に屈曲した後、前方に向かって再度屈曲し、干渉膜フィルタF4と合波コリメータC5との間にクランク状の光路が形成される。そして分波コリメータC3とC4のそれぞれの光軸の中間位置から前方に向かう光が合波コリメータC5に入力する。したがって合波コリメータC5は、後方から見ると、分波コリメータC3とC4との中間位置に配置されることになる。
図6(B)に示した光合分波器1eにおける光路偏向部20bは、直角プリズム、あるいは直角プリズムの頂点を平坦にした等脚台形プリズムなどによって構成され、干渉膜フィルタF4から合波コリメータC5に向かう光L17を分波コリメータC3とC4の中間位置の方向に後方へ折り返している。それによって、後方から見ると、合波コリメータC5が分波コリメータC3とC4の間に配置されるともに、前方に開口端を有して、全ての分波コリメータC1〜C4と同一の平面内に配置されている。
なお図6の(A)と(B)に示した光合分波器(1d、1e)における光路偏向部(20a、20b)の配置を変えることで、後方から見て、合波コリメータC5を分波コリメータC1〜C4によって形成される矩形領域の中心に配置することもできる。図7に第4の実施例の第1の変形例として、合波コリメータC5が分波コリメータC1〜C4によって形成される矩形領域の中心に配置された光合分波器1fを示した。なおここでも光合分波器1fが光合波器として動作しているときの状態を示した。図7(A)は光合分波器1fを前方から見たときの正面図であり、図7(B)は光合分波器1fを右方から見たときの側面図である。ここに示した光合分波器1fでは、前端側を開口端とした合波コリメータC5が基板10の後方に配置されている。また合波コリメータC5の開口端は、分波コリメータC1〜C4の開口端と同一面で、しかも分波コリメータC1〜C4の配置領域の中心に配置されている。そして光合分波器1fにおける光路偏向部20cは、先に図6(B)に示した光合分波器1eと同様に、直角プリズムあるいは等脚台形プリズムから構成されている。しかし図7(A)に示したように、光路偏向部20cにおいて、三角形や等脚台形となるプリズムの側面120がzx面に対してz軸周りに45゜傾いている。そして前後方向から見ると、光路偏向部20における光の入出射面が、分波コリメータC4の開口端と基板10の前端面における左右中央位置とに跨がって配置されている。
光路偏向部20cの動作としては、干渉膜フィルタF4から合波コリメータC5に向かう光L17が後面に入射されると、その光が上方に向かって屈曲するとともに後方へ折り返される。したがって光路偏向部20cを入出射する光L18の光路は、前後方向からて分波コリメータC4から基板10の左右中央位置に向かう。すなわちL18の左右方向の出射位置は、4つの分波コリメータC1〜C4の配置領域の中心となる。
なお光路偏向部20cが出射する光L18の光路上には基板10が介在することから、図7(B)に示したように、この例では基板10は前後方向に貫通する孔14が形成されている。もちろん基板10を左右に分割した構造にしてもよい。いずれにしても基板10を前後方向に連絡して光を通す通路14が設けられている。それによって光路偏向部20cが出射した光L18は、この通路14を通る光L19によって基板10の後端側に向かう。そして図示した例では、合波コリメータC5の開口端が分波コリメータC1〜C4の開口端と同一平面に配置されるように、基板10の後方に切欠部15が形成されている。以上の構成により、光合分波器1fでは、合波コリメータC5が後端側に配置されているとともに、前後方向から見て分波コリメータC1〜C4の配置領域の中心に配置されている。このように第4の実施例に係る光合分波器(1d〜1f)では光路偏向部(20a〜20c)を備えることで、合波コリメータC5の位置を自由に設定することが可能となっている。
なお第4の実施例の変形例としては、図8に示した第2の変形例に係る光合分波器1gもある。図8は、当該光合分波器1gが光合波器として動作しているときの状態を示す図であり、図8(A)は光合分波器1gを前方から見たときの正面図であり、図8(B)は光合分波器1gを右方から見たときの側面図である。この第4の実施例における第2の変形例の光合分波器1gでは、図7に示した光合分波器1fにおける光路偏向部20cを菱形プリズムを用いた光路偏向部20dに変更している。そして前後方向から見て分波コリメータC1〜C4の配置領域の中心に合波コリメータC5が配置され、当該合波コリメータC5が前端側に配置されている。
