JP6709484B1 - Method for culturing heterotrophic microalgae using palm oil factory effluent (POME) and method for producing DHA - Google Patents

Method for culturing heterotrophic microalgae using palm oil factory effluent (POME) and method for producing DHA Download PDF

Info

Publication number
JP6709484B1
JP6709484B1 JP2019571086A JP2019571086A JP6709484B1 JP 6709484 B1 JP6709484 B1 JP 6709484B1 JP 2019571086 A JP2019571086 A JP 2019571086A JP 2019571086 A JP2019571086 A JP 2019571086A JP 6709484 B1 JP6709484 B1 JP 6709484B1
Authority
JP
Japan
Prior art keywords
pome
dha
medium
culture method
culture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019571086A
Other languages
Japanese (ja)
Other versions
JPWO2020026794A1 (en
Inventor
清志 多田
清志 多田
信 渡邉
信 渡邉
吉田 昌樹
昌樹 吉田
順子 伊藤
順子 伊藤
敏秀 中島
敏秀 中島
マイケル ゴータマ,
マイケル ゴータマ,
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mobiol
Original Assignee
Mobiol
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mobiol filed Critical Mobiol
Priority to JP2020003760A priority Critical patent/JP7385799B2/en
Application granted granted Critical
Publication of JP6709484B1 publication Critical patent/JP6709484B1/en
Publication of JPWO2020026794A1 publication Critical patent/JPWO2020026794A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/12Unicellular algae; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/64Fats; Fatty oils; Ester-type waxes; Higher fatty acids, i.e. having at least seven carbon atoms in an unbroken chain bound to a carboxyl group; Oxidised oils or fats

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Biotechnology (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Botany (AREA)
  • Cell Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Virology (AREA)
  • Biomedical Technology (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

本発明の課題は、パームオイル製造工程から排出されるPOMEを用いて微細藻類を効率的に増殖させることができる培養方法と微細藻類から高付加価値有価物を効率的に生産する方法を提供することである。POMEを用いDHA(ドコサヘキサエン酸)といったω-3多価不飽和脂肪酸を産生する従属栄養性微細藻類を培養することで、これらの従属栄養性微細藻類が効率良く増殖されるとともにDHAが高濃度で生産される。An object of the present invention is to provide a culture method capable of efficiently growing microalgae using POME discharged from a palm oil manufacturing process, and a method of efficiently producing high value-added valuables from microalgae. That is. By culturing heterotrophic microalgae that produce ω-3 polyunsaturated fatty acids such as DHA (docosahexaenoic acid) using POME, these heterotrophic microalgae can be efficiently propagated and DHA at a high concentration. Produced.

Description

本発明は、パームオイル工場排出液(Palm Oil Mill Effluent: POME)を培地として使用する従属栄養性微細藻類の培養方法とDHA製造方法を提供する。 The present invention provides a method for culturing heterotrophic microalgae and a method for producing DHA, which uses palm oil mill effluent (Palm Oil Mill Effluent: POME) as a medium.

インドネシアやマレーシア等、油椰子(オイルパーム)果実から抽出するパームオイル製造が基幹産業となっている国では、パームオイル工場排液(以下POMEと称す)が大きな環境・経済問題となっている。例えば、インドネシアでは、パームオイル製造工場から、約455,000t/日のPOMEがラグーンに放流され酸化池処理→嫌気性処理→好気性処理されている。この過程で、発酵ガスによる悪臭や害虫・害獣被害、水質汚濁等を引き起こし、嫌気処理により発生するメタンガスは大気へ放出されている状況である。メタンの地球温暖化係数は二酸化炭素に比べて21倍と非常に大きく、地球温暖化に悪影響を及ぼしている。このようにPOMEは、温暖化物質の放出と水質汚濁をひきおこし、地球温暖化や生活環境悪化や野生生物への悪影響等広範でかつ深刻な環境問題を引き起こしている。例えば、パームオイル生産産業は、インドネシア、マレーシア等の基幹産業となっていることから、POMEの環境問題の解決は、インドネシアやマレーシア等パームオイル産業が盛んな国家社会の持続的発展のために重大な課題となっている。 In countries such as Indonesia and Malaysia, where palm oil production extracted from oil palm fruits is a key industry, palm oil factory effluent (hereinafter referred to as POME) has become a major environmental and economic problem. For example, in Indonesia, about 455,000 tons/day of POME is discharged from the palm oil manufacturing plant into the lagoon, where oxidation pond treatment → anaerobic treatment → aerobic treatment is performed. During this process, fermentation gas causes foul odors, harmful insects and pests, water pollution, and methane gas generated by anaerobic treatment is released to the atmosphere. The global warming potential of methane is 21 times as large as that of carbon dioxide, which has an adverse effect on global warming. As described above, POME causes global warming, deterioration of living environment, adverse effects on wildlife, and other widespread and serious environmental problems by causing emission of warming substances and water pollution. For example, since the palm oil production industry is a key industry in Indonesia, Malaysia, etc., solving the environmental problems of POME is important for the sustainable development of the national society in which the palm oil industry, such as Indonesia, Malaysia, etc., is thriving. Has become a problem.

POMEの環境問題解決法として、上述のように嫌気状態でメタンガスが発生することから、これらを回収し、バイオガス発電を行う方法が知られている(特許文献1、2)。しかし、バイオガス発電量がそれ程高くないことから、採算性が悪く、ほとんどが事業として成立しない。その為、現地では依然としてPOMEの新たな利用方法へのニーズが高い。 As a method for solving the environmental problem of POME, since methane gas is generated in an anaerobic state as described above, there is known a method of recovering methane gas and performing biogas power generation (Patent Documents 1 and 2). However, since the amount of biogas power generation is not so high, the profitability is poor and most of the projects are not viable. Therefore, there is still a great need locally for new ways of using POME.

従来から、微細藻類を増殖させ、微細藻類の細胞内に燃料、飼料、健康食品などの原料となる脂質、又は、タンパク質やビタミン等の有価物を生産・貯蔵させ、貯蔵した有価物を利用して燃料や食品等に利用することが行われている。特にω-3多価不飽和脂肪酸等高付加価値有価物の産生・貯蔵については、即産業化可能成分として注目されている。 Conventionally, microalgae are grown, lipids, which are raw materials for fuels, feeds, health foods, etc., or valuable materials such as proteins and vitamins are produced and stored in the cells of the microalgae, and the stored valuable materials are used. Are used as fuel and food. In particular, the production and storage of high value-added valuables such as ω-3 polyunsaturated fatty acids have been attracting attention as ingredients that can be industrialized immediately.

この微細藻類の増殖は、下水・産業排水の浄化といった排水処理(特許文献3)や二酸化炭素の吸収・利用を目的とした排ガス処理など(特許文献4)にも利用されている。しかし、微細藻類が効率的に増殖しないと細胞内における有価物の貯蔵量が必ずしも十分なものとならないため、前記有価物の有効利用が困難になるおそれを有する。クロレラ等微細藻類はPOMEを利用して増殖することが報告されている(非特許文献1−5)が、藻体バイオマス生産性や脂質生産性が低く、POME利用効率が悪いことから、微細藻類からの高付加価値有価物の生産法は確立されていない。 This growth of microalgae is also used for wastewater treatment such as purification of sewage and industrial wastewater (Patent Document 3) and exhaust gas treatment for the purpose of absorbing and utilizing carbon dioxide (Patent Document 4). However, if the microalgae do not proliferate efficiently, the amount of valuables stored in the cells will not necessarily be sufficient, which may make it difficult to effectively use the valuables. It has been reported that microalgae such as Chlorella proliferate using POME (Non-patent documents 1-5), but microalgae are poor in algal biomass productivity and lipid productivity and poor in POME utilization efficiency. Has not established a production method for high value-added valuables.

再公表2017-026370号公報Republished 2017-026370 bulletin 特許第6049937号公報Japanese Patent No. 6049937 特開平05-301097号公報JP 05-301097 A 特開2010-022331号公報JP 2010-022331 A

HABIB et. al. “Growth and Nutritional Values of Moinamicrura Fed on Chlorella vulgaris Grown in Digested Palm Oil Mill Effluent”, Asian Fisheries Science, 16, 107-119, 2003HABIB et. al. “Growth and Nutritional Values of Moinamicrura Fed on Chlorella vulgaris Grown in Digested Palm Oil Mill Effluent”, Asian Fisheries Science, 16, 107-119, 2003 Putri et. al. “Investigation of Microalgae for High Lipid Content using Palm Oil Mill Effluent (Pome) as Carbon Source”, 2011 International Conference on Environment and Industrial Innovation, IPCBEE,12, 85-89, 2011Putri et. al. “Investigation of Microalgae for High Lipid Content using Palm Oil Mill Effluent (Pome) as Carbon Source”, 2011 International Conference on Environment and Industrial Innovation, IPCBEE,12, 85-89, 2011 Nwuche et. al. “Use of Palm Oil Mill Effluent as Medium for Cultivation of Chlorella sorokiniana”, British Biotechnoloty Journal, 4(3): 305-316, 2014Nwuche et. al. “Use of Palm Oil Mill Effluent as Medium for Cultivation of Chlorella sorokiniana”, British Biotechnoloty Journal, 4(3): 305-316, 2014 Nur et. al. “Enhancement of Chlorella vulgaris Biomass Cultivated in POME Medium as Biofuel Feedstock under Mixotrophic Conditions”, Journal of Engineering and Technology Sciences, 47(5), 487-497, 2015Nur et. al. “Enhancement of Chlorella vulgaris Biomass Cultivated in POME Medium as Biofuel Feedstock under Mixotrophic Conditions”, Journal of Engineering and Technology Sciences, 47(5), 487-497, 2015. Cheah et. al. “Enhancing biomass and lipid productions of microalgae in palm oil mill effluent using carbon and nutrient supplementation”, Energy Conversion and Management, 164, 188-197, 2018Cheah et. al. “Enhancing biomass and lipid productions of microalgae in palm oil mill effluent using carbon and nutrient supplementation”, Energy Conversion and Management, 164, 188-197, 2018

本発明は、上記の問題点等に鑑み、パームオイル製造工程から排出されるPOMEを用いて微細藻類を効率的に増殖させることができる培養方法と微細藻類から高付加価値有価物を効率的に生産する方法を提供することを課題とする。 In view of the above problems and the like, the present invention efficiently cultivates high value-added valuables from a culture method and microalgae that can efficiently grow microalgae using POME discharged from the palm oil manufacturing process. It is an object to provide a method for producing.

