JP6714071B2 - Method for producing zinc oxide film - Google Patents

Method for producing zinc oxide film Download PDF

Info

Publication number
JP6714071B2
JP6714071B2 JP2018506763A JP2018506763A JP6714071B2 JP 6714071 B2 JP6714071 B2 JP 6714071B2 JP 2018506763 A JP2018506763 A JP 2018506763A JP 2018506763 A JP2018506763 A JP 2018506763A JP 6714071 B2 JP6714071 B2 JP 6714071B2
Authority
JP
Japan
Prior art keywords
zinc oxide
film
seed layer
zinc
vapor deposition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2018506763A
Other languages
Japanese (ja)
Other versions
JPWO2017163494A1 (en
Inventor
尭之 近藤
尭之 近藤
吉川 潤
潤 吉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Publication of JPWO2017163494A1 publication Critical patent/JPWO2017163494A1/en
Application granted granted Critical
Publication of JP6714071B2 publication Critical patent/JP6714071B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G9/00Compounds of zinc
    • C01G9/02Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/453Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zinc, tin, or bismuth oxides or solid solutions thereof with other oxides, e.g. zincates, stannates or bismuthates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/56After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Physical Vapour Deposition (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Description

本発明は、酸化亜鉛膜の製造方法に関するものである。 The present invention relates to a method for manufacturing a zinc oxide film.

酸化亜鉛(ZnO)は、透明導電膜や太陽電池、発光素子等への応用が期待されている。ZnOはAlやGa等の元素をドープすることで導電性を制御することが可能である。導電性ZnO膜の製造法としてはスパッタリング法やイオンプレーディング法が広く知られている。これらの手法では10−4Ωcmという低い比抵抗の膜が得られているが、これらの手法は真空プロセスを要する。このため、製造コストが過大になるという問題がある。Zinc oxide (ZnO) is expected to be applied to transparent conductive films, solar cells, light emitting devices and the like. ZnO can be controlled in conductivity by doping with an element such as Al or Ga. As a method of manufacturing a conductive ZnO film, a sputtering method and an ion plating method are widely known. Although a film having a resistivity as low as 10 −4 Ωcm has been obtained by these methods, these methods require a vacuum process. Therefore, there is a problem that the manufacturing cost becomes excessive.

これに対し、低コストプロセスである湿式法を用いた導電性ZnO膜の成膜が試みられている。非特許文献1(Adv. Mater. 26 (2014) pp.632-636)では、化学浴析出法(CBD法)を用いて、比抵抗が5.0×10−3ΩcmのZnO膜が得られている。しかし、膜表面に凹凸が見られることから、積層や接合を必要とするデバイスを作製するには不向きである。On the other hand, it has been attempted to form a conductive ZnO film using a wet method which is a low cost process. In Non-Patent Document 1 (Adv. Mater. 26 (2014) pp.632-636), a ZnO film having a specific resistance of 5.0×10 −3 Ωcm is obtained by using a chemical bath deposition method (CBD method). ing. However, since unevenness is seen on the film surface, it is not suitable for manufacturing a device that requires stacking or bonding.

また、発光ダイオード(LED)、面発光素子等の発光デバイスや、太陽電池、光センサ等の光デバイス用の基板として、高い透明性及び高い導電性を有する配向酸化亜鉛(ZnO)基板が提案されている。例えば、特許文献1(WO2016/035721A1)には、Al等のドーパント元素を含み、板面における(002)面の配向度が60%以上である、板状の酸化亜鉛焼結体が開示されている。 Further, an oriented zinc oxide (ZnO) substrate having high transparency and high conductivity has been proposed as a substrate for a light emitting device such as a light emitting diode (LED) and a surface emitting element, and an optical device such as a solar cell and an optical sensor. ing. For example, Patent Document 1 (WO2016/035721A1) discloses a plate-shaped zinc oxide sintered body containing a dopant element such as Al and having a (002) plane orientation degree of 60% or more in the plate surface. There is.

WO2016/035721A1WO2016/035721A1

Harald Hagendorfer et al., "Highly Transparent and Conductive ZnO: Al Thin Films from a Low Temperature Aqueous Solution Approach", Adv. Mater. 26 (2014) pp.632-636Harald Hagendorfer et al., "Highly Transparent and Conductive ZnO: Al Thin Films from a Low Temperature Aqueous Solution Approach", Adv. Mater. 26 (2014) pp.632-636

ところで、発光素子や太陽電池の作製等において、酸化亜鉛セラミックス基板上に湿式合成により酸化亜鉛膜を形成した場合、膜厚や膜の緻密度に面内分布が生じ、均一に成膜できないとの問題がある。湿式合成酸化亜鉛膜が不均一となる原因は明確ではないが、下地の酸化亜鉛セラミックス基板を構成する粒子の方位にバラツキがあることや、これらの粒子が配向していても極性(Zn面/O面)が不均一となることが考えられる。 By the way, when a zinc oxide film is formed on a zinc oxide ceramic substrate by wet synthesis in the production of a light emitting element or a solar cell, an in-plane distribution occurs in the film thickness and the film density, and it is impossible to form a uniform film. There's a problem. The cause of the non-uniformity of the wet-synthesized zinc oxide film is not clear, but there are variations in the orientation of the particles that make up the underlying zinc oxide ceramics substrate, and even if these particles are oriented, polar (Zn plane/ It is conceivable that the (O face) becomes non-uniform.

本発明者らは、今般、酸化亜鉛膜の形成に先立ち、酸化亜鉛セラミックス基板上に、酸化亜鉛とは異なる構造、すなわちウルツ鉱型以外の結晶構造又は非晶質構造の下地膜を形成することにより、酸化亜鉛セラミックス基板上に均一性の高い酸化亜鉛膜を湿式法で形成できるとの知見を得た。 The present inventors have now formed an underlying film having a structure different from zinc oxide, that is, a crystal structure other than wurtzite type or an amorphous structure, on a zinc oxide ceramic substrate prior to the formation of the zinc oxide film. As a result, it was found that a highly uniform zinc oxide film can be formed on a zinc oxide ceramic substrate by a wet method.

したがって、本発明の目的は、酸化亜鉛セラミックス基板上に均一性の高い酸化亜鉛膜を湿式法で形成可能な方法を提供することにある。 Therefore, an object of the present invention is to provide a method capable of forming a highly uniform zinc oxide film on a zinc oxide ceramic substrate by a wet method.

本発明の一態様によれば、酸化亜鉛膜の製造方法であって、
酸化亜鉛セラミックス基板上に、ウルツ鉱型以外の結晶構造又は非晶質構造を有する材料で構成される下地膜を形成する工程と、
前記下地膜を酸化亜鉛に転化することにより、又は前記下地膜上に酸化亜鉛を成膜することにより、酸化亜鉛で構成される種層を形成する工程と、
前記種層上に湿式法により酸化亜鉛膜を形成する工程と、
を含む、方法が提供される。
According to one aspect of the present invention, there is provided a method of manufacturing a zinc oxide film,
A step of forming a base film made of a material having a crystal structure or an amorphous structure other than wurtzite type on a zinc oxide ceramic substrate,
Forming a seed layer composed of zinc oxide by converting the base film into zinc oxide or by depositing zinc oxide on the base film;
A step of forming a zinc oxide film on the seed layer by a wet method,
Is provided.