また図6の(A)と(B)に示した光合分波器(1d、1e)における光路偏向部(20a、20b)の構成を組み合わせることでも、図7や図8に示した光合分波器(1f、1g)と同様の動作をする光合分波器を構成することができる。図9に第4の実施例の第3の変形例を示した。ここでは図7に示した光合分波器1fと同じ動作を行う光合分波器1hを示した。図9は、当該光合分波器1hが光合波器として動作しているときの状態を示す図であり、図9(A)は光合分波器1hを右方から見たときの側面図であり、図9(B)は光合分波器1hを下方から見たときの平面図である。光合分波器1hでは、前端側を開口端とした合波コリメータC5が基板10の後方に配置されている。また合波コリメータC5の開口端は、分波コリメータC1〜C4の開口端と同一面で、しかも分波コリメータC1〜C4の配置領域の中心に配置されている。そして光合分波器1hにおける光路偏向部20eは、直角プリズムあるいは等脚台形プリズムからなる第1の光路偏向部21と菱形プリズムによって構成される第2の光路偏向部22とから構成されている。
光路偏向部20eの動作としては、まず、第1の光路偏向部21が、干渉膜フィルタF4から合波コリメータC5に向かう光L17を、上方に向かって屈曲させるとともに後方へ折り返す。したがって第1の光路偏向部21を入出射する光L18の光路は、左右方向から見てコの字型に屈曲している。また当該光L18の出射位置は、分波コリメータC2とC3の中間位置になっている。第1の光路偏向部21によって後方に折り返された光L18が第2の光路偏向部22に入射すると、第2の光路偏向部22は、その入射光L18を右方にシフトさせて後方に向かって出射する。そして第2の光路偏向部22を入出射する光L19の光路は、上下方向から見てクランク状に屈曲している。また光L19の左右方向の出射位置は、分波コリメータC3とC4の中間位置になっている。したがって第2の光路偏向部22から光L19が出射する位置は、前後方向から見ると、4つの分波コリメータC1〜C4の配置領域の中心となる。そしてこの光合分波器1hにおいても、図8(A)に示したように、基板10を前後方向に連絡して光を通す通路14が設けられている。なお、この第3の変形例において、例えば、第2の光路偏向部22を直角プリズムあるいは等脚台形プリズムとすれば、第1の光路偏向部21が後方に折り返した光L18を再度前方へ折り返すことができ、図8に示した光合分波器1gと同様の動作をする光合分波器を構成することができる。
このように第4の実施例に係る光合分波器(1d〜1h)では光路偏向部(20a〜20e)を備えることで、合波コリメータC5の位置を自由に設定することが可能となっている。なお図6〜図9に示した光合分波器(1d〜1h)における光路偏向部(20a〜20e)では、プリズムを用いて屈曲した光路を形成していたが、プリズムにおいて光路が屈曲される面をミラーで構成してもよい。
===第5の実施例===
干渉膜フィルタを用いた光合分波器では、入力された光を分波コリメータや合波コリメータの開口端の位置に精度良く導いて光損失を可能な限り小さくする必要がある。すなわち高い調芯精度が求められる。そして調芯精度を高めるためには、干渉膜フィルタやミラーを高精度に位置合わせした状態で固定する必要がある。特に第2の実施例に係る光合分波器1bは、干渉膜フィルタF1〜F4における光路のシフトを考慮した構成を有しており、より高い調芯精度が求められる。そこで本発明の第5の実施例に係る光合分波器では、調芯精度を向上させるとともに、調芯作業を容易にする構成や構造を備えている。
図10に第5の実施例に係る光合分波器1iを示した。図10(A)は当該光合分波器1iを左上後方から見たときの斜視図を示しており、図10(B)は光合分波器1iを左下後方から見たときの斜視図を示している。なお光合分波器1iの光学系、図4に示した第2の実施例に係る光合分波器1bと同様である。
図10(A)、(B)に示したように、基板10は、前後両端にxy面に平行な前後面を備えた平板状の部位が一体的に形成されて、左右方向から見るとH字状の形状を有している。そのH字状の基板10における、前後の板状の部位は分波コリメータC1〜C4、および合波コリメータC5を保持するためのコリメータ保持部(16、および17)であり、後方のコリメータ保持部16には前後方向に貫通する孔18が左右と上下の各方向に等間隔となるように4カ所に形成され、各孔18には分波コリメータC1〜C4のそれぞれの前端部分が挿通されている。また図10(B)に示したように、前方のコリメータ保持部17には、前後方向に貫通する孔19が1カ所に形成され、その孔19に合波コリメータC5の後端部分が挿通される。そして分波コリメータC1〜C4と合波コリメータC5は、溶接や接着などによってコリメータ保持部(16、17)に固定されている。