本発明者は、上記課題を解決すべく鋭意検討を行ったところ、POMEを用い、必要に応じて糖などの有機炭素源およびミネラル成分を与えて又は与えずにDHA(ドコサヘキサエン酸)といったω-3多価不飽和脂肪酸を産生する従属栄養性微細藻類を培養することで、これらの従属栄養性微細藻類が効率良く増殖されるとともにDHAが高濃度で生産されることを見出して本発明を完成させるにいたった。 The present inventor has conducted diligent studies to solve the above-mentioned problems, and as a result, using POME, ω-such as DHA (docosahexaenoic acid) with or without an organic carbon source such as sugar and a mineral component as required. 3 By culturing heterotrophic microalgae that produce polyunsaturated fatty acids, it was found that these heterotrophic microalgae are efficiently proliferated and DHA is produced at a high concentration, thus completing the present invention. I made it happen.

即ち、上記課題を解決するための本発明に係る従属栄養性微細藻類の培養方法は、パームオイル製造過程でパーム果実からオイルをしぼりだした搾り汁を成分とするPOMEを用いて、高付加価値成分を産生する微細藻類を従属栄養培養することを特徴としている。 That is, the method for cultivating a heterotrophic microalgae according to the present invention for solving the above-mentioned problems is a high value-added component using POME containing squeezed juice squeezing oil from palm fruit in the palm oil production process. It is characterized by heterotrophic culture of microalgae that produce.

本発明に係る当該微細藻類の培養方法においてはパーム果実を圧搾してパームオイル製造後に生じる搾りかす汁を成分とするPOMEを供給することを特徴とする。 The method for culturing microalgae according to the present invention is characterized in that palm fruit is squeezed to supply POME containing squeezed juice produced after the production of palm oil as a component.

従って、本願は、以下の発明を提供する。
(1)POMEを含む培地を使用する、従属栄養性微細藻類の培養方法。
(2)前記従属栄養性微細藻類がω―3多価不飽和脂肪酸を産生する藻類である、(1)に記載の培養方法。
(3)ω―3多価不飽和脂肪酸は、DHAである、(2)に記載の培養方法。
(4)前記藻類が、ヤブレツボカビ類(Thraustochytriales)に属する藻類の株である、(1)〜(3)のいずれか1項に記載の培養方法。
(5)前記ヤブレツボカビ類が、オーランチオキトリウム属(Aurantiochytrium)に属する種である(4)に記載の培養方法。
(6)前記オーランチオキトリウム属の藻類がオーランチオキトリウム リマシナム(Aurantiochytrium limacinum)に属する培養株である(5)に記載の培養方法。
(7)前記オーランチオキトリウム属の藻類がオーランチオキトリウム マングローベイ(Aurantiochytrium mangrovei)に属する培養株である(5)に記載の培養方法。
(8)前記オーランチオキトリウム リマシナムの培養株が4W−1b株、オーランチオキトリウム リマシナムSR−21株、又はオーランチオキトリウム リマシナムNIES3737株から選択されるいずれかの株である(6)に記載の培養方法。
(9)前記オーランチオキトリウム マングローベイの培養株がオーランチオキトリウム マングローベイ18W−13a株である、(7)に記載の培養方法。
(10)POMEは遠心分離及び/又はろ過により清澄される、(1)〜(9)のいずれか1項に記載の培養方法。
(11)前記培地は、糖成分を更に含む、(1)〜(10)のいずれか1項に記載の培養方法。
(12)前記糖成分はグルコース、ガラクトース、フルクトース、マルトース、シュクロース、ラクトース、オリゴ糖、及びグリセロール等の糖アルコール、等から選択される1又は複数の糖類である、(11)に記載の培養方法。
(13)前記糖成分の添加量は、合計として10〜30g/培地Lである、(11)又は(12)に記載の培養方法。
(14)前記培地は、ミネラル成分を更に含む、(1)〜(13)のいずれか1項に記載の培養方法。
(15)前記ミネラル成分は、硫酸カリウム、硫酸マグネシウム、硫酸鉄、硫酸アンモニウム、又は硫酸銅、硫酸ニッケル、硫酸亜鉛等の硫酸塩;リン酸カリウム等のリン酸塩;炭酸カルシウム等の炭酸塩;塩化コバルト、塩化マンガン、塩化ナトリウム、塩化カルシウム等の塩化物;アルカリ金属酸化物;モリブデン酸ナトリウム及び亜セレン酸ナトリウム等の亜セレン酸塩及びモリブデン酸塩;臭化カリウム又はヨウ化カリウム等のハロゲン化物;天然海水塩類;並びに人工海水塩類から選択される単一又は複数の塩類である、(14)に記載の培養方法。
(16)前記ミネラル成分の添加量は、合計として5〜35g/培地Lである(14)又は(15)に記載の培養方法。
(17)(1)〜(16)のいずれか1項に記載の培養方法で培養した従属栄養性微細藻類を回収すること、当該回収された藻類からDHAを抽出することを含む、DHA製造方法。
Therefore, the present application provides the following inventions.
(1) A method for culturing heterotrophic microalgae using a medium containing POME.
(2) The culture method according to (1), wherein the heterotrophic microalgae are algae that produce ω-3 polyunsaturated fatty acids.
(3) The culture method according to (2), wherein the ω-3 polyunsaturated fatty acid is DHA.
(4) The culture method according to any one of (1) to (3), wherein the alga is a strain of alga belonging to Thraustochytriales.
(5) The culture method according to (4), wherein the Thraustochytrids is a species belonging to the genus Aurantiochytrium.
(6) The culture method according to (5), wherein the alga of the genus Aurantiochytrium is a culture strain belonging to Aurantiochytrium limacinum.
(7) The culture method according to (5), wherein the alga of the genus Aurantiochytrium is a culture strain belonging to Aurantiochytrium mangrovei.
(8) The culture strain of the aurantiochytrium limacinum is any strain selected from the 4W-1b strain, the aurantiochytrium limacinum SR-21 strain, and the aurantiochytrium limacinum NIES3737 strain (6) The described culturing method.
(9) The culture method according to (7), wherein the culture strain of the aurantiochytrium mangrove bay is the aurantiochytrium mangrove bay 18W-13a strain.
(10) The culture method according to any one of (1) to (9), wherein POME is clarified by centrifugation and/or filtration.
(11) The culture method according to any one of (1) to (10), wherein the medium further contains a sugar component.
(12) The culture according to (11), wherein the sugar component is one or more sugars selected from glucose, galactose, fructose, maltose, sucrose, lactose, oligosaccharides, sugar alcohols such as glycerol, and the like. Method.
(13) The culture method according to (11) or (12), wherein the total amount of the sugar component added is 10 to 30 g/medium L.
(14) The culture method according to any one of (1) to (13), wherein the medium further contains a mineral component.
(15) The mineral component is potassium sulfate, magnesium sulfate, iron sulfate, ammonium sulfate, or a sulfate salt such as copper sulfate, nickel sulfate, or zinc sulfate; a phosphate salt such as potassium phosphate; a carbonate salt such as calcium carbonate; Chlorides such as cobalt, manganese chloride, sodium chloride and calcium chloride; alkali metal oxides; selenites and molybdates such as sodium molybdate and sodium selenite; halides such as potassium bromide or potassium iodide. The method for culturing according to (14), which is a single or a plurality of salts selected from natural seawater salts; and artificial seawater salts.
(16) The culture method according to (14) or (15), wherein the total amount of the mineral components added is 5 to 35 g/medium L.
(17) A method for producing DHA, which comprises collecting heterotrophic microalgae cultured by the culture method according to any one of (1) to (16) and extracting DHA from the collected algae. .

本発明により、POMEの有効利用が図れるとともに、従属栄養性微細藻類の培養を効率的に行い、有価物としてDHAを製造することができる。 According to the present invention, it is possible to effectively use POME, efficiently culture heterotrophic microalgae, and produce DHA as a valuable resource.

驚くべきことに、POMEを添加した培地を使用すると、これまでの微細藻類ではみられない早い増殖速度でオーランチオキトリウム リマシナム4W−1b株等のDHA産生藻類を良好に増殖させ、高濃度のDHA生産を達成した。 Surprisingly, when the medium supplemented with POME was used, DHA-producing algae such as aurantiochytrium limacinum 4W-1b strain were satisfactorily grown at a high growth rate not seen in conventional microalgae, and a high concentration was obtained. DHA production achieved.