比較例である例1において作製された酸化亜鉛膜の表面を走査電子顕微鏡で観察した画像である。It is the image which observed the surface of the zinc oxide film produced in Example 1 which is a comparative example with the scanning electron microscope. 例3において作製された酸化亜鉛膜の表面を走査電子顕微鏡で観察した画像である。It is the image which observed the surface of the zinc oxide film produced in Example 3 with the scanning electron microscope.

酸化亜鉛膜の製造方法
本発明による酸化亜鉛膜の製造方法においては、まず、酸化亜鉛セラミックス基板上に、ウルツ鉱型以外の結晶構造又は非晶質構造を有する材料で構成される下地膜を形成する。次いで、下地膜を酸化亜鉛に転化することにより、又は下地膜上に酸化亜鉛を成膜することにより、酸化亜鉛で構成される種層を形成する。その後、種層上に湿式法により酸化亜鉛膜を形成する。このように、酸化亜鉛膜の形成に先立ち、酸化亜鉛セラミックス基板上に、酸化亜鉛とは異なる構造、すなわちウルツ鉱型以外の結晶構造又は非晶質構造の下地膜を形成することにより、酸化亜鉛セラミックス基板上に均一性の高い酸化亜鉛膜を湿式法で形成することができる。この点、酸化亜鉛のスパッタ膜を酸化亜鉛セラミックス基板上に形成しても、その上に湿式法で形成される酸化亜鉛膜の不均一性は無くならない。これに対し、例えば金属亜鉛(これはウルツ鉱型以外の結晶構造を有する)を酸化亜鉛セラミックス基板上に形成し、その後酸化処理により酸化亜鉛とした後、酸化亜鉛膜を湿式法で形成すると、予想外にも均一に成膜できるのである。この挙動の原因は明らかでないが、ウルツ鉱型以外の結晶構造を有する材料で構成される下地膜を酸化亜鉛セラミックス基板上に形成することにより、下地膜下の酸化亜鉛セラミックス基板に由来する結晶情報が遮断され、その上に湿式合成により形成される酸化亜鉛膜に影響を与えなくなるものと考えられる。同様の理由から、非晶質構造を有する材料を酸化亜鉛セラミックス基板上に形成することによっても、上記同様の効果が得られるものと考えられる。
Method for Producing Zinc Oxide Film In the method for producing a zinc oxide film according to the present invention, first, a base film made of a material having a crystal structure or an amorphous structure other than wurtzite type is formed on a zinc oxide ceramic substrate. To do. Then, the seed layer formed of zinc oxide is formed by converting the base film into zinc oxide or by depositing zinc oxide on the base film. Then, a zinc oxide film is formed on the seed layer by a wet method. Thus, prior to the formation of the zinc oxide film, the zinc oxide ceramic substrate is formed with a base film having a structure different from that of zinc oxide, that is, a crystalline structure other than wurtzite type or an amorphous structure. A highly uniform zinc oxide film can be formed on a ceramic substrate by a wet method. In this respect, even if the sputtered film of zinc oxide is formed on the zinc oxide ceramics substrate, the non-uniformity of the zinc oxide film formed by the wet method on the substrate does not disappear. On the other hand, when, for example, metallic zinc (which has a crystal structure other than wurtzite type) is formed on a zinc oxide ceramic substrate, and then zinc oxide is formed by an oxidation treatment, the zinc oxide film is formed by a wet method. Unexpectedly, a uniform film can be formed. Although the cause of this behavior is not clear, the crystal information derived from the zinc oxide ceramic substrate under the base film is formed by forming the base film made of a material having a crystal structure other than wurtzite type on the zinc oxide ceramic substrate. Is considered to be blocked and does not affect the zinc oxide film formed thereon by wet synthesis. For the same reason, it is considered that the same effect as described above can be obtained by forming a material having an amorphous structure on the zinc oxide ceramics substrate.

(1)酸化亜鉛セラミックス基板上への下地膜の形成
酸化亜鉛セラミックス基板上に、ウルツ鉱型以外の結晶構造又は非晶質構造を有する材料で構成される下地膜を形成する。酸化亜鉛セラミックス基板は、透明性及び導電性を有しうる材料として、窒化ガリウム基板等の汎用の基板よりも安価であるとの優れた利点を有する。したがって、酸化亜鉛セラミックス基板は、高い透明性及び高い導電性を有するものが、発光ダイオード(LED)、面発光素子等の発光デバイスや、太陽電池、光センサ等の光デバイス用の基板として好ましい。そのような観点から、酸化亜鉛セラミックス基板は酸化亜鉛配向多結晶焼結体であるのが好ましく、特に好ましくはAl等のドーパント元素を含む酸化亜鉛配向多結晶焼結体(例えば特許文献1参照)である。
(1) Formation of Underlayer Film on Zinc Oxide Ceramic Substrate An underlayer film made of a material having a crystal structure or an amorphous structure other than wurtzite type is formed on a zinc oxide ceramic substrate. The zinc oxide ceramic substrate has an excellent advantage that it is cheaper than a general-purpose substrate such as a gallium nitride substrate as a material that can have transparency and conductivity. Therefore, the zinc oxide ceramic substrate having high transparency and high conductivity is preferable as a substrate for a light emitting device such as a light emitting diode (LED) or a surface emitting element, or an optical device such as a solar cell or an optical sensor. From such a viewpoint, the zinc oxide ceramics substrate is preferably a zinc oxide oriented polycrystalline sintered body, and particularly preferably a zinc oxide oriented polycrystalline sintered body containing a dopant element such as Al (see, for example, Patent Document 1). Is.

下地膜は、ウルツ鉱型以外の結晶構造又は非晶質構造を有する材料で構成されるものであれば特に限定されない。すなわち、下地膜は典型的にはウルツ鉱型以外の結晶構造を有するが、非晶質構造を有するものであってもよい。いずれにしても、発光素子や太陽電池への適用を考えた場合、ウルツ鉱型以外の結晶構造又は非晶質構造を有する材料は、透明性及び導電性を有する材料であるか、又は後処理(例えば酸化処理)により透明性及び導電性を有する材料に転化可能な材料であるのが好ましい。 The base film is not particularly limited as long as it is made of a material having a crystal structure or an amorphous structure other than wurtzite type. That is, the underlayer typically has a crystal structure other than wurtzite type, but may have an amorphous structure. In any case, when considering application to a light emitting element or a solar cell, a material having a crystal structure or an amorphous structure other than wurtzite type is a material having transparency and conductivity, or a post-treatment. A material that can be converted into a material having transparency and conductivity by (for example, oxidation treatment) is preferable.

本発明の好ましい態様においては、下地膜を構成する材料(すなわちウルツ鉱型以外の構造を有する材料)は金属亜鉛である。金属亜鉛は後処理(具体的には酸化処理)により透明性及び導電性を有する材料(具体的には酸化亜鉛)に転化可能な材料であるため、後続工程における種層の形成を金属亜鉛の酸化亜鉛への酸化により行うことができ、その結果、成膜工程数を減らすことができる。このように、金属亜鉛はその後の酸化処理により酸化亜鉛に転化することで、透明性と導電性を兼ね備えた種層をもたらすことができる。 In a preferred embodiment of the present invention, the material forming the base film (that is, the material having a structure other than wurtzite type) is metallic zinc. Since metallic zinc is a material that can be converted into a material having transparency and conductivity (specifically, zinc oxide) by a post-treatment (specifically, oxidation treatment), the formation of the seed layer in the subsequent step can be performed with It can be performed by oxidation to zinc oxide, and as a result, the number of film forming steps can be reduced. In this way, metallic zinc can be converted into zinc oxide by the subsequent oxidation treatment, so that a seed layer having both transparency and conductivity can be provided.