図10(A)に示したように、光合分波器1iの光学系において、ミラーM1と干渉膜フィルタF2は互いに対面してz軸方向に対してy軸周りに回転しており、このミラーM1と干渉膜フィルタF2は互いに対面する関係を維持したまま基板10とは別の補助基板30の上面に固定されている。そして、その補助基板30が基板10の上面11に積層されている。補助基板30には上下方向に貫通する孔31が形成されており、基板10の上面11には、この孔31に係合する扁平な円柱状の突起32が形成されている。突起32の中心軸33はy軸に平行であり、調芯作業を行う際には、補助基板30をその中心軸33周りに回転させる。そして調芯作業を終えたならば、補助基板30を溶接や接着などの方法によって基板10に固定する。それによってミラーM1の反射面と干渉膜フィルタF2の光の入出射面は、互いに対面しつつ、xy面をy軸周りに所定の角度で回転させた状態で固定される。
また図10(B)に示したように、基板10の下面12にも、互いに対面しつつ、xy面をy軸周りに所定角度だけ傾かせたミラーM3と干渉膜フィルタF4が配置されている。このミラーM3と干渉膜フィルタF4は、基板10の下面12に積層された補助基板40の下面に固定されている。またこの補助基板40にも上下方向に貫通する孔41が形成され、基板10の下面12にはこの孔41に係合する扁平円柱状の突起42が形成されている。基板10の上面11側の補助基板30と同様に、調芯作業時には補助基板40が突起42の軸43周りに基板10に対して回動可能になっている。調芯作業後では所定の回転位置に調整された状態で補助基板40が基板10に固定されている。
なお光合分波器1iでは、yz面を有する固定板50が基板10の上面11前方と下面12後方のそれぞれに配置されており、ミラーM2や干渉膜フィルタF3の右端面が固定板50の左面に接着されている。それによってミラーM2と干渉膜フィルタF3がx軸周りに所定の角度で傾いた状態で固定されている。またこの例では、固定板50は、切欠部13を介して上端側と下端側が接続された一体的な平板で構成されており、上端側と下端側とを接続する領域が切欠部13の右端側に嵌め込まれている。
===その他の実施例===
上記実施例では、4種類の異なる単色光の合波と分波を行う光合分波器を例示したが、上記各実施例をより多くの波長の光を入出力する光合分波器に適用することもできる。例えば、図11に示した光合分波器1jのように、後方から前方を見て、複数の分波コリメータC11〜C18を多角形の頂点の位置に配置してもよい。図示した例では8個の分波コリメータC11〜C18が正八角形の頂点を形成するように同一のxy面に配置されている。また各分波コリメータC11〜C18のうち少なくとも分波コリメータC11以外の前端側には図示しない干渉膜フィルタが配置され、分波コリメータC11と各干渉膜フィルタの前方には図示しないミラーが配置されている。そして、光路の起点となる分波コリメータC1から前方に向かう入力光が、各分波コリメータC11〜C18の光軸上に配置されているミラーと、干渉膜フィルタとを順次反射し、後方から前方を見ると、これらの反射を繰り返す光の光路Lが多角形を一方向に周回するように形成される。
あるいは、図12に示した光合分波器1kのように、後方から前方を見たときに、複数の分波コリメータC21〜C29が3行以上に行列配置されていてもよい。そして、分波コリメータC21を起点としてミラーと干渉膜フィルタとの間で順次反射して合波コリメータに至る光路Lが、後方から見たときに葛籠折れ状となるように形成されるようにしてもよい。なお分波コリメータの数によっては、全ての行に同じ数の分波コリメータを配置することができない場合がある。その場合は、最下行以外の行に同じ数の分波コリメータを配置すればよい。
上記各実施例における光合分波器では、光ファイバコリメータの開口端を外部からの光の出入り口である光入出力部としていたが、光入出力部の形態はどのようなものであってもよい。例えば、空間を伝搬するレーザー光が直接光学系に対して入出力する形態であってもよい。もちろん分波コリメータC1〜C4や合波コリメータC5に接続されている光ファイバが光コネクタなどを介してさらに他の光ファイバに接続されていてもよい。
本発明の実施例に係る光合分波器は、コリメータが配置される領域の面積を小さくすることができ、QSFP+やCFP4などの新規格の光トランシーバにも適用することが可能となる。そして、本発明の実施例には、光合分波器を二つ備えて、一方の光合分波器が光合波器として動作し、他方の光合分波器が光分波器として動作する光トランシーバも含まれ、その光トランシーバは、二つの光合分波器のうち、少なくとも一方が本発明の実施例に係る光合分波器となっている。