図1は、POME上清液の添加率が10〜50%となるように調整した人工海水塩類の添加培地を用いた場合のオーランチオキトリウム リマシナム4W−1b株の藻体濃度の経時変化を示す(OD660)。FIG. 1 shows the change over time in the concentration of algae in the aurantiochytrium limacinum 4W-1b strain when an artificial seawater salt-added medium adjusted so that the addition rate of the POME supernatant is 10 to 50%. Shown (OD660). 図2は、POME上清液の添加率が10〜50%となるように調整した人工海水塩類の添加培地を用いた場合のオーランチオキトリウム リマシナム 4W−1b株の総脂質(左図)およびDHA(右図)の生産を示す。FIG. 2 shows total lipids (left figure) of the aurantiochytrium limacinum 4W-1b strain when an artificial seawater salt-added medium adjusted so that the addition rate of the POME supernatant is 10 to 50% and The production of DHA (right panel) is shown. 図3は、POME上清液(100%)およびPOME上清液の添加率が10〜75%となるように調整した希釈液にグルコースと人工海水塩類を添加した培地を用いた場合のオーランチオキトリウム リマシナム 4W−1b株の藻体濃度の経時変化を示す(OD660)。FIG. 3 shows the aurunch when using a medium in which glucose and artificial seawater salts are added to a POME supernatant liquid (100%) and a dilution liquid adjusted so that the addition ratio of the POME supernatant liquid is 10 to 75%. The time-dependent change of the algal body concentration of Ochthorium lymacinum 4W-1b strain is shown (OD660). 図4は、POME上清液(100%)およびPOME上清液の添加率が10〜75%となるように調整した希釈液にグルコースと人工海水塩類を添加した培地を用いた場合のPOME上清液の添加率とオーランチオキトリウム リマシナム 4W−1b株の増殖量の相関関係を示す。FIG. 4 shows POME supernatant (100%) and POME when a medium prepared by adding glucose and artificial seawater salts to a diluent adjusted to have an addition rate of POME supernatant of 10 to 75% is used. The correlation of the addition rate of a clear fluid and the proliferation of the aurantiochytrium limacinum 4W-1b strain is shown. 図5は、POME上清液(100%)およびPOME上清液の添加率が10〜75%となるように調整した希釈液にグルコースと人工海水塩類を添加した培地を用いた場合のオーランチオキトリウム リマシナム 4W−1b株の総脂質およびDHAの生産を示す。FIG. 5 shows the aurunch in the case of using a medium in which glucose and artificial seawater salts are added to a POME supernatant liquid (100%) and a dilution liquid adjusted so that the addition ratio of the POME supernatant liquid is 10 to 75%. 3 shows total lipids and DHA production of Ochthorium limacinum 4W-1b strain. 図6は、POME上清液(100%)にグルコース、及び0.00%、0.38%、0.75%、1.50%、3.00%(重量%)のレッドシー塩を添加した培地を用いた場合のオーランチオキトリウム リマシナム 4W−1b株の藻体濃度の経時的変化(OD660)およびDHA濃度を示す。FIG. 6 shows that glucose and 0.00%, 0.38%, 0.75%, 1.50%, 3.00% (wt%) of Red Sea salt were added to the POME supernatant (100%). 2 shows the changes over time (OD660) in the algal concentration of the aurantiochytrium limacinum 4W-1b strain and the DHA concentration when the culture medium was used. 図7は、POME上清液(100%)にグルコースと人工海水塩類を添加した培地を用いた場合のオーランチオキトリウム属の各種株の総脂質およびDHAの生産を示す。FIG. 7 shows the total lipid and DHA production of various strains of the genus Aurantiochytrium when using a medium in which glucose and artificial seawater salts were added to POME supernatant (100%).

一般に、パームオイルの製造工程は、パーム果房(Fresh Fruit Bunch:FFB)の不活化のためのスチーム処理、パーム果実とパーム空房(Empty Fruit Bunch:EFB)の分離、パーム果実からの果実部(メソカ)と種部の分離という前処理工程を経る。果実部からのクルードパームオイル抽出、分離精製へと進み、純度の高いパームオイルが製造される。本発明におけるPOMEとは、このパ−ムオイルの製造過程において生じる、使用済みスチーム水、オイルを絞った後の未回収オイルを含む残渣液の混合排出液混合液を遠心分離により未回収オイルを除去または回収した排出液(温度が70-90℃)、および、それらが冷却後に酸化池処理→嫌気性処理→好気性処理を経て、放流される排液をいう。POMEは、原材料に由来する、糖質、有機酸、ビタミン、アミノ酸、ペプチド、タンパク質及びミネラル等を豊富に含有する。本発明の藻類の培養に使用するPOMEは、酸化池処理、嫌気性処理、又は好気性処理を行う前のものであっても処理後のものであってもよい。ある実施形態では、これら酸化池処理、嫌気性処理、及び好気性処理を行う前のPOMEを使用することが好ましい。 Generally, the palm oil production process includes steam treatment for inactivating palm fruit bunch (FFB), separation of palm fruit and palm empty bunch (EFB), and fruit part from palm fruit ( It goes through a pretreatment step of separating meso-ca) and seeds. The crude palm oil is extracted from the fruit part and then separated and refined to produce high-purity palm oil. The POME in the present invention, this path - occurring in the manufacturing process of Muoiru, unrecovered oil and used steam water, by centrifugation a mixture of a mixed effluent residual liquid containing unrecovered oil after squeezing oil The effluent that has been removed or collected (the temperature is 70-90°C), and the effluent that is discharged after being subjected to oxidation pond treatment → anaerobic treatment → aerobic treatment after cooling. POME contains abundant sugars, organic acids, vitamins, amino acids, peptides, proteins, minerals, etc. derived from raw materials. The POME used for culturing the alga of the present invention may be one before or after the oxidation pond treatment, anaerobic treatment, or aerobic treatment. In one embodiment, it is preferable to use POME before the oxidation pond treatment, the anaerobic treatment, and the aerobic treatment.

POMEは、原材料由来の様々な固形物を含有する。DHA産生藻類の培養に際して、POMEは固形物を含有していてもいなくてもよく、限定されない。POME中の固形物を除去する場合には、遠心分離や濾過等、公知の手段により除去し得られた清澄なPOMEを培地に使用してもよい。 POME contains various solids derived from raw materials. In culturing the DHA-producing alga, POME may or may not contain a solid matter, and is not limited. When the solid matter in POME is removed, a clear POME obtained by removing by a known means such as centrifugation or filtration may be used as the medium.

本発明において、POMEは、濾過滅菌、オートクレーブ滅菌、煮沸滅菌、及び放射線滅菌等、公知の手段で滅菌されるが、次亜塩素酸ソーダ、オゾン処理等、公知の手段で殺菌されてもよい。 In the present invention, POME is sterilized by known means such as filter sterilization, autoclave sterilization, boiling sterilization, and radiation sterilization, but may be sterilized by known means such as sodium hypochlorite and ozone treatment.

本発明において、当該従属栄養性微細藻類の培地におけるPOMEの含有量は限定されないものの、例えば、1%、少なくとも10%、少なくとも25%、少なくとも50%、75%、100%(容量%)の濃度で前記培養液中に含有されてもよい。 In the present invention, although the content of POME in the heterotrophic microalgal medium is not limited, for example, the concentration of 1%, at least 10%, at least 25%, at least 50%, 75%, 100% (volume %) And may be contained in the culture medium.

本発明において、POMEを含む培地に様々な添加物を添加することにより、当該培地が、DHA産生藻類の培養に適した組成となるように調整されてもよい。当該添加物として、糖類、有機酸、無機酸、有機塩基、無機塩基、ビタミン、アミノ酸、ペプチド、タンパク質、ミネラル(天然海水、人工海水等も含む)が挙げられる。ある実施形態では、糖類及び/又はミネラルを添加することが好ましい場合がある。ある実施形態では、ミネラルを添加しないことが好ましい場合がある。ミネラルを添加しないと装置の金属腐食を防止できる、培養後の排水処理や放流が容易になる、培地コストを低く抑えるという利点がある。更に、必要であれば適当な酸又は塩基を加えることにより適宜pHを調整できる。培地の好適なpHは培養するDHA産生藻類の種類に依存し、例えば、pH6〜pH7に調整してもよい。 In the present invention, various additives may be added to the medium containing POME so that the medium has a composition suitable for culturing DHA-producing algae. Examples of the additive include sugars, organic acids, inorganic acids, organic bases, inorganic bases, vitamins, amino acids, peptides, proteins and minerals (including natural seawater and artificial seawater). In some embodiments, it may be preferable to add sugars and/or minerals. In some embodiments, it may be preferable not to add minerals. If minerals are not added, there are advantages that metal corrosion of the device can be prevented, wastewater treatment and discharge after culture can be facilitated, and culture medium cost can be kept low. Further, if necessary, the pH can be adjusted appropriately by adding an appropriate acid or base. The suitable pH of the medium depends on the type of DHA-producing alga to be cultivated, and may be adjusted to pH 6 to pH 7, for example.

ミネラル成分としては、限定されないが、化学的に定義された無機塩、例えばアルカリ及びアルカリ土類金属塩、並びに他の金属の塩であってよい。このような無機塩として、例えば、硫酸カリウム、硫酸マグネシウム、硫酸鉄、硫酸アンモニウム、又は硫酸銅、硫酸ニッケル、硫酸亜鉛等の硫酸塩;リン酸カリウム等のリン酸塩;炭酸カルシウム等の炭酸塩;塩化コバルト、塩化マンガン、塩化ナトリウム、塩化カルシウム等の塩化物;アルカリ金属酸化物;モリブデン酸ナトリウム及び亜セレン酸ナトリウム等の亜セレン酸塩及びモリブデン酸塩;臭化カリウム又はヨウ化カリウム等のハロゲン化物;天然海水塩類;並びにRed Sea Salt(レッドシー塩)といった人工海水塩類;から選択される単一又は複数の塩類が挙げられる。前記塩類は、合計で0.01〜5.0、5〜40、5〜35、10〜30、又は10〜25‰(g/培地L)の量で添加されてもよい。例えば、ある実施形態では、前記塩類は、合計で16.7‰(16.7g/培地L)の量で添加される。 Mineral components may include, but are not limited to, chemically defined inorganic salts such as alkali and alkaline earth metal salts, and salts of other metals. Examples of such inorganic salts include potassium sulfate, magnesium sulfate, iron sulfate, ammonium sulfate, or sulfates such as copper sulfate, nickel sulfate, and zinc sulfate; phosphates such as potassium phosphate; carbonates such as calcium carbonate; Chlorides such as cobalt chloride, manganese chloride, sodium chloride and calcium chloride; alkali metal oxides; selenites and molybdates such as sodium molybdate and sodium selenite; halogens such as potassium bromide or potassium iodide. Compounds; natural seawater salts; and artificial seawater salts such as Red Sea Salt (Red Sea Salt); The salts may be added in a total amount of 0.01 to 5.0, 5 to 40, 5 to 35, 10 to 30, or 10 to 25‰ (g/medium L). For example, in one embodiment, the salts are added in a total amount of 16.7‰ (16.7 g/L medium).