本発明の別の好ましい態様においては、下地膜を構成する材料(すなわちウルツ鉱型以外の構造を有する材料)は金属亜鉛以外の材料である。ウルツ鉱型以外の構造を有する材料は特に限定されないが、発光素子や太陽電池への適用を考えた場合、透明性と導電性を兼ね備えた材料とすることが好ましい。ウルツ鉱型以外の結晶構造又は非晶質構造を有する材料の好ましい例としては、インジウム−スズ酸化物(ITO)、フッ素ドープ酸化スズ、ニオブ添加酸化チタン、酸化マグネシウム、及びそれらの任意の組合せが挙げられる。 In another preferred embodiment of the present invention, the material forming the underlayer film (that is, the material having a structure other than wurtzite type) is a material other than metallic zinc. The material having a structure other than the wurtzite type is not particularly limited, but in consideration of application to a light emitting device or a solar cell, a material having both transparency and conductivity is preferable. Preferred examples of the material having a crystal structure or an amorphous structure other than the wurtzite type include indium-tin oxide (ITO), fluorine-doped tin oxide, niobium-added titanium oxide, magnesium oxide, and any combination thereof. Can be mentioned.

上記いずれの態様においても、下地膜を酸化亜鉛セラミックス基板上に形成する方法は特に限定されない。均一性等の観点から下地膜の形成は、物理気相成長(PVD)又は化学気相成長(CVD)により行われるのが好ましい。より好ましくは物理気相成長(PVD)であり、中でもスパッタリングが膜質、均一性、コスト等の観点から最も好ましい。スパッタリング方式は特に限定されないが、マグネトロンスパッタリングが好ましい。下地膜の厚さは、下地膜下の酸化亜鉛セラミックス基板に由来する結晶情報を遮断可能な厚さであれば特に限定されないが、好ましくは1〜500nmであり、より好ましくは1〜100nm、さらに好ましくは1〜50nmである。 In any of the above embodiments, the method for forming the base film on the zinc oxide ceramics substrate is not particularly limited. From the viewpoint of uniformity and the like, the formation of the base film is preferably performed by physical vapor deposition (PVD) or chemical vapor deposition (CVD). Physical vapor deposition (PVD) is more preferable, and sputtering is most preferable from the viewpoint of film quality, uniformity, cost and the like. The sputtering method is not particularly limited, but magnetron sputtering is preferable. The thickness of the base film is not particularly limited as long as it is a thickness capable of blocking crystal information derived from the zinc oxide ceramics substrate below the base film, but is preferably 1 to 500 nm, more preferably 1 to 100 nm, and further It is preferably 1 to 50 nm.

(2)酸化亜鉛種層の形成
次いで、酸化亜鉛で構成される種層を形成する。この種層の形成は、下地膜を酸化亜鉛に転化することにより、又は下地膜上に酸化亜鉛を成膜することにより行われる。
(2) Formation of Zinc Oxide Seed Layer Next, a seed layer composed of zinc oxide is formed. The seed layer is formed by converting the base film into zinc oxide or by forming zinc oxide on the base film.

上述のとおり、下地膜を構成する材料(すなわちウルツ鉱型以外の構造を有する材料)が金属亜鉛である態様においては、種層の形成が金属亜鉛の酸化亜鉛への酸化により行われるのが好ましい。金属亜鉛の酸化亜鉛への酸化は、酸素雰囲気等の酸化性雰囲気下にて所定の温度で熱処理することにより行うのが好ましい。好ましい熱処理温度は200〜600℃であり、より好ましくは300〜500℃である。上記温度での熱処理時間は特に限定されないが、好ましくは1時間以上であり、より好ましくは1〜20時間であり、さらに好ましくは3〜10時間である。 As described above, in the embodiment in which the material forming the underlayer film (that is, the material having a structure other than the wurtzite type) is metallic zinc, it is preferable that the seed layer is formed by oxidizing metallic zinc to zinc oxide. .. The oxidation of metallic zinc to zinc oxide is preferably performed by heat treatment at a predetermined temperature in an oxidizing atmosphere such as an oxygen atmosphere. The heat treatment temperature is preferably 200 to 600°C, more preferably 300 to 500°C. The heat treatment time at the above temperature is not particularly limited, but is preferably 1 hour or more, more preferably 1 to 20 hours, and further preferably 3 to 10 hours.

一方、下地膜を構成する材料(すなわちウルツ鉱型以外の構造を有する材料)が金属亜鉛以外の材料である態様においては、種層の形成は下地膜上に酸化亜鉛を成膜することにより行われるのが好ましい。種層の形成方法は特に限定されないが、均一性等の観点から種層の形成は物理気相成長(PVD)又は化学気相成長(CVD)により行われるのが好ましい。より好ましくは物理気相成長(PVD)であり、中でもスパッタリングが膜質、均一性、コスト等の観点から最も好ましい。スパッタリング方式は特に限定されないが、マグネトロンスパッタリングが好ましい。種層の厚さは特に限定されないが、好ましくは10〜500nmであり、より好ましくは50〜300nm、さらに好ましくは100〜200nmである。 On the other hand, in a mode in which the material forming the underlayer film (that is, the material having a structure other than the wurtzite type) is a material other than metallic zinc, the seed layer is formed by forming zinc oxide on the underlayer film. Preferably. The method for forming the seed layer is not particularly limited, but it is preferable that the seed layer is formed by physical vapor deposition (PVD) or chemical vapor deposition (CVD) from the viewpoint of uniformity. Physical vapor deposition (PVD) is more preferable, and sputtering is most preferable from the viewpoint of film quality, uniformity, cost and the like. The sputtering method is not particularly limited, but magnetron sputtering is preferable. The thickness of the seed layer is not particularly limited, but is preferably 10 to 500 nm, more preferably 50 to 300 nm, further preferably 100 to 200 nm.

(3)湿式法による酸化亜鉛膜の形成
その後、種層上に低コストプロセスである湿式法により酸化亜鉛膜を形成する。湿式法による酸化亜鉛膜の形成は、公知の方法により行えばよく、特に限定されない。好ましくは、湿式法による酸化亜鉛膜の形成は、種層が形成した酸化亜鉛セラミックス基板を、亜鉛イオンを含む原料溶液に50〜100℃の液温で浸漬して、種層上に酸化亜鉛を膜状に堆積させることにより行われる。原料溶液の液温は好ましくは50〜100℃であり、より好ましくは50〜95℃、さらに好ましくは60〜95℃、特に好ましくは70〜95℃である。種層付き基板の浸漬時間は必要とする膜厚が得られるまでの時間を適宜選択すればよく特に限定されないが、好ましくは30分以上、より好ましくは30〜120分、さらに好ましくは60〜120分である。
(3) Formation of Zinc Oxide Film by Wet Method After that, a zinc oxide film is formed on the seed layer by a wet method which is a low-cost process. The zinc oxide film may be formed by a wet method by a known method and is not particularly limited. Preferably, the zinc oxide film is formed by a wet method by immersing the zinc oxide ceramic substrate on which the seed layer is formed in a raw material solution containing zinc ions at a liquid temperature of 50 to 100° C. to deposit zinc oxide on the seed layer. It is performed by depositing in a film form. The liquid temperature of the raw material solution is preferably 50 to 100°C, more preferably 50 to 95°C, further preferably 60 to 95°C, and particularly preferably 70 to 95°C. The time for dipping the substrate with seed layer is not particularly limited as long as the time until the required film thickness is obtained is not particularly limited, but is preferably 30 minutes or more, more preferably 30 to 120 minutes, further preferably 60 to 120. Minutes.