図13に本発明の実施例に係る光トランシーバ100の構成を示した。本発明の実施例に係る光トランシーバ100の構成は、上記非特許文献1に記載されているQSFP+規格の光トランシーバと同様であり、図13はその構成の概略を示している。光トランシーバ100は、多数のサーバ装置を備えたデータセンタなどに設置され、サーバ装置からのデータを光通信網Nに向かって出力するデータ送信装置と、光通信網Nから送信されてくる光信号を受信してサーバ装置に向けて出力するデータ受信装置の機能を備えたものである。
ここに示した光トランシーバ100は、上述した4種類の単色光の合波と分波を行う本発明の実施例に係る光合分波器101を二つ備え、一方が光合波器として動作する光合分波器(以下、光合波器101aとも言う)であり、他方が光分波器として動作する光合分波器(以下、光分波器101bとも言う)である。また光トランシーバ100の筐体102内には、光合波器101aと光分波器101bに加え、4個の発光手段121〜124と4個の受光手段151〜154が収納されている。各発光手段121〜124はレーザーダイオード(LD)やLDの駆動回路などを含んで構成されている。各受光手段151〜154は、フォトダイオード(PD)やPDによって光電変換された信号の増幅回路などを含んで構成されている。また、光トランシーバ100には、電気信号によるデータを入力する4系統の送信用のデータ伝送路111〜114、電気信号によるデータを出力する4系統の受信用のデータ伝送路161〜164が接続されている。さらに、光ファイバで構成されて、WDM方式によって多重化された光信号を光通信網Nへ向けて出力する送信用の光伝送路130、および光通信網Nからの多重化された光信号を光トランシーバ100内の光分波器101bに入力させる受信用の光伝送路140も接続されている。
次に、光通信網側を上流側とするとともに、信号の送信方向を上り方向、受信方向を下り方向として、光トランシーバ100における送信動作と受信動作について説明する。送信動作としては、まず、下流側に設置されているサーバ装置などから4系統の送信データのそれぞれに対応する電気信号が4系統の送信用のデータ伝送路111〜114を介して4個の発光手段121〜124に入力される。各発光手段121〜124は入力した電気信号を光信号に変換して出射する。また4個の発光手段121〜124は、互いに異なる波長λ〜λの単色光を出射する。なお、この例では、分波コリメータC1〜C4及び、合波コリメータC5は光ファイバコリメータであり、各発光手段121〜124のそれぞれからの出射光は光ファイバを介して光合波器101aの4つの分波コリメータC1〜C4に入力される。それによって異なる4種類の波長λ〜λの単色光からなる光信号が光合波器101aに入力される。光合波器101aは、入力した4種類の波長λ〜λの光を合波し、その合波した多重化光からなる光信号を合波コリメータC5から出力する。そして4種類の波長λ〜λの光を含む多重化光からなる光信号が光伝送路130を介して光通信網Nに送出される。
一方、受信動作については、光通信網Nから4種類の波長λ〜λの光を含む多重化光からなる光信号が光伝送路140を介して光分波器101bの合波コリメータC5に入力される。光分波器101bは、入力した多重化光を4種類の波長λ〜λの単色光に分波する。それによってそれぞれが異なる波長λ〜λの単色光からなる光信号が分波コリメータC1〜C4から出射される。各分波コリメータC1〜C4から出射された光信号は、4個の受光手段151〜154に個別に入力される。各受光手段151〜154は、受光した光信号を電気信号に変換して出力する。各受光手段151〜154が出力する電気信号は4系統の受信用のデータ伝送路161〜164を介して下流側のサーバ装置などに入力されてデータ処理に供される。
上記実施例は、発明の範囲を限定するものではない。上記の実施例の構成は、適宜組み合わせて実施することが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。上記実施例やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
1,1a〜1k 101、101a、101b 光合分波器、10 基板、
11 基板の上面、12 基板の下面、13 切欠部、20a〜20e 光路偏向部、
30,40 補助基板、50 固定板、100 光トランシーバ、102 光トランシーバの筐体、111〜114,161〜164 データ伝送路、
121〜124 発光手段、130,140 光伝送路、151〜154 受光手段、
C1〜C4 光ファイバコリメータ(分波コリメータ)、
C5 光ファイバコリメータ(合波コリメータ)、F1〜F4 干渉膜フィルタ、
L1〜L4 単一波長の光(単色光)、L5 合波された光(多重化光)、
M1〜M3 ミラー、N 光通信網