ある実施形態では、追加的なミネラル成分、例えば、塩化物等の塩類を培地に添加しない。かかる実施形態では、培地はPOME等に元々含まれていた以外に追加的なミネラル成分を含まない。POMEを用いる本願発明の培地にミネラル成分を添加せずヤブレツボカビ類(Thraustochytriales)等のDHA産生藻類を培養するとDHA生産性が増加することがある。POME等に元々含まれていた以外に追加的なミネラル成分を含まない培地の場合、かかる培地におけるミネラルの濃度は、例えば、NaCl量換算で合計6.0‰、5.0‰、4.0‰、3.0‰、2.0‰、1.0‰(g/培地L)未満、Cl量換算で合計3.0‰、2.0‰、1.0‰(g/培地L)未満であり得る。 In certain embodiments, no additional mineral components, such as salts such as chloride, are added to the medium. In such an embodiment, the medium contains no additional mineral components other than those originally contained in POME and the like. Cultivation of DHA-producing algae such as Thraustochytriales without adding mineral components to the medium of the present invention using POME may increase DHA productivity. In the case of a medium that does not contain an additional mineral component other than that originally contained in POME or the like, the concentration of minerals in the medium is, for example, a total of 6.0‰, 5.0‰, 4.0 in terms of NaCl amount. ‰, 3.0 ‰, 2.0 ‰, less than 1.0 ‰ (g/medium L), less than 3.0 ‰, 2.0 ‰, less than 1.0 ‰ (g/medium L) in terms of Cl amount. Can be

ある実施形態では、POMEとともに糖類を培養液に含有させることで、該従属栄養性微細藻類の増殖が促進される場合がある。糖類は、従属栄養性微細藻類の炭素源となるものであるが、POME原液に微細藻類が利用可能な糖類が十分に含有されていない場合や、該従属栄養性微細藻類の増殖を促進したい場合には、何等かの形で微細藻類が利用可能な糖類を培養液に添加してもよい。 In certain embodiments, the inclusion of saccharides with POME in the culture may promote growth of the heterotrophic microalgae. The saccharide is a carbon source of the heterotrophic microalgae, but when the POME stock solution does not sufficiently contain saccharides that can be used by the microalgae, or when it is desired to promote the growth of the heterotrophic microalgae. In some cases, saccharides that can be used by microalgae may be added to the culture solution in any form.

糖類としては、限定されないが、例えば、グルコース、ガラクトース、フルクトース、マルトース、シュクロース、ラクトース、オリゴ糖、及びグリセロール等の糖アルコール、等から選択される1又は複数の糖類が挙げられる。前記糖類は、合計で5〜40、10〜30、15〜25(g/培地L)の量で添加されてもよい。例えば、ある実施形態では、前記糖類は、合計で20‰(20g/培地L)の量で添加される。 The saccharides include, but are not limited to, one or more saccharides selected from glucose, galactose, fructose, maltose, sucrose, lactose, oligosaccharides, sugar alcohols such as glycerol, and the like. The saccharides may be added in a total amount of 5 to 40, 10 to 30, and 15 to 25 (g/medium L). For example, in one embodiment, the saccharides are added in a total amount of 20‰ (20 g/L of medium).

本発明で使用する微細藻類としては、特にDHA等ω-3多価不飽和脂肪酸を産生する藻類(以下DHA等産生藻類と称す)であってもよい。DHA等産生藻類としては、ヤブレツボカビ類(Thraustochytriales)に属する生物であるオーランチオキトリウム属(Aurantiochytrium)、シゾキトリウム属(Schizochytrium)、スラウストキトリウム属(Thraustochytrium)、パリエティキトリウム属(Parietichytrium)、又はウルケニア属(Ulkenia)に属する生物、あるいはオブロンギキトリウム(Oblongichytrium)属に属する生物などが挙げられる。
前記オーランチオキトリウム(Aurantiochytrium)属に属する生物としては、例えば、オーランチオキトリウム リマシナム(Aurantiochytrium limacinum)、オーランチオキトリウム マングローベイ(Aurantiochytrium mangrovei)などが挙げられる。
前記シゾキトリウム(Schizochytorium)属に属する生物としては、例えば、Schizochytrium aggregatumなどが挙げられる。例えば、Schizochytrium sp. Maku-1等の株が使用できる。
前記スラウストキトリウム(Thraustochytrium)属に属する生物としては、例えば、Thraustochytrium aureum、Thraustochytrium pachydermum、Thraustochytrium aggregatumなどが挙げられる。
前記パリエティキトリウム(Parietichytrium)属に属する生物としては、例えば、Parietichytrium sarkarianumなどが挙げられる。例えば、Parietichytrium sp. 6F-10b等の株が使用できる。
前記ウルケニア属(Ulkenia)属に属する生物としては、例えば、Ulkenia visurgensis、又は、Ulkenia profundaなどが挙げられる。例えば、Ulkenia sp. Yonez6-9等の株が使用できる。
前記オブロンギキトリウム(Oblongichytrium)属に属する生物としては、例えば、Oblongichytrium multirudimentale、Oblongichytrium minutumなどが挙げられる。例えば、Oblongichytrium sp. H9等の株が使用できる。
特に好ましいのはオーランチオキトリウム属の藻類であり、例えば、オーランチオキトリウム リマシナム4W−1b株、オーランチオキトリウム リマシナムSR−21株、及びオーランチオキトリウム リマシナムNIES3737株などのオーランチオキトリウム リマシナムの株、並びにオーランチオキトリウム マングローベイ18W−13a株などのオーランチオキトリウム マングローベイの株等が使用できる。
The microalgae used in the present invention may be, in particular, algae that produce ω-3 polyunsaturated fatty acids such as DHA (hereinafter referred to as DHA-producing algae). Examples of algae that produce DHA include aurantichytrium (Aurantiochytrium), Schizochytrium, Thraustochytrium, and Parietichytrium which are organisms belonging to the Thraustochytriales. Examples include organisms belonging to the genus Ulkenia, or organisms belonging to the genus Oblongichytrium.
Examples of organisms belonging to the genus Aurantiochytrium include Aurantiochytrium limacinum and Aurantiochytrium mangrovei.
Examples of the organisms belonging to the genus Schizochytorium include Schizochytrium aggregatum. For example, strains such as Schizochytrium sp. Maku-1 can be used.
Examples of the organisms belonging to the genus Thraustochytrium include Thraustochytrium aureum, Thraustochytrium pachydermum, Thraustochytrium aggregatum, and the like.
Examples of the organisms belonging to the genus Parietichytrium include Parietichytrium sarkarianum. For example, strains such as Parietichytrium sp. 6F-10b can be used.
Examples of the organisms belonging to the genus Ulkenia include Ulkenia visurgensis, Ulkenia profunda, and the like. For example, strains such as Ulkenia sp. Yonez 6-9 can be used.
Examples of the organisms belonging to the genus Oblongichytrium include Oblongichytrium multirudimentale and Oblongichytrium minutum. For example, strains such as Oblongichytrium sp. H9 can be used.
Particularly preferred are algae of the genus Aurantiochytrium, for example, Aurantiochytrium limacinum 4W-1b strain, aurantiochytrium limacinum SR-21 strain, and aurantiochytrium such as aurantiochytrium limacinum NIES3737 strain. Limacinum strains, as well as aurantiochitrium mangrovei strains such as 18W-13a strain, and the like can be used.

本発明におけるDHA等産生藻類の培養は、当該藻類を上記のように調整されたPOMEを含む培地に播種し、定法にしたがって培養することにより行われる。培養条件は培養するDHA等産生藻類の種類に依存し、温度は5〜40℃、好ましくは10〜35℃、特に好ましいのは20〜25℃、より好ましくは25℃±1℃にて、通常1〜10日間、好ましくは3〜7日間、例えば4〜5日間培養を行い、通気攪拌培養、振とう培養又は静置培養で行うことができる。 Cultivation of algae producing DHA or the like in the present invention is carried out by inoculating the algae in a medium containing POME prepared as described above and culturing according to a standard method. The culture conditions depend on the type of algae such as DHA to be cultivated, and the temperature is 5 to 40°C, preferably 10 to 35°C, particularly preferably 20 to 25°C, more preferably 25°C ± 1°C. The culture can be performed for 1 to 10 days, preferably 3 to 7 days, for example 4 to 5 days, and can be performed by aeration and agitation culture, shaking culture or static culture.

本発明に使用するDHA等産生藻類は、適当な細胞培養手段を有する培養装置で培養してよい。「細胞培養手段」とは、細胞を培養するためのあらゆる機能を有する手段を意味し、例えば、培養槽であり、当該培養槽は、攪拌装置、振動装置、温度制御装置、pH調節装置、濁度測定装置、光制御装置、O、CO等の特定気体濃度測定装置及び圧力測定装置から選択される1又は複数の装置を有してもよい。当該培養槽は濃縮・分離槽と同一の槽であっても、濃縮・分離槽とは別の槽であってもよい。濃縮・分離槽と別の槽である場合、適切な手段、例えば流路等により連結されていてもよい。The DHA-producing algae used in the present invention may be cultivated in a culturing device having an appropriate cell culturing means. The “cell culture means” means a means having all the functions for culturing cells, and is, for example, a culture tank, and the culture tank includes a stirring device, a vibration device, a temperature control device, a pH control device, and a turbidity device. It may have one or more devices selected from a temperature measuring device, a light control device, a specific gas concentration measuring device such as O 2 and CO 2 and a pressure measuring device. The culture tank may be the same tank as the concentration/separation tank or a tank different from the concentration/separation tank. When it is a tank different from the concentration/separation tank, they may be connected by an appropriate means such as a flow path.

本発明はさらに、POMEを含む培地を使用し上記培養方法で培養したDHA産生藻類を回収し、当該回収されたDHA等産生藻類からDHAを抽出する、DHA製造方法を提供する。本発明のDHA製造方法は、POMEを含む培地を使用してDHA等産生藻類を培養することにより、当該DHA等産生藻類にDHAを産生させることを特徴とする。 The present invention further provides a method for producing DHA, which collects DHA-producing algae cultivated by the above-mentioned culturing method using a medium containing POME, and extracts DHA from the collected DHA-producing algae. The method for producing DHA of the present invention is characterized by culturing DHA-producing algae using a medium containing POME to cause the DHA-producing algae to produce DHA.