原料溶液は亜鉛イオンを含む。原料溶液のZn濃度(すなわちZn源の濃度)は、好ましくは0.01〜0.2mol/Lであり、より好ましくは0.01〜0.1mol/Lである。原料溶液中の上記Zn濃度は亜鉛イオン供給源(Zn源)の溶解により実現することができる。Zn源の例としては、硫酸亜鉛、硝酸亜鉛、塩化亜鉛等が挙げられる。原料溶液のpHは、好ましくは10.0〜11.0であり、より好ましくは10.2〜10.8である。pHの調整は原料水溶液にアンモニア水を添加することにより行えばよい。 The raw material solution contains zinc ions. The Zn concentration of the raw material solution (that is, the concentration of the Zn source) is preferably 0.01 to 0.2 mol/L, more preferably 0.01 to 0.1 mol/L. The Zn concentration in the raw material solution can be realized by dissolving the zinc ion supply source (Zn source). Examples of the Zn source include zinc sulfate, zinc nitrate, zinc chloride and the like. The pH of the raw material solution is preferably 10.0 to 11.0, and more preferably 10.2 to 10.8. The pH may be adjusted by adding aqueous ammonia to the raw material aqueous solution.

好ましくは、原料溶液は導電性ドーパントを含む。導電性ドーパントの添加により所望の導電性を酸化亜鉛膜に付与することができる。導電性ドーパントの好ましい例としては、Al、Ga等の3B属元素、F、Cl、Br、I等の7B族元素等が挙げられ、特に好ましくはAl及びGa、最も好ましくはAlである。導電性ドーパントはそれを含む化合物又はイオンの形態で原料溶液に溶解させればよい。 Preferably, the raw material solution contains a conductive dopant. A desired conductivity can be imparted to the zinc oxide film by adding a conductive dopant. Preferable examples of the conductive dopant include Group 3B elements such as Al and Ga, and Group 7B elements such as F, Cl, Br and I, and the like, with Al and Ga being particularly preferable, and Al being most preferable. The conductive dopant may be dissolved in the raw material solution in the form of a compound or ion containing the conductive dopant.

導電性ドーパントがAlである場合、原料溶液にAl源としてアルミニウム塩が溶解されているのが好ましい。このとき、原料溶液のAl濃度が0.001〜0.010mol/Lであるのが好ましく、より好ましくは0.001〜0.008mol/L、さらに好ましくは0.001〜0.005mol/Lである。アルミニウム塩の例としては、硝酸アルミニウム、酢酸アルミニウム、塩化アルミニウムが挙げられる。この原料溶液の調製は、Zn源とAl源とを含む溶液を作製した後、NH等を用いて溶液のpHを10.0〜11.0に調整するのが好ましい。When the conductive dopant is Al, it is preferable that an aluminum salt is dissolved as an Al source in the raw material solution. At this time, the Al concentration of the raw material solution is preferably 0.001 to 0.010 mol/L, more preferably 0.001 to 0.008 mol/L, and further preferably 0.001 to 0.005 mol/L. is there. Examples of aluminum salts include aluminum nitrate, aluminum acetate, and aluminum chloride. In the preparation of this raw material solution, it is preferable to prepare a solution containing a Zn source and an Al source and then adjust the pH of the solution to 10.0 to 11.0 using NH 3 or the like.

原料溶液への基板の浸漬前に、原料溶液を上記液温に到達するまで加熱するのが好ましい。そして、上記液温に到達してから原料溶液を15〜60分保持した後、基板の浸漬を行うのがより好ましい。上述したとおり、Zn源とAl源とを含む原料溶液のpHをNH等を用いて10.0〜11.0に調整するのが好ましいところ、この原料溶液を加熱することでNHの溶解度が減少してpHの低下が生じる。その結果、ZnとAlが同時に析出する状態へと変化する。その状態の原料溶液に種層付き基板を浸漬することにより酸化亜鉛膜中にAlが取り込まれる。Before dipping the substrate in the raw material solution, it is preferable to heat the raw material solution until the liquid temperature is reached. Further, it is more preferable to immerse the substrate after holding the raw material solution for 15 to 60 minutes after reaching the liquid temperature. As described above, it is preferable to adjust the pH of the raw material solution containing the Zn source and the Al source to 10.0 to 11.0 using NH 3 or the like. By heating this raw material solution, the solubility of NH 3 is increased. Decrease to cause a decrease in pH. As a result, the state is changed to Zn and Al being simultaneously precipitated. By immersing the substrate with the seed layer in the raw material solution in that state, Al is taken into the zinc oxide film.

原料溶液から取り出した酸化亜鉛膜付き基板はイオン交換水で洗浄するのが好ましい。この洗浄は超音波洗浄により行われるのが好ましい。 The zinc oxide film-coated substrate taken out from the raw material solution is preferably washed with ion-exchanged water. This cleaning is preferably performed by ultrasonic cleaning.

必要に応じて、得られた酸化亜鉛膜を所定の温度で熱処理してもよい。好ましい熱処理温度は300〜800℃であり、より好ましくは300〜700℃、さらに好ましくは300〜600℃、特に好ましくは300〜500℃である。上記温度での熱処理時間は特に限定されないが、好ましくは1時間以上であり、より好ましくは1〜10時間であり、さらに好ましくは5〜10時間である。酸化亜鉛膜の熱処理は水素等を含む還元性雰囲気で行われるのがより低い比抵抗を実現しやすい点で好ましい。こうして作製した膜を熱処理することにより膜中に取り込まれたAlがドーパントとしてより効果的に機能するようになり、導電性が向上する。 If necessary, the obtained zinc oxide film may be heat-treated at a predetermined temperature. The preferable heat treatment temperature is 300 to 800°C, more preferably 300 to 700°C, further preferably 300 to 600°C, and particularly preferably 300 to 500°C. The heat treatment time at the above temperature is not particularly limited, but is preferably 1 hour or more, more preferably 1 to 10 hours, and further preferably 5 to 10 hours. The heat treatment of the zinc oxide film is preferably performed in a reducing atmosphere containing hydrogen or the like because it is easy to realize a lower specific resistance. By heat-treating the thus-produced film, Al taken into the film functions more effectively as a dopant and conductivity is improved.

なお、上記説明において、導電性ドーパントとしてAlを例にとり説明したが、Ga等の他の導電性ドーパントもAlと同様に使用可能である。 Although Al has been described as an example of the conductive dopant in the above description, other conductive dopants such as Ga can be used in the same manner as Al.

本発明を以下の例によってさらに具体的に説明する。 The present invention will be described more specifically by the following examples.