Claims (12)

  1. nを自然数として、波長の異なるn種類の単一波長の光を合波あるいは分波する光合分波器であって、
    外部に対する光の出入り口を光入出力部として、それぞれが異なる単一波長の光を入出力するための第1〜第nの分波光入出力部と、
    前記波長の異なるn種類の光を合波した光を入出力するための1個の合波光入出力部と、
    第2〜第nの分波光入出力部のそれぞれに対応する第2〜第nの干渉膜フィルタと、
    第1〜第n−1の分波光入出力部のそれぞれに対応する第1〜第n−1のミラーと、
    を有し、
    前記第1〜第nの分波光入出力部から出力される光の進行方向を前後方向として、
    前記第2〜第nの干渉膜フィルタは、それぞれに対応する前記分波光入出力部の前方に配置されて、対応する分波光入出力部に入出力される単一波長の光を選択的に透過させ、他の波長の光を反射し、
    前記第1〜第nの分波光入出力部は、後方から見て前後方向を法線とした同一の平面に二次元配置され、
    第1の分波光入出力部の入出力光の光路上に第1のミラーが配置され、
    kを2〜n−1の自然数として、第kの分波光入出力部の入出力光の光路上に、後方から前方に向かって、第kの干渉膜フィルタと第kのミラーがこの順に配置され、
    第1のミラーは、第1の分波光入出力部から前方に向かって出力された光を第2の干渉膜フィルタの方向へ反射させるように配置され、
    第kのミラーは、第kの分波光入出力部から前方に向かって出力されて第kの干渉膜フィルタを透過してきた光を第k+1の干渉膜フィルタの方向へ反射させるように配置され、
    第kの干渉膜フィルタは、第k−1のミラーから入射してきた光を前方に向けて反射させるように配置され、
    第nの分波光入出力部から前方に向かって出力されて、第nの干渉膜フィルタを透過した光の光路上に前記合波光入出力部が配置され、
    第1の分波光入出力部から出力された光は、第1〜第n−1のミラーと第2〜第nの干渉膜フィルタを交互に昇順に辿って前記合波光入出力部に入力し、
    mを2〜nの自然数として、
    第mの干渉膜フィルタは、前方から後方に向かう光から単一波長の光を透過させて第mの分波光入出力部に入力させるとともに、当該単一波長以外の波長の光を第m−1のミラーに向けて反射させるように配置され、
    合波光入出力部から出力された光は、第2〜第nの干渉膜フィルタと第1〜第n−1のミラーを交互に降順に辿って第mの分波光入出力部に入力するとともに、第1のミラーにて反射された光が第1の分波光入出力部に入力し、
    第1の分波光入出力部から合波光入出力部に至る光、および合波光入出力部から第1の分波光入出力部に至る光は、それぞれ、第1の分波光入出力部と第2の干渉膜フィルタとの間に形成される光路の途上、および第kの干渉膜フィルタと第k+1の干渉膜フィルタとの間に形成される光路の途上で、一回のみ反射する、
    ことを特徴とする光合分波器。
  2. 請求項1において、第1の光入出力部が入出力する単一波長の光を選択的に透過する第1の干渉膜フィルタが当該第1の分波光入出力部の前方に配置されて、当該第1の干渉膜フィルタの前方に第1のミラーが配置されていることを特徴とする光合分波器。
  3. 請求項1または2において、前記第1〜第nの光入出力部は、同一の平面上にn角形の頂点を形成する位置に配置されているとともに、昇順に前記n角形を一方向に周回する方向に順番に配置されていることを特徴とする光合分波器。
  4. 請求項1または2において、
    前記第1〜第nの分波光入出力部が配置されている面をxy面として、
    当該第1〜第nの分波光入出力部は、x軸方向を行方向として、y軸方向に平行に複数行を形成するように配置されているとともに、第1行に配置された第1の光入出力部を起点として、昇順に葛折れとなる位置に順番に配置され、
    第nの分波光入出力部が配置されている最終行には、最終行以外の行に配置されている分波光入出力部の数以下の分波光入出力部が配置されているとともに、当該最終行以外の各行には同数の複数の分波光入出力部が配置されている、
    ことを特徴とする光合分波器。
  5. 請求項4において、
    前記分波光入出力部は、n≧4の偶数であるとともに、第1行と第2行に配置され、
    第1行に第1〜第n/2の分波光入出力部が配置され、
    第2行に第n/2+1〜第nの分波光入出力部が配置され、
    前記干渉膜フィルタと前記ミラーは、行間に配置された基板の上面と下面に固定されている、
    ことを特徴とする光合分波器。
  6. 請求項5において、
    前後方向をz軸方向として、zx面に平行な同一の面に配置された第m−1のミラーと第mの干渉膜フィルタは、前記基板上に積層された同一の補助基板上に固定され、
    前記補助基板は、y軸周りに回動可能に構成されているともに、所定の回転位置で固定されている、
    ことを特徴とする光合分波器。
  7. 請求項4〜6のいずれかにおいて、前記基板は、yz面に平行な面を有する固定板を備え、行を跨いで配置された第m−1のミラーと第mの干渉膜フィルタは、yz面に平行な側面を有し、当該側面が前記固定板に固定されていることを特徴とする光合分波器。
  8. 請求項1〜7のいずれかにおいて、
    前記第1の分波光入出力部は、前記第1のミラーが後方に向かって反射した光の光路上に配置され、
    前記第kの分波光入出力部は、前記第kの干渉フィルタを前方から後方に透過する光の光路上に配置され、
    前記合波光入出力部は、第nの干渉膜フィルタを後方から前方に透過する光の光路上に配置されている、
    ことを特徴とする光合分波器。
  9. 請求項1〜8のいずれかにおいて、前記ミラー及び/又は前記干渉膜フィルタは、光の入射面に対面する裏面側を反射面としていることを特徴とする光合分波器。
  10. 請求項1〜9のいずれかにおいて、
    後方から前方を見て、第1〜第nの光入出力部が配置されている領域の内方に前記合波光入出力部が配置され、
    前記第nの干渉膜フィルタと前記合波光入出力部との間に屈曲した光路を形成させる光路偏向部を備える、
    ことを特徴とする光合分波器。
  11. 請求項10において、前記合波光入出力部は、前端に光の入出力口を有し、前記光路偏向部は、前記第nの光入出力部から出力された光を後方に折り返すことを特徴とする光合分波器。
  12. 筐体内に二つの光合分波器が収納され、一方の光合分波器を光合波器とし、他方の光合分波器を光分波器とした光トランシーバであって、前記二つの光合分波器の内、少なくとも一方が請求項1〜10のいずれかに記載の光合分波器であることを特徴とする光トランシーバ。
JP2016224800A 2016-11-18 2016-11-18 光合分波器、光トランシーバ Active JP6718619B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2016224800A JP6718619B2 (ja) 2016-11-18 2016-11-18 光合分波器、光トランシーバ
US15/815,711 US10187175B2 (en) 2016-11-18 2017-11-17 Optical multiplexer/demultiplexer and optical transceiver
CN201711145296.6A CN108072979B (zh) 2016-11-18 2017-11-17 光合波/分波器、光收发器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016224800A JP6718619B2 (ja) 2016-11-18 2016-11-18 光合分波器、光トランシーバ

Publications (3)

Publication Number Publication Date
JP2018081254A JP2018081254A (ja) 2018-05-24
JP2018081254A5 JP2018081254A5 (ja) 2019-11-07
JP6718619B2 true JP6718619B2 (ja) 2020-07-08

Family

ID=62198872

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016224800A Active JP6718619B2 (ja) 2016-11-18 2016-11-18 光合分波器、光トランシーバ

Country Status (1)

Country Link
JP (1) JP6718619B2 (ja)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6836590B2 (en) * 2002-07-26 2004-12-28 Oplink Communications, Inc. Optical subassembly with port configuration
JP2005107157A (ja) * 2003-09-30 2005-04-21 Matsushita Electric Works Ltd 光分合波器
US7843644B1 (en) * 2007-02-01 2010-11-30 Alliance Fiber Optic Products, Inc. Compact free-space WDM device with one-sided input/output ports
US9401773B1 (en) * 2015-03-04 2016-07-26 Alliance Fiber Optic Products, Inc. Compact multi-channel WDM devices for high-speed data communications

Also Published As

Publication number Publication date
JP2018081254A (ja) 2018-05-24

Similar Documents

Publication Publication Date Title
CN108072979B (zh) 光合波/分波器、光收发器
US9042731B2 (en) Optical module having a plurality of optical sources
US10551569B2 (en) Wavelength-division multiplexing optical assembly with multiple collimator sets
US10007065B2 (en) Multiplexed optoelectronic engines
US6267515B1 (en) Optical coupling module and manufacturing method of the same
JP2020021013A (ja) 波長多重光モジュール、波長分離光モジュール、及び光モジュール
US10924185B2 (en) Systems and methods of dual-side array bi-directional CWDM micro-optics
US20120328238A1 (en) Optical device
EP3679666A1 (en) An optical beam director
JP2007264033A (ja) 光モジュール、光伝送システム、光モジュールの製造方法
JP2009093101A (ja) 光モジュール
WO2011048599A9 (en) Method and system for switching optical channels
US20020105697A1 (en) Reduction of polarization-dependent loss from grating used in double-pass configuration
JPWO2006006197A1 (ja) 光モジュール及び光波長合分波装置
US6536957B1 (en) Integrated optical transceiver array
EP2083298B1 (en) Optical device comprising a compact dispersing system
JP6718619B2 (ja) 光合分波器、光トランシーバ
JP2014182224A (ja) 光素子
CN104254794A (zh) 光纤连接器组件
JP4505313B2 (ja) 光装置および光制御方法
US9971094B1 (en) Optical module
KR20110044048A (ko) 표면실장형 다파장 필터 모듈
JPH05203830A (ja) 光合分波器
US7272278B2 (en) Optical multiplexer/demultiplexer
WO2021005641A1 (ja) 光信号処理装置

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190924

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190924

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20191212

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20191219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200121

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200407

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200515

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200602

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200608

R150 Certificate of patent or registration of utility model

Ref document number: 6718619

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250