本発明のDHA等産生藻類が産生するDHAは、当業者に既知の方法で抽出及び分析することができる。例えば、上記の通りDHA産生藻類を培養して増殖させ、得られた培養液からDHA産生藻類を回収する場合は、遠心分離又は濾過等既存の方法で回収することができる。回収したDHA産生藻類のペレットを、凍結乾燥又は加温による乾燥等により乾燥させた藻体、または、DHA産生藻類培養を濃縮したのち乾燥していない湿潤の藻体をDHAの抽出ステップに用いてもよい。 DHA produced by algae such as DHA of the present invention can be extracted and analyzed by methods known to those skilled in the art. For example, when the DHA-producing alga is cultured and proliferated as described above and the DHA-producing alga is recovered from the obtained culture solution, it can be recovered by an existing method such as centrifugation or filtration. The collected pellets of DHA-producing algae are dried by freeze-drying or drying by heating, etc., or the wet Algae bodies which have not been dried after the DHA-producing algae culture is concentrated are used in the DHA extraction step. Good.

得られた乾燥藻体、又は湿潤藻体から、DHAを抽出できる。抽出方法は、特に限定されず、有機溶媒抽出や圧搾、超臨界抽出等既知の方法で行うことができる。有機溶媒抽出法に用いられる有機溶媒としては、例えばヘキサン、アセトン、クロロホルム、メタノール、エタノール、ジエチルエーテル等が挙げられ、単体で用いてもよく、又は極性溶媒と無極性溶媒といった2液以上の混合液を用いることもできる。抽出前に藻体を破砕してもよく、以下に限定されないが、アルカリや酸による化学的破砕、ホモジナイザーや超音波、ビーズミル等の機械的破砕、酵素による生物的破砕等、既知の方法で行ってもよい。上記抽出後に、得られた抽出液を、当業者に既知の方法で濃縮・精製してもよく、例えば、シリカゲルや酸性白土を用いたカラムクロマトグラフィ、高速液体クロマトグラフィ、液液分配、尿素付加法等を既知の方法を用いて、濃縮・精製してもよい。 DHA can be extracted from the obtained dry algal cells or wet algal cells. The extraction method is not particularly limited, and known methods such as organic solvent extraction, compression, and supercritical extraction can be used. Examples of the organic solvent used in the organic solvent extraction method include hexane, acetone, chloroform, methanol, ethanol, and diethyl ether, which may be used alone or a mixture of two or more liquids such as a polar solvent and a nonpolar solvent. A liquid can also be used. The algal cells may be crushed before extraction, including, but not limited to, chemical crushing with alkali or acid, mechanical crushing with homogenizer or ultrasonic wave, bead mill, biological crushing with enzymes, etc. by known methods. May be. After the above extraction, the obtained extract may be concentrated and purified by a method known to those skilled in the art, for example, column chromatography using silica gel or acid clay, high performance liquid chromatography, liquid-liquid distribution, urea addition method, etc. May be concentrated and purified using a known method.

前記DHA等産生藻類は、その乾燥重量当たり、少なくとも5%、少なくとも15%、少なくとも20%、少なくとも25%、少なくとも30%(重量%)のDHAを含有することがある。 The DHA-producing alga may contain at least 5%, at least 15%, at least 20%, at least 25%, at least 30% (wt%) DHA, based on its dry weight.

次に実施例を挙げて本発明をさらに詳しく説明するが、本発明はこれらに限定されるものではない。
実施例1:POME上清液の添加率が10〜50%となるように調整した人工海水塩類の添加培地におけるオーランチオキトリウム リマシナム4W−1b株の増殖、総脂質とDHAの生産
(種藻)
下記培地にて、筑波大学から提供されたヤブレツボカビ類に属するオーランチオキトリウム リマシナム4W−1b株をGTY培地(1/2希釈海水1Lにグルコース20g、酵母エキス5g、トリプトン10g含有)で4日間培養し、種藻とした。
Next, the present invention will be described in more detail with reference to examples, but the present invention is not limited thereto.
Example 1 Growth of aurantiochytrium limacinum 4W-1b strain, production of total lipids and DHA (seed algae) in an artificial seawater salt-added medium adjusted so that the addition rate of the POME supernatant is 10 to 50% )
In the following medium, the aurantiochytrium limacinum 4W-1b strain belonging to the Thraustochytrids provided by the University of Tsukuba was GTY medium (containing 20 g of glucose, 5 g of yeast extract and 10 g of tryptone in 1 L of 1/2 diluted seawater) for 4 days. It was cultured and used as a seed alga.

2018年4月にインドネシアのリアウ州にある工場から提供された高温のPOMEを速やかに冷蔵庫で冷却して3日間保存したのち、5000rpm、15分で遠心分離後、上清液(以下POME上清液と称す)を得た。POME上清液の添加率が10%、25%、50%(容量%)となるように16.7g/Lのレッドシー塩(人工海水塩類)を含む培地を作成した。 The high-temperature POME provided by the factory in Riau, Indonesia in April 2018 was immediately cooled in the refrigerator and stored for 3 days, after which it was centrifuged at 5000 rpm for 15 minutes, and the supernatant liquid (hereinafter POME supernatant (Referred to as liquid). A medium containing 16.7 g/L of Red Sea salt (artificial seawater salts) was prepared so that the addition ratio of the POME supernatant was 10%, 25%, and 50% (volume %).

上記各培地を、500ml容積の三角フラスコに200ml注ぎ、オートクレーブで120℃、20分間滅菌した。培地冷却後にオーランチオキトリウム リマシナム 4W−1b株の種藻を滅菌海水で洗浄したのち、培地に播種した。フラスコの口をシリコ栓で封じ、25℃で往復振盪培養した(100ストローク/分)。 200 ml of each medium was poured into a 500 ml Erlenmeyer flask and sterilized in an autoclave at 120° C. for 20 minutes. After cooling the medium, the seed alga of Aurantiochytrium limacinum 4W-1b strain was washed with sterilized seawater and then seeded in the medium. The mouth of the flask was sealed with a silicon stopper and cultured at 25° C. with reciprocal shaking (100 strokes/minute).

培養中の培養液1mlを所定のタイムポイントで回収し、紫外可視吸光度計により660nmの光学濁度を計測することで、増殖曲線を得た。培養は、全ての培養で増殖がプラトーに達するまで、最長で48時間実施された。培養終了後の培養液を50〜100mL回収し、高速冷却遠心分離機で3900rpm、15分遠心分離した。その後、上清を捨て、ペレットを蒸留水で洗浄し、再度遠心分離を行った。その後、試料を−80℃で凍結し、これらを凍結乾燥機で乾燥させることで、乾燥藻体を得た。乾燥藻体重量を微量天秤により計量し、培養液1L当たりの藻体量を算出した。 A growth curve was obtained by collecting 1 ml of the culture solution during the culture at a predetermined time point and measuring the optical turbidity at 660 nm with an ultraviolet-visible absorption spectrometer. Culturing was carried out for up to 48 hours until growth reached a plateau in all cultures. After completion of the culture, 50 to 100 mL of the culture solution was collected and centrifuged at 3900 rpm for 15 minutes with a high-speed cooling centrifuge. Then, the supernatant was discarded, the pellet was washed with distilled water, and centrifuged again. Then, the sample was frozen at −80° C. and dried with a freeze dryer to obtain a dried alga body. The weight of the dried algal cells was measured by a microbalance to calculate the amount of algal cells per 1 L of the culture solution.

上記藻類培養液10mLから遠心分離により回収した藻体ペレットを超音波破砕し、クロロホルム/メタノール(体積比2:1)混合溶液20mLを添加後、よく混合した。さらに、0.9%塩化ナトリウム水溶液4mLを加えてよく混合し、遠心分離後、クロロホルム層をろ紙でろ過しながら回収した。当該濾液を濃縮乾固して、脂質量を測定した。当該脂質に内部標準物質としてトリコメサンメチルエステルを0.2mg加え、0.5M NaOHメタノール溶液0.5mLを添加し、100℃、9分間でけん化反応を行った後、14%三フッ化ホウ素メタノール溶液0.7mLを加え、100℃、7分間でメチルエステル化反応を行った。当該試料に飽和食塩水3mLとヘキサン3mLを加えてよく混合し、遠心分離後、ヘキサン層をGC(ガスクロマトグラフィー)分析によりDHA含有量を測定した。 The algal cell pellets recovered by centrifugation from 10 mL of the algae culture solution were ultrasonically crushed, and 20 mL of a chloroform/methanol (volume ratio 2:1) mixed solution was added, followed by thorough mixing. Further, 4 mL of 0.9% sodium chloride aqueous solution was added and mixed well, and after centrifugation, the chloroform layer was collected while being filtered with a filter paper. The filtrate was concentrated to dryness and the amount of lipid was measured. To the lipid, 0.2 mg of trichomesane methyl ester was added as an internal standard substance, 0.5 mL of 0.5 M NaOH methanol solution was added, and saponification reaction was performed at 100° C. for 9 minutes, and then 14% boron trifluoride was added. 0.7 mL of a methanol solution was added, and a methyl esterification reaction was performed at 100° C. for 7 minutes. 3 mL of saturated saline and 3 mL of hexane were added to the sample and mixed well, and after centrifugation, the hexane layer was analyzed for GC (gas chromatography) to measure the DHA content.

以上の結果を図1、図2に示す。
図1は、POME上清液の添加率10%、25%、及び、50%系列の培地で培養したオーランチオキトリウム リマシナム4W−1bの藻体濃度の経時変化を示す(OD660)。すべての添加率培地で当該株は増殖しており、POME濃度(添加率)が高いほど当該株の増殖が高くなった。
図2は培養48時間後の総脂質とDHAの生産量を示す。すべての添加率培地で脂質およびDHAが産生され、POME濃度(添加率)が高いほど、当該株の脂質およびDHAの生産量が高くなった。
The above results are shown in FIGS.
FIG. 1 shows the time-dependent changes in the algal cell concentration of aurantiochytrium limacinum 4W-1b cultured in 10%, 25%, and 50% series of POME supernatant solutions (OD660). The strain grew in all the addition rate mediums, and the higher the POME concentration (addition rate), the higher the growth of the strain.
FIG. 2 shows the total lipid and DHA production after 48 hours of culture. Lipids and DHA were produced in all the addition ratio media, and the higher the POME concentration (addition ratio), the higher the lipid and DHA production of the strain.