例1(比較)
(1)高配向ZnOセラミックス基板の作製
硫酸亜鉛七水和物(高純度化学研究所製)1730gとグルコン酸ナトリウム(和光純薬工業製)4.5gをイオン交換水3000gに溶解した。この溶液をビーカーに入れ、マグネットスターラーで攪拌しながら90℃に加熱した。この溶液を90℃に保持し且つ攪拌しながら、25%アンモニウム水490gをマイクロチューブポンプにて滴下した。滴下終了後、90℃にて攪拌しながら4時間保持した後、静置した。沈殿物をろ過により分離し、更にイオン交換水による洗浄を3回行い、乾燥して白色粉末状の酸化亜鉛前駆物質を得た。得られた酸化亜鉛前駆物質をジルコニア製のセッターに載置し、電気炉にて大気中で仮焼することにより、板状多孔質酸化亜鉛粉末を得た。仮焼時の温度スケジュールは、室温から900℃まで昇温速度100℃/hにて昇温した後、900℃で30分間保持し、自然放冷とした。得られた板状酸化亜鉛粉末をZrO製ボールを用い、ボールミルにて平均粒径1.0μmまで粉砕した。
Example 1 (comparison)
(1) Preparation of Highly Oriented ZnO Ceramics Substrate 1730 g of zinc sulfate heptahydrate (manufactured by Kojundo Chemical Laboratory Co., Ltd.) and 4.5 g of sodium gluconate (manufactured by Wako Pure Chemical Industries) were dissolved in 3000 g of ion-exchanged water. This solution was placed in a beaker and heated to 90° C. with stirring with a magnetic stirrer. While maintaining this solution at 90° C. and stirring, 490 g of 25% ammonium water was added dropwise with a microtube pump. After completion of dropping, the mixture was kept at 90° C. for 4 hours while stirring, and then left standing. The precipitate was separated by filtration, washed with ion-exchanged water three times, and dried to obtain a white powdery zinc oxide precursor. The obtained zinc oxide precursor was placed on a zirconia setter and calcined in the atmosphere in an electric furnace to obtain a plate-like porous zinc oxide powder. The temperature schedule during calcination was that the temperature was raised from room temperature to 900° C. at a rate of temperature increase of 100° C./h, held at 900° C. for 30 minutes, and allowed to cool naturally. The obtained plate-shaped zinc oxide powder was crushed with a ball made of ZrO 2 to an average particle size of 1.0 μm by a ball mill.

上記の方法により得た酸化亜鉛板状粒子4.8重量部と、市販の高純度ZnO粉末(比表面積9.4m/g)95.2重量部と、市販の高純度θ−Al粉末(比表面積82m/g)0.25重量部と、バインダー(ポリビニルブチラール:品番BM−2、積水化学工業株式会社製)と、可塑剤(DOP:ジ(2−エチルヘキシル)フタレート、黒金化成株式会社製)と、分散剤(製品名レオドールSP−O30、花王株式会社製)と、分散媒(2−エチルヘキサノール)とを三本ロールミルで混合した。分散媒の量はスラリー粘度が20000cPとなるように調整した。こうして調製されたスラリーを、ドクターブレード法により、PETフィルムの上に、乾燥後の厚さが50μmとなるようにシート状に成形した。得られたテープを切断及び積層し、厚さ10mmのアルミニウム板の上に載置した後、真空パックを行った。この真空パックを85℃の温水中で、200kgf/cmの圧力にて静水圧プレスを行い、直径約65mm×厚さ1.5mmの円板状の成形体を作製した。得られた成形体を脱脂炉中に配置し、600℃で20時間の条件で脱脂を行った。得られた脱脂体を大気中、1400℃で5時間の条件で常圧焼成して、円板状の焼結体を作製した。作製した焼結体を90mm角のアルミナ製の鞘に入れ、熱間等方圧加圧法(HIP)処理をArガス中、1300℃で2時間の条件で行った。得られた焼結体の周囲を加工し、ダイヤモンドスラリーにて表面を鏡面研磨し、表面粗さ(算術平均粗さ)Ra≦5nm、直径約52mm×厚さ0.6mmのZnOセラミックス基板を得た。こうして得られたZnOセラミックス基板はドーパントのAlや酸素欠損等に起因する導電性を示すと共に、高いc面配向度に起因する高い透光性を示した。4.8 parts by weight of zinc oxide plate-like particles obtained by the above method, 95.2 parts by weight of commercially available high-purity ZnO powder (specific surface area 9.4 m 2 /g), and commercially available high-purity θ-Al 2 O 0.25 parts by weight of 3 powders (specific surface area 82 m 2 /g), binder (polyvinyl butyral: product number BM-2, manufactured by Sekisui Chemical Co., Ltd.), plasticizer (DOP: di(2-ethylhexyl) phthalate, black Kinkasei Co., Ltd.), a dispersant (product name: Leodol SP-O30, manufactured by Kao Co., Ltd.), and a dispersion medium (2-ethylhexanol) were mixed with a three-roll mill. The amount of the dispersion medium was adjusted so that the slurry viscosity would be 20000 cP. The slurry thus prepared was formed into a sheet by a doctor blade method on a PET film so that the thickness after drying was 50 μm. The obtained tape was cut and laminated, placed on an aluminum plate having a thickness of 10 mm, and then vacuum packed. This vacuum pack was hydrostatically pressed at a pressure of 200 kgf/cm 2 in warm water of 85° C. to prepare a disk-shaped molded body having a diameter of about 65 mm×a thickness of 1.5 mm. The obtained molded body was placed in a degreasing furnace and degreased at 600° C. for 20 hours. The obtained degreased body was fired under atmospheric pressure at 1400° C. for 5 hours under atmospheric pressure to produce a disc-shaped sintered body. The produced sintered body was put in a 90 mm square alumina sheath, and hot isostatic pressing (HIP) treatment was performed in Ar gas at 1300° C. for 2 hours. The periphery of the obtained sintered body is processed, and the surface is mirror-polished with a diamond slurry to obtain a ZnO ceramic substrate having a surface roughness (arithmetic mean roughness) Ra≦5 nm, a diameter of about 52 mm and a thickness of 0.6 mm. It was The ZnO ceramics substrate obtained in this manner showed conductivity due to Al as a dopant, oxygen deficiency, and the like, and also showed high translucency due to a high degree of c-plane orientation.

(2)湿式合成ZnO膜の成膜
上記ZnOセラミックス基板に、RFマグネトロンスパッタリングにより厚さ100nmのZnO薄膜を種層として形成した。こうして種層付き基板を得た。
(2) Film formation of wet-synthesized ZnO film A ZnO thin film having a thickness of 100 nm was formed as a seed layer on the above ZnO ceramic substrate by RF magnetron sputtering. Thus, a substrate with a seed layer was obtained.

Zn源として硝酸亜鉛六水和物(関東化学製)を、Al源として硝酸アルミニウム九水和物(関東化学製)をそれぞれイオン交換水に溶かして、Zn濃度が25mM、Al濃度が0.5mMの原料水溶液を調製した。得られた原料水溶液にアンモニア水(シグマアルドリッチ製)をpHが10.4となるように添加した。こうしてpH調整した水溶液を90℃にまで加熱した。90℃に到達してから30分経過後に種層付き基板を原料水溶液中に浸漬した。液温を90℃に保持したまま種層付き基板を静置してZnO析出物を膜状に堆積させ、60分後に取り出した。取り出した基板をイオン交換水中で超音波洗浄した。こうしてZnOセラミックス基板上に湿式合成ZnO膜を形成した。 Zinc nitrate hexahydrate (manufactured by Kanto Kagaku) as a Zn source and aluminum nitrate nonahydrate (manufactured by Kanto Kagaku) as an Al source were dissolved in ion-exchanged water to obtain a Zn concentration of 25 mM and an Al concentration of 0.5 mM. A raw material aqueous solution was prepared. Ammonia water (manufactured by Sigma-Aldrich) was added to the obtained raw material aqueous solution so that the pH was 10.4. The pH adjusted aqueous solution was heated to 90°C. Thirty minutes after the temperature reached 90° C., the substrate with seed layer was immersed in the raw material aqueous solution. The substrate with the seed layer was allowed to stand while the liquid temperature was maintained at 90° C. to deposit a ZnO precipitate in the form of a film, which was taken out after 60 minutes. The taken-out substrate was ultrasonically cleaned in ion-exchanged water. Thus, a wet-synthesized ZnO film was formed on the ZnO ceramic substrate.