表1に実施例1の各添加率培地において当該株を48時間増殖させた後の増殖量(g/L)、藻体生産性(mg/L/日)、脂質含有量(%)、総脂質量(mg/L)、脂質生産性(mg/L/日)、DHA含有量(%)、DHA生産量(mg/L)、およびDHA生産性(mg/L/日)をまとめた表を示す。生産性は、48時間増殖後の藻体量、総脂質量、およびDHA量をそれぞれ1日当たりに換算した値である。脂質含有量及びDHA含有量は、それぞれ藻体量に対する割合を示す(重量%)。

Figure 0006709484
Table 1 shows the growth amount (g/L), algal cell productivity (mg/L/day), lipid content (%), and total amount after the strain was grown for 48 hours in each addition rate medium of Example 1. Table summarizing lipid amount (mg/L), lipid productivity (mg/L/day), DHA content (%), DHA production amount (mg/L), and DHA productivity (mg/L/day) Indicates. The productivity is a value obtained by converting the amount of algal bodies, the amount of total lipids, and the amount of DHA after 48 hours of growth, which are converted per day. The lipid content and the DHA content each represent the ratio to the amount of algal bodies (% by weight).
Figure 0006709484

POME濃度(添加率)が高いほど、藻体増殖量・生産性、総脂質およびDHAの生産量・生産性が高くなり、特に藻体生産性と脂質生産性はそれぞれ1760mg/L/日および395mg/L/日と高くなっていた。 The higher the POME concentration (addition rate), the higher the alga body growth rate/productivity, total lipid and DHA production rate/productivity, and especially the alga body productivity and lipid productivity are 1760 mg/L/day and 395 mg, respectively. It was as high as /L/day.

表2にPOMEを用いて他の微細藻類を培養した従来技術と本願発明との藻体増殖量・生産性および総脂質生産量・生産性についての比較を示す。

Figure 0006709484
Table 2 shows a comparison between the prior art in which other microalgae were cultured using POME and the present invention, in terms of alga body growth amount/productivity and total lipid production amount/productivity.
Figure 0006709484

表2より、従来技術の微細藻類の藻体生産性は2.9〜1,040(mg/L/日)であるのに対し、本願発明の藻体生産性は50%POME、グルコース無添加の培地を使用した場合でも1,760(mg/L/日)であり、1.7倍〜600倍もの高い値を示した。また、従来技術の微細藻類の総脂質生産性は0.63(mg/L/日)〜100.9(mg/L/日)であるのに対し、本願発明においてオーランチオキトリウム リマシナム 4W−1bを用いた場合の藻体生産性は50%POME、グルコース無添加の培地を使用した場合でも3.9倍〜626倍もの高い値を示した。下記に示すように、100%POMEを使用し、20g/Lのグルコース添加した培地を使用した場合これらの効果はさらに顕著になった。さらに、従来技術の微細藻類はいずれも飽和脂肪酸もしくは一価の不飽和脂肪酸を主成分とした脂質を蓄積するものであり、ここから有価物であるDHAなどのω-3多価不飽和脂肪酸を得ることは困難である。 From Table 2, the algal cell productivity of the conventional microalga is 2.9 to 1,040 (mg/L/day), while the algal cell productivity of the present invention is 50% POME, without glucose addition. Even when the medium was used, it was 1,760 (mg/L/day), which was as high as 1.7 to 600 times. Further, the total lipid productivity of the conventional microalgae is 0.63 (mg/L/day) to 100.9 (mg/L/day), whereas in the present invention, aurantiochitrium limacinum 4W- The algal cell productivity when 1b was used was as high as 3.9 to 626 times even when the medium containing 50% POME and glucose was not used. As shown below, these effects became more prominent when 100% POME was used and a medium supplemented with 20 g/L glucose was used. Furthermore, all the microalgae of the prior art accumulate lipids containing saturated fatty acids or monovalent unsaturated fatty acids as main components, and from this, valuable ω-3 polyunsaturated fatty acids such as DHA are collected. Hard to get.

実施例2:POME上清液(100%)およびPOME上清液の添加率が10〜75%となるように調整した希釈液にグルコースと人工海水塩類を添加した培地とした場合のオーランチオキトリウム リマシナム 4W−1b株の増殖、総脂質とDHAの生産
実施例1と同じPOMEと種藻を使い、同様の方法で得たPOME上清液(100%)に20g/Lのグルコースと16.7g/Lのレッドシー塩をを添加して100%POME培地を作成した。また、POME上清液の添加率が10%、25%、50%、75%(容量%)となるように蒸留水で希釈し、16.7g/Lのレッドシー塩と20g/Lのグルコースを含むように調整した培地も作成した。これらを、POMEの添加系列とした。そして、上記実施例1について行ったのと同様に、ODでオーランチオキトリウム リマシナム4W−1bの増殖を評価するとともに、藻体の乾燥重量を測定して培養液1L当たりの藻体量を算出し、総脂質とDHA量を測定した。
Example 2: POR supernatant (100%) and an aurantthiox in the case where a culture medium in which glucose and artificial seawater salts were added to a diluent adjusted so that the addition rate of the POME supernatant was 10 to 75% Growth of Thorium limacinum 4W-1b strain, production of total lipid and DHA Using the same POME and seed alga as in Example 1, 20 g/L glucose and 16. were added to the POME supernatant (100%) obtained by the same method. A 100% POME medium was prepared by adding 7 g/L of Red Sea salt. Further, the POME supernatant was diluted with distilled water so that the addition rates were 10%, 25%, 50%, and 75% (volume %), and 16.7 g/L of red sea salt and 20 g/L of glucose were added. A medium adjusted so as to contain was also prepared. These were the addition series of POME. Then, in the same manner as in Example 1 above, the growth of aurantiochytrium limacinum 4W-1b was evaluated by OD, and the dry weight of algal cells was measured to calculate the amount of algal cells per liter of culture solution. Then, the total lipid and the amount of DHA were measured.

以上の結果を図3、図4、図5に示す。
図3は作成したPOMEの添加系列を培地とした場合の、当該藻類株の藻体濃度の経時変化を示す(OD660)。グルコース無添加条件でおこなった実施例1のPOME添加率10%,25%、50%と比較して、実施例2のグルコースを添加したPOME10%、25%及び50%の添加系列の各々において、当該株はあきらかに高い増殖を示した。さらに実施例1と同様にPOME濃度(添加率)が高いほど、増殖は高くなり、100%POME含有培地で最も高い増殖を示した。図4にPOME添加率と増殖量の関係を示した。添加率(x)と増殖量(y)の関係は、y=4.2308x+1.64(R=0.9579)の直線的比例関係にあることがわかった。
図5は培養48時間後の総脂質とDHAの生産量を示す。実施例1と同様にすべての添加率培地で脂質およびDHAが産生され、POMEの添加率が高いほど、脂質およびDHAの生産量が高くなり、100%POME含有培地で最も高い生産を示した。
The above results are shown in FIGS. 3, 4, and 5.
FIG. 3 shows the change over time in the algal cell concentration of the algal strain when the prepared POME addition series was used as a medium (OD660). In each of the addition series of glucose-added POME of 10%, 25% and 50% of Example 2, as compared with the POME addition rates of 10%, 25% and 50% of Example 1 performed under the condition without addition of glucose, The strain showed clearly high growth. Further, as in Example 1, the higher the POME concentration (addition rate), the higher the growth, and the highest growth was shown in the 100% POME-containing medium. FIG. 4 shows the relationship between the POME addition rate and the growth amount. It was found that the relationship between the addition rate (x) and the growth amount (y) is in a linear proportional relationship of y=4.2308x+1.64 (R 2 =0.9579).
FIG. 5 shows the total lipid and DHA production after 48 hours of culture. Lipids and DHA were produced in all the addition rate mediums as in Example 1, and the higher the addition rate of POME, the higher the production amount of lipids and DHA, and the highest production was shown in the 100% POME-containing medium.

表3に実施例2の各添加率培地において当該株を48時間増殖させた後の増殖量(g/L)、藻体生産性(mg/L/日)、脂質含有量(%)、総脂質量(mg/L)、脂質生産性(mg/L/日)、DHA含有量(%)、DHA生産量(mg/L)、およびDHA生産性(mg/L/日)をまとめた表を示す。各数値の求め方および単位は表1と同様である。

Figure 0006709484
Table 3 shows the growth amount (g/L) after the strain was grown for 48 hours in each addition ratio medium of Example 2, algal cell productivity (mg/L/day), lipid content (%), and total. Table summarizing lipid amount (mg/L), lipid productivity (mg/L/day), DHA content (%), DHA production amount (mg/L), and DHA productivity (mg/L/day) Indicates. The method of obtaining each numerical value and the unit are the same as in Table 1.
Figure 0006709484

グルコース無添加条件でおこなった実施例1と比較して、実施例2のグルコースを添加したPOME10%、25%及び50%の添加系列の各々において、当該株はあきらかに高い増殖を示した。表3に示すように、表1のグルコース無添加系の50%添加系列と比較して、グルコース添加での50%添加系列では藻体生産性は2,815mg/L/日と2倍、総脂質生産性は1,110mg/L/日と2.8倍、DHA生産性は228.5mg/L/日と7.7倍も高かった。また、表3に示すように、100%POMEでのグルコース添加での当該株の藻体生産性は4,150mg/L/日、脂質生産性は1,675mg/L/日と、従来技術の他の微細藻類の藻体生産性や総脂質生産性と比較すると、それぞれ4倍〜1430倍および16.6倍〜2660倍の高い値を示した。 In each of the addition series of glucose-added POME of 10%, 25% and 50% of Example 2, the strain showed a clearly higher growth compared to Example 1 performed under the condition without addition of glucose. As shown in Table 3, as compared with the 50% addition series of the glucose-free system of Table 1, in the 50% addition series with glucose addition, the algal cell productivity was 2,815 mg/L/day, which was double, and The lipid productivity was 1,110 mg/L/day, 2.8 times higher, and the DHA productivity was 228.5 mg/L/day, 7.7 times higher. In addition, as shown in Table 3, algal cell productivity of the strain with glucose addition at 100% POME was 4,150 mg/L/day, and lipid productivity was 1,675 mg/L/day, which was the same as in the prior art. Compared with algal cell productivity and total lipid productivity of other microalgae, the values were 4 to 1430 times higher and 16.6 to 2660 times higher, respectively.

実施例3:POME上清液(100%)にグルコースおよび各濃度の人工海水塩類を添加した培地におけるオーランチオキトリウム リマシナム 4W−1b株の増殖の経時変化およびDHA濃度
実施例1、2と同じPOMEと種藻を使い、同様の方法で得たPOME上清液(100%)に20g/Lのグルコース、及び0.00%、0.38%、0.75%、1.50%、3.00%(重量%)のレッドシー塩を添加した。
Example 3: Time-dependent changes in proliferation and DHA concentration of aurantiochytrium limacinum 4W-1b strain in a medium in which glucose and artificial seawater salts at various concentrations were added to POME supernatant (100%) The same as in Examples 1 and 2. 20 g/L glucose and 0.00%, 0.38%, 0.75%, 1.50%, 3 were added to the POME supernatant (100%) obtained by the same method using POME and seed algae. 0.00% (wt%) Red Sea salt was added.

実施例1、2と同様に、培地を滅菌し冷却後、同じ培養条件(500mL容三角フラスコ(培地仕込み量200mL)、25℃、往復振盪培養(100ストローク/分))で培養し、ODでオーランチオキトリウム リマシナム4W−1bの増殖を評価するとともに、藻体の乾燥重量を測定して培養液1L当たりの藻体量を算出し、DHA濃度を測定した。 As in Examples 1 and 2, after sterilizing the medium and cooling, the medium was cultivated under the same culture conditions (500 mL Erlenmeyer flask (medium preparation amount 200 mL), 25° C., reciprocal shaking culture (100 strokes/minute)), and OD The growth of aurantiochytrium limacinum 4W-1b was evaluated, and the dry weight of the algal cells was measured to calculate the amount of algal cells per 1 L of the culture solution, and the DHA concentration was measured.

結果を図6に示す。図6は藻体濃度(OD660)の経時的変化および、48時間増殖させた後のDHA濃度を示す。藻体濃度は添加ミネラル成分の濃度にあまり影響されなかったが、DHAの濃度は添加ミネラル成分濃度が低い(0.00%、0.38%、0.75%添加)ほうが、高い(1.50%、3.00%添加)場合に比べて高い傾向にあった。つまり、添加したミネラル成分の濃度が低いほうがDHA生産量(mg/L)が優れていることがわかる。 Results are shown in FIG. FIG. 6 shows changes in algal cell concentration (OD660) over time and DHA concentration after 48 hours of growth. The concentration of algal bodies was not significantly affected by the concentration of added mineral components, but the concentration of DHA was higher when the concentration of added mineral components was low (0.00%, 0.38%, 0.75% added) (1. 50% and 3.00% were added). That is, it can be seen that the lower the concentration of the added mineral component, the better the DHA production amount (mg/L).

なお、ミネラル成分およびグルコースを添加する前のPOME上清液(100%)の塩濃度を測定したところ、Cl(塩化物イオン)換算で2230(mg/L)であった。これは、12.5重量%の海水に相当し、NaCl換算で約0.375重量%に相当する。つまり、ミネラル成分を追加しなくてもPOMEに元々含まれていたミネラル成分のみで増殖に十分であり、DHA生産量についてはより好ましいことがわかる。 The salt concentration of the POME supernatant liquid (100%) before adding the mineral component and glucose was 2230 (mg/L) in terms of Cl (chloride ion). This corresponds to 12.5% by weight seawater, and corresponds to about 0.375% by weight in terms of NaCl. That is, it can be seen that even without adding a mineral component, only the mineral component originally contained in POME is sufficient for the growth, and the DHA production amount is more preferable.

実施例4:オーランチオキトリウム属の各種株を用いた培養試験
インドネシアの北スマトラ州にある工場から提供されたPOMEを用いた以外は実施例1〜3と同様の方法で得たPOME上清液(100%)に20g/Lのグルコースと16.7g/Lのレッドシー塩を添加して100%POME培地を作成し、滅菌および冷却を行った。以下の表4に示すオーランチオキトリウム属の各種株を用いて実施例1〜3と同様の培養条件(500mL容三角フラスコ(培地仕込み量200mL)、25℃、往復振盪培養(100ストローク/分))で培養し、ODで各種株の増殖を評価するとともに、藻体の乾燥重量を測定して培養液1L当たりの藻体量を算出し、総脂質とDHA濃度を測定した。

Figure 0006709484
Example 4: Culture test using various strains of the genus Aurantiochytrium POME supernatant obtained by the same method as in Examples 1 to 3 except that POME provided from a factory in North Sumatra, Indonesia was used. 20 g/L glucose and 16.7 g/L Red Sea salt were added to the liquid (100%) to prepare a 100% POME medium, which was sterilized and cooled. Culture conditions similar to those of Examples 1 to 3 using various strains of the genus Aurantiochytrium shown in Table 4 below (500 mL Erlenmeyer flask (medium preparation amount 200 mL), 25° C., reciprocal shaking culture (100 strokes/minute) )), the growth of various strains was evaluated by OD, the dry weight of algal cells was measured to calculate the amount of algal cells per liter of the culture solution, and the total lipid and DHA concentration were measured.
Figure 0006709484

結果を図7および表5に示す。図7はオーランチオキトリウム属の各種株の総脂質量(mg/L)とDHA濃度(mg/L)を示す。表5は、実施例4において各種株を一定時間増殖させた後の増殖量(g/L)、藻体生産性(mg/L/日)、脂質含有量(%)、総脂質量(mg/L)、脂質生産性(mg/L/日)、DHA含有量(%)、DHA生産量(mg/L)、およびDHA生産性(mg/L/日)をまとめた表である。各値の定義は表1と同じである。これらの結果より、オーランチオキトリウム属の藻類は、本発明の培地を用いると、非常に優れた藻体増殖量・生産性、総脂質およびDHAの生産量・生産性を示すことが分かる。

Figure 0006709484
The results are shown in FIG. 7 and Table 5. FIG. 7 shows the total lipid amount (mg/L) and DHA concentration (mg/L) of various strains of the genus Aurantiochytrium. Table 5 shows the amount of growth (g/L) after the various strains were grown for a certain time in Example 4, algal cell productivity (mg/L/day), lipid content (%), and total lipid content (mg). /L), lipid productivity (mg/L/day), DHA content (%), DHA production amount (mg/L), and DHA productivity (mg/L/day). The definition of each value is the same as in Table 1. From these results, it is understood that the algae of the genus Aurantiochytrium exhibit extremely excellent algal growth/productivity, total lipid and DHA production/productivity when the medium of the present invention is used.
Figure 0006709484

実施例5:他のDHA産生藻類の各種株を用いた培養試験
以下の表6に示すようなヤブレツボカビ類およびその他のDHA産生藻類の各種株を用いる以外は実施例4と同一の条件で培養を行い、藻体、総脂質、およびDHAの生産性を測定した。

Figure 0006709484
Example 5: Culture test using various strains of other DHA-producing algae Cultured under the same conditions as in Example 4 except that various strains of Thraustochytrids and other DHA-producing algae as shown in Table 6 below were used. Then, the productivity of algal cells, total lipids, and DHA was measured.
Figure 0006709484

結果を表7に示す。表7は、実施例5において各種株を増殖させた後の藻体生産性(mg/L/日)、脂質生産性(mg/L/日)、およびDHA生産性(mg/L/日)をまとめた表である。各値の定義は、表1と同じである。なお、培養時間が各株により異なるため生産性のみを記載した。これらの結果より、ヤブレツボカビ類をはじめとするDHA産生藻類は総じて、本発明の培地を用いると、非常に優れた藻体生産性、総脂質およびDHAの生産性を示すことが分かる。

Figure 0006709484
The results are shown in Table 7. Table 7 shows algal cell productivity (mg/L/day), lipid productivity (mg/L/day), and DHA productivity (mg/L/day) after growing various strains in Example 5. Is a table summarizing. The definition of each value is the same as in Table 1. Since the culture time was different for each strain, only productivity was described. From these results, it can be seen that DHA-producing algae such as Thraustochytrids generally show very excellent algal cell productivity, total lipid and DHA productivity when the medium of the present invention is used.
Figure 0006709484

Claims (10)