(3)表面・断面観察による湿式合成ZnO膜の均質性確認
作製したZnOセラミックス基板上に形成した湿式合成ZnO膜の表面及び断面を走査電子顕微鏡により観察した結果、図1に示されるような成膜状態の不均質性が認められた。発光素子や太陽電池デバイスの作製のためには、その後にp型層や電極等の材料を成膜する必要があるが、上記のような不均質性は、デバイス特性の面内バラツキやリーク電流の発生原因となり、デバイス特性を悪化させるため、好ましくない。
(3) Confirmation of homogeneity of wet-synthesized ZnO film by observing surface/cross-section The surface and cross-section of the wet-synthesized ZnO film formed on the prepared ZnO ceramic substrate were observed by a scanning electron microscope, and the results shown in FIG. 1 were obtained. Inhomogeneity of the film state was observed. In order to manufacture a light emitting element or a solar cell device, it is necessary to subsequently deposit a material such as a p-type layer or an electrode. However, the above-mentioned inhomogeneity causes in-plane variation of device characteristics and leakage current. Is a cause of deterioration of device characteristics and is not preferable.

例2(比較)
(1)ZnOセラミックス基板の作製
例1と同様にZnOセラミックス基板を作製した。
Example 2 (comparison)
(1) Preparation of ZnO ceramic substrate A ZnO ceramic substrate was prepared in the same manner as in Example 1.

(2)湿式合成ZnO膜の成膜
上記ZnOセラミックス基板に種層を形成することなく、以下のようにして湿式合成ZnO膜を形成した。まず、Zn源として硝酸亜鉛六水和物(関東化学製)を、Al源として硝酸アルミニウム九水和物(関東化学製)をそれぞれイオン交換水に溶かして、Zn濃度が25mM、Al濃度が0.5mMの原料水溶液を調製した。得られた原料水溶液にアンモニア水(シグマアルドリッチ製)をpHが10.4となるように添加した。こうしてpH調整した水溶液を90℃にまで加熱した。90℃に到達してから30分経過後に基板を原料水溶液中に浸漬した。液温を90℃に保持したまま基板を静置してZnO析出物を膜状に堆積させ、60分後に取り出した。取り出した基板をイオン交換水中で超音波洗浄した。こうしてZnOセラミックス基板上に湿式合成ZnO膜を形成した。
(2) Formation of Wet Synthetic ZnO Film The wet synthetic ZnO film was formed as follows without forming a seed layer on the ZnO ceramic substrate. First, zinc nitrate hexahydrate (manufactured by Kanto Chemical Co., Inc.) as a Zn source and aluminum nitrate nonahydrate (manufactured by Kanto Chemical Co., Inc.) as an Al source were dissolved in ion-exchanged water to obtain a Zn concentration of 25 mM and an Al concentration of 0, respectively. A 0.5 mM raw material aqueous solution was prepared. Ammonia water (manufactured by Sigma-Aldrich) was added to the obtained raw material aqueous solution so that the pH was 10.4. The pH adjusted aqueous solution was heated to 90°C. The substrate was immersed in the raw material aqueous solution 30 minutes after the temperature reached 90°C. The substrate was allowed to stand while the liquid temperature was kept at 90° C. to deposit a ZnO precipitate in the form of a film, which was taken out after 60 minutes. The taken-out substrate was ultrasonically cleaned in ion-exchanged water. Thus, a wet-synthesized ZnO film was formed on the ZnO ceramic substrate.

(3)表面・断面観察による湿式合成ZnO膜の均質性確認
例1と同様に湿式合成ZnO膜の均質性を確認した結果、不均質であることが確認された。
(3) Confirmation of homogeneity of wet-synthesized ZnO film by surface/cross-section observation As a result of confirming homogeneity of the wet-synthesized ZnO film as in Example 1, it was confirmed to be non-homogeneous.

例3
(1)ZnOセラミックス基板の作製
例1と同様にZnOセラミックス基板を作製した。
Example 3
(1) Preparation of ZnO ceramic substrate A ZnO ceramic substrate was prepared in the same manner as in Example 1.

(2)湿式合成ZnO膜の成膜
上記ZnOセラミックス基板に、DCマグネトロンスパッタリングにより厚さ50nmの金属Zn層を形成した。その後、この金属Zn薄膜付き基板を酸素雰囲気中400℃で10時間保持して金属ZnをZnOに酸化して、種層としてのZnO膜とした。こうして種層付き基板を得た。
(2) Formation of wet-synthesized ZnO film A metal Zn layer having a thickness of 50 nm was formed on the above ZnO ceramic substrate by DC magnetron sputtering. Then, the substrate with the metal Zn thin film was kept in an oxygen atmosphere at 400° C. for 10 hours to oxidize the metal Zn into ZnO to form a ZnO film as a seed layer. Thus, a substrate with a seed layer was obtained.

Zn源として硝酸亜鉛六水和物(関東化学製)を、Al源として硝酸アルミニウム九水和物(関東化学製)をそれぞれイオン交換水に溶かして、Zn濃度が25mM、Al濃度が0.5mMの原料水溶液を調製した。得られた原料水溶液にアンモニア水(シグマアルドリッチ製)をpHが10.4となるように添加した。こうしてpH調整した水溶液を90℃に加熱した。90℃に到達してから30分経過後に種層付き基板を原料水溶液中に浸漬した。液温を90℃に保持したまま静置してZnO析出物を膜状に堆積させ、60分後に取り出した。取り出した基板をイオン交換水中で超音波洗浄した。こうしてZnOセラミックス基板上に湿式合成ZnO膜を形成した。 Zinc nitrate hexahydrate (manufactured by Kanto Kagaku) as a Zn source and aluminum nitrate nonahydrate (manufactured by Kanto Kagaku) as an Al source were dissolved in ion-exchanged water to obtain a Zn concentration of 25 mM and an Al concentration of 0.5 mM. A raw material aqueous solution was prepared. Ammonia water (manufactured by Sigma-Aldrich) was added to the obtained raw material aqueous solution so that the pH was 10.4. The pH adjusted aqueous solution was heated to 90°C. Thirty minutes after the temperature reached 90° C., the substrate with seed layer was immersed in the raw material aqueous solution. While keeping the liquid temperature at 90° C., the solution was left standing to deposit a ZnO precipitate in a film form, and after 60 minutes, it was taken out. The taken-out substrate was ultrasonically cleaned in ion-exchanged water. Thus, a wet-synthesized ZnO film was formed on the ZnO ceramic substrate.

(3)表面・断面観察による湿式合成ZnO膜の均質性確認
例1と同様に湿式合成ZnO膜の均質性を確認した結果、図2に示されるように均質であることが確認された。
(3) Confirmation of homogeneity of wet-synthesized ZnO film by surface/cross-section observation As a result of confirming homogeneity of the wet-synthesized ZnO film as in Example 1, it was confirmed that the wet-synthesized ZnO film was homogeneous as shown in FIG.

例4
(1)ZnOセラミックス基板の作製
例1と同様にZnOセラミックス基板を作製した。
Example 4
(1) Preparation of ZnO ceramic substrate A ZnO ceramic substrate was prepared in the same manner as in Example 1.