POMEを含む培地を使用する、オーランチオキトリウム リマシナム(Aurantiochytrium limacinum)に属する藻類の培養方法。 A method for culturing algae belonging to Aurantiochytrium limacinum, which uses a medium containing POME. 前記オーランチオキトリウム リマシナムに属する藻類がオーランチオキトリウム リマシナム4W−1b株、オーランチオキトリウム リマシナムSR−21株、又はオーランチオキトリウム リマシナムNIES3737株から選択されるいずれかの株である、請求項1に記載の培養方法。 Is any strains algae belonging to the O-lunch Oki thorium Rimashinamu is O lunch Oki thorium Rimashinamu 4W-1b strains, O-lunch Oki thorium Rimashinamu SR-21 strain, or is selected from O lunch Oki thorium Rimashinamu NIES3737 strain, wherein The culture method according to Item 1. POMEは遠心分離及び/又はろ過により清澄される、請求項1又は2に記載の培養方法。 The culture method according to claim 1 or 2, wherein POME is clarified by centrifugation and/or filtration. 前記培地は、糖成分を更に含む、請求項1〜3のいずれか1項に記載の培養方法。 The culture method according to claim 1, wherein the medium further contains a sugar component. 前記糖成分はグルコース、ガラクトース、フルクトース、マルトース、シュクロース、ラクトース、オリゴ糖、及びグリセロール等の糖アルコールら選択される1又は複数の糖類である、請求項4に記載の培養方法。 The sugar component is glucose, galactose, fructose, maltose, sucrose, lactose, oligosaccharides, and is one or more saccharides are sugar alcohols or we choose such as glycerol, the culture method of claim 4. 前記糖成分の添加量は、合計として10〜30g/培地Lである、請求項4又は5に記載の培養方法。 The culture method according to claim 4 or 5, wherein the total amount of the sugar component added is 10 to 30 g/medium L. 前記培地は、ミネラル成分を更に含む、請求項1〜6のいずれか1項に記載の培養方法。 The culture method according to claim 1, wherein the medium further contains a mineral component. 前記ミネラル成分は、硫酸カリウム、硫酸マグネシウム、硫酸鉄、硫酸アンモニウム硫酸銅、硫酸ニッケル、硫酸亜鉛等の硫酸塩;リン酸カリウム等のリン酸塩炭酸カルシウム等の炭酸塩;塩化コバルト、塩化マンガン、塩化ナトリウム、塩化カルシウム等の塩化物;アルカリ金属酸化物;モリブデン酸ナトリウム等のモリブデン酸塩;亜セレン酸ナトリウム等の亜セレン酸塩;臭化カリウムヨウ化カリウム等のハロゲン化物;天然海水塩類人工海水塩類、から選択される単一又は複数の塩類である、請求項7に記載の培養方法。 The mineral components include sulfates such as potassium sulfate, magnesium sulfate, iron sulfate, ammonium sulfate , copper sulfate, nickel sulfate and zinc sulfate; phosphates such as potassium phosphate ; carbonates such as calcium carbonate; cobalt chloride and manganese chloride. , sodium, chloride and calcium chloride; potassium bromide, halides such as potassium iodide; selenite, such as sodium selenite; molybdate such as sodium molybdate; alkaline metal oxides natural seawater The culture method according to claim 7, which is a single salt or a plurality of salts selected from salts ; artificial seawater salts. 前記ミネラル成分の添加量は、合計として5〜35g/培地Lである、請求項7又は8に記載の培養方法。 The culture method according to claim 7, wherein the total amount of the mineral components added is 5 to 35 g/medium L. 請求項1〜9のいずれか1項に記載の培養方法で培養した藻類を回収すること、当該回収された藻類からDHAを抽出することを含む、DHA製造方法。 A method for producing DHA, comprising collecting algae cultured by the culture method according to claim 1, and extracting DHA from the collected algae.
JP2019571086A 2018-08-01 2019-07-16 Method for culturing heterotrophic microalgae using palm oil factory effluent (POME) and method for producing DHA Active JP6709484B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020003760A JP7385799B2 (en) 2018-08-01 2020-01-14 Method for culturing heterotrophic microalgae using palm oil factory effluent (POME) and method for producing DHA

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018145453 2018-08-01
JP2018145453 2018-08-01
PCT/JP2019/027981 WO2020026794A1 (en) 2018-08-01 2019-07-16 Method for culturing heterotrophic microalgae using palm oil mill effluent (pome) and method for producing dha

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2020003760A Division JP7385799B2 (en) 2018-08-01 2020-01-14 Method for culturing heterotrophic microalgae using palm oil factory effluent (POME) and method for producing DHA

Publications (2)

Publication Number Publication Date
JP6709484B1 true JP6709484B1 (en) 2020-06-17
JPWO2020026794A1 JPWO2020026794A1 (en) 2020-08-06

Family

ID=69231621

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2019571086A Active JP6709484B1 (en) 2018-08-01 2019-07-16 Method for culturing heterotrophic microalgae using palm oil factory effluent (POME) and method for producing DHA
JP2020003760A Active JP7385799B2 (en) 2018-08-01 2020-01-14 Method for culturing heterotrophic microalgae using palm oil factory effluent (POME) and method for producing DHA

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2020003760A Active JP7385799B2 (en) 2018-08-01 2020-01-14 Method for culturing heterotrophic microalgae using palm oil factory effluent (POME) and method for producing DHA

Country Status (3)

Country Link
JP (2) JP6709484B1 (en)
MY (1) MY188244A (en)
WO (1) WO2020026794A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6884451B2 (en) * 2018-08-16 2021-06-09 株式会社MoBiol藻類研究所 Heterotrophic microalgae culture method and DHA production method using palm oil factory effluent (POME)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2546352A1 (en) * 2011-07-15 2013-01-16 Neste Oil Oyj Process for producing lipids from palm oil production residues
US20130089901A1 (en) * 2010-05-04 2013-04-11 Korea Research Institute Of Bioscience And Biotechnology Novel thraustochytrid-based microalgae, and method for preparing bio-oil by using same
KR20130123246A (en) * 2012-05-02 2013-11-12 한국생명공학연구원 Method for culturing microalge thraustochytrid using palm empty fruit bunch hydrolysate and method for preparing biooil through the same
WO2014112574A1 (en) * 2013-01-18 2014-07-24 協和発酵バイオ株式会社 Microorganisms producing docosahexaenoic acid and utilization thereof
JP2015012842A (en) * 2013-07-05 2015-01-22 国立大学法人 筑波大学 Culturing method of squalene-producing seaweed using waste water of white distilled liquor as culture medium
US20160201007A1 (en) * 2013-07-02 2016-07-14 Bio.Te.Ma. S.R.L. Process of production of oil from microalgae
JP2016152798A (en) * 2015-01-24 2016-08-25 インディアン オイル コーポレーション リミテッド Process based on thraustochytrid for treating waste liquid
WO2017012933A1 (en) * 2015-07-17 2017-01-26 Fermentalg Thraustochytrid biomass enriched with oils and proteins, culturing method, and uses
JP2017205045A (en) * 2016-05-17 2017-11-24 株式会社 ヒガシマル Method using marine heterotrophic algae, amino acid composition suitable for feed, as protein component of feed
JP2019041681A (en) * 2017-09-01 2019-03-22 三菱マテリアル株式会社 Methods for producing algal oil using biomass resource

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130089901A1 (en) * 2010-05-04 2013-04-11 Korea Research Institute Of Bioscience And Biotechnology Novel thraustochytrid-based microalgae, and method for preparing bio-oil by using same
EP2546352A1 (en) * 2011-07-15 2013-01-16 Neste Oil Oyj Process for producing lipids from palm oil production residues
KR20130123246A (en) * 2012-05-02 2013-11-12 한국생명공학연구원 Method for culturing microalge thraustochytrid using palm empty fruit bunch hydrolysate and method for preparing biooil through the same
WO2014112574A1 (en) * 2013-01-18 2014-07-24 協和発酵バイオ株式会社 Microorganisms producing docosahexaenoic acid and utilization thereof
US20160201007A1 (en) * 2013-07-02 2016-07-14 Bio.Te.Ma. S.R.L. Process of production of oil from microalgae
JP2015012842A (en) * 2013-07-05 2015-01-22 国立大学法人 筑波大学 Culturing method of squalene-producing seaweed using waste water of white distilled liquor as culture medium
JP2016152798A (en) * 2015-01-24 2016-08-25 インディアン オイル コーポレーション リミテッド Process based on thraustochytrid for treating waste liquid
WO2017012933A1 (en) * 2015-07-17 2017-01-26 Fermentalg Thraustochytrid biomass enriched with oils and proteins, culturing method, and uses
JP2017205045A (en) * 2016-05-17 2017-11-24 株式会社 ヒガシマル Method using marine heterotrophic algae, amino acid composition suitable for feed, as protein component of feed
JP2019041681A (en) * 2017-09-01 2019-03-22 三菱マテリアル株式会社 Methods for producing algal oil using biomass resource

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CHEAH, W. Y. ET AL.: "Enhancing biomass and lipid productions of microalgae in palm oil mill effluent using carbon and nut", ENERGY CONVERSION AND MANAGEMENT, vol. 164, JPN6019039395, 23 March 2018 (2018-03-23), pages 188 - 197, XP085371549, ISSN: 0004215746, DOI: 10.1016/j.enconman.2018.02.094 *
白井 義人 ほか: "マレーシアにおけるパームオイル産業のゼロエミッション化にむけての取り組み", JOURNAL OF ENVIRONMENTAL BIOTECHNOLOGY, vol. 9, no. 1, JPN6020006024, 2009, pages 3 - 10, ISSN: 0004215745 *

Also Published As

Publication number Publication date
MY188244A (en) 2021-11-24
WO2020026794A1 (en) 2020-02-06
JPWO2020026794A1 (en) 2020-08-06
JP2020054391A (en) 2020-04-09
JP7385799B2 (en) 2023-11-24

Similar Documents

Publication Publication Date Title
Rajkumar et al. Potential of the Micro and Macro Algae for Biofuel Production: A Brief Review.
Shen et al. Effect of nitrogen and extraction method on algae lipid yield
Demirbas Use of algae as biofuel sources
Gouveia et al. Microalgae as a Feedstock for Biofuels
Harun et al. Bioprocess engineering of microalgae to produce a variety of consumer products
Chaudhary et al. Algae as a feedstock for bioethanol production: new entrance in biofuel world
Saharan et al. Towards algal biofuel production: a concept of green bio energy development
JP6265407B2 (en) Method for culturing squalene-producing algae using shochu wastewater as culture medium
AU2012284645B2 (en) Method for obtaining an open phototrophic culture with improved storage compound production capacity
US8148120B2 (en) Concentration and separation of lipids from renewable resources
JP6709484B1 (en) Method for culturing heterotrophic microalgae using palm oil factory effluent (POME) and method for producing DHA
Nguyen et al. A review on microalgae and cyanobacteria in biofuel production
Johnson Microalgal biodiesel production through a novel attached culture system and conversion parameters
KR101769875B1 (en) Method of preparing triacylglycerol or biodiesel in microalgae
WO2014208621A1 (en) Microalga culture method and drainage water treatment method
JP6884451B2 (en) Heterotrophic microalgae culture method and DHA production method using palm oil factory effluent (POME)
Arun et al. Microalgae: the future fuel
JP7048056B2 (en) Lipid production method
CN105861312A (en) Method for culturing microalgae by adding anaerobic digestion liquid of kitchen waste to natural seawater
Bajhaiya et al. Approaches and prospectives for algal fuel
Tiwari et al. Algal biomass: potential renewable feedstock for biofuel production
Malla et al. Aquatic microalgal biofuel production
CN109810904B (en) Method for concentrating and collecting isochrysis galbana by using ethanol and realizing semi-continuous culture
Durakovic et al. Potential of algae for biofuel production
Kumar et al. Biomass (Algae) Valorization as an Energy Perspective: Review of Process Options and Utilization

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200117

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200117

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20200117

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20200206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200318

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200331

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200428

R150 Certificate of patent or registration of utility model

Ref document number: 6709484

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250