(2)湿式合成ZnO膜の成膜
上記ZnOセラミックス基板に、RFマグネトロンスパッタリングにより厚さ50nmのMgO層を下地層として形成した。その後、下地層上に、RFマグネトロンスパッタリングにより厚さ100nmのZnO薄膜を種層として形成した。こうして種層付き基板を得た。
(2) Film formation of wet-synthesized ZnO film On the above ZnO ceramic substrate, a MgO layer having a thickness of 50 nm was formed as an underlayer by RF magnetron sputtering. Then, a 100 nm-thick ZnO thin film was formed as a seed layer on the underlayer by RF magnetron sputtering. Thus, a substrate with a seed layer was obtained.

Zn源として硝酸亜鉛六水和物(関東化学製)を、Al源として硝酸アルミニウム九水和物(関東化学製)をそれぞれイオン交換水に溶かして、Zn濃度が25mM、Al濃度が0.5mMの原料水溶液を調製した。得られた原料水溶液にアンモニア水(シグマアルドリッチ製)をpHが10.4となるように添加した。こうしてpH調整した水溶液を90℃に加熱した。90℃に到達してから30分経過後に種層付き基板を原料水溶液中に浸漬した。液温を90℃に保持したまま静置してZnO析出物を膜状に堆積させ、60分後に取り出した。取り出した基板をイオン交換水中で超音波洗浄した。こうしてZnOセラミックス基板上に湿式合成ZnO膜を形成した。 Zinc nitrate hexahydrate (manufactured by Kanto Chemical Co., Inc.) as a Zn source and aluminum nitrate nonahydrate (manufactured by Kanto Chemical Co., Inc.) as an Al source were dissolved in ion-exchanged water to obtain a Zn concentration of 25 mM and an Al concentration of 0.5 mM. A raw material aqueous solution was prepared. Ammonia water (manufactured by Sigma-Aldrich) was added to the obtained raw material aqueous solution so that the pH was 10.4. The pH adjusted aqueous solution was heated to 90°C. Thirty minutes after the temperature reached 90° C., the seed layer-coated substrate was immersed in the raw material aqueous solution. While keeping the liquid temperature at 90° C., the solution was left standing to deposit a ZnO precipitate in a film form, and after 60 minutes, it was taken out. The taken-out substrate was ultrasonically cleaned in ion-exchanged water. Thus, a wet-synthesized ZnO film was formed on the ZnO ceramic substrate.

(3)表面・断面観察による湿式合成ZnO膜の均質性確認
例1と同様に湿式合成ZnO膜の均質性を確認した結果、均質であることが確認された。
(3) Confirmation of homogeneity of wet-synthesized ZnO film by surface/cross-section observation As a result of confirming homogeneity of the wet-synthesized ZnO film as in Example 1, it was confirmed to be homogeneous.

例5
(1)ZnOセラミックス基板の作製
例1と同様にZnOセラミックス基板を作製した。
Example 5
(1) Preparation of ZnO ceramic substrate A ZnO ceramic substrate was prepared in the same manner as in Example 1.

(2)湿式合成ZnO膜の成膜
上記ZnOセラミックス基板に、DCマグネトロンスパッタリングにより厚さ50nmのインジウム−スズ酸化物(ITO)層を下地層として形成した。その後、下地層上に、RFマグネトロンスパッタリングにより厚さ100nmのZnO薄膜を種層として形成した。こうして種層付き基板を得た。
(2) Film formation of wet-synthesized ZnO film On the ZnO ceramic substrate, an indium-tin oxide (ITO) layer having a thickness of 50 nm was formed as a base layer by DC magnetron sputtering. Then, a 100 nm-thick ZnO thin film was formed as a seed layer on the underlayer by RF magnetron sputtering. Thus, a substrate with a seed layer was obtained.

Zn源として硝酸亜鉛六水和物(関東化学製)を、Al源として硝酸アルミニウム九水和物(関東化学製)をそれぞれイオン交換水に溶かして、Zn濃度が25mM、Al濃度が0.5mMの原料水溶液を調製した。得られた原料水溶液にアンモニア水(シグマアルドリッチ製)をpHが10.4となるように添加した。こうしてpH調整した水溶液を90℃に加熱した。90℃に到達してから30分経過後に種層付き基板を原料水溶液中に浸漬した。液温を90℃に保持したまま静置してZnO析出物を膜状に堆積させ、60分後に取り出した。取り出した基板をイオン交換水中で超音波洗浄した。こうしてZnOセラミックス基板上に湿式合成ZnO膜を形成した。 Zinc nitrate hexahydrate (manufactured by Kanto Kagaku) as a Zn source and aluminum nitrate nonahydrate (manufactured by Kanto Kagaku) as an Al source were dissolved in ion-exchanged water to obtain a Zn concentration of 25 mM and an Al concentration of 0.5 mM. A raw material aqueous solution was prepared. Ammonia water (manufactured by Sigma-Aldrich) was added to the obtained raw material aqueous solution so that the pH was 10.4. The pH adjusted aqueous solution was heated to 90°C. Thirty minutes after the temperature reached 90° C., the substrate with seed layer was immersed in the raw material aqueous solution. While keeping the liquid temperature at 90° C., the solution was left standing to deposit a ZnO precipitate in a film form, and after 60 minutes, it was taken out. The taken-out substrate was ultrasonically cleaned in ion-exchanged water. Thus, a wet-synthesized ZnO film was formed on the ZnO ceramic substrate.

(3)表面・断面観察による湿式合成ZnO膜の均質性確認
例1と同様に湿式合成ZnO膜の均質性を確認した結果、均質であることが確認された。
(3) Confirmation of homogeneity of wet-synthesized ZnO film by surface/cross-section observation As a result of confirming homogeneity of the wet-synthesized ZnO film as in Example 1, it was confirmed to be homogeneous.

Claims (11)

酸化亜鉛膜の製造方法であって、
酸化亜鉛セラミックス基板上に、ウルツ鉱型以外の結晶構造又は非晶質構造を有する材料で構成される下地膜を形成する工程と、
前記下地膜を酸化亜鉛に転化することにより、又は前記下地膜上に酸化亜鉛を成膜することにより、酸化亜鉛で構成される種層を形成する工程と、
前記種層上に湿式法により酸化亜鉛膜を形成する工程と、
を含む、方法。
A method of manufacturing a zinc oxide film, comprising:
A step of forming a base film made of a material having a crystal structure or an amorphous structure other than wurtzite type on a zinc oxide ceramic substrate,
Forming a seed layer composed of zinc oxide by converting the base film into zinc oxide or by depositing zinc oxide on the base film;
A step of forming a zinc oxide film on the seed layer by a wet method,
Including the method.
前記下地層の形成が物理気相成長又は化学気相成長により行われる、請求項1に記載の方法。 The method according to claim 1, wherein the formation of the underlayer is performed by physical vapor deposition or chemical vapor deposition. 前記下地層の形成が物理気相成長により行われ、前記物理気相成長がスパッタリングである、請求項2に記載の方法。 The method according to claim 2, wherein the formation of the underlayer is performed by physical vapor deposition, and the physical vapor deposition is sputtering. 前記ウルツ鉱型以外の結晶構造又は非晶質構造を有する材料が、透明性及び導電性を有する材料であるか、又は後処理により透明性及び導電性を有する材料に転化可能な材料である、請求項1〜3のいずれか一項に記載の方法。 The material having a crystal structure or an amorphous structure other than the wurtzite type is a material having transparency and conductivity, or a material which can be converted into a material having transparency and conductivity by post-treatment, The method according to claim 1. 前記ウルツ鉱型以外の結晶構造又は非晶質構造を有する材料が、金属亜鉛であり、前記種層の形成が前記金属亜鉛の酸化亜鉛への酸化により行われる、請求項1〜4のいずれか一項に記載の方法。 The material having a crystal structure or an amorphous structure other than the wurtzite type is metallic zinc, and the formation of the seed layer is performed by oxidizing the metallic zinc to zinc oxide. The method according to paragraph 1. 前記ウルツ鉱型以外の結晶構造又は非晶質構造を有する材料が、金属亜鉛以外の材料であり、前記種層の形成が前記下地膜上に酸化亜鉛を成膜することにより行われる、請求項1〜4のいずれか一項に記載の方法。 The material having a crystal structure or an amorphous structure other than the wurtzite type is a material other than metallic zinc, and the seed layer is formed by forming zinc oxide on the base film. The method according to any one of 1 to 4. 前記ウルツ鉱型以外の結晶構造又は非晶質構造を有する材料が、インジウム−スズ酸化物(ITO)、フッ素ドープ酸化スズ、ニオブ添加酸化チタン、及び酸化マグネシウムからなる群から選択される少なくとも1種である、請求項6に記載の方法。 The material having a crystal structure or an amorphous structure other than the wurtzite type is at least one selected from the group consisting of indium-tin oxide (ITO), fluorine-doped tin oxide, niobium-added titanium oxide, and magnesium oxide. 7. The method of claim 6, wherein 前記種層の形成が物理気相成長又は化学気相成長により行われる、請求項6又は7に記載の方法。 The method according to claim 6, wherein the seed layer is formed by physical vapor deposition or chemical vapor deposition. 前記種層の形成が物理気相成長により行われ、前記物理気相成長がスパッタリングである、請求項8に記載の方法。 The method according to claim 8, wherein the formation of the seed layer is performed by physical vapor deposition, and the physical vapor deposition is sputtering. 前記湿式法による前記酸化亜鉛膜の形成が、前記種層を形成した酸化亜鉛セラミックス基板を、亜鉛イオンを含む原料溶液に50〜100℃の液温で浸漬して、前記種層上に酸化亜鉛を膜状に堆積させることを含む、請求項1〜9のいずれか一項に記載の方法。 To form the zinc oxide film by the wet method, the zinc oxide ceramic substrate having the seed layer formed thereon is immersed in a raw material solution containing zinc ions at a liquid temperature of 50 to 100° C. to form zinc oxide on the seed layer. 10. A method according to any one of claims 1-9, comprising depositing the in a film. 前記酸化亜鉛セラミックス基板が酸化亜鉛配向多結晶焼結体である、請求項1〜10のいずれか一項に記載の方法。



The method according to claim 1, wherein the zinc oxide ceramic substrate is a zinc oxide oriented polycrystalline sintered body.



JP2018506763A 2016-03-24 2016-12-05 Method for producing zinc oxide film Expired - Fee Related JP6714071B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2016060783 2016-03-24
JP2016060783 2016-03-24
PCT/JP2016/086099 WO2017163494A1 (en) 2016-03-24 2016-12-05 Method for producing zinc oxide film

Publications (2)

Publication Number Publication Date
JPWO2017163494A1 JPWO2017163494A1 (en) 2019-01-24
JP6714071B2 true JP6714071B2 (en) 2020-06-24

Family

ID=59901096

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018506763A Expired - Fee Related JP6714071B2 (en) 2016-03-24 2016-12-05 Method for producing zinc oxide film

Country Status (2)

Country Link
JP (1) JP6714071B2 (en)
WO (1) WO2017163494A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113697845B (en) * 2021-08-27 2022-11-29 哈尔滨工业大学 Method for rapidly preparing high-proportion amorphous phase ZnO film

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006069840A (en) * 2004-09-02 2006-03-16 Tohoku Univ Zinc oxide material growth method
JP4906550B2 (en) * 2007-03-19 2012-03-28 三菱マテリアル株式会社 Zinc oxide functional film production method and zinc oxide functional film obtained by the method
JP2009040640A (en) * 2007-08-09 2009-02-26 Andes Denki Kk Method for producing zinc oxide thin film
JP5136982B2 (en) * 2008-01-11 2013-02-06 独立行政法人産業技術総合研究所 ZnO whisker film, seed layer for forming ZnO whisker film, and method for producing them
JP2013239436A (en) * 2012-04-18 2013-11-28 Panasonic Corp Transparent conductive film and method for producing the same, and electronic apparatus manufactured using the transparent conductive film
JP2014234325A (en) * 2013-06-03 2014-12-15 日本碍子株式会社 Production method of zinc oxide single crystal

Also Published As

Publication number Publication date
JPWO2017163494A1 (en) 2019-01-24
WO2017163494A1 (en) 2017-09-28

Similar Documents

Publication Publication Date Title
JP4875135B2 (en) In-Ga-Zn-O-based sputtering target
Kim et al. Effects of Cu doping on nickel oxide thin film prepared by sol–gel solution process
TWI532862B (en) A sputtering target, a method for forming an amorphous oxide film using the same, and a method for manufacturing a thin film transistor
TWI700261B (en) Sn-Zn-O series oxide sintered body and its manufacturing method
TW201627544A (en) Freestanding gallium nitride substrate, light-emitting element and manufacturing method of these
KR102132313B1 (en) Polycrystalline gallium-nitride self-supporting substrate and light-emitting element using smae
JP2010070409A (en) Method for producing oxide sintered compact
JP2010070410A (en) Method for producing oxide sintered compact
CN105565798A (en) Preparation method of zinc oxide target and preparation method of zinc oxide film
JPH0688218A (en) Sintered compact of zinc oxide system and its production and application
JP6714071B2 (en) Method for producing zinc oxide film
JP6648253B2 (en) Polycrystalline gallium nitride free-standing substrate and light emitting device using the same
EP2657316A1 (en) Electrically conductive film, perparation method and application therefor
JP5501306B2 (en) In-Ga-Zn-O-based sputtering target
CN108475580A (en) Polycrystalline dielectric body thin film and capacity cell
KR101547600B1 (en) Method for conductivity controlling of two dimensional electron gas generated at oxide heterostructure interfaces
JPWO2016035720A1 (en) Mg-containing zinc oxide sintered body and method for producing the same
CN110937925A (en) Bismuth ferrite-based thin film with high polarization strength and large strain characteristic and preparation method thereof
KR20120062341A (en) Indium zinc oxide transparent condutive layer for an electrode and the preparing method thereof
JP2013533378A (en) Transparent conductive film, target for transparent conductive film, and method for producing target for transparent conductive film
CN115418618A (en) Indium tin zinc oxide target material, oxide film and preparation method thereof
JP6339069B2 (en) Gallium nitride crystal growth method, composite substrate, light emitting element manufacturing method, and crystal growth apparatus
WO2017158968A1 (en) Zinc oxide film and production method therefor
JP5176224B2 (en) Zn5 (CO3) 2 (OH) 6 crystal free-standing film and method for manufacturing the same
Peng et al. Effect of doping concentrations on properties of Nb doped ZnO (NZO) ceramics targets

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190719

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200601

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200604

R150 Certificate of patent or registration of utility model

Ref document number: 6714071

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees