JP6709166B2 - 大量医学分析を用いたコンピュータ医療計画方法及びシステム - Google Patents

大量医学分析を用いたコンピュータ医療計画方法及びシステム Download PDF

Info

Publication number
JP6709166B2
JP6709166B2 JP2016557188A JP2016557188A JP6709166B2 JP 6709166 B2 JP6709166 B2 JP 6709166B2 JP 2016557188 A JP2016557188 A JP 2016557188A JP 2016557188 A JP2016557188 A JP 2016557188A JP 6709166 B2 JP6709166 B2 JP 6709166B2
Authority
JP
Japan
Prior art keywords
patient
parameters
parameter
medical
subgroups
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016557188A
Other languages
English (en)
Other versions
JP2017502439A (ja
JP2017502439A5 (ja
Inventor
マーク オレイニク
マーク オレイニク
Original Assignee
マーク オレイニク
マーク オレイニク
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by マーク オレイニク, マーク オレイニク filed Critical マーク オレイニク
Publication of JP2017502439A publication Critical patent/JP2017502439A/ja
Publication of JP2017502439A5 publication Critical patent/JP2017502439A5/ja
Application granted granted Critical
Publication of JP6709166B2 publication Critical patent/JP6709166B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16ZINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS, NOT OTHERWISE PROVIDED FOR
    • G16Z99/00Subject matter not provided for in other main groups of this subclass
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/70ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for mining of medical data, e.g. analysing previous cases of other patients
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H10/00ICT specially adapted for the handling or processing of patient-related medical or healthcare data
    • G16H10/60ICT specially adapted for the handling or processing of patient-related medical or healthcare data for patient-specific data, e.g. for electronic patient records
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H20/00ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/10Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Public Health (AREA)
  • Epidemiology (AREA)
  • General Health & Medical Sciences (AREA)
  • Primary Health Care (AREA)
  • Data Mining & Analysis (AREA)
  • Biomedical Technology (AREA)
  • Databases & Information Systems (AREA)
  • Pathology (AREA)
  • Medical Treatment And Welfare Office Work (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Information Retrieval, Db Structures And Fs Structures Therefor (AREA)

Description

〔関連出願との相互参照〕
本出願は、2014年10月3日に出願された「インテリジェンス大量医学分析のための方法及びシステム(Method and System for Intelligence Mass Medical Analysis)」という名称の米国仮特許出願第62/059,588号、2014年4月9日に出願された「インテリジェンス大量医学分析の方法及びシステム(Method and System for Intelligence Mass Medical Analysis)」という名称の米国仮特許出願第61/977,512号、2014年2月28日に出願された「インテリジェンス大量医学分析の方法及びシステムMethod and System for Intelligence Mass Medical Analysis)」という名称の米国仮特許出願第61/946,339号、2013年12月4日に出願された「大量医学分析の方法及びシステムインテリジェンス(Method and System Intelligence For Mass Medical Analysis)」という名称の米国仮特許出願第61/911,618号、2014年12月2日に出願された「大量医学分析を用いたコンピュータ医療計画方法及びシステム(Computational Medical Treatment Plan Method and System with Mass Medical Analysis)」という名称の米国本特許出願第14/558,706号に対する優先権を主張するものであり、これらの特許出願の開示はその全体が引用により本明細書に組み入れられる。
本発明は、一般にコンピュータソフトウェアに関し、具体的には、患者の治療の最適化、及びコンピュータによる医療計画の生成における知的医療処理のために、複数の地理的地域にわたる数多くのソースから提供された大量の電子医療記録(EMR)又は電子健康記録(EHR)を分析するソフトウェアツールに関する。
ヘルスケアは、基礎となる力の1つとしての技術を用いた一大変化を受けている。電子医療記録は、ある地理的地域内の異なる提携病院、診療所、並びに医局及び診療クリニック、並びに共同経営又は中央政府の規制によって大きく隔離されており、地理的境界を越えて患者情報を共有する複雑性については言うまでもない。ソフトウェア分析の文脈では、一体化及び分析が行われていない多くの異種フォーマット及びデータタイプが存在するので、これらの電子医療データは、非構造化データと見なすことができる。大量の電子医療記録をじっくりと分析して治療及び結果に関連するパターン及び統計的証拠を究明することは、患者の治療に対して大きな肯定的影響を与えると考えられる。
医療産業及び患者は、両者ともに、診断、治療及び患者予後に関する重要な実環境データを含む医療記録のコンピュータ分析から大きな恩恵を受けると思われる。医療記録などの最新の医療情報は、機関、所属、場所、地形及び領域によって大きく隔離されたままである。多くの場合、医師らは、同じような患者をどのように治療したか、及びそのような治療の結果を示す統計的証拠よりも、むしろ患者及びその医師の独自の経験によってもたらされる情報に基づいて患者の診断及び治療を行う。その1つの理由は、医師らが自身の業務及び公開文献を越えて患者情報にアクセスすることが比較的限られているからである。医師の診断及び推奨される治療計画についての全国的、国際的又は世界的規模の衆知が、実際の証拠に基づく患者の治療方法を提供するために収集され、分析され、使用されたことはない。
従って、複数の地理的地域にわたる異なるソースからの大量の医療データをコンピュータ分析して、患者の治療を改善し、推奨される患者の治療計画を構築するシステム及び方法を有することが望ましい。このシステム及び方法を用いて特定の疾患のある患者の治療及び医学的転帰を分析すれば、医師らは、同じような患者をどのように治療したか、及びそのような治療の予後を示す計算的及び統計的証拠に基づいて自身の治療法の決定を行えるようになる。
本開示の実施形態は、同じ地域内の、又は異なる地理的地域にわたる数多くの医療ソースからの大量の電子医療記録を分析し、分類し、照合してグループ分割することによって特定の症状、疾患又は患者プロファイルのための患者治療計画を最適化するための、コンピュータを駆使した確率論的包括的医療データ方法、システム及びコンピュータプログラム製品に関する。包括的医療データ分析コンピュータシステムは、治療計画過程を最適化する知的医療エンジンを含む医療メインサーバを含む。包括的医療データ分析コンピュータシステムは、機密個人データベースである中央データベースに通信可能に結合されるとともに、ネットワークを介して、病院、大学病院、診療所及び他の医療データソースのうちの1つ又は2つ以上にさらに通信可能に結合される。知的医療エンジンは、大量の医療記録を異なる国、地域及び大陸から包括的に受け取ることができる。世界各国の病院、大学病院、診療所及びその他の医療ソースから提供される電子医療記録は、大規模コンピュータ分析及び患者の医療記録のうちの1つ又は2つ以上との相関付けのために知的医療エンジンに供給される。知的医療エンジンは、記憶モジュール、分析モジュール、分類コンポーネント、照合モジュール、学習モジュール、入力データモジュール、及びディスプレイモジュールを含む。知的医療エンジンは、推奨される治療プロトコルを最適化するように患者の及びその他の電子医療記録、並びに定められた治療計画を経時的に対話処理して学習するための学習モジュールを組み込む。
知的医療エンジンは、患者の症状、疾患又は患者プロファイルを大量の電子医療記録に照らしてグループ分割(「フィルタ処理」とも呼ぶ)するように構成される。グループ分割手段は、1又は2以上の臨床パラメータに関して同一又は同様の値を共有し、所与の治療に対する同一又は同様の医学的転帰を有する患者グループの有意なサブグループ(サブセット)を発見する。1つの実施形態では、フィルタ処理過程、又はグループ分割過程が、関連する電子医療記録の数を、少なくともいくつかの臨床パラメータ、疾患及び/又は治療結果を共有するメンバーを有する小さなサブグループに低減する機構としての複数レベルのフィルタを含む。例えば、患者の(症状又は疾患を含む)電子医療記録に照らして既存の電子医療記録をグループ分割することは、患者の疾患に関連する1又は2以上の重要パラメータを用いて、同様に照合される電子医療記録の1又は2以上の第1のサブグループを生成する第1レベルのフィルタを含むことができる。第2レベルのフィルタでは、1又は2以上の第1のサブグループの数をさらに低減する方法として、グループ分割方法が、副疾患、慢性疾患、合併症パラメータを用いて、同様に照合される患者電子記録の(第1のサブグループに等しいこともあるが、典型的にはそれよりも少ない)1又は2以上の第2のサブグループを生成することにより、1又は2以上の第1のサブグループを患者の電子医療記録に照らしてフィルタ処理する。第3レベルのフィルタでは、グループ分割方法が、第3のパラメータセットを用いて(第2のサブグループに等しいこともあるが、典型的にはそれよりも少ない)1又は2以上の第3のサブグループを生成することにより、1又は2以上の第2のサブグループをさらにフィルタ処理する。第4レベルのフィルタでは、グループ分割方法が、ライフスタイルパラメータ(例えば、食習慣、運動ルーチン、喫煙者、過体重、ストレスなど)などの第4のパラメータセットを用いて、同様に照合される患者電子品記録の(第3のサブグループに等しいこともあるが、典型的にはそれよりも少ない)1又は2以上の第4のサブグループを生成することにより、1又は2以上の第3のサブグループ内の電子医療記録の数をさらに低減することができる。医療データのコンピュータ分析に基づくコンピュータ処理による治療プロトコルを作成するために、同様の照合サブグループの数を低減して患者の特定の疾患又は症状に対して望ましい数のサブグループを生成するためのさらなるグループ分割レベルも可能である。一般に、グループ分割では、グループ分割されたサブセット内の項目が満たす必要があるさらなる基準が追加されるので、グループ分割動作前の項目の組よりも小さな項目の組が結果として生じる。
グループ分割方法は、有意変数及び間接変数(「パラメータ」とも呼ばれる)、(2次元グラフ上)の一定期間にわたる変数、2次元又は3次元画像(例えば、X線、MRI、CTスキャン画像)、又はこれらのいずれかの組み合わせに対して実施することができる。1つの実施形態では、グループ分割方法が、第1レベルのグループ分割において有意変数を使用し、第2レベルのグループ分割において間接変数を使用することにより、特定の患者の客観的医療データを用いて他の患者の客観的医療データをデータベースからフィルタ処理する。別の実施形態では、別のグループ分割方法が、患者の客観的医療データに関連する有意パラメータが経時的にどのように進化するかを、同じ有意パラメータについて同じ期間にわたって他の患者の客観的医療データと比較する。患者の客観的医療データと他の客観的医療データとの間で特定の期間にわたって有意パラメータの1つからのいずれかの有意な逸脱がある場合、この特定のサブグループを患者の客観的医療データからグループ分割する根拠とすることができる。さらなる実施形態では、別のグループ分割方法が、有意パラメータ3次元臓器画像で示すことを含む患者の客観的医療データを、有意パラメータを3次元臓器画像で示すことを含む他の患者の客観的医療データと比較することによってサブグループをフィルタ処理する。
大量の患者の客観的医療データの収集及び分析では、患者の客観的医療データの各々が、社会保障番号などの患者の機密情報を含まない標準化された電子医療記録を含むことができる。客観的医療データの使用では、人の機密情報が曝されないので、いくつかのプライバシー問題も軽減される。客観的医療データを標準化すると、医学病院、大学病院、診療所及び他の医療データソースから提供される大量の電子医療データの知的医療エンジンによる処理、相関付け、分析及び照合が可能になる。客観的医療データの標準化は、客観的医療データをデータベースフォーマットで記憶し、体系化して検索できる形で臨床パラメータを一貫して分類又はカテゴリ化するためのいずれかの構造を意味する。客観的医療データの変換は、例えば、グループ分割処理における患者の医療データの修正中に患者の客観的医療データ及び関連するコードが病院から知的医療エンジンに送信された時などを含む異なる処理時点において行うことができる。
知的医療エンジン上に実装される標準化された客観的医療データ及びグループ分割方法の数多くの実際の応用が実現可能である。1つの応用は、医師が本発明の装置及び方法を用いて、同じ疾患及び重要な医療パラメータを有する他の患者の医学的転帰に基づいて治療計画を展開するものである。別の応用では、一般医が自身の診察室に疾患用カプセルを設置して、後で知的医療エンジンに記憶された患者の医療データとの比較において使用するための様々な医学的測定を行うために、疾患用カプセル内に移動するプラットフォーム上に患者を寝かせることによって毎1回の又は定期的な検診(又は毎1回の健康診断)を行う。第2の応用では、患者のモニタ及び治療のために患者にウェアラブル装置を配置する。ウェアラブル装置は、患者の状態をモニタし、患者に薬剤を注入し、或いは患者から血液を採取するための、患者に接続できる人工血管又はポートを有する。例えば、一端が血管に接続されて、もう一端が雌コネクタに接続された医療装置を患者の皮下に埋め込み、(未使用時に雌コネクタを閉鎖する、バルブとも呼ばれる)表面エンクロージャを有する雌コネクタ内に外部の雄コネクタを配置して血液を採取する。表面エンクロージャは、患者の体内に確実に血液及びその他の流体が含まれるようにする。患者の状態は、ウェアラブル装置によって常にモニタされ、必要時には、このウェアラブル装置が患者の病状を知的医療エンジンに送信して医師、病院又は救急車に警報を送れるようにする。ウェアラブル装置の他の実施形態は、ウェアラブルモバイル装置と無線通信できるように衣類又は下着に1又は2以上のセンサを埋め込むことを含む。
大まかに言えば、電子医療記録を処理するためのコンピュータ実装方法が、複数の患者の複数の客観的医療データを記憶するステップを含み、各患者の客観的医療データは、客観的医療データを記憶する際に使用される複数の要素に構造化され、各患者の客観的医療データは、患者のパラメータと、患者の疾患と、患者が受けた治療と、治療の結果とを少なくとも含み、この方法は、複数の患者の客観的医療データをグループ分割して、複数の客観的医療データをサブグループに分類する分類ステップをさらに含み、この分類するステップは、各患者のパラメータ、疾患、該疾患について各患者が受けた治療及び治療の結果に基づく少なくとも1つのレベルの分類と、以前に生成されたサブグループよりも小さなサブグループの組が識別されるまで、各レベルの各サブグループについて1回ずつ処理を反復的に繰り返すステップとを含み、より小さなサブグループ内の患者は、実質的に同様の臨床的に関連性のあるパラメータ及び実質的に同様の結果を有し、この方法は、新規患者の臨床的に関連性のあるパラメータと、新規患者の少なくとも1つの疾患とを少なくとも含む新規患者の疾患テンプレートを、患者の疾患に基づく新規患者の客観的医療データと共に受け取るステップと、新規患者のパラメータ及び疾患を、グループ分割されたサブグループの対応するパラメータ及び疾患と照合して最も類似するサブグループを選択し、サブグループ内の患者についての治療結果に基づいて、新規患者についての考えられる潜在的治療結果を特定するステップとをさらに含む。
以下の詳細な説明では、本開示の構造及び方法を開示する。この概要は、決して本発明を規定又は限定することを主張するものではない。本発明の範囲は、特許請求の範囲によって定められる。本発明の上記の及びその他の実施形態、特徴、態様及び利点は、以下の説明、添付の特許請求の範囲及び添付図面に関してより良く理解される。
本発明をその特定の実施形態に関して説明し、以下の図面を参照する。
本開示による、大量の患者の医療記録及び治療の受け取り、分析、相関付け及び生成を行う包括的医療データ分析システムである。 本開示による、複数の地理的地域にわたる様々な医療ソースからの大量の客観的医療データの処理、分析、分類、照合及び学習を行う計算能力を提供する、医療メインサーバ内の知的医療エンジンを示すソフトウェアシステム図である。 本開示による、客観的医療データの分析、分類、照合及びグループ分割を行うために知的医療エンジンが利用する処理を示すブロック図である。 本開示による、客観的医療データの分析、分類、照合及びグループ分割を行うために知的医療エンジンが利用する処理を示すブロック図である。 本開示による、グループ分割処理の複数のレベルを示す図である。 本開示による、図3A〜図3Bに関するサブグループへのグループ分割処理の複数のレベルを示す図である。 本開示による、異なるパラメータセットによる複数レベルのフィルタ処理を用いて患者のテンプレートを他の患者の客観的医療データのサブグループと比較することによってグループ分割処理を実行するための例示的なメニューである。 1又は2以上のサブグループの重要パラメータの変化、及び異なる治療プロトコルに対する反応としての治療結果を示すブロック図である。 同じ治療プロトコルに対する2つのサブグループの異なる重要パラメータの動特性及び変化を示すグラフ図である。 本開示による、同じ患者又は異なる患者の3つの例示的なタイムラインシナリオを示すブロック図である。 本開示による、客観的医療データに対して患者をモニタするポータブル医用モニタリング装置を示すシステム図である。 本開示による、客観的医療データに対して患者を24時間常にモニタする例示的な処理フローである。 本開示による、医療メインサーバ内の客観的医療データに対して患者の現在の医療データをモニタして治療するウェアラブル装置の例示的な図である。 本開示による、血管系にアクセスする1対の接続装置の例示的な図である。 本開示による、埋め込みポート及び治療装置の例示的な図である。 本開示による、医療メインサーバ内の客観的医療データに対して患者の現在の医療データをモニタして治療する埋め込み型装置の例示的な図である。 本開示による、統合健康診査機能及び疾患診断機能を有する診断カプセル機の例示的な図である。 本開示による、知的医療エンジンが対話型機械学習処理を用いて最適化のために客観的医療データの受け取り、記憶、分析及び分類を行う自動処理を示すブロック図である。 本開示による、患者の新たな症状を、既存の大量の客観的医療データを有するデータベースと速やかに比較するための、医療関係者によって開始される処理を示すブロック図である。 本開示による、クエリに基づいて医師の客観的データを選択するための、消費者によって開始される処理を示すブロック図である。 本開示による、図12に関連する例示的な所定の検索カテゴリを示すブロック図である。 本開示による、消費者が世界中のあらゆる場所から自身の電子医療記録を取り出す処理を示すブロック図である。 本開示による、図13に関連する客観的医療データに対して患者を24時間常にモニタする処理を示すフロー図である。 本開示による、医師が画像の変化に照らして複数の異なるデータ点に基づいて治療法を決定する支援を行うように患者の3次元プロファイルを経時的に記憶し、蓄積して分析する処理を示すフロー図である。 本開示による、医師が重要パラメータの変化に照らして複数の異なるデータ点に基づいて決定する支援を行うように患者のテンプレート内のキーパラメータを経時的に記憶し、蓄積して分析する処理を示すフロー図である。 本開示による、客観的医療データに対して患者をモニタする電子下着、又は衣類の繊維電極を用いて医療データを検知する処理を示すフロー図である。 本開示による、一般開業医が主要患者検査プロトコルを検討するためのフィールド及びサブフィールドの例示的なリストを示す図である。 本開示による、一般開業医が主要患者検査プロトコルを検討するためのフィールド及びサブフィールドの例示的なリストを示す図である。 本開示による、一般開業医が主要患者検査プロトコルを検討するためのフィールド及びサブフィールドの例示的なリストを示す図である。 本開示による、一般開業医が主要患者検査プロトコルを検討するためのフィールド及びサブフィールドの例示的なリストを示す図である。 本開示による、一般開業医が主要患者検査プロトコルを検討するためのフィールド及びサブフィールドの例示的なリストを示す図である。 本開示による、一般開業医が主要患者検査プロトコルを検討するためのフィールド及びサブフィールドの例示的なリストを示す図である。 本開示による、一般開業医が主要患者検査プロトコルを検討するためのフィールド及びサブフィールドの例示的なリストを示す図である。 本開示による、一般開業医が主要患者検査プロトコルを検討するためのフィールド及びサブフィールドの例示的なリストを示す図である。 本開示による、一般開業医が主要患者検査プロトコルを検討するためのフィールド及びサブフィールドの例示的なリストを示す図である。 本開示による、一般開業医が主要患者検査プロトコルを検討するためのフィールド及びサブフィールドの例示的なリストを示す図である。 本開示による、一般開業医が主要患者検査プロトコルを検討するためのフィールド及びサブフィールドの例示的なリストを示す図である。 本開示による、一般開業医が主要患者検査プロトコルを検討するためのフィールド及びサブフィールドの例示的なリストを示す図である。 本開示による、一般開業医が主要患者検査プロトコルを検討するためのフィールド及びサブフィールドの例示的なリストを示す図である。 本開示による、一般開業医が主要患者検査プロトコルを検討するためのフィールド及びサブフィールドの例示的なリストを示す図である。 本開示による、一般開業医が主要患者検査プロトコルを検討するためのフィールド及びサブフィールドの例示的なリストを示す図である。 本開示による、一般開業医が主要患者検査プロトコルを検討するためのフィールド及びサブフィールドの例示的なリストを示す図である。 本開示による、一般開業医が主要患者検査プロトコルを検討するためのフィールド及びサブフィールドの例示的なリストを示す図である。 本開示による、臨床記録を標準化する処理を示す例示的なフロー図である。 本開示による、臨床記録を標準化するための例示的な臨床パラメータ及びコードリストを示すブロック図である。 本開示による、医用撮像装置の視覚表現の標準化過程の処理を示すフロー図である。 本開示による、臨床視覚表現記録を標準化するための例示的な臨床パラメータ及びコードリストを示すブロック図である。 本開示による、標準化された臨床パラメータフォームの例示的な構造である。 本開示による、例示的な標準化された白紙の臨床パラメータフォームを示す図である。 本開示による、肺癌の例示的な臨床パラメータフォームを作成する第1のステップの例示的な命令である。 本開示による、肺癌の例示的な臨床パラメータフォームを作成する第2のステップの例示的な命令である。 本開示による、肺癌の例示的な臨床パラメータフォームを作成する第3のステップの例示的な命令である。 本開示による、肺癌の例示的な臨床パラメータフォームを作成する第4のステップの例示的な命令である。 本開示による、肺癌の例示的な臨床パラメータフォームを作成する第5のステップの例示的な命令である。 本開示による、肺癌の例示的な臨床パラメータフォームを作成する第6のステップの例示的な命令である。 本開示による、肺癌の例示的な臨床パラメータフォームを作成する第7のステップの例示的な命令である。 本開示による、肺癌の例示的な臨床パラメータフォームを作成する第8のステップの例示的な命令である。 本開示による、肺癌の例示的な臨床パラメータフォームを作成する第9のステップの例示的な命令である。 本開示による、肺癌の例示的な臨床パラメータフォームを示すブロック図である。 本開示による、肺癌の例示的な臨床パラメータフォームを示すブロック図である。 本開示による、肺癌の例示的な臨床パラメータフォームを示すブロック図である。 本開示による、肺癌の例示的な臨床パラメータフォームを示すブロック図である。 本開示による、肺癌の例示的な臨床パラメータフォームを示すブロック図である。 本開示による、肺癌の例示的な臨床パラメータフォームを示すブロック図である。 本開示による、肺癌の例示的な臨床パラメータフォームを示すブロック図である。 本開示による、肺癌の例示的な臨床パラメータフォームを示すブロック図である。 本開示による、肺癌の例示的な臨床パラメータフォームを示すブロック図である。 本開示による、肺癌の例示的な臨床パラメータフォームを示すブロック図である。 本開示による、肺癌の例示的な臨床パラメータフォームを示すブロック図である。 本開示による、肺癌の例示的な臨床パラメータフォームを示すブロック図である。 本開示による、肺癌の例示的な臨床パラメータフォームを示すブロック図である。 本開示による、心筋梗塞(MI)の例示的な臨床パラメータフォームを示すブロック図である。 本開示による、心筋梗塞(MI)の例示的な臨床パラメータフォームを示すブロック図である。 本開示による、心筋梗塞(MI)の例示的な臨床パラメータフォームを示すブロック図である。 本開示による、心筋梗塞(MI)の例示的な臨床パラメータフォームを示すブロック図である。 本開示による、心筋梗塞(MI)の例示的な臨床パラメータフォームを示すブロック図である。 本開示による、心筋梗塞(MI)の例示的な臨床パラメータフォームを示すブロック図である。 本開示による、心筋梗塞(MI)の例示的な臨床パラメータフォームを示すブロック図である。 本開示による、心筋梗塞(MI)の例示的な臨床パラメータフォームを示すブロック図である。 本開示による、心筋梗塞(MI)の例示的な臨床パラメータフォームを示すブロック図である。 本開示による、心筋梗塞(MI)の例示的な臨床パラメータフォームを示すブロック図である。 本開示による、心筋梗塞(MI)の例示的な臨床パラメータフォームを示すブロック図である。 本開示による、心筋梗塞(MI)の例示的な臨床パラメータフォームを示すブロック図である。 本開示による、心筋梗塞(MI)の例示的な臨床パラメータフォームを示すブロック図である。 本開示による、心筋梗塞(MI)の例示的な臨床パラメータフォームを示すブロック図である。 本開示による、心筋梗塞(MI)の例示的な臨床パラメータフォームを示すブロック図である。 本開示による、心筋梗塞(MI)の例示的な臨床パラメータフォームを示すブロック図である。 本開示による、心筋梗塞(MI)の例示的な臨床パラメータフォームを示すブロック図である。 本開示による、心筋梗塞(MI)の例示的な臨床パラメータフォームを示すブロック図である。 本開示による、心筋梗塞(MI)の例示的な臨床パラメータフォームを示すブロック図である。 本開示による、虫垂炎の例示的な臨床パラメータフォームを示すブロック図である。 本開示による、虫垂炎の例示的な臨床パラメータフォームを示すブロック図である。 本開示による、虫垂炎の例示的な臨床パラメータフォームを示すブロック図である。 本開示による、虫垂炎の例示的な臨床パラメータフォームを示すブロック図である。 本開示による、虫垂炎の例示的な臨床パラメータフォームを示すブロック図である。 本開示による、虫垂炎の例示的な臨床パラメータフォームを示すブロック図である。 本開示による、虫垂炎の例示的な臨床パラメータフォームを示すブロック図である。 本開示による、虫垂炎の例示的な臨床パラメータフォームを示すブロック図である。 本開示による、虫垂炎の例示的な臨床パラメータフォームを示すブロック図である。 本開示による、虫垂炎の例示的な臨床パラメータフォームを示すブロック図である。 本開示による、虫垂炎の例示的な臨床パラメータフォームを示すブロック図である。 本開示による、虫垂炎の例示的な臨床パラメータフォームを示すブロック図である。 本開示による、虫垂炎の例示的な臨床パラメータフォームを示すブロック図である。 本開示による、包括的医療データ分析システムにおいて使用する例示的なコンピュータ装置を示すブロック図である。
図1〜図28を参照しながら、本発明の構造的実施形態及び方法の説明を行う。具体的に開示する実施形態に本発明を限定する意図はなく、本発明は、当業者に周知の他の特徴、要素、方法及び実施形態を用いて動作することもできると理解されたい。一般に、様々な実施形態における同様の要素は、同じ参照番号を用いて示す。
以下の定義は、本明細書で説明する要素及びステップに適用される。同様に、これらの用語をさらに詳述することもできる。
治療コース−患者の病状のための規定の療法、治療又はその他の処置を意味する。治療コースは、患者のための治療プロトコル及び治療計画を含む。
グループ分割−共通の1又は2以上のパラメータ値(例えば、年齢、性別、体重、コレステロール値、血糖値、白血球数など)を有し、少なくとも1つの処置(例えば、スタチン系薬剤治療、又は腫瘍の直径を減少させるための化学療法など)に対して同一又は同様の反応を示した患者が見つかったことに基づいて、患者(又は患者に対応する電子医療記録)のグループをサブグループに分ける方法を意味する。
診断−慢性病を含むあらゆる病状、感染症、精神病、或いはその他の状態又は病気のあらゆる医学的分類を意味する。診断の例としては、糖尿病、癌、心臓疾患、アテローム硬化、脳卒中などが挙げられる。
重要パラメータ(「直接的パラメータ」とも言う)−医療分野において、患者の病状又は疾患の治療、予後及び進行を予測し、これらに影響を与え、又はこれらから生じるものとして知られている、世界保健機関(WHO)の分類に従う各疾患のパラメータを意味する。
間接的パラメータ(非重要パラメータとも言う)−患者の病状又は疾患の治療、予後及び処置に関連する、世界保健機関の分類に従う各疾患の(直接的パラメータ以外の)パラメータを意味する。
客観的医療データ−患者の病歴及び病状に関する客観的データを意味する。客観的医療データとしては、以下に限定されるわけではないが、患者の症状、(該当する場合)疾患、患者のプロファイル、病歴、医療装置の検査データ、検査結果、生活習慣が挙げられ、例えば、患者の実名、社会保障番号、指紋などの、患者のアイデンティティを公開すると思われる情報は除外される。客観的医療データは、良好なデータの収集及び記録の実践(GDCRP)のような新たな標準の内容部分とすることができる。
患者疾患テンプレート−疾患、予後、及び患者の(単複の)病状の処置、又は世界保健機関による国際疾病分類(ICD)(www.who.int/classifications/icd/en)に従う疾患に関連する一群のパラメータを意味する。
(単複の)推奨治療プロトコル−選択された異なる治療プロトコルの分析及び選択において、ソフトウェアが1組又は2組以上の基準に基づいて実行した処理の結果を意味する。
第2レベルのパラメータ−グループ分割処理において使用する第2のパラメータセットを意味する。これらのパラメータは、疾患に関連する潜在的な又は実際の合併症に関するパラメータ、副疾患又は慢性疾患に関するパラメータ、他の病状又は患者の疾患に関するパラメータ、並びに病状又は疾患の細胞マーカ及び遺伝子マーカ(例えば、腫瘍マーカ、遺伝子マーカ、特定の細胞株によって表される特定の分子など)に関するパラメータを含むことができる。
標準的臨床フォーム−個々の患者の客観的医療データを収集するために使用するフォームを意味する。
標準的治療プロトコル−特定の疾患のある患者を治療するために医師界において一般に認められている医療コース(例えば、治療、薬剤又はその他の処置)を意味する。
治療計画−一定期間にわたる1又は2以上の治療プロトコルの組を意味する。
本開示は、医療記録を蓄積して記憶する方法、電子医療記録を利用し、記憶されている他の患者のデータに基づいて患者の治療コースを識別する方法、並びに患者の病状及び疾患の診断、治療及び/又はモニタリングを行う方法を提供する。本発明では、ヘルスケア提供者が、世界的レベルで電子医療記録に容易かつ即時にアクセスすることができる。ヘルスケア提供者は、電子医療記録によって患者の治療計画を作成し、誤診を減少させ、サービス品質を改善し、患者の医学的転帰を改善し、医療費を抑えることができる。
本開示は、ヘルスケア提供者及び患者が世界的レベルで容易にアクセスできる患者の医療記録の取得方法、構築方法、利用方法、及び記憶方法に関する。電子医療記録は、電子的に即時に分類して検索することができる。ヘルスケア提供者は、蓄積された医療記録により、様々な患者の医学的疾患又は病状の診断、治療及び/又はモニタリング又は追跡を行うことができる。さらに、患者は、自身の情報にアクセスして自身の状態をモニタすることができる。
本開示は、患者のための適切な治療コースを診断して識別する方法を提供する。この方法は、患者の既存の症状に関する情報を取得してコンピュータシステムに入力するステップを含む。1つの実施形態では、疾患及び治療コースが、コンピュータシステムに入力された患者の既存の症状及び状態、既にコンピュータシステム内に存在する患者の病歴、並びに同様の病歴、症状及び疾患を有する他の患者の記憶データに基づく。コンピュータシステムは、入力情報、及び他の患者について取得した記憶されている客観的医療データと比較する反復処理に基づいて、疾患及び推奨される治療コースを出力する。コンピュータシステムは、さらなる分析を必要とする出力情報を生成し、追加情報及び/又は医療検査を要求するとともに、他のヘルスケア提供者又は専門医に相談することによって情報を入力するように求める。
しばしば、患者を治療して治癒させるまではいかなくても、治療コース中に最低でも患者の生活の質を改善できる、患者を治療するための新たな医療処置が開発される。しかしながら、新たな医療処置は、その効果を裏付けるデータが無ければ認められない。このようなデータをコンピュータシステムに蓄積して記憶し、全てのヘルスケア提供者が利用できるようにすることができる。このデータは、他のヘルスケア提供者が他の患者の治療における使用を検討するための、新たな医療処置の有効性を裏付ける証拠と考えられる。
本開示は、ヘルスケア提供者が定めた治療コースに伴う患者の症状、疾患及び経過をモニタ及び/又は追跡する方法を提供する。患者が治療計画を開始すると、患者をモニタして治療計画に対する患者の反応を評価する必要がある。時には、患者をモニタして、患者が治療薬にアレルギーがあるかどうかを判定する必要もある。或いは、患者からのさらなる医療情報が無ければ疾患の判断又は治療コースの識別ができない場合には、適切な疾患の判断及び/又は治療コースの識別が行えるように患者の症状又は状態をモニタ及び/又は追跡する必要がある。患者の情報は、患者が入力して即時にアクセスすることができる。一例として、心臓血管疾患のある患者は、毎日血圧を測ってコンピュータシステムに入力することができ、ヘルスケア提供者は、この患者の血圧に容易にアクセスすることができる。また、治療コースが識別されると、ヘルスケア提供者は、治療コース全体を通じて患者の血圧に容易にアクセスすることができる。
治療コース中には、様々なヘルスケア提供者が患者を治療することがある。例えば、患者は、主治医、専門医、専門病院の専門医、及びフォローアップ治療のための、又はリハビリテーションセンタの医師の診察を受けることがある。本開示は、1つの実施形態において、あらゆるヘルスケア提供者又は患者が患者の全ての病歴に直接的に即時にアクセスする方法を提供する。
治療コース中には、ヘルスケア提供者の施設を訪問する度に、患者の状態に関する収集された情報がコンピュータシステムに入力され記憶される。本開示は、別の実施形態において、あらゆるヘルスケア提供者が治療コースを通じて患者の経過及び生活の質をモニタする方法を提供する。開示する方法は、治療コース中のデータの取り込みを最大限に高めてデータの消失を減少させることにより、フォローアップ治療を強化して患者の生活の質及び医学的転帰を改善することができる。
本開示は、被検者/患者が将来的に疾患又は病状が発症するリスク、或いは治療中又は治療後に(時間と共に)疾患又は病状が再発するリスクを評価する方法を提供する。家族の病歴及び被検者の病歴などの情報をコンピュータシステムに入力して、被検者が将来的に疾患又は病状を発症するリスクを推定することができる。ヘルスケア提供者は、この評価に基づいて、疾患又は病状の発症を防ぐように特定の治療薬、食事の変更、減量及び運動を推奨することができる。例えば、家族に心臓疾患の病歴がある無症候性の被検者は、高血圧、高総コレステロール値(370mg/dl(デシリットル当たりミリグラム)超)、高LDLレベル(100mg/dl超)、高いトリグリセリド値(100mg/dl超)、及び過体重を特徴とする。これらの因子は、同様の患者の記憶データと反復比較するためのパラメータとしてコンピュータシステムに入力される。コンピュータシステムは、この無症候性被検者が将来的に心臓疾患を発症するリスクを推定することができる。コンピュータシステムは、この無症候性被検者の情報を同じような因子を有する他の患者の医療情報と比較し、グループ分割処理を通じて、被検者が心臓疾患を発症するリスクを推定する。ヘルスケア提供者は、このリスク評価に基づいて、Lipitor又は他のコレステロール降下薬の服用、及び被検者の食生活で消費されるコレステロール量を運動によって減少させることなどのライフスタイルの変更を推奨することができる。
本開示は、治療を受けている最中に患者の医療データがコンピュータシステムに入力されている時に患者の予後を評価する方法も提供する。患者の医療データを他の患者の情報と比較し、グループ分割処理を通じて患者の疾患又は病状の予後を示す。同様に、本開示は、治療中又は治療後における患者の疾患及び病状の再発を評価する方法も提供する。患者をモニタし、患者の医療情報を定期的にコンピュータシステムに入力し、他の患者の医療情報と比較し、グループ分割処理を通じて、潜在的疾患及び状態の再発を評価する。一例として、本明細書で提供する方法によって寛解期にある癌患者をモニタし、経時的に癌の再発を評価することができる。
本明細書で提供する方法は、患者の医療データを収集し、定期的にコンピュータシステムに入力して、他の患者の医療情報と比較できるという点で動的なものとすることができる。患者の治療は、定期的なグループ分割処理を通じて、最適な治療コースが提供されるように修正することができる。
本明細書で説明する様々な方法を用いて、あらゆる医学的疾患及び状態の診断、治療、治療コースの識別、及び/又はモニタリングを行うことができる。このような医学的疾患又は状態の例としては、以下に限定されるわけではないが、アレルギー、自己免疫疾患、細菌性疾患、ウイルス性疾患、内分泌疾患、癌、心臓血管疾患、妊娠、心理的障害及び精神障害、並びに神経疾患が挙げられる。特異的疾患及び状態の例としては、以下に限定されるわけではないが、コレラ、ジフテリア、ライム病、破傷風、結核、腸チフス、肝炎、はしか、おたふく風邪、エボラ、デング熱、黄熱、アジソン病、甲状腺機能亢進症、紅斑性狼瘡、敗血症性ショック、血液動態ショック、マラリア、クローン病及び潰瘍性大腸炎などの炎症性大腸疾患(IBD)、炎症性骨疾患、ミコバクテリア感染、髄膜炎、線維症、虚血発作、移植拒絶、アテローム硬化、肥満、血管形成現象を伴う疾患、自己免疫疾患、変形関節炎、慢性関節リウマチ、強直性脊椎炎、若年性慢性関節炎、多発硬化、HIV、インスリン非依存性糖尿病、アレルギー疾患、喘息、慢性閉塞性肺疾患(COPD)、脳卒中、眼炎症、炎症性皮膚疾患、乾癬、アトピー性皮膚炎、乾癬性関節炎、双極性障害、精神分裂症、感冒及び流感が挙げられる。
癌の例としては、以下に限定されるわけではないが、肺癌、乳癌、白血病、前立腺癌、卵巣癌、膵臓癌、肝癌、皮膚癌及び大腸癌が挙げられる。
神経疾患の例としては、以下に限定されるわけではないが、アルツハイマー病、パーキンソン病、パーキンソン症候群、筋萎縮性側索硬化症、神経系自己免疫疾患、神経系自律神経疾患、背部痛、脳浮腫、脳血管性乱雑、痴呆、神経系神経線維脱髄性自己免疫疾患、糖尿病性神経障害、脳炎、脳脊髄炎、癲癇、慢性疲労症候群、巨細胞性動脈炎、ギランバレー症候群、頭痛、多発性硬化症、神経痛、末梢神経系疾患、多発性ニューロパシ、多発神経根筋障害、神経根障害、呼吸麻痺、脊髄疾患、トゥレット症候群、中枢神経系血管炎及びハンチントン病が挙げられる。
図1は、大量の患者の医療記録及び治療法の受け取り、分析、相関付け及び生成を行う包括的医療データ分析システム10である。包括的医療データ分析システム10は、知的医療エンジン14を含む医療メインサーバ12を含み、このサーバ12は、中央データベース16に通信可能に結合されるとともに、ネットワーク18を介して第1の病院20、第2の病院22、診療所24及びソース26にさらに通信可能に結合される。病院、診療所又は医療ソースの各々は、個人情報を記憶する第1の機密個人データベース、及び病院、診療所又は医療ソースが使用する客観的医療データを記憶する第2のデータベースという2つのデータベースに通信可能に結合される。この実施形態では、第1の病院20内の医用コンピュータ装置28が、第1の病院データベース30及び機密個人データベース32に通信可能に結合されている。第2の病院22内の医用コンピュータ装置34は、第2の病院データベース36及び機密個人データベース38に双方向通信可能に結合される。異なる群、都市、州、国、地域及び大陸におけるさらなる病院も包括的医療データ分析システム10の一部であり、これらは図中の複数の点によって表される。診療所24内の医用コンピュータ装置40は、診療所データベース42及び機密個人データベース44に双方向通信可能に結合される。ソース26内の医用コンピュータ装置58は、ソースデータベース46及び機密個人データベース48に双方向通信可能に結合される。機密個人データベース32、38、44、48の各々は、患者に関連する個人データ(例えば、実名、社会保障番号、指紋など)を含む。本明細書において使用するコンピュータ装置としては、以下に限定されるわけではないが、プロセッサ、メモリ、画面を備え、無線ローカルエリアネットワーク(WLAN)及びワイドエリアネットワーク(WAN)の接続能力を有するデスクトップコンピュータ、ノートブックコンピュータ、及び(iPhone(登録商標)のようなスマートフォン、携帯電話機、iPod(登録商標)のようなモバイル装置、iPad(登録商標)のようなタブレットコンピュータ、及びChromebookのようなブラウザ系ノートブックコンピュータを含む)ポータブル装置などのモバイル装置が挙げられる。携帯電話機は、基本及び高度ソフトウェアアプリケーションを実行するためのプラットフォームを提供する完全な又は部分的なオペレーティングシステム(OS)ソフトウェアを含むように構成される。
知的医療エンジン14は、異なる国、地域及び大陸から、大量の電子医療記録の組(各医療記録は、患者コード及び客観的医療データを含む)50、52、54、56を包括的に受け取る。電子医療記録の組50、52、54、56は、病院20、22、1又は2以上の診療所24及び世界中の他の医療ソース26から提供され、患者の医療記録の大規模分析及び相関付けのために知的医療エンジン14に与えられる。知的医療エンジン14は、電子医療記録の組50、52、54及び/又は56からの電子医療記録などの1又は2以上の電子医療記録を受け取るように構成される。1つの実施形態では、電子医療記録の組50、52、54及び56の各々が、コード(「患者コード」とも言う)及び客観的医療データを含む。1つの実施形態では、客観的医療データが、以下に限定されるわけではないが、患者の症状、(該当する場合)疾患、患者のプロファイル、病歴、医療装置の検査データ、検査結果、生活習慣などの、確認処理及び品質チェックを伴う患者の医療情報を全て含み、例えば、患者の実名、社会保障番号、指紋などの、患者のアイデンティティを公開すると思われる情報は含まない。知的医療エンジン14は、パラメータセットに基づいて、電子医療記録と、既に中央データベース16に記憶されているデータとを比較することにより、受け取った電子医療記録に対して分析処理を行うように構成される。分析結果は、中央データベース16に記憶することも、或いは第1の病院20、第2の病院22、診療所24又はソース26内の医師、看護師又は医療関係者に返送することもできる。
図2は、世界中の数多くの医療ソースからの大量の客観的医療データの処理、分析、分類、照合及び学習を行う計算能力を提供する、医療メインサーバ12内の知的医療エンジン14を示すブロック図である。知的医療エンジン14は、記憶モジュール60、グループ分割モジュール62、ポータブルモニタリング医療装置モジュール70、学習モジュール72、入力データモジュール74、科学モジュール76、変換器モジュール78、電子ドクター80及びディスプレイモジュール82を含む。グループ分割モジュール62は、電子医療記録をグループ分割するように構成され、分類コンポーネント64、比較コンポーネント66、(「フィルタ処理コンポーネント」とも呼ぶ)照合コンポーネント68を含む。記憶モジュール60は、第1の病院20、第2の病院22、診療所24及びソース26から受け取った客観的医療データを中央データベース16に記憶するように構成される。分類コンポーネント64は、患者の地理的位置、患者の病歴、患者の疾患又は症状、患者の疾患に関連する重要パラメータ、患者の疾患に関連する副又は慢性パラメータ、患者の疾患に関連する非重要パラメータ、患者の疾患に関連するライフスタイルパラメータ、及び患者の疾患に関連するその他のパラメータなどの、医療記録の異なる部分を分析するように構成される。比較コンポーネント66は、受け取った患者の客観的医療データを中央データベース16に記憶されている既存の客観的医療データと照合するために、受け取った客観的医療データから各患者を比較するように構成される。(「照合コンポーネント」とも呼ばれる)フィルタ処理コンポーネント68は、受け取った患者の電子医療記録(又は「患者の客観的医療データ」)と、中央データベース16に記憶されている大量の客観的医療データとの間の異なるレベルのフィルタ処理パラメータ又は照合パラメータを提供するように構成される。学習モジュール72は、特定の患者の電子医療記録及び関連する疾患の最適な治療計画を実現するために、グループ分割処理(又はアルゴリズム)への適応においてグループ分割処理に学習メカニズムを提供するとともに、パラメータの修正を行うように構成される。入力データモジュール74は、電子医療記録の組50、52、54、56、及び特異的疾患の医療専門家によって開発され一般的に認められている標準的医療に関するテンプレートプロトコルなどの他の入力情報を受け取るように構成される。1つの実施形態では、各電子医療記録が、疾患、予後、及び患者の病状又は疾患の治療に関連する一群のパラメータを意味する患者疾病テンプレートを含む。別の実施形態では、各電子医療記録が、1)患者属性(例えば、年齢、性別、体重)、2) 主症状(例えば、「発疹」、「熱」、「腹痛」)、3)臨床試験(例えば、「HDL値」「LDL値」、「血糖」、「細菌培養」)、4)疾患/診断(例えば、「インフルエンザ」、「II型糖尿病」、「肺腫瘍」)、治療プロトコル(例えば、「X線治療+投薬+時間」、「シクロスポリン+投薬+時間」)、5)治療結果(例えば、「検査時腫瘍成長」、「寛解」、「死亡」)の結果、及び6)さらなる臨床情報、のうちの少なくともいくつかを含む、セクション(別名「フィールド」)の形で構造化された患者の情報のコンピュータ記録を意味する患者テンプレートを含む。(1)、(2)及び(3)の組み合わせは、患者パラメータと呼ばれることが多い。特定の患者の患者テンプレートは、フィールドの一部又は全部が埋められていることもある。入力データモジュール74の1つの目的は、各疾患に関する医療情報を受け取り、これによって全ての疾患の医療プロファイルを含むライブラリの役割を果たすことである。科学モジュール76は、新たな、改善された、又は合成的な治療プロトコル(又は治療計画)を生成するように構成される。(「汎用変換器」とも呼ばれる)変換器モジュール78は、様々なタイプの医療記録フォーマットを変換して客観的医療データの標準化を達成するように構成される。電子ドクター80は、現在入力されている患者の医療データと、中央データベース16から提供される既存のデータとの比較に基づいて、患者の予後診断を行う人工知能/コンピュータドクターとして動作するように構成される。ディスプレイモジュール82は、コンピュータディスプレイ内に情報を表示するように構成される。記憶モジュール60、(分類コンポーネント64、比較コンポーネント66、フィルタ処理コンポーネント68を含む)グループ分割モジュール62、ポータブルモニタリング医療装置モジュール70、学習モジュール72、入力データモジュール74、科学モジュール76、変換器モジュール78、電子ドクター80、ディスプレイモジュール82は、バス84を介して互いに双方向に通信可能に結合される。
図3A〜図3Bは、患者の症状又は疾患などの患者の電子医療記録を、中央データベース16に記憶されている他の客観的電子医療記録と素早く比較するための、知的医療エンジン14によって実行されるグループ分割処理86を示すブロック図である。1つの実施形態では、大量の客観的電子医療記録をグループ分割処理して複数のサブグループに分類する。ステップ90において、知的医療エンジンは、中央データベース16に記憶されている大量の他の患者の客観的医療データ(又は、他の患者の標準テンプレート情報)を検索して抽出するように構成される。ステップ92において、知的医療エンジン14は、大量の他の患者の客観的電子医療記録について、患者の疾患、及び任意に治療計画(或いは、治療プロトコル)などのいくつかの初期キーパラメータを中央データベース16内の客観的医療データと比較するように構成される。中央データベース16は、患者から提供された大量の患者の客観的医療データを、標準化されたフォーマットに基づいて包括的に記憶する。ステップ92において、知的医療エンジン14は、患者テンプレートからの、任意の治療プロトコル(該当する場合)を有する主な疾患などのキーパラメータを中央データベース16の客観的医療データのパラメータと比較して、サブグループに分類するように構成される。中央データベース16からの客観的医療データの母集団を識別した後には、重要パラメータ、副疾患、慢性疾患、合併症、間接的パラメータ、患者の一般条件及び患者のライフスタイルなどを始めとする比較などの、通常は一般性の高い特徴から詳細な特徴までの異なるレベルを通じて、サブグループにグループ分割するために患者テンプレートを客観的医療データの選択された母集団と照合する分析が行われる。知的医療エンジン14は、ステップ94における第1レベルの比較において、患者テンプレートとサブグループとの間で(1次パラメータとも呼ばれる)第1の重要パラメータセットを比較して、1又は2以上の第1レベルのサブグループにグループ分割するように構成される。重要パラメータは、ステップ92において分類されるサブグループ内の客観的医療データからの、例えば特定の疾患に定められる異なるステージなどの1又は2以上の主な疾患にも関連する。グループ分割は、1又は2以上の第1のサブグループをフィルタ処理し、パラメータセットに基づいて別の1又は2以上の第2のサブグループに精細化するために用いる処理である。知的医療エンジン14は、ステップ96における第2レベルのグループ分割において、患者テンプレートと第1レベルのサブグループとの間で(副疾患、慢性疾患及び合併症パラメータを含む)第2の疾患パラメータなどの(2次パラメータとも呼ばれる)第2のパラメータセットを比較して、1又は2以上の第2レベルのサブグループにグループ分割するように構成され、この1又は2以上の第2レベルのサブグループは、1又は2以上の第1レベルのサブグループから人数が減ったことを表す。知的医療エンジン14は、ステップ98における第3レベルのグループ分割において、患者テンプレートと1又は2以上の第2レベルのサブグループとの間で間接的パラメータなどの(3次パラメータとも呼ばれる)第3の組のキーパラメータを比較して、1又は2以上の第3レベルのサブグループにグループ分割するように構成され、この1又は2以上の第3レベルのサブグループは、1又は2以上の第2レベルのサブグループから人数が減ったことを表す。例示的な第3レベルのパラメータとしては、例えば、過体重、睡眠不足、鬱病、家族のストレス、仕事のストレスなどの、患者の一般条件が挙げられる。知的医療エンジン14は、ステップ100における第4レベルのグループ分割において、患者テンプレートと1又は2以上の第3レベルのサブグループとの間でライフスタイルパラメータなどの(4次パラメータとも呼ばれる)第4の組のキーパラメータを比較して、1又は2以上の第4レベルのサブグループにグループ分割するように構成され、この1又は2以上の第4レベルのサブグループは、1又は2以上の第3レベルのサブグループから人数が減ったことを表す。4次パラメータの例は、(例えば、喫煙習慣、飲酒習慣などの)生活習慣及び生活状態に関する。これらのステップ94、96、98、100における異なるレベルの比較は、必要に応じて現在の患者テンプレートをサブグループ内の既存の客観的医療データと照合する特徴を精細化するフィルタとして用いられる。4次パラメータを越えるさらなるレベルも想定され、本開示の思想に含まれる。ステップ102において、知的医療エンジン14は、患者テンプレートからのパラメータと最も良く一致する特徴を有する、中央データベース16からのわずかな数の客観的医療データ、又は小さな類似グループの特定、フィルタ処理、及び識別を行う。別の形で表現すれば、中央データベース16内の大量の客観的医療データは、第1のいくつかのグループにグループ分割することができ、第1のいくつかのグループは、第1のいくつかのグループから第2のいくつかのサブグループにさらにグループ分割することができ、第2のいくつかのサブグループは、第2のいくつかのサブグループから第3のいくつかのサブグループにさらにグループ分割することができ、患者テンプレートに最も類似する特徴を有する小さなサブグループ(又はグループ)が識別されるまでステップ96、98及び100を通じて以下同様に行われる。
ステップ88において、知的医療エンジン14は、第1の病院20、第2の病院22、診療所24又はソース26などの発信者から受け取られた特定の患者の客観的医療データ(或いは、患者の標準テンプレート情報)を受け取って抽出するように構成される。ステップ103において、知的医療エンジン14は、ステップ88で受け取った患者疾病テンプレートを照合するように構成され、ステップ102の同様の客観的医療データを有する小グループは、患者の考えられる治療に利用可能な複数の異なるプロトコルを提供する。知的医療エンジン14は、同様の客観的医療データの小グループから、ステップ104に示す第1のプロトコル及び結果、ステップ106に示す第2のプロトコル及び結果、並びにステップ108に示すN個のプロトコル及び結果を含む1又は2以上の治療プロトコル及び結果を抽出するように構成される。ステップ110において、知的医療エンジン14は、ステップ104、106及び108における異なる治療プロトコル及び結果から、各グループ内の最も効率的なプロトコルを計算して決定するように構成される。
別の実施形態では、グループ分割処理を患者の疾病テンプレートと同時に実行することができる。知的医療エンジン14は、第1の病院20、第2の病院22、診療所24又はソース26などの発信者から受け取られた特定の患者の客観的医療データ(又は患者の標準テンプレート情報)を受け取って抽出するように構成される。知的医療エンジン14は、中央データベース16に記憶されている大量の他の患者の客観的医療データを検索して抽出するように構成される。知的医療エンジン14は、患者テンプレート内の、患者の疾患などのいくつかの初期キーパラメータを他の患者の客観的医療データのパラメータと比較して、受け取った患者の客観的医療データに関連し得る中央データベース16内の客観的医療データの母集団を選択するように構成される。中央データベース16は、患者からの標準フォーマットでの大量の患者の客観的医療データを包括的に記憶する。知的医療エンジン14は、患者テンプレートからの、任意の治療プロトコル(該当する場合)を有する主な疾患などのキーパラメータを中央データベース16の客観的医療データのパラメータと比較して、サブグループに分類するように構成される。中央データベース16からの客観的医療データの母集団を識別した後には、重要パラメータ、副疾患、慢性疾患、合併症、間接的パラメータ、患者の一般条件及び患者のライフスタイルなどを始めとする比較などの、通常は一般性の高い特徴から詳細な特徴までの異なるレベルを通じて、サブグループにグループ分割するために患者テンプレートを客観的医療データの選択された母集団と照合する分析が行われる。知的医療エンジン14は、第1レベルの比較において、患者テンプレートとサブグループとの間で(1次パラメータとも呼ばれる)第1の重要パラメータセットを比較して、1又は2以上の第1レベルのサブグループにグループ分割するように構成される。重要パラメータは、分類されたサブグループ内の客観的医療データからの、例えば特定の疾患に定められる異なるステージなどの1又は2以上の主な疾患にも関連する。グループ分割は、1又は2以上の第1のサブグループをフィルタ処理し、パラメータセットに基づいて別の1又は2以上の第2のサブグループに精細化するために用いる処理である。知的医療エンジン14は、第2レベルのグループ分割において、患者テンプレートと第1レベルのサブグループとの間で(副疾患、慢性疾患及び合併症パラメータを含む)第2の疾患パラメータなどの(2次パラメータとも呼ばれる)第2のパラメータセットを比較して、1又は2以上の第2レベルのサブグループにグループ分割するように構成され、この1又は2以上の第2レベルのサブグループは、1又は2以上の第1レベルのサブグループから人数が減ったことを表す。知的医療エンジン14は、第3レベルのグループ分割において、患者テンプレートと1又は2以上の第2レベルのサブグループとの間で間接的パラメータなどの(3次パラメータとも呼ばれる)第3の組のキーパラメータを比較して、1又は2以上の第3レベルのサブグループにグループ分割するように構成され、この1又は2以上の第3レベルのサブグループは、1又は2以上の第2レベルのサブグループから人数が減ったことを表す。例示的な第3レベルのパラメータとしては、例えば、過体重、睡眠不足、鬱病、家族のストレス、仕事のストレスなどの、患者の一般条件が挙げられる。知的医療エンジン14は、第4レベルのグループ分割において、患者テンプレートと1又は2以上の第3レベルのサブグループとの間でライフスタイルパラメータなどの(4次パラメータとも呼ばれる)第4の組のキーパラメータを比較して、1又は2以上の第4レベルのサブグループにグループ分割するように構成され、この1又は2以上の第4レベルのサブグループは、1又は2以上の第3レベルのサブグループから人数が減ったことを表す。4次パラメータの例は、生活習慣及び生活状態に関する。これらの異なるレベルの比較は、必要に応じて現在の患者テンプレートをサブグループ内の既存の客観的医療データと照合する特徴を精細化するフィルタとして用いられる。4次パラメータを越えるさらなるレベルも想定され、本開示の思想に含まれる。知的医療エンジン14は、患者テンプレートからのパラメータと最も良く一致する特徴を有する、中央データベース16からのわずかな数の客観的医療データ、又は小さな類似グループの特定、フィルタ処理、及び識別を行う。別の形で表現すれば、中央データベース16内の大量の客観的医療データは、第1のいくつかのグループにグループ分割することができ、第1のいくつかのグループは、第1のいくつかのグループから第2のいくつかのサブグループにさらにサブグループ分割することができ、第2のいくつかのサブグループは、第2のいくつかのサブグループから第3のいくつかのサブグループにさらにグループ分割することができ、患者テンプレートに最も類似する特徴を有する小さなサブグループが識別されるまで以下同様に行われる。同様の客観的医療データを有する小グループは、患者テンプレートに関連する患者の考えられる治療に利用可能な複数の異なるプロトコルを提供する。知的医療エンジン14は、同様の客観的医療データの小グループから、第1のプロトコル及び結果、第2のプロトコル及び結果、並びにN個のプロトコル及び結果を含む1又は2以上の治療プロトコル及び結果を抽出するように構成される。知的医療エンジン14は、異なる治療プロトコル及び結果から、各グループ内の最も効率的なプロトコルを計算して決定するように構成される。
任意に、知的医療エンジン14内の科学モジュール76は、ステップ112における照合に利用できる治療プロトコル全体を強化するために、新たなプロトコル又は合成プロトコルを研究して生成するように構成される。例えば、医療会社は、独立した、又は利用可能なプロトコルに依存できる新たな科学的プロトコルを発見するために、疾患に関する臨床試験を行い、又は何らかの研究を行うことができる。
図4Aは、図3A〜図3Bに関連する複数レベルのグループ分割処理を示す図である。知的医療エンジン14は、中央データベース16からの大量の他の患者の客観的医療データを利用することによって患者のための1又は2以上の推奨される治療計画を作成するように、第1レベルのグループ分割94、第2レベルのグループ分割96、第3レベルのグループ分割98、及び第4レベルのグループ分割100を行うことによってコンピュータグループ分割処理を実行するように構成される。第4レベルのグループ分割処理は、例示を意図したものであるが、本発明の思想から逸脱することなく、さらなるグループ分割レベル、又はこれより少ない数のグループ分割レベルを実施することもできる。
1つの実施形態では、グループ分割が、(単複の)観察可能又は測定可能なパラメータ(例えば、年齢、体重、白血球数、コレステロールなど)及び治療(例えば、スタチン療法又は特定の化学療法)などに対する共通の医学的転帰における(単複の)共通の値を有する母集団のサブセットを発見する処理である。本発明の1つの実施形態は、各々が少なくとも1つの特定の医療に対してさらに一様に反応するサブグループにグループを分けるパラメータを自動的に識別することを必要とする自動グループ分割を伴う。
異なる医学領域において系統的グループ分割を実行するために、1つの強力な実施形態は、情報理論に依拠する。単一のパラメータに基づくグループ分割について検討する。元々の(通常は大きな)患者グループをGとする。治療又は処置の所望の医学的転帰(例えば化学療法の結果として腫瘍直径が縮小すること、又はスタチン薬剤投与の結果としてLDL血中コレステロール値が減少すること)をAとする。グループG内の典型的な患者の目標結果の確率をpとする。患者グループGについてGのシャノンエントロピーを定め、このエントロピーを、治療tを受ける患者qiが結果Rとなる確率をp(t(qi)=R)とし、患者グループGのエントロピーをH(G)とする以下の方程式から計算する。
エントロピーは、「障害」又は変動性の尺度である。エントロピーが小さいほど、グループの均質性は高い。グループ分割では、サブグループの均質性を追求するので、この方法では、最も均質なサブグループ、すなわちエントロピーを最も減少させるサブグループを生成するパラメータに基づいてGがグループ分割される。この目的のために、特定のパラメータxが所与の閾値を上回る(又はそれ以下の)値を有する時のGのサブグループのエントロピーである条件付きエントロピーを使用する。
例えば、上記のGは、60才を超える全ての患者、又は平均血糖値が医学的に定められた閾値xを上回る全ての糖尿病患者とすることができる。次のステップは、選択したパラメータの値によって区別される総エントロピー、すなわち結果として生じるサブグループのエントロピーの和を最も減少させるパラメータを発見することである。
数学的には、このグループ分割を自動化する分離処理は情報利得と呼ばれ、以下のように定義される。
換言すれば、グループ分割処理は、グループ分割の基準として使用した場合、最大の情報利得を有する、すなわちエントロピーを最も減少させるパラメータxを求めるものである。患者の潜在的パラメータは数多く存在し、これらの大部分は電子医療記録に記録されるので、グループ分割処理は、所望の医学的転帰に関してどのパラメータが最大の情報利得を生み出すか、従ってその医学的転帰に関してどのパラメータが元々のグループGを最も均質なサブグループにグループ分割するかを自動的に判定する処理とすることができる。
別の実施形態は、臨床知識に基づいて事前に選択した候補パラメータに基づいて、複数レベルのグループ分割を定めるものである。この実施形態では、例えば図3A〜図3B、図4A〜図4E及び図22〜図27に示すように、レベル毎にほんのわずかなパラメータしか、すなわち各レベルに属するものとして予め定められたパラメータしか検討しないので、情報利得が各レベルで計算されて最適化され、計算が短縮され、応答時間が速くなる。
関連するさらに包括的な実施形態は、以下のような複数の患者パラメータxi,...xkに基づく条件付きシャノンエントロピーの拡張に基づくものである。
この結果、情報利得は以下のようになる。
この拡張方法では、共に患者グループGを最適にグループ分割する一群の属性を発見するために、異なる属性の組み合わせを検討しなければならないので、計算的には複雑性が増す。1つの実施形態は、目標数Nまでの全ての考えられるパラメータの組み合わせを検討するものである。別の実施形態は、計算の負担を低減して応答時間を速めるためにはどのパラメータの組み合わせが検討するのにふさわしいかを臨床知識に依拠して事前に選択しておくものである。
全ての場合において、グループ分割はカスケード式とすることができ、すなわち、グループGは、サブグループG1、G2及びGsにグループ分割することができ、これらのサブグループのいずれかは、さらにグループ分割することができ、例えば、サブグループG1は、サブグループG1,a、G1,b及びG1,cと、G2,a、G2,bとにさらにそれぞれグループ分割することができる。グループ分割処理は、図4Aに示すように、1又は2以上の治療からの医学的転帰に関して十分に均質なサブグループが見つかるまでさらに継続する(又は、繰り返される)。より小さくより均質なサブグループへの自動グループ分割カスケードは、明示的なグループ分割レベルが事前に提供されていない場合、或いは臨床医が複数の電子医療データ分析法を検討したいと望む場合に特に有用である。
例えば、医師は、患者のアテローム硬化症のリスクを評価して治療法を決定するために、複数の血液因子(又はパラメータ)を調べて患者のリスクを判定する。
・LDL−LDLコレステロール値は、130mg/dL(3.4mmol/L)を下回ることが理想的であり、100mg/dL(2.6mmol/L)未満であることが好ましい。
・HDL−HDLコレステロール値は、60mg/dL(1.6mmol/L)以上であること。
・トリグリセリド−アメリカ心臓協会(AHA)は、中性脂肪値が100mg/dL(1.1mmol/L)であることを推奨している。
・C−反応性蛋白質−高リスク(3.0mg/L超)、平均リスク(1.0〜3.0mg/L)。
1つの実施形態では、患者の疾患及び治療コースが、同様の病歴、症状及び状態の他の患者、及びこれらの患者の特定の治療コースによる成功及び/又は失敗から得られたシステム内のデータに基づいて取得される。システムは、患者について入力されたパラメータの比較、分類及びグループ分割の反復処理を通じて、患者の疾患及び治療コースを提供する。一例として、癌と診断された患者は、ホルモン療法、放射線療法、生物学的標的療法、化学療法及び手術などの複数の治療オプションを有する。しかしながら、患者の病歴、以前の診断検査結果及び特定タイプの癌によっては、これらのオプションのうちの1つ又は2つ以上が不適当な場合もある。本明細書に開示する方法では、医師が他の患者の情報にアクセスすることができる。ヘルスケア提供者は、システムに蓄積されている同様の病歴、症状及び状態の他の患者の医療情報及び治療コースの成功率に基づいて、治療を求める癌患者に1又は2以上の好適な治療オプションを推奨することができる。
システムが使用する反復処理は、癌などの疾患と診断された患者の治療プロトコル又は治療計画を含む治療コースを識別するために複数レベルのグループ分割を伴うものである。癌と診断された患者に関連する因子及び症状は、パラメータとしてシステムに入力される。第1レベルのグループ分割に使用される癌関連パラメータの例は、(1)癌細胞のタイプ、(2)癌のステージ、(3)癌の悪性度、及び(4)患者の一般条件、例えば、Karnofsky性能尺度指数、http://www. pennmedicine.org/homecare/hcp/elig_worksheets/Karnofsky−Performance−Statu s.pdf.などの直接的パラメータを含むことができる。第2レベルのグループ分割に使用されるパラメータの例は、特定の腫瘍マーカの存在、及び癌に伴う合併症などの分子レベルの癌の情報を含むことができる。第3レベルのグループ分割に使用されるパラメータの例は、患者の他の病状を含むことができる。第4レベルのグループ分割に使用されるパラメータの例は、患者のライフスタイル及び習慣を含むことができる。グループ分割は、実行してコンピュータシステムに記憶し、定期的に更新することができる。グループ分割は、新たな患者疾病テンプレートをコンピュータシステムに入力する前又は後に実行することができる。医療情報は、患者疾病テンプレートとして取得される。新たな患者テンプレートは、以前に知的医療エンジン14を通じた過程を受けたことがない人物、又は以前に知的医療エンジン14を通じた過程を受けたことがあるが、現在新たな疾患(或いは、新たな治療計画又は治療プロトコル)を有している人物を意味する。
一例として、乳癌の第1レベルのパラメータは、(1)侵襲性又は原位置、(2)侵襲性の場合には腫瘍が転移しているかどうか、(3)管又は小葉、(4)ステージ(腫瘍の広がり)、及び(5)悪性度(癌細胞の外観)、などの腫瘍特徴を含むことができる。
乳癌の例示的な第2レベルのパラメータは、エストロゲン受容体(ER)、プロゲステロンレセプタ(PR)、人間の表皮成長因子受容体2(HER2)、癌抗原15−3(CA15−3),癌抗原27.29(CA27.29),及び癌胎児性抗原(CEA)、ウロキナーゼプラスミノーゲン活性化因子(uPA)、及び、プラスミノーゲン活性化阻害因子(PAI−1)などの腫瘍マーカの存在を含むことができる。腫瘍マーカの存在は、分子レベルの腫瘍に関する情報を提供し、治療コースの決定に使用されることが多い。例示を目的として、ER及びPRの存在は、乳癌細胞が成長するにはエストロゲン及び黄体ホルモンが必要であり、(これらのホルモンを阻害する)ホルモン療法が効果的な治療になり得ることを示す。乳癌患者におけるタンパク質HER2の存在は、HER2を阻害する抗HER2(ハーセプチン)治療が効果的な治療になり得ることを示す。癌抗原(CA15−3、CA27.29及びCEA)は、転移性乳癌患者に見られる。uPA及びPAI−1のレベルが正常よりも高ければ、癌が悪性であることを示す可能性がある。
乳癌の例示的な第3レベルのパラメータは、年齢、乳癌(再発の場合)及び卵巣癌の既往歴、乳癌の家族歴、遺伝的リスク及び遺伝的危険率(乳癌遺伝子1又は2(BRCA1又は2)における変異の存在)、エストロゲン及び黄体ホルモンへの暴露、更年期後のホルモン置換療法、経口避妊薬、並びに人種及び民族性などの、患者の一般条件を含むことができる。
例示的な第4レベルのパラメータは、体重、身体活動レベル、アルコール消費及び摂食(果菜類対動物性脂肪)などの、患者のライフスタイル及び習慣を含むことができる。コンピュータシステムは、グループ分割の第4レベルの最後に、同様の患者グループの客観的医療データを提供する。
新規患者の医療情報は、コンピュータシステムに入力され、治療プロトコル又は治療計画を含む治療コースを識別するための一致を取得するために、グループ分割によってサブグループに分類された客観的医療データと比較される。コンピュータシステムは、このデータを分析し、新規患者の治療プロトコル又は治療計画を含む最も効果的な又は最適な治療コースを提示する。
客観的医療データ及び患者パラメータを参照しているが、本発明の別の実施形態は、患者パラメータを、観察できる患者パラメータの変換及び組み合わせであるさらなる属性で増強することに基づく。例えば、パラメータ値は、総患者人口、又はグループ分割したサブグループの患者人口の百分率に変換することができる。変形例では、全体としての患者人口、又はグループ分割したサブグループの患者人口にわたって属性を0〜1の尺度に再正規化する。属性a及びパラメータpの正規化計算は、以下の方程式に対応する。
また、属性は、患者パラメータの比率、又は積、差、平均、和などの他の関数的組み合わせを含むこともできる。
患者のグループ分割処理の利点は、患者が自身の又は小さなサブグループを発見した後の情報の使用である。グループ分割されたサブグループとの照合により、全ての利用可能な治療計画及び最も効率的な治療計画の指示に関する完全な情報がもたらされる。照合の出力は、いずれかの一定期間における病態の動特性に関する情報、いずれかの一定期間における重要パラメータ平均の動特性に関する情報、いずれかの一定期間におけるいずれかの特定パラメータ平均の動特性、いずれかの一定期間におけるこのグループ内の死亡率情報を含む、各利用可能な治療計画の長期的及び短期的結果を要約するものである。いずれかの各患者パラメータの特定の動特性を見るためのあなたのグループの全ての完全な患者ファイルのいずれかを調査する可能性。グループ分割処理は、任意の合併症、副疾患、慢性疾患又は主な疾患の短期的及び長期的リスク、並びに患者による調査期間における各々の統計的パーセンテージを理解するための統計データをもたらす。このグループ分割情報は、起こり得る合併症及び疾患を開始前に最小化又は防止する潜在的可能性を患者に与る。また、このグループ分割情報は、特定のサブグループにおいて最良の結果を有する、いずれかの地域内の最良の医師又は最良の病院を患者が発見しやすくする。これらの全ての奨励は、患者がこの分析コンピュータシステムを使用する予約申し込みを購入するための強い動機付けとしての役割を果たす。
図4Bは、大量の患者の客観的医療データ102を処理することによってグループ分割処理を実行する例示的なメニューを示すブロック図である。第1レベルのグループ分割94中、知的医療エンジン14は、1又は2以上の重要パラメータ114を用いて患者グループGをフィルタ処理して、Gを第1レベルのサブグループG1、G2...Gs115にグループ分割するように構成される。第1の重要パラメータ114の組は、腫瘍サイズ、浸潤、リンパ節、転移、症状、胸部痛及び息切れなどの、診断又は疾患に関する1次パラメータを含む。図示の概略図において、SP1〜SPnの記号リストは、特定の疾患の既存の重要パラメータ114を示し、例えば、ステージ2の肺癌と診断された患者は、吐血症状(SP2),直径が3cmよりも大きく5cm以下の腫瘍サイズ(SP4)、同側気管支周囲及び/又は肺門リンパ節への転移(SP5)、ヘモグロビンレベル(SP6)、及びその他SP12、SP14などの陽性の重要パラメータ(又は、これらの範囲内の値)を有する。これらの特定の重要パラメータ114を有する縮小された1又は2以上のサブグループは、この特定の例では、スリーブ切除術(プロトコルA)、化学療法(プロトコルB)、又は放射線療法(プロトコルC)などの、対応する治療プロトコル116の組に関連する。
次の又は第2レベルのグループ分割96中、知的医療エンジン14は、(副疾患、慢性(既往)疾患及び/又は合併症パラメータを含む)第2レベルのパラメータ117に基づいて第2レベルのグループ分割を実行して、第1レベルのサブグループG1、G2...Gsを1又は2以上の第2レベルのサブグループ118 G1a、G1b、G2a、G2b...118にグループ分割するように構成される。この特定の例では、副疾患、慢性疾患及び/又は合併症パラメータ117が、慢性閉塞性肺疾患(CDPl)及び結核(CDP2)を含む。これらの特定の第2レベルのパラメータ117を有する縮小された1又は2以上の第2レベルのサブグループ118は、第1レベルのグループ分割からスリーブ切除(プロトコルA)及び化学療法(プロトコルB)を除外した、放射線療法(プロトコルC)及び標的療法(プロトコルD)などの、対応する治療プロトコル110の組に関連する。これらのプロトコルは、治療に対する患者の反応の望ましい結果を最適化する可能性が高いと思われる。
次の又は第3レベルのグループ分割98中、知的医療エンジン14は、第3レベルの間接的(又は非重要)パラメータの組に基づいて第3レベルのグループ分割を実行して、1又は2以上の第2レベルのサブグループから1又は2以上の第3レベルのサブグループ124にグループ分割するように構成される。間接的パラメータは、虚弱(NSP1)、口内乾燥(NSP3)及び発汗(NSP7)の感覚を含む。これらの特定の間接的パラメータ122を有する縮小された1又は2以上の第3レベルのサブグループは、対応する治療プロトコル126の組に関連する。
次の又は第4レベルのグループ分割100中、知的医療エンジン14は、ライフスタイルパラメータ130の組と、任意に対応する治療プロトコル134とを用いて第4レベルのグループ分割を実行して、1又は2以上の第3のレベルのサブグループから1又は2以上の第4のレベルのサブグループ132にグループ分割するように構成される。ライフスタイルパラメータ130は、例えば、喫煙(LSP5)、消防士の職業(LSP8)を含み、このサブグループでは、化学療法(治療プロトコルB)が、望ましい処置の結果を最大化する。
医師は、グループ分割処理を実行するために、医療メインサーバ12における知的医療エンジン14に患者の臨床パラメータフォームを提出する。知的医療エンジン14は、患者のパラメータを中央データベース16内の他の患者の電子医療記録と比較し、類似度の低いパラメータセットを有する無関係なグループを除外して、共通のパラメータを有する縮小された1又は2以上のサブグループ108を生じるように構成される。
図4Cは、異なる治療プロトコルに対する反応としてのサブグループの重要パラメータの変化及び治療結果を示すブロック図である。3つの例示的なサブグループI 141、サブグループII 142及びサブグループIII 143が存在し、重要パラメータ(例えば、腫瘍サイズ、血球数)が、異なる治療プロトコル135A、135B、137Cの処置に対する反応として変化して治療処置の結果を測定する。この例では、癌治療の最も望ましい結果141aは、完全な又は部分的な反応を示し、癌又は腫瘍が全て消失したか、或いは腫瘍が一定パーセンテージだけ縮小して疾患はそのままであるかのいずれかである。次に望ましい結果141bは、疾患の悪化について安定した状態を示し、腫瘍サイズに変化はなく、或いは腫瘍が有意に成長も縮小もしていない。最も望ましくない結果141cは、疾患の進行を示し、癌の腫瘍が成長して疾患の範囲が拡大している。例えば、サブグループI 141は、治療プロトコルB136に対する反応(重要パラメータ変化)が最も望ましい治療という結果を有し、治療プロトコルA135が次に望ましい結果141bであり、治療プロトコルC137が最も望ましくない結果141Cである。サブグループII 142では、治療プロトコルA135が最も望ましい結果142aとなり、治療プロトコルC137が次に望ましい結果142bであり、治療プロトコルBが最も望ましくない結果142cである。サブグループIII 143では、治療プロトコルCが最も望ましい結果であり、治療プロトコルA135が次に望ましい結果143bであり、治療プロトコルBが最も望ましくない結果143cである。
図4Dは、治療プロトコルが同じである2つのサブグループにおいて重要パラメータがどのように変化するかについての動特性を示すグラフ図である。矩形ボックスは、第1のサブグループ141を示し、三角形は、第2のサブグループを示す。サブグループI 141については、第1の重要パラメータ151aが、治療プロトコルB136及び化学療法などの治療サイクル中における例えば腫瘍サイズの変化に関連することができ、重要パラメータの測定値は、腫瘍が一定パーセント縮小したことを示していない。サブグループII 142については、重要パラメータ151aが、化学療法などのプロトコルB136の治療サイクルにおいて変化することができ、重要パラメータの測定値は、癌が成長したことを示す。他の重要パラメータ151b、151c、151d及び151eは、サブグループの分類における特徴に影響を与えるいくつかの重要パラメータの変化についてのさらなる例示的な動特性を示す。
図4Eは、同じ患者又は異なる患者についての3つの例示的なシナリオ155a、156b、157aを示すブロック図である。グループ分割処理は、パラメータと治療プロトコルとの間の連続する動的変化である。記号◆1によって示す第1のタイムライン時点は、肺癌などの疾患のステージ進行を示し、例えば、ステージIIAは、ステージI〜ステージIVの癌サイクル全体にわたる1つの病期を表す。記号◆2によって示す第2のタイムライン時点は、3ヵ月で3回の化学療法治療サイクルを行った治療プロトコル又は治療計画を示す。記号◆3によって示す第3のタイムライン時点は、治療サイクル中又は治療サイクル後の治療反応評価及び新たな治療プロトコルを示す。評価の反応が、腫瘍サイズ、血球数などの重要パラメータの変化である場合、共通パラメータを有するグループに対する望ましい治療結果を最大化する治療プロトコルが処方される。記号◆4によって示す第4のタイムライン時点は、例えば手術及び化学療法後5年などの、疾患の進行速度又は再発時間を示す。治療計画及び予後全体にわたって異なる状態にある同じ患者を反映する3つの例示的なシナリオ155a、156a、157a、及び対応する治療プロトコルA 155b、治療プロトコルB 156b、治療プロトコルC 157b(例えば、ステージ2の肺癌と診断された第1のシナリオ155aの患者、並びに高齢、薬/薬剤アレルギー既往歴に起因する治療オプション及び薬の使用の評価などの、重要パラメータ及び対応するプロトコルA 155b)が存在する。一定期間後、この同じ患者は、治療後の重要パラメータの測定では疾患量の変化が示されず、対応する新たな治療プロトコルC(第2選択療法/異なる薬への変更)157bが作成される第3のシナリオ157aにある。或いは、これらの3つのタイムラインシナリオ155a、156a、157aは、各患者が自身の疾病テンプレートに関連する重要パラメータ及び治療プロトコルを伴う1つのシナリオの代表である3人の異なる数の患者を表すこともできる。
グループ分割処理により、選択された治療に対する患者の反応が互いに統計的に大きく異ならないサブグループが生じる場合、1つの実施形態では、これらのサブグループを統合すべきである。統計的有意性は、多くの方法で測定することができ、標準的な方法は、周知のt検定、好ましくは2面(又は両側)t検定を所与の有意水準で適用することである。特定の実施形態では、この有意水準がp<.05になる。
グループ分割処理については、潜在的に大きな一群の客観的医療データにわたって行うと説明した。しかしながら、このデータは、主に新たな客観的医療記録が追加されること(既存の患者に関連するか、新規患者に関連するか、それともこれらの両方に関連するかに関わらず)を通じて経時的に変化するので、グループ分割処理は、サブグループを更新し、場合によっては新たなサブグループを作成できるように定期的に繰り返す必要があると考えられる。1つの実施形態では、新規の又は既存の患者に対応する複数の客観的医療データがシステムのストレージに追加された時に、いずれかのサブグループのエントロピーに有意な変化が生じるようにさらなるグループ分割がトリガされる。変化は、異なる疾患では異なるレベルで臨床的に有意とすることができるが、一般に、変化は、新たな客観的患者医療データに基づく治療への患者の反応に対して3パーセント(3%)よりも大きい場合に、有意と認められる変化であると言われている。
医師及びその他の当業者であれば理解するように、結果としての治療は、異なる時点における異なる値を表す、1つの兆候(例えば、「エボラなし」又は「寛解」)、数字(例えば、蛋白質分解酵素阻害薬及びその他の抗ウイルス薬を用いたHIV治療後の結果的なウイルス量)、又はベクトル(例えば、数カ月毎に測定した同じウイルス量、又は放射線治療後に数週間毎に測定した腫瘍直径)を特徴とすることができる。このベクトルは、ある患者が治療を受けた時に複数の時点で治療結果を測定した時のその患者の疾患の軌跡に対応する。
本開示は、予め定められたグループ分割レベルによるものであるか、それとも自動グループ分割カスケード処理によるものであるかに関わらず、階層的なグループ分割を前提として、これらのグループ分割を用いて、臨床医が1又は2以上の効果的な治療オプションを決定したいと望む新規患者のパラメータと同一又は同様のパラメータを有する以前の患者を発見する方法を提供する。大まかに言えば、本開示の方法では、測定されたパラメータセット{y1、y2,...,yk}と、臨床医が1又は2以上の効果的な治療オプションを決定したいと望む疾患とを有する新規患者Qを前提として、この患者パラメータを、上述したグループ分割方法のいずれかの実施形態によって各候補治療に関して構築された各患者サブグループのパラメータと比較する。この比較は、図4Aなどの医学知識に基づいて予め確立されたレベル、又は自動カスケードグループ分割によって生じる複数のレベルを含む、グループ分割の1又は複数のレベルで行うことができる。比較の結果は、新規患者のパラメータに最も密接に一致するパラメータを有するサブグループ内の患者の所望の結果に対して最も効果的であることが分かった1又は2以上の治療オプションを発見することである。
この一般的サブグループ照合処理の1つの実施形態は、以下のように患者とサブグループとの間のパラメータの差分の最小pノルム和を発見することである。
式中、Q(yi)は、新規患者のパラメータであり、gjは、Gのサブグループ、すなわちグループ分割されたグループGの結果であり、gj(xi)は、各サブグループのパラメータであり、pはノルムである。BestMatch公式では、p=1の場合にはパラメータの差分を合計し、p=2の場合には(最小2乗した基準をもたらす) 自乗差を合計し、p=0の場合には差分の数を単にカウントする。Argmin演算子は、新規患者のパラメータとの差分が最も小さなパラメータを有するサブグループgj、すなわち治療オプションの選択において重要となるパラメータに関して最も類似するサブグループを戻す。
さらなる実施形態は、グループ分割の各レベルでBestMatch方法を用いて、最初に最高レベルの最も良好なサブグループを発見し、その後に次のレベルを発見し、以下、最低レベルまで同様である。これらのレベルは、図4Aに例示するような医学知識を通じて定められ、或いは上述したようなカスケード式のグループ分割によって自動的に決定されたものである。この方法は、電子医療データに最も良く適合する治療オプションを提供する単一の最良のサブグループ、サブサブグループなどを発見するために使用することも、或いは最良のわずかなサブグループにおいて、より多くの潜在的な治療オプションを提供するように設定することもできる。
本開示は、新規患者の疾患をモニタし、必要であれば、患者の病状の進行に基づいて治療コース又は治療プロトコルを調整する方法を提供する。コンピュータシステムは、同様の疾患及び状態を有する様々な治療を受けた患者の医療記録を記憶している。記憶されている医療記録は、新規患者の病状との経時的な比較に使用できる治療コースにわたる様々な患者の情報を含む。一例として、限局性乳癌は、腫瘍の再発を防ぐように手術によって治療され、その後、化学療法、放射線療法又は(Eプラス腫瘍では)ホルモン置換療法によって治療される。乳癌手術後にモニタすべき重要パラメータは、治療コース中及び治療コース後の腫瘍の再発と考えることができる。本開示は、乳癌患者の手術後の病状を入力し、同様の病状を有する他の患者の医療データと経時的に比較して、再発の可能性を判別して再発を防ぐのに適した治療コースを識別できるようにする方法を提供する。本発明の方法は、癌が再発した場合に適切な治療コースを識別することも可能にする。本明細書で開示する方法によって提供される新規患者の治療計画は、新規患者の症状に応じて修正することができる。本明細書で開示する方法は、新規患者のための最適な治療コースを提供するように定期的に調整することができる。
図4Eは、治療プロトコルと、重要パラメータなどの対応するパラメータとの間の連続する動的処理を反映したグループ分割方法の一例を示す図である。患者の重要パラメータは、適用された治療計画(例えば、手術、薬剤、又はこれらの両方)に応答して、タイムライン1〜2又はタイムライン3〜1などのタイムラインに沿って移動し、適用された治療プロトコルに対する反応としての疾患の進行又は回復を示す。推奨される治療計画は、化学療法の結果としての腫瘍直径の縮小などの、所望の医学的転帰を最適に生じるように選択される。記号◆は、サブグループのパラメータが適用された治療計画に反応するタイムライン/速度を示す。記号★は、適用された治療プロトコルに応答して、この(単複の)患者サブグループのための最も望ましい治療結果をもたらすことができる推奨される治療プロトコルを示す。
図5は、客観的医療データ152、158、164に対して患者148、154、160をモニタするポータブル医用モニタリング装置150、156、162を示すシステム図146である。ポータブル医用モニタリング装置150は、患者の病状の変化をモニタして追跡し、患者の客観的医療データに関するいずれかのこのような有意な変化を患者、ヘルスケア提供者及び/又は救急車に警告することができるポータブルモニタリング装置として患者148に関連付けられる。ポータブル医用モニタリング装置150による患者148のモニタリングは、患者の病状からの入力を受け、患者148の客観的医療データ152と比較できるように患者の医療データを医療メインサーバ12に送信することを連続して行う。医療メインサーバ12は、ポータブル医用モニタリング装置150から受け取られた患者148に関連するリアルタイムの医療データが特定の客観的医療データ152の閾値レベルを超えると判断すると、ポータブル医用モニタリング装置150に警告を発して、患者の医師又はその他のヘルスケア提供者に危険な病状の可能性について通知するとともに、この測定値を患者に警告する。例えば、ポータブル医用モニタリング装置150、156、162の各々は、特定の患者の血圧、心拍数などについてそれぞれの患者、148、154、160をモニタする。患者154、160、医療メインサーバ12、及び関連する客観的医療データ158、164には、ポータブル医用モニタリング装置156、162の同様のタイプの動作もそれぞれ適用される。
図6は、図11に関するステップを用いて、客観的医療データに関して患者を24時間常にモニタする例示的な処理フロー(168)を示す図である。患者は、ポータブル医用モニタリング装置150(例えば、スマートフォン、タブレット、眼鏡/ゴーグル、腕時計、ウェアラブル装置、医用ステッカー)、電子装置(例えば、センサ)が取り付けられた電子下着170、又は繊維電極入り布製衣類172によってモニタされ、ポータブル医用モニタリング装置150は、患者の血圧、心拍数及びその他の重要な医用バイタルデータを読み取る方法として、図7A〜図7Cに示して説明するような埋め込み型装置と共に動作する。ポータブル医用モニタリング装置、又は電子下着に取り付けられた電子装置から、或いは衣類の繊維電極によってリアルタイムの医療データ測定値が収集され、モバイル装置150に送信される。患者は、概要欄又はダッシュボードにデータを表示又は組み込むことができるスマートフォンのモニタリングアプリケーション174をインストールように選択して、患者のバイタルサインをモニタし、モバイル装置150から医療メインサーバ12に医療データが送信されるように設定をリアルタイムで変更することができる。このリアルタイムの客観的医療データは、中央データベース16内の既に記憶されている患者の客観的医療データに照らして分析される。状態によって医用アラートが引き起こされた場合、潜在的に危険な病状に関する通知176が患者の医師に送られて行動決定180(例えば、さらなる調査のための患者のデータを患者の記録から取り出すこと、又は患者に電話すること)が行われ、測定値についての通知178が患者に送られて行動決定182(例えば、救急車を呼ぶこと)が行われる。状態によって医用アラートが引き起こされない場合、結果として得られたデータは、既存の患者のEMRシステムの中央データベース16に記憶される。結果として得られたデータは、同様に中央データベースに記憶される。任意に、分析されたデータは患者のスマートフォンに送信されて、スマートフォンのモニタリングアプリケーション174による概要欄又はダッシュボードの表示の更新/リフレッシュが行われる。
図7Aは、図6に関するモニタリング及び治療のためのウェアラブル又は埋め込み型モニタリング及び治療装置184の例示的な図である。人工血管の又はポート(例えばカニューレ)付きのウェアラブル装置188、又はマイクロニードルパッチは、人に何か(例えば薬)を注入し、又は人から(血液のような)何かを抽出する手段を提供することができる。この装置は、腕、腿、腹部又はその他の注入部位に着用することができる。任意に、(例えば、血糖値などの)連続測定のためにセンサ186が皮下に挿入され、無線周波数を介して連続モニタリング装置192にデータが送信される。この時、この人物には、手動又は自動薬剤(例えば、インスリン)送達のための通知又はアラート178が送られる。測定及び注入データは、(スマートフォンを用いて)知的医療エンジン14に送信されて、分析され記憶される。注入装置及びセンサ装置は、錠剤、針などの再装填、再充填及び補充のために、日常的に又は特異的に取り外して装置上に配置することができる。ウェアラブル装置188は、知的医療エンジン14によるグループ分割処理のために客観的医療データにおける患者のパラメータを中央データベース16に提供する別のソースを提供する。
図7Bは、処理194において血管系にアクセスする接続装置の例示的な図である。一対の静脈アクセス装置が、埋め込みポート装置及びプラグ装置198を含む。埋め込みポート装置は、外科医によって人間196の皮下に配置される。この装置は、非アクセス時に自封弁として機能する人工皮膚隔壁を有する。プラグ装置(雄コネクタ)をポート装置(雌端部)に挿入して、採血又は薬剤注入、及びデータ収集又はモニタリングのための真っ直ぐな内部流体通路を活性化することができ、注射器の使用も専門教育も不要である。ユーザ又は患者は、装置をコンセントにつないで医療データ200(例えば、血液サンプル)を収集することができ、測定及び薬剤注入のデータは、(スマートフォンを用いて)知的医療エンジン14に、又は疾患のモニタリング、分析のために病院/研究室に送られる。
図7Cは、埋め込みポート及び治療装置202の例示的な図である。埋め込みポート204は、人に対して化学療法、輸血、抗生物質及び静脈内(IV)輸液などの治療を行うことができるとともに、血管内のカテーテルと共に体内の皮下に残しておくことができるので(208)、採血又はモニタリング目的で(血のような)何かを人から抽出して回収することができ、測定及び薬剤注入のデータは、(スマートフォンを用いて)知的医療エンジン14に、又は疾患のモニタリング、分析のために病院/研究室に送られ、例えば、注射器を用いて針をポートチャンバに挿入して薬剤を血管に注入し(206)、既に血管内に存在するカテーテルを介して異なる時点で、又は常に薬剤を送達することができる。
埋め込みポート及び治療装置202は、サイトカイン、その他のタンパク質、又はその他の細胞などの患者の血液パラメータへの容易なアクセス性を可能にし、これらのパラメータは、埋め込みポート及び治療装置202に細胞シグナリングを提供することができ、埋め込みポート及び治療装置202は、患者の24時間常時モニタリングのためにこのような情報をポータブル装置188にさらに伝達する。医師又は看護師は、ポータブル装置188からの送信データをオンラインでモニタすることにより、患者の血球パラメータの変化を経時的に観察することができる。サイトカインは、細胞シグナリングにおいて重要な、広義で緩いカテゴリの低分子タンパク質(5〜20kDa)である。サイトカインは、細胞によって放出され、他の細胞の、時には放出した細胞自体の挙動に影響を与える。サイトカインは、ケモカイン、インターフェロン、インターロイキン、リンホカイン、一般的にはホルモン又は成長因子ではない腫瘍壊死因子を含む。サイトカインは、マクロファージ、Bリンパ球、Tリンパ球及び肥満細胞のような免疫細胞、並びに内皮細胞、繊維芽細胞及び様々な間質細胞を含む広い範囲の細胞によって生成され、所与のサイトカインは、2タイプ以上の細胞によって生成することができる。サイトカインの1つの重要な側面は、その動特性であり、異なるサイトカインの相対的濃度の変化は、臓器又は組織の移植拒絶反応の早期指標を含む疾患の進行又は寛解を示す(例えば、Starzlら、2013年を参照)。
図8は、モニタリング及び治療のための埋め込み型装置210の例示的な図である。人体へのインプラント214(例えば、埋め込み型装置RFIDチップ212)を用いて、緊急時に医療情報を取り出すために使用する場合と同様に、全体的な健康及び治療の効果をモニタすることができる。例えば、血管ポートの用途では、図7B〜図7Cに図示し説明したように、患者の皮下の埋め込みポートを用いて薬剤及び医療を個別化する適量の化学療法薬を確実に体内に注入するために、このチップを用いて患者内の血管ポートを正しく識別することができる。
図9は、限定ではないが、一般開業医及び主治医を含む一次医療提供者において使用できる、統合健康診査及び診断機能を有する診断カプセル機216の例示的な図である。一次医療提供者の診療室218には、例えば、完全血球算定、化学パネル、尿検査(UA)、並びにMRI(磁気共鳴撮像法)、X線によるCT/CAT(コンピュータ体軸断層撮影)及び心電図(EKG又はECG)超音波などの医用撮像プログラムなどの健康診断臨床試験を行うことができる診断カプセル216が存在する。この機械は、製造及び購入コストがそれほど高くなく、同時データ取得のために複数の検出器が備わり、健康診断、疾患治療のために個人営業の診療所、住宅地域施設、さらには家庭内に設置することもでき、患者の情報は、支払い事前承認のために健康保険会社220にリンクされる。診断カプセルは、患者が病院又は研究所を訪問する時間及びコストを低減し、稼動時に医師にリアルタイムの完全な検査結果を提供し、保険会社での管理業務を排除し、処理及び承認時間を短縮することにより、ヘルスケア処理の効率及び有効性を向上させる。人体の内部からのリアルタイムの研究所検査データ及び写真、並びに3Dデジタル画像データが治療/疾患プロトコル222として(スマートフォン、タブレット、ノートブック又はコンピュータを介して)知的医療エンジン14に送られ、比較、分析されて中央データベース16に記憶される。診断カプセル機216は、後続する知的医療エンジン14によるグループ分割処理のために客観的医療データにおける患者のパラメータを中央データベース16に提供する別のソースを提供する。
任意に、診断カプセル機216には、(超音波、X線などの)医療装置を動かし、患者が診断カプセル機216の平面上に横たわっている時に医療装置を患者上に動かすためのロボットアーム/ハンド219が備わる。統合診断カプセル機216は、通常であれば各医用機能を別個に実行するために複数の医療装置を必要とする複数の医療機能を実行することができる。
図10は、知的医療エンジン14が対話型機械学習処理を用いて最適化のために客観的医療データの受け取り、記憶、分析及び分類を行う自動処理226を示すブロック図224である。ステップ228において、知的医療エンジン14は、第1の病院20、第2の病院22、診療所24及びソース26などの様々な医療ソースから複数の客観的医療データを受け取るように構成される。ステップ230において、知的医療エンジン14は、客観的医療データの品質チェックを行うように構成される。ステップ232において、知的医療エンジン14は、複数の客観的医療データを記憶するように構成される。ステップ234において、知的医療エンジン14は、客観的医療データを分析し、中央データベース16に新たに入力される客観的医療データとして、同じサブセット(又は同じ組)のクラスタを含むグループに分類するように構成される。ステップ236において、学習モジュール72は、パラメータ及び新規データを常に調整して客観的医療データのグループの分析及び分類を改善することにより、自動処理226全体に機械学習機能を提供するように構成される。
図11は、患者の新たな症状を既存の大量の客観的医療データと速やかに比較するための、医療関係者によって開始される処理238を示すブロック図である。ステップ240において、患者が診療所を訪れた時に、医師又は看護師などの医療関係者は、コンピュータ装置上の患者テンプレートフォームを埋める。医療関係者は、この患者テンプレートフォームをコンピュータ装置から知的医療エンジン14に送る。ステップ242において、知的医療エンジン14は、患者テンプレートに含まれる客観的医療データを、既に中央データベース16に記憶されている既存の一群の客観的医療データと比較するように構成される。ステップ244において、知的医療エンジン14は、中央データベース16内の既存の一群の客観的医療データのうちのどのグループに患者テンプレートと最も近い一致データが含まれているかを判断するように構成される。ステップ246において、知的医療エンジン14は、最も近い一致グループ、又は最も近い一致グループのいくつか(集合的に、最も近い一致グループのうちの1つ又は2つ以上)を含む出力データを生成するように構成される。
図12は、クエリに基づいて医師の客観的データを選択するための、消費者によって開始される処理248を示すブロック図である。ステップ250において、消費者は、コンピュータ装置を用いて、治療(例えば、唾液腺結石の唾液管内視法又は衝撃波治療)のための医師及び/又は病院に関する電子検索(又は、クエリの提出)を行い、医療メインサーバ12における検索の正確性及び速度を向上させるために、ステップ252において用語/語句の提案、ステップ254において所定のフィルタ、ステップ256において基準の記憶が行われる。ステップ258において、知的医療エンジン14は、提出されたクエリを中央データベース16の医師の客観的データ(及び/又は病院の客観的データ)と比較するように構成される。客観的データに関する検索クエリは、専門的医学用語又は主観的説明による検索の問題点を解決する。ステップ260において、知的医療エンジン14は、ソート基準及びフィルタに基づいて最も関連性の高い出力を生成し、これによって結果をユーザのニーズに合うように効果的に絞り込むように構成される。或いは、ステップ260において、知的医療エンジン14は、成功/陽性事例及び陰性事例の両方を含むことができる、医師による治療選択の評価における1又は2以上の重要基準を含む出力を生成するように構成される。
図13には、本開示による、図12に関連する例示的な所定の検索カテゴリ262を示す。患者(又は消費者)が、図12に示す処理248におけるクエリに基づいて医師の客観的データを選択すると、消費者が自身の病気を検索するために使用できる、ステップ254における所定のパラメータ又はフィルタが現れる。図13には、数ある中でも特に、以下に限定されるわけではないが、疾患/病気タイプ264、症状266、カテゴリ268、対象270、疾患/病気範囲272、手術及び外科処置274(及び、検査/調査276)を含むいくつかの例示的な所定の検索カテゴリ262を示している。疾患/病気タイプ264は、患者の疾患のタイプを識別する検索カテゴリであり、とりわけ、伝染病、食中毒、感染症、(高トランス脂肪の食事などの)生活習慣病、精神障害を含むことができる。患者は、クエリを生成する際に、とりわけ、腹痛、萎縮性膣炎、口臭、胸のしこり、胸部痛、咳嗽、及びめまいを含むことができる、感じる症状266を示すことができる。患者は、症状に加え、疾患又は病気に苦しむ人体部分を強調するカテゴリ268を識別することができる。例えば、カテゴリ268は、解剖学的組織/肉体、関節/骨/筋肉、血液/アレルギー、及び脳/神経/神経学などを含むことができる。患者は、自身の検索を性別、年齢などによって明確にするために、対象270検索カテゴリに追加情報を提供することができる。疾患/病気範囲272検索カテゴリは、疾患又は病気のさらに一般的な説明を提供する。このカテゴリでは、患者が、自身の疾患を全身性疾患(例えばインフルエンザ、高血圧など)と識別することができる。図13に示すように、検索パラメータは、患者が所定のフィルタから選択できる手術及び外科処置274、並びに検査/調査276を含むこともできる。
図14は、消費者があらゆる場所から自身の電子医療記録を取り出す処理278を示すブロック図である。ステップ280において、患者は、コンピュータ装置を用いて、医療メインサーバ12を通じて中央データベース16にアクセスする。ステップ282において、知的医療エンジン14は、患者のコンピュータ装置から一意のコードを受け取って中央データベース16から患者の病歴を取り出すように構成される。ステップ284において、知的医療エンジン14は、患者に関連する選択された病歴を、患者又は別の医療関係者が使用できるように別のコンピュータ装置又は医療施設に動かすように構成される。別の国又は地域に存在し得る別の医療施設において中央データベース16からの患者の病歴にアクセスする能力は、特に患者が旅行中の場合、又は別の都市、国、地域又は大陸に移動した場合に、患者に大きな柔軟性をもたらす。
図15は、図6に関連する客観的医療データに対して患者を24時間常にモニタする処理286を示すフロー図である。ステップ288において、ポータブル医用モニタリング装置モジュール65は、患者148のポータブル医用モニタリング装置150と通信可能に結合される。ステップ290において、ポータブル医用モニタリング装置モジュール65は、ポータブル医用モニタリング装置150によって患者148からリアルタイムの客観的医療データを取得するように構成される。ステップ292において、ポータブル医用モニタリング装置モジュール65は、患者148のリアルタイムの客観的医療データを、ポータブル医用モニタリング装置150から医療メインサーバ12及び中央データベース16に送るように構成される。ステップ294において、知的医療エンジン14は、患者148のリアルタイムの客観的医療データを中央データベース16内の以前に記憶された患者148の客観的医療データに照らして分析し、比較によって患者の医師及び患者への医用アラートが引き起こされるかどうかを判定するように構成される。患者148のリアルタイムの客観的医療データ内のパラメータのうちの1つが、患者148の以前の記憶された客観的医療データの閾値を超える場合、知的医療エンジン14は、ステップ298において、患者148に関連する医療専門家、及び患者148のポータブル医用モニタリング装置150に医用アラートを送って患者148に知らせるように構成される。同時に、ステップ296において、知的医療エンジン14は、結果として得られた客観的医療データを既存の患者148のEMRシステムに追加することにより、結果として得られた患者148からのリアルタイムの客観的医療データを中央データベース16に記憶するように構成される。ステップ300において、患者148のリアルタイムの客観的医療データ内のパラメータが、いずれも患者148の以前に記憶された客観的医療データの閾値を超えない場合、知的医療エンジン14は、患者148のリアルタイムの客観的医療データを中央データベース16に記憶するように構成される。患者148は、患者154、160を含む多くの患者がそれぞれのポータブル医用モニタリング装置150を通じて医療メインサーバ12に通信可能に結合される例示を目的として用いたものである。ポータブル医用モニタリング装置150としては、スマートフォン、タブレット、眼鏡/ゴーグル、腕時計、ウェアラブル装置などのいずれかのタイプのポータブル装置が挙げられる。
図16は、医師が画像の変化に照らして複数の異なるデータ点に基づいて治療法を決定する支援を行うように患者の3次元プロファイルを経時的に記憶し、蓄積して分析する処理302を示すフロー図である。この実施形態は、患者の2つのデータ点としての同様の状況における他の医師の決定を含むこともできる。ステップ304において、学習モジュール72は、X線、磁気共鳴撮像(MRI)、コンピュータ断層撮影(CT)走査などの1又は2以上の画像診断装置からの画像を分析して、患者の(重要な人体臓器などの)体及び(脳構造などの)脳の2次元画像、3次元画像又はデジタルモデルのいずれかを時点t1において生成するように構成される。複数の2次元画像を構築して、患者の特定の臓器の3次元表現を形成することもできる。ステップ306において、任意のステップとして、知的医療エンジン14は、受け取った患者の客観的医療データからの患者の状態に基づいて疾患を分類するように構成される。ステップ308において、知的医療エンジン14は、選択された又は重要な1又は複数の臓器の3次元表現を構築するように構成される。ステップ310において、知的医療エンジン14は、患者の3次元画像の組を含むことができる各患者の標準的(又は、客観的)患者状態プロファイルを生成するように構成される。ステップ312において、知的医療エンジン14は、3次元画像を含む標準的患者プロファイル及びいずれかの適用可能な2次元データ又は画像を中央データベース16に記憶するように構成される。ステップ314において、知的医療エンジン14は、時点t2において同じ患者の3次元デジタルモデルを生成して、時点t1における第1の3次元デジタルモデルと時点t2における第2の3次元デジタルモデルとの相違を特定するように構成される。ステップ316において、知的医療エンジン14は、時点t1における第1の3次元デジタルモデルと時点t2における第2の3次元デジタルモデルとの相違が、医師に患者の治療処理のタイプを決定するように促すものであるかどうかを判定するように構成される。知的医療エンジン14に入力される医師の決定に変更がない場合、又は知的医療エンジン14が変更を不要と判断した場合、ステップ318において、知的医療エンジン14は、時点t2における第2の3次元デジタルモデルを記録するように構成される。医師が知的医療エンジン14に入力すべき治療のタイプを変更するとの決定を行った場合、又は知的医療エンジン14が治療の変更を必要と判断した場合、ステップ320において、知的医療エンジン14は、時点t2における第2の3次元デジタルモデルを記録するように構成される。ステップ322において、知的医療エンジン14は、時点t1における第1の3次元デジタルモデルと時点t2における第2の3次元デジタルモデルとの相違を考慮した医師の決定、又は知的医療エンジン14が行った決定を追加し、その後の3次元モデルの相違を考慮した医師の意思決定処理についての大量データ分析のために、このデータを中央データベースに入力するように構成される。処理は、ステップ318又はステップ322からステップ314に戻ることによって連続ループの形で継続し、ここでは時点t2が次の時点を表し、時点t1が前の時点を表す。
図17は、医師が重要パラメータの変化に照らして複数の異なるデータ点に基づいて決定する支援を行うように患者のテンプレート内のキーパラメータを経時的に記憶し、蓄積して分析する処理324を示すフロー図である。ステップ326において、知的医療エンジン14は、時点t1において、標準的患者テンプレート内に配置するための、患者に関連する疾患のキーパラメータの値を識別するように構成される。ステップ328において、知的医療エンジン14は、テンプレート内の患者のキーパラメータに基づいて患者の疾患を分類するように構成される。ステップ330において、知的医療エンジン14は、時点t2において患者を診断して、患者に関連する疾患のキーパラメータの値を識別するように構成される。ステップ332において、知的医療エンジン14は、時点t1における第1のキーパラメータ値と時点t2における第2のキーパラメータ値との差分を求めるように構成される。ステップ334において、知的医療エンジン14は、時点t1における第1のキーパラメータ値と時点t2における第2のキーパラメータ値との差分が、現在の治療プロトコルから治療プロトコルを変更する裏付けになるかどうかを判定するように構成される。一方では、ステップ336において、医師が異なる治療方法を使用すると決定した旨の入力が知的医療エンジン14に行われた場合、知的医療エンジン14は、患者のプロファイルの相違を考慮して医師の決定を記録するように構成される。ステップ338において、知的医療エンジン14は、その後の2又は3以上の異なる時間におけるキーパラメータ値の差分を考慮した医師の医師決定処理についての大量データ分析のために、差分を考慮した医師の決定を中央データベースに追加するように構成される。他方では、ステップ340において、医師が同じ治療方法を維持した旨の入力が知的医療エンジン14に行われた場合、知的医療エンジン14は、時点t2における標準的患者テンプレートの一部として第2のキーパラメータ値を記録するように構成される。処理は、ステップ338及び340からステップ326に戻る。
図18は、客観的医療データに対して患者をモニタする導電性ファイバで編まれた布製衣類172の電子下着170又は繊維電極を用いて医療データを検知する処理を示すフロー図である。ステップ344において、男性又は女性用下着(電子下着)に電子装置が取り付けられる。図18に示すように、通常、電子下着170はユニットとして製造され、電子装置及び下着は小売店で販売される。他の実施形態では、電子装置を別個に販売して下着に取り付けることもできる。女性用下着の一例は、電子装置が強力なゴムで頂部の腰周りに取り付けられたパンティーストッキングである。
ステップ346において、電子下着上の電子装置又は衣類の繊維電極は、電子下着に取り付けられた電子装置又は繊維電極から収集されたリアルタイム医療データ(例えば、温度、血圧、脈拍/心拍数など)の測定値に基づいて患者をモニタする。ステップ348において、電子下着上の電子装置又は繊維電極は、Bluetooth(登録商標)又はセルラデータネットワークなどの無線プロトコルを介して、スマートフォン150などのモバイル装置にリアルタイム医療データを送信する。任意に、ステップ350において、患者が全てのバイタルデータを把握して設定を変更できるように、スマートフォンアプリを用いて概要欄又はダッシュボードにデータを表示し、又は組み込むことができる。
ステップ352において、スマートフォン150は、リアルタイム医療データを医療メインサーバ12にさらに送信する。ステップ354において、知的医療エンジン14は、中央データベース16の以前に記憶された患者148の客観的医療データに照らして患者148のリアルタイムの客観的医療データを分析し、比較によって患者の医師及び患者への医用アラートが引き起こされるかどうかを判定するように構成される。患者148のリアルタイムの客観的医療データ内のパラメータのうちの1つが、患者148の以前に記憶された客観的医療データの閾値を超える場合、知的医療エンジン14は、ステップ360において、患者148に関連する医療専門家、及び患者148のポータブル医用モニタリング装置150に医用アラートを送って患者148に知らせるように構成される。同時に、ステップ356において、知的医療エンジン14は、結果として得られた客観的医療データを既存の患者148のEMRシステムに追加することにより、結果として得られた患者148からのリアルタイムの客観的医療データを中央データベース16に記憶するように構成される。任意に、ステップ358において、結果として得られたデータが患者のスマートフォンに送信され、アプリによって表示されている概要欄又はダッシュボードに対して更新/リフレッシュされる。ステップ362において、患者148のリアルタイムの客観的医療データ内のパラメータが、いずれも患者148の以前に記憶された客観的医療データの閾値を超えない場合、知的医療エンジン14は、患者148のリアルタイムの客観的医療データを中央データベース16に記憶するように構成される。任意に、ステップ364において、結果として得られたデータが患者のスマートフォンに送信され、アプリによって表示されている概要欄又はダッシュボードに対して更新/リフレッシュされる。患者148は、患者154、160を含む多くの患者がそれぞれのポータブル医用モニタリング装置150を通じて医療メインサーバ12に通信可能に結合される例示を目的として用いたものである。ポータブル医用モニタリング装置150としては、スマートフォン、タブレット、眼鏡/ゴーグル、腕時計、ウェアラブル装置などのいずれかのタイプのポータブル装置が挙げられる。
いくつかの実施形態では、腕時計のようなウェアラブル装置の一部などの電子コンテナが、好適な時点で患者に投薬を行う。例えば、毎日使用できるように、薬剤を電子コンテナに貯えておくことができる。投薬時刻になると、電子コンテナがビープ音を鳴らして、電子コンテナから取り出された薬剤を服用するように患者に警告する。
図19A〜図19Qに、一般開業医の主要患者検査プロトコルのためのフィールドの例示的なリストを示す。一例として、健康診断中、ヘルスケア提供者は、患者の体重、身長及び血圧を測定し、分析のために尿及び血液サンプルを取得し、心電図(ECG又はEKG)の取得を含む心臓検査、呼吸器系検査、乳房検査、子宮頚部細胞診を含む骨盤内検査、精巣検査、ペニス検査、及び前立腺特異性抗原(PSA)レベルの測定を含む前立腺検査などの様々な検査を実行する。血液分析は、以下に限定されるわけではないが、白血球数、赤血球数、血小板数、ヘモグロビン、ヘマトクリット、コレステロール(LDL、HDL、トリグリセリド)、グルコース、ミネラス(例えば、カリウム、カルシウム、ナトリウム及び塩化物)、総蛋白、クレアチニン、ビリルビン、アルブミン、ビタミンD、尿酸、チロキシン及び甲状腺刺激ホルモン(TSH)の値の取得を含む。尿検査は、以下に限定されるわけではないが、尿の色及び外見、グルコース、ビリルビン、ケトン、血液及びタンパクの値の取得を含む。予防手段として、マンモグラム、大腸癌検診及び骨粗鬆症検診も行われる。これらの試験及び検査は、患者の身体検査フォームにおけるフィールドのリストの一例である。
図20は、臨床記録の標準化における処理368を示す例示的なフロー図である。ステップ370において、医師/内科医は、臨床活動を行い、専門医の決定制御手順の下でリストから正しいパラメータ及びコードを選択/追加することにより、自己学習システムのアルゴリズムとしてのタイプ及びパラメータを満たすように、これらの活動の結果を、特に非構造化臨床データを普遍的な標準タイプに変換してシステムに供給してシステムと相互作用する。ステップ374において、内科医/医師は、患者検査プロトコルの指針及び処置に従うことにより、病訴(頭、右眼などの局所痛)、一般的検査(体温、脈)、検査所見(血球数)、画像検査(CT、MRI)、病歴などの臨床活動(例えば、患者の症状又は病状の一般的検査/観察)を行う。チェック項目の各々は、臨床パラメータのリストからの予め定められた対応する臨床パラメータ及びコードを有し、検査/観察/検査所見に基づいて患者に関するコード及び値が定められる。(患者の症状/痛みの病訴強度を測定する標準的尺度を含む)臨床パラメータ、国際研究所パラメータ及び値に関連する影響名、現象名、事象名、患者コード、年齢及び性別の異なる時間/特定の日付におけるライフスタイル及び特定のパラメータ及び値などの正しいタイプの選択された臨床パラメータが、自己学習システムに供給する標準的データとして全ての標準タイプのリストから選択される。ステップ376において、該当する場合、内科医/医師は、ベクトル3次元人体モデル上に転送された写真を含む正確な発症部位を含む正しいタイプの臨床パラメータの発症部位を3次元人体モデル上で選択する。既存のパラメータリストに正しいタイプの臨床パラメータが存在しない場合、内科医/医師は、新たなタイプの選択された臨床パラメータを手動で追加する。コンピュータは、新たなタイプの選択された(単複の)臨床パラメータの一時的状態を割り当て、全ての標準タイプのリストに追加する。コンピュータが新たなタイプの選択された臨床パラメータを検査のために複数の臨床専門医に送った場合。選択された専門医が新たなタイプの臨床パラメータに同意した場合、コンピュータは、知的機械学習処理の一部として、新たなタイプの選択された臨床パラメータの一時的状態を恒久的なものに変更する。新たなタイプのパラメータについて専門医が合意できない事例では、専門医が内科医/医師に連絡して、医師が正しいタイプの選択されたパラメータを既存のリストから発見する支援を行う。選択された専門医が、リストから発見された選択されたパラメータに関して結果に同意しなかった場合、内科医/医師は、専門医が新たなタイプのパラメータを理解するための追加情報を専門医に提供する。選択された専門医は、新たなパラメータが存在するかどうかについて全員一致の判定を行い、新たに見つかったパラメータが存在する場合、コンピュータは、知的機械学習処理の一部として、新たなタイプの選択された臨床パラメータの一時的状態を恒久的なものに変更する。存在しない場合、選択された専門医は、新たなパラメータが存在しない旨の説明を内科医/医師に対して行う。
図21Aは、臨床記録を標準化するための例示的な臨床パラメータ及びコードリスト402である。臨床パラメータ及びコードリストは、患者名、年齢、通院日、患者の症状及び病訴(痛み、臓器機能不全など)、患者の病歴、既往歴、(全身状態、リンパ節、骨、体温、心臓血管系、呼吸器系、消化器系、泌尿器系及びさらなる検査についての)一般検査、臨床パラメータ、研究所パラメータ、疾患及びライフスタイルなどのデータ及びパラメータコードを含むことができる。臨床記録の標準化は、臨床言語を1バイトのデータなどの1つのコンピュータ情報サイズで標準化するものである。換言すれば、1バイトのコンピュータ情報データは、臨床パラメータ及びコードリスト402に入力された時に、標準化された臨床言語を保持するようになる。患者の臨床パラメータ及びコードリスト402は、1バイト内の標準化された臨床言語を用いて英語からフランス語又は英語から中国語などの1つの言語から別の言語に容易に翻訳できるとともに、データベース検索及びコンピューター分析のために標準化された情報を提供することができる。
図21Bは、医用撮像装置からの(医用画像を含む)視覚表現を標準化する処理を示すフロー図であり、図21Cは、本開示による、臨床視覚表現記録を標準化するための例示的な臨床パラメータ及びコードリストを示すブロック図である。臨床用語の標準化は、体内の視覚表現を作成するための医用画像を臨床分析及び医学的介入のためにカテゴリ化することを含む。医用撮像は、皮膚及び骨などの組織によって隠れた、並びに疾患を診断して治療するための内部構造の2次元及び3次元表現をもたらす。医用撮像装置は、生体撮像の一部であり、超音波、コンピュータ断層撮影(CT)、磁気共鳴撮像(MRII)、陽電子放出断層撮影(PET/CT)、X線検査、医用超音波検査、内視鏡検査、エラストグラフィ、触覚撮像、サーモグラフィ、医用写真撮影の撮像技術、及び陽電子放出断層撮影としての核医学機能撮像技術の撮像技術を使用する放射線医学を含む。ステップ472において、知的医療エンジン14は、腎臓、人の頭部、右手などの、人間の臓器又は身体部分のタイプを定めるように構成される。ステップ474において、知的医療エンジン14は、視覚表現の分類に使用する医用撮像装置を識別するように構成される。ステップ476において、知的医療エンジン14は、それぞれの医療専門家により、選択された医用撮像装置を用いて、指定の臓器の全ての利用可能な病状事例のリストを決定するように構成される。ステップ478において、知的医療エンジン14は、指定の臓器に関連する各病状のための一意のコードを割り当てるように構成される。ステップ480において、各視覚表現を、リスト内の病状に関連付ける。ステップ482において、リスト内の病状毎に対応する説明を与える。ステップ484において、リスト内の病状毎に1又は2以上の次元値を割り当てる。ステップ486において、知的医療エンジン14は、分析的グループ分割及び検索アルゴリズムのタイムライン上の時間毎に一意のコード及び次元(値又はサイズ)を用いて、視覚表現パラメータを変更する動特性を視覚化するように構成される。ステップ490において、知的医療エンジン14は、その専門分野における1人又は2人以上の医療専門家による承認を受けた医療ソースからの新たな病状を追加するように構成される。
図22は、臨床パラメータフォーム404の例示的な構造を示すブロック図である。この図及び実施形態では、臨床パラメータフォームが3つのセクションを有し、セクション1(406)は重要(又は主)パラメータデータを含み、セクション2(408)は合併症データを含み、セクション3(410)は間接的パラメータデータを含む。主(「重要」とも呼ばれる)パラメータは、疾患のステージ、重症度及び形態を定める。重要パラメータは、病訴、検査データ、研究所結果、計器試験からのデータ、他の疾患の兆候を含むことができる。1つの実施形態では、間接的パラメータが、疾患の経過に直接影響を与えたり、疾患の経過と共に変化したりしない。セクション1及びセクション3では、各パラメータがテーブル内で固定数の列を取るが、行数は、値、常態、形態の数に応じて任意である。この構造単位は、「パラメータモジュール」と呼ばれる。各パラメータモジュールは、「メインライン」412及び「追加ライン」414を有する。「メインライン」412は、(1)列「B」におけるパラメータ名、(2)列「D」におけるこの疾患の文脈でのパラメータに関する(キーワードを用いて)記入する必要がある明細及び一般情報、(3)列「E」におけるパラメータ判定のための一般方法、(4)列「F」における一般方法の説明、及び(5)列「G」におけるパラメータに関するさらなる情報を含む。各「メインライン」412は、メインラインパラメータに対して主観的な値、常態又は形態を指定する必要がある「追加ライン」414を探求する。各値の順序又は形態は、(1)列「C」における値の説明、(2)列「E」における研究所範囲、サイズ、病理学的焦点の局在性、病変のタイプ、症状の重症度、症状の持続時間などの、フィールド内に指定する必要があるパラメータの値、常態又は形態、(3)列「D」における説明する疾患の文脈でのパラメータ値の指定及び各値の説明、(4)列「F」におけるパラメータ決定のための値に特化した方法、及び(5)列「G」におけるパラメータに関するさらなる情報を含む。
セクション2では、合併症の説明について、(1)パラメータ名は列「B」で指定され、(2)パラメータの説明は列「D」で指定され、(3)ICDコードは列「G」で指定される。主(重要)パラメータは、疾患のステージ、重症度及び形態を定めることができる。パラメータは、病訴、検査データ、研究所結果、計器試験のデータ、他の疾患の兆候を含むことができる。
セクション3では、通常、間接的パラメータ410は、疾患の経過と共に変化しない。「メインライン」412は、(1)列「B」におけるパラメータ名、(2)列「D」におけるこの疾患の文脈でのパラメータに関する(キーワードを用いて)記入する必要がある明細及び一般情報、(3)列「E」におけるパラメータ判定のための一般方法、(4)列「F」における一般方法の説明、及び(5)列「G」におけるパラメータに関するさらなる情報を含む。各「メインライン」412は、メインラインパラメータに対して主観的な値、常態又は形態を指定する必要がある「追加ライン」414を探求する。各値の順序又は形態は、(1)列「C」における値の説明、(2)列「E」における研究所範囲、サイズ、病理学的焦点の局在性、病変のタイプ、症状の重症度、症状の持続時間などの、フィールド内に指定する必要があるパラメータの値、常態又は形態、(3)列「D」における説明する疾患の文脈でのパラメータ値の指定及び各値の説明、(4)列「F」におけるパラメータ決定のための値に特化した方法、及び(5)列「G」におけるパラメータに関するさらなる情報を含む。セクション2では、パラメータ名が列「B」において指定され、パラメータの説明が列「D」において指定され、ICDコードが列「G」において指定される。
図23は、例示的な白紙の臨床パラメータフォーム416である。列1の下の項目「1.2 病態生理学的症状」418。「重要パラメータ」は、病態生理学的状態を引き起こす、病状、診断スクリーニング及び治療法に大きな影響を与える変化する身体機能のパラメータを含む。項目「1.3 技術パラメータ」420は、医療装置の使用及び操作を行うためのパラメータを含む。項目「1.4 病歴」422は、実際の疾患に関する患者及び/又は近い家族のパラメータ(背景疾患、遺伝子)を含む。列「ICDコード」の下のフィールドは、関連項目(1.4)のさらなる情報を含む。
図24Aは、肺癌の臨床パラメータフォームを作成する−ステップ1の例示的な命令424である。このフォームのセクション1を例に取ると、第1のステップは、「パラメータ」列の下のフィールド内にパラメータ名を作成することであり、例えば、(重篤な)症状としては、胸部痛、血痰の排出及び咳が挙げられる。
図24Bは、肺癌の臨床パラメータフォームを作成する−ステップ2の例示的な命令426である。症状の「説明」列の下のフィールド内に、例えば「胸部痛」の症状については「胸膜障害を伴う」などの、疾患の文脈における全てのパラメータの明細を記入する必要がある。
図24Cは、肺癌の臨床パラメータフォームを作成する−ステップ3の例示的な命令428である。各症状の「値、常態」列の下のフィールド内に、例えば、症状「胸部痛」の値としての「軽度」、「重度」などの異なる値を記入する。
図24Dは、肺癌の臨床パラメータフォームを作成する−ステップ4の例示的な命令430である。「説明」列の下のフィールド内に、例えば、症状「胸部痛」の値「軽度」の説明としての「非特異性」、症状「胸部痛」の値「重度」の説明としての「胸膜障害(T3ステージ)に関する兆候」などの各「値、常態」又は形態を記入する必要がある。
図24Eは、肺癌の臨床パラメータフォームを作成する−ステップ5の例示的な命令432である。各症状の「検出」列の下のフィールドに、例えば、症状「胸部痛」の検出としての「質問」などの一般的パラメータ検出方法を記入する必要がある。
図24Fは、肺癌の臨床パラメータフォームを作成する−ステップ6の例示的な命令434である。各症状の「方法の説明」列の下のフィールド内に、例えば、症状「胸部痛」の検出としての「質問」方法の説明としての「病訴」などの適当な説明を記入する必要がある。
図24Gは、肺癌の臨床パラメータフォームを作成する−ステップ7の例示的な命令436である。各症状の「方法の説明」列の下のフィールド内に、例えば、症状「胸部痛」の検出としての「質問」方法の説明としての「病訴」などの適当な説明を記入する必要がある。
図24Hは、肺癌の臨床パラメータフォームを作成する−ステップ8の例示的な命令438である。「パラメータ又は値に対するさらなる情報」列の下のフィールド内に、例えば、症状「胸部痛」に対するさらなる情報としての「患者の病訴:痛みの強さ−>最も問題のある症状であるが、胸部痛の頻度及び持続時間も問題である」などの、パラメータ又は値に対するさらなる(追加)情報を記入しなければならない。
図24Iは、肺癌の臨床パラメータフォームを作成する−ステップ9の例示的な命令440である。「ICDコード」列の下のフィールド内にICDコード(該当する場合)を記入する必要がある。
図25A〜図25Mは、肺癌の例示的な臨床パラメータフォームを示すブロック図442である。このフォームは、臨床パラメータフォームに関する構造及び命令に従って完成する。
一例として、肺癌の場合、直接的パラメータである第1レベルのパラメータは、以下に限定されるわけではないが、(1)タイプ(小細胞対非小細胞)、(2)ステージ(腫瘍のサイズ、及び転移の有無)、及び(3)悪性度(外観及び挙動)を含むことができる。
肺癌の例示的な第2レベルのパラメータは、(1)表皮成長因子受容体(EGF)、(2)Kirstenのラット肉腫癌遺伝子同族体(KRAS)、及び(3)未分化リンパ腫キナーゼ(ALK)といった癌遺伝子の変異の存在を含むことができる。これらの変異の存在を用いて、患者が非小細胞肺癌(NSCLC)標的療法から恩恵を受けるかどうかを判定する。第2レベルのパラメータは、(1)クレアチンキナーゼBB、(2)クロモグラニン、及び(3)ニューロン特異的エノラーゼなどの神経内分泌分化、並びに(1)ガストリン放出ペプチド、(2)カルシトニン、及び(3)セロトニンなどの小ペプチドホルモンについてのマーカを含むこともできる。これらのマーカは、小細胞肺癌の神経内分泌分化を明らかにするものである。第2レベルのパラメータは、肺癌に関連する合併症を含むこともできる。
肺癌の例示的な第3レベルのパラメータは、年齢、肺癌の既往歴、肺癌の家族歴、人種及び民族性などの、患者の一般条件を含むことができる。
例示的な第4レベルのパラメータは、体重、身体活動レベル、アルコール消費量、喫煙習慣、受動喫煙への暴露、及び摂食量(果菜類対動物性脂肪)などの、患者のライフスタイル及び習慣を含むことができる。
図26A〜図26Sは、心筋梗塞(MI)の例示的な臨床パラメータフォームを示すブロック図444である。
一例として、心臓疾患の直接的パラメータである第1レベルのパラメータは、以下に限定されるわけではないが、(1)心不全のタイプ(収縮機能不全又は拡張機能不全)、(2)症状の分類に基づく心臓疾患のステージ、及び(3)心臓症状の重症度に基づく心臓疾患の悪性度を含むことができる。
心臓疾患の例示的な第2レベルのパラメータは、限定するわけではないが、心臓疾患に関連するマーカを含むことができる。心筋梗塞に関連性があることが分かっている遺伝子の例としては、PCSK9、SORT1、MIA3、WDR12、MRAS、PHACTR1、LPA、TCF21、MTHFDSL、ZC3HC1、CDKN2A、2B、ABO、PDGFO、APOA5、MNF1ASM283、COL4A1、HHIPC1、SMAD3、ADAMTS7、RAS1、SMG6、SNF8、LDLR、SLC5A3、MRPS6、及びKCNE2が挙げられる。これらのマーカは、心筋梗塞などの心臓疾患の疾患、予後及び治療に使用することができる。第2レベルのパラメータは、心臓疾患に関連する合併症を含むこともできる。
心臓疾患の例示的な第3のパラメータは、年齢、心臓疾患の既往歴、心臓疾患の家族歴、糖尿病、高血圧、脂質異常症/高コレステロール血症(異常レベルの血中リポプロテイン)、並びに人種及び民族性などの、患者の一般条件を含むことができる。
例示的な第4レベルのパラメータは、肥満、身体活動レベル、喫煙習慣、アルコール消費量、食物摂取量(トランス脂肪)、及び仕事のストレスレベルなどの、患者のライフスタイル及び習慣を含むことができる。
図27A〜図27Mは、虫垂炎の例示的な臨床パラメータフォームを示すブロック図446である。
図28は、包括的医療データ分析システム10において使用される例示的なコンピュータ装置28を示すブロック図である。コンピュータシステム448は、情報を処理するプロセッサ450を含み、プロセッサ450は、バス452又は他の通信媒体に結合されて情報を送受信する。プロセッサ450は、図28のプロセッサ450の例とすることも、或いは本明細書で説明した様々な機能を実行するために使用される別のプロセッサとすることもできる。場合によっては、コンピュータシステム448を用いて、プロセッサ450をシステムオンチップ集積回路として実装することもできる。コンピュータシステム448は、情報及びプロセッサ450によって実行される命令を記憶するための、バス452に結合されたランダムアクセスメモリ(RAM)、又は他の動的記憶装置などのメインメモリ454も含む。メインメモリ454は、プロセッサ450による命令の実行中に一時変数又はその他の中間情報を記憶するために使用することもできる。コンピュータシステム448は、プロセッサ450のための静的情報及び命令を記憶するための、バス452に結合されたリードオンリメモリ(ROM)456又は他の静的記憶装置をさらに含む。磁気ディスク(例えば、ハードディスクドライブ)、光ディスク、又はフラッシュメモリなどの、情報及び命令を記憶するデータ記憶装置458も提供され、バス452に結合される。コンピュータシステム448(例えば、デスクトップ、ラップトップ、タブレット)は、Microsoft社のWindows(登録商標)、Apple社のMacOS又はiOS、Linux(登録商標)、UNIX(登録商標)、及び/又はGoogle社のAndroidを用いたいずれかのオペレーティングシステムプラットフォーム上で動作することができる。
コンピュータシステム448は、バス452を介して、ユーザに対して情報を表示するフラットパネルなどのディスプレイ460に結合することができる。バス452には、プロセッサ450に情報及びコマンド選択を通信するための、英数字入力、ペン入力、又はフィンガータッチ画面入力及び他のキーを含む入力装置462も結合される。別のタイプのユーザ入力装置には、マウス(有線又は無線)、トラックボール、レーザ遠隔マウス制御、又はカーソル方向キーなどの、プロセッサ450に方向情報及びコマンド選択を通信してディスプレイ460上のカーソル移動を制御するカーソル制御部464がある。通常、この入力装置は、装置が平面内の位置を指定できるようにする、(xなどの)第1の軸及び(yなどの)第2の軸という2つの軸における2つの自由度を有する。
図1〜図28に関して説明した処理及びモジュールは、さらなるデータの収集及び分析を用いて長年にわたって継続的に改善することができ、従って知的医療エンジン14は、患者の客観的医療データに基づいて高度な信頼性及び有効性を持って推奨される治療を提供する電子医師のように機能することができる。
コンピュータシステム448は、本明細書において説明した実施形態に従って様々な機能(例えば、計算、演算など)を実行するために使用することができる。1つの実施形態によれば、このような使用が、メインメモリ454に含まれる1又は2以上の命令の1又は2以上のシーケンスをプロセッサ450が実行したことに応答して、コンピュータシステム448によってもたらされる。このような命令は、データ記憶装置458などの別のコンピュータ可読媒体からメインメモリ454に読む込むことができる。メインメモリ454に含まれる命令シーケンスの実行は、本明細書で説明した処理ステップをプロセッサ450に実行させる。マルチ処理構成では、1又は2以上のプロセッサを用いて、メインメモリ454に含まれる命令シーケンスを実行することもできる。別の実施形態では、ソフトウェア命令の代わりに、又はソフトウェア命令と組み合わせて、ハードワイヤード回路を用いて本開示を実装することができる。従って、本開示の実施形態は、ハードウェア回路とソフトウェアのいずれかの特定の組み合わせに限定されるものではない。
本明細書で使用している「コンピュータ可読媒体」という用語は、実行のためにプロセッサ450に命令を与えることに関与するあらゆる媒体を意味する。一般的な形のコンピュータ可読媒体としては、以下に限定されるわけではないが、不揮発性媒体、揮発性媒体、フロッピーディスク、フレキシブルディスク、ハードディスク、磁気テープ、他のいずれかの磁気媒体、CD−ROM、DVD、Blu−ray(登録商標)ディスク、他のいずれかの光媒体、パンチカード、紙テープ、穴パターンを有する他のいずれかの物理媒体、RAM、PROM、EPROM、FLASH―EEPROM、他のいずれかのメモリーチップ又はカートリッジ、後述するような搬送波、又はコンピュータが読み取ることができる他のいずれかの媒体が挙げられる。不揮発性媒体は、例えば、データ記憶装置458などの光又は磁気ディスクを含む。揮発性媒体は、メインメモリ454などの動的メモリを含む。伝送媒体は、同軸ケーブル、銅線及び光ファィバを含む。伝送媒体は、電波及び赤外線データ通信中に生成されるような音波又は光波の形を取ることもできる。伝送媒体は、WiFi及びセルラーネットワークなどの無線ネットワークを含むこともできる。
実行のために1又は2以上の命令の1又は2以上のシーケンスをプロセッサ450に運ぶ際には、様々な形のコンピュータ可読媒体が関与することができる。例えば、これらの命令は、最初に遠隔コンピュータの磁気ディスクで運ぶことができる。遠隔コンピュータは、この命令を動的メモリにロードし、通信リンク466を介して送信することができる。コンピュータシステム448は、通信リンク466上でデータを受け取るための通信インターフェイス468を含む。バス452は、このデータをメインメモリ454に運び、ここからプロセッサ450が命令を取り出して実行する。任意に、メインメモリ454によって受け取られた命令を、プロセッサ450による実行前又は実行後にデータ記憶装置458に記憶することもできる。
バス452に結合された通信インターフェイス468は、ネットワーク18に接続された通信リンク466に結合して双方向データ通信をもたらす。例えば、通信インターフェイス468は、以下に限定されるわけではないが、総合デジタル通信網(ISDN)、ローカルエリアネットワーク(LAN)、無線ローカルエリアネットワーク(WLAN)、ワイドエリアネットワーク(WAN)、Bluetooth及びセルラデータネットワーク(例えば、3G、4G、5G及びそれ以上)を含む様々な方法で実装することができる。通信インターフェイス468は、様々なタイプの情報を表すデータストリームを運ぶ電気信号、電磁信号又は光信号を無線リンクで送受信する。
医療メインサーバ12は、クライアントサーバアーキテクチャ又はクラウドコンピューティング環境において動作するネットワークコンピュータシステム又は専用コンピュータシステムとして実装することができる。1つの実施形態では、クラウドコンピュータは、カリフォルニア州クパチーノのApple社から入手可能なiCloud(登録商標)、ワシントン州シアトルのAmazon.comから入手可能なAmazonWebサービス(IaaS)及びElastic Compute Cloud (EC2)、カリフォルニア州マウンテンビューのGoogle社から入手可能なSaaS及びPaaS、ワシントン州レドモンドのマイクロソフト社から入手可能なMicrosoft Azure Service Platform(Paas)、カリフォルニア州レッドウッドのOracle社から入手可能なSun Open Cloud Platform、及びその他のクラウドコンピューティングサービスプロバイダなどの、インターネットを介したサービスとして動的に拡張可能な仮想化されることが多いリソースの提供に関与するインターネットベースのコンピュータネットワークを通じて通信するブラウザ系オペレーティングシステムである。
ウェブブラウザは、クラウドコンピュータ又はウェブサーバによって提供されるワールドワイドウェブ上でユニフォームリソース識別子(URI)の検索、提示及び計算を行うソフトウェアアプリケーションである。1つの一般的なタイプのURIは、ハイパーテキストトランスポートプロトコル(HTTP)から開始して、HTTPを介して検索すべきリソースを識別する。ウェブブラウザは、以下に限定されるわけではないが、パーソナルコンピュータオペレーティングシステム上で動作するブラウザ、及び携帯電話プラットフォーム上で動作するブラウザを含むことができる。第1のタイプのウェブブラウザは、Microsoft社のInternet Explorer、Apple社のSafari、Google社のChrome、及びMozillaのFirefoxを含むことができる。第2のタイプのウェブブラウザは、iPhone OS、Google Android、Nokia S60、及びPalm WebOSを含むことができる。URIの例としては、ウェブページ、画像、ビデオ、又は他のタイプのコンテンツが挙げられる。
ネットワーク18は、3G(第3世代移動体通信)、4G(第4世代セルラ無線規格)、ロングタームエボリューション(LTE)、5G、ワイドエリアネットワーク(WAN)、無線ローカルエリアネットワーク(WLAN)802.11n、又はローカルエリアネットワーク(LAN)接続(WAN又はLANに接続されたインターネットワーク)ようなWi−Fi(商標)、イーサネット(登録商標)、Bluebooth(商標)、高周波数システム(例えば、900MHz、2.4GHz及び5.6GHz通信システム)、赤外線、伝送制御プロトコル/インターネットプロトコル(TCP/IP)(例えば、各TCP/IPレイヤにおいて使用されるプロトコルのいずれか)、ハイパーテキスト転送プロトコル(HTTP)、BitTorrent(商標)、ファイル転送プロトコル(FTP)、リアルタイムトランスポートプロトコル(RTP)、リアルタイムストリーミングプロトコル(RTSP)、セキュアシェルプロトコル(SSH)、他のいずれかの通信プロトコル、及び衛星、ケーブルネットワーク又は光ネットワークセットトップボックス(STB)のような他のタイプのネットワークなどの、無線ネットワーク、有線ネットワークプロトコル、又はいずれかの好適な通信プロトコルとして実装することができる。SmartAutoは、プロセッサ、メモリ、画面を有し、無線ローカルエリアネットワーク(WLAN)及びワイドエリアネットワーク(WAN)の接続能力を有する自動車両、或いはiPod、iPhone、又はiPadなどのモバイル装置に接続可能な電気通信スロットを有する自動車両を含む。SmartTVは、動画(モノクロ又はカラー)、静止画及び音を送受信するための通信媒体を有するテレビシステムを含む。テレビシステムは、テレビ、コンピュータ、エンターテイメントセンター及び記憶装置として動作する。テレビシステムの通信媒体は、テレビ受像機、テレビ番組、テレビ送信、ケーブル番組、ケーブル送信、衛星番組、衛星送信、インターネット番組及びインターネット送信を含む。
上記説明のいくつかの部分では、例えば、図1〜図28の説明と同様にアルゴリズム的記述及び処理の観点から実施形態を説明した。これらの動作(例えば、上述した処理)については、機能的、計算的又は論理的に説明したが、コンピュータプログラム又は同等の電気回路、マイクロコードなどによって実装されると理解される。通常、コンピュータプログラムは、有形コンピュータ可読記憶媒体(例えば、フラッシュドライブディスク又はメモリ)に記憶できる、例えば図1〜図28において説明したようなプロセッサによって実行可能な命令として埋め込まれる。さらに、時には、一般性を失わずにこれらの動作構成をモジュールとして参照することが便利であることも分かっている。説明した動作及びその関連モジュールは、ソフトウェア、ファームウェア、ハードウェア、又はこれらのいずれかの組み合わせで具体化することができる。
本明細書で使用している「1つの実施形態(one embodiment)」又は「ある実施形態(an embodiment)」についての言及は、その実施形態に関連して説明する特定の要素、特徴、構造又は特性が少なくとも1つの実施形態に含まれることを意味する。本明細書の様々な箇所に出現する「1つの実施形態では(in one embodiment)」という表現は、必ずしも全てが同じ実施形態を示すわけではない。
実施形態によっては、「結合された(coupled)」及び「接続された(connected)」という表現及びその派生語を用いて説明しているものもある。これらの用語は、互いに同義であることを意図したものではないと理解されたい。例えば、実施形態によっては、「接続された」という用語を用いて2又は3以上の要素が互いに物理的に又は電気的に直接接触していることを示すように説明していることもある。別の例では、「結合された」という用語を用いて2又は3以上の要素が互いに物理的に又は電気的に直接接触していることを示すように説明している実施形態もある。しかしながら、「結合された」という用語は、2又は3以上の要素が互いに直接接触しておらず、それでもなお互いに協働又は相互作用していることを意味することもできる。実施形態は、この文脈において限定されない。
本明細書で使用している「含む、有する(comprises、comprising、includes、including、has、having)」という用語、又はこれらの他のいずれかの変形は、非排他的包含を含むことが意図されている。例えば、要素のリストを含む処理、方法、物品又は装置は、必ずしもそれらの要素のみに限定されず、リストに明示的に記載されていない、或いはこのような処理、方法、物品又は装置に固有のものではない他の要素を含むこともできる。さらに、明示的に別の定めがない限り、「又は(or)」は、「包括的or」及び「排他的orでないこと」を意味する。例えば、条件A又は(or)Bは、Aが真であって(又は存在して)Bが偽である(又は存在しない)こと、Aが偽であって(又は存在せず)Bが真である(又は存在する)こと、及びAとBが真である(又は存在する)こと、のうちのいずれか1つによって満たされる。
本明細書で使用している「1つの(英文不定冠詞)」という用語は、1又は1よりも多くの、と定義される。本明細書で使用している「複数の」という用語は、2又は2よりも多くの、と定義される。本明細書で使用している「別の」という用語は、少なくとも第2の又はそれ以上の、と定義される。
本明細書で使用している「被検者」という用語は、症状のない患者又は症状のある患者を意味するために使用することができる。患者は、1又は2以上の疾患又は病状について症状がない場合も、或いは症状がある場合もある。
本開示は、コンピュータによる処理方法、装置及びシステムとしてのものを含む多くの方法で実行することができる。本明細書では、これらの実装、又は本開示が取り得る他のいずれかの形態を技術と呼ぶことができる。一般に、開示する装置の接続順は、本開示の範囲内で変更することができる。
1つの考えられる実施形態に関連して本開示を特に詳細に説明した。当業者であれば、本開示を他の実施形態において実施することもできると認識するであろう。まず、コンポーネントの特定の名称、用語、属性、データ構造、又は他のいずれかのプログラミング又は構造的側面の大文字化は必須又は有意でなく、本開示又はその特徴を実装する機構は、異なる名称、フォーマット又はプロトコルを有することもできる。さらに、システムは、説明したようにハードウェアとソフトウェアの組み合わせを通じて実装することも、或いは完全にハードウェア要素で実装することもできる。また、本明細書で説明した様々なシステムコンポーネント間における特定の機能分割は必須ではなく例示にすぎず、単一のシステムコンポーネントによって実行される機能を複数のコンポーネントによって実行することも、複数のコンポーネントによって実行される機能を単一のコンポーネントによって実行することもできる。
当業者であれば、本明細書で説明した方法及びシステムを展開する上でさらなる説明を必要とせず、関連する技術分野における標準的な参考文献を調べることにより、これらの方法及びシステムを整える上で役立つ可能性がある何らかの指針を発見できるはずである。
実施形態は、機械可読媒体に記憶された命令と、この命令を実行するプロセッサとを含むコンピュータシステムに実装された、本明細書で説明し図示した機能を具体化するコンピュータプログラムを含むことができる。しかしながら、実施形態をコンピュータプログラミングで実装する方法は様々であり、実施形態をいずれかのコンピュータプログラム命令セットに限定されるものとしてと解釈すべきでないことが明らかである。さらに、熟練したプログラマであれば、添付のフローチャート、及び本出願の文章における関連する説明に基づいて、開示した実施形態のうちの1つの実施形態を実装するようにこのようなコンピュータプログラムを書くことができるであろう。従って、特定のプログラムコード命令セットの開示は、実施形態の実施及び使用方法を正しく理解するために必要なものとは見なされない。さらに、当業者であれば、本明細書で説明した実施形態の1又は2以上の態様は、1又は2以上のコンピュータシステムにおいて具体化できるように、ハードウェア、ソフトウェア又はこれらの組み合わせによって実行することができると認識するであろう。さらに、あるコンピュータによって実行される行為は複数のコンピュータによって実行することもできるので、このような行為についてのあらゆる言及については、単一のコンピュータによって実行されると解釈すべきではない。
上述の実施形態において説明したシステム、方法及び行為の例は例示であり、別の実施形態では、様々な実施形態の範囲及び思想から逸脱することなく、いくつかの行為を異なる順序で実行することも、互いに並行して実行することも、完全に省略することも、及び/又は異なる実施形態例同士を組み合わせることも、及び/又はいくつかのさらなる行為を実行することもできる。従って、このような別の実施形態も、本明細書で特許請求する発明に含まれる。
以上、特定の実施形態について詳細に説明したが、この説明は例示を目的とするものにすぎない。従って、上述した多くの態様は、別途明確に述べていない限り、必須の又は不可欠な要素として意図されたものではないと認識されたい。本開示の恩恵を受ける当業者であれば、以下の特許請求の範囲に定める実施形態の思想及び範囲から逸脱することなく、上記で説明したものに加え、開示した実施形態例の態様の修正、並びにこのような態様に対応する同等のコンポーネント及び行為を実現することができ、特許請求の範囲は、このような修正及び同等の構成を含むように最も広い解釈に従うべきである。
実施例は、本明細書で提供する例示的な方法の例示である。これらの実施例は、本開示の範囲を限定するものとして意図されたものではなく、そのように解釈すべきものでもない。方法は、本明細書で具体的に説明した以外の形でも実施できることが明らかであろう。本明細書の教示に照らして数多くの修正及び変形が可能であり、従ってこれらの修正及び変形は本開示の範囲に含まれる。
新規癌患者がヘルスケア提供者を訪問した時に、この新規患者の病歴、臨床検査、並びにCT、X線、PET走査及びマンモグラムからの画像を収集してコンピュータシステムに入力する。腫瘍マーカの臨床検査などのさらなる検査を行う必要がある場合、これらの検査を行い、結果をコンピュータシステムに入力する。患者に関する全ての情報をコンピュータシステムに入力したら、医師は、本明細書で開示したコンピュータシステムによって提供されるプロセスを用いて、患者のための治療コースを取得することができる。コンピュータ実装方法は、複数の患者の客観的医療データをグループ分割して、データをサブグループに分類するステップを含む。客観的医療データは、患者のパラメータを含む。コンピュータシステムは、全ての新規患者の医療情報に基づいて、治療プロトコル及び治療計画を含む最適な治療コースを推奨する。
実施例1:乳癌患者のための治療コースの決定
乳癌の場合、第1レベルのパラメータは、(1)侵襲性又は原位置、(2)侵襲性の場合には腫瘍が転移しているかどうか、(3)管又は小葉、(4)ステージ、及び(5)悪性度、などの腫瘍特徴を含むことができる。
第2レベルのパラメータは、エストロゲン受容体(ER)、プロゲステロンレセプタ(PR)、人間の表皮成長因子受容体2(HER2)、癌抗原15−3(CA15−3),癌抗原27.29(CA27.29),及び癌胎児性抗原(CEA)、ウロキナーゼプラスミノーゲン活性化因子(uPA)、及び、プラスミノーゲン活性化阻害因子(PAI−1)などの腫瘍マーカの存在を含むことができる。
第3レベルのパラメータは、年齢、乳癌(再発の場合)及び卵巣癌の既往歴、乳癌の家族歴、遺伝的リスク及び遺伝的危険率(乳癌遺伝子1又は2(BRCA1又は2)における変異の存在)、エストロゲン及び黄体ホルモンへの暴露、更年期後のホルモン置換療法、経口避妊薬、並びに人種及び民族性などの、患者の一般条件を含むことができる。
例示的な第4レベルのパラメータは、体重、身体活動レベル、アルコール消費及び摂食(果菜類対動物性脂肪)などの、患者のライフスタイル及び習慣を含むことができる。
ER及びPRに陽性反応を示す乳癌患者のための従来の治療コースは、ホルモン療法である。コンピュータシステムは、患者に関連する全てのパラメータに依存して、特定のアロマターゼ阻害薬、選択的エストロゲン受容体モジュレータ、又はエストロゲン受容体抑制薬などの特異的なホルモン療法を推奨することができる。一方で、コンピュータシステムは、患者に関連する他のパラメータにも依存して、特異的なホルモン療法及び患者のためのさらなる治療コースを推奨することもできる。コンピュータシステムは、予防策としての卵巣及び卵管の外科的除去に加えてホルモン療法を推奨することもできる。
三重陰性の乳癌患者(乳癌細胞がER、PR及びHER2の遺伝子を表さない患者)は、ホルモン療法から恩恵を受けないと思われる。コンピュータシステムは、患者に関連する全てのパラメータに依存して、システム内の医療データのコンピュータ分析に基づいて化学療法、放射線療法、手術、又はこれらの組み合わせを推奨することができる。例えば、コンピュータシステムは、手術の形態として、乳腺腫瘤摘出よりも乳房切除術を推奨することができる。或いは、コンピュータシステムは、化学療法の特定の投与量を推奨することもできる。
実施例2:肺癌患者のための治療コースの決定
肺癌の場合、第1レベルのパラメータは、(1)タイプ、(2)ステージ、及び(3)悪性度を含むことができる。
第2レベルのパラメータは、患者がNSCLC標的療法から恩恵を受けるかどうかを判定するための癌遺伝子の変異の存在を含むことができる。このような癌遺伝子としては、(1)表皮成長因子受容体(EGF)、(2)Kirstenのラット肉腫癌遺伝子同族体(KRAS)、及び(3)未分化リンパ腫キナーゼ(ALK)が挙げられる。第2レベルのパラメータは、(1)クレアチンキナーゼBB、(2)クロモグラニン、及び(3)ニューロン特異的エノラーゼなどの小細胞肺癌の神経内分泌分化、並びに(1)ガストリン放出ペプチド、(2)カルシトニン、及び(3)セロトニンなどの小ペプチドホルモンについてのマーカを含むこともできる。
第3レベルのパラメータは、年齢、肺癌の既往歴、肺癌の家族歴、人種及び民族性などの、患者の一般条件を含むことができる。
第4レベルのパラメータは、体重、身体活動レベル、アルコール消費量、喫煙習慣、受動喫煙への暴露、及び摂食量(果菜類対動物性脂肪)などの、患者のライフスタイル及び習慣を含むことができる。
通常、肺癌患者は、化学療法、手術、放射線療法、及び/又は標的療法によって治療される。コンピュータシステムは、患者に関連する全てのパラメータに依存して、システム内の医療データのコンピュータ分析に基づいて、肺癌患者の治療コースとして治療法の組み合わせを推奨することができる。例えば、手術前又は手術後に化学療法を推奨することもでき、化学療法を放射線療法と組み合わせて推奨することもできる。コンピュータシステムは、肺葉切除、肺区域切除又は肺摘除術などの特異的な手術を推奨することもできる。
コンピュータシステムは、患者が癌遺伝子の変異を有しているかどうかに依存して、癌遺伝子を阻害する標的療法を推奨することもできる。例えば、エリオチニブ及びゲフィチニブは、EGFRを阻害するために用いられる薬である。ジオトリフは、EGFR遺伝子の変異によって引き起こされる無制御な細胞成長を止めるチロシンキナーゼ抑制剤である。クリゾチニブは、ALK遺伝子の変異を有する高度NSCLCを治療するために用いられる。
10:包括的医療データ分析システム
12:医療メインサーバ
14:知的医療エンジン
18:ネットワーク(有線/無線)
16:中央データベース
20:第1の病院
22:第2の病院
24:診療所
26:ソース
28:医用コンピュータ装置
30:第1の病院データベース
32:機密個人データベース
34:医用コンピュータ装置
36:第2の病院データベース
38:機密個人データベース
40:医用コンピュータ装置
42:診療所データベース
44:機密個人データベース
46:ソースデータベース
48:機密個人データベース
50:医療記録(患者コード及び客観的医療データ)
52:医療記録(患者コード及び客観的医療データ)
54:医療記録(患者コード及び客観的医療データ)
56:医療記録(患者コード及び客観的医療データ)
58:医用コンピュータ装置

Claims (59)

  1. 観測され、算出され、かつ抽出されたパラメータに基づいて電子医療記録を処理するためのコンピュータ実装方法であって、
    少なくとも1つのプロセッサ、少なくとも1つのランダムアクセスメモリ(RAM)、ストレージシステム及びクラウドベースデータベースを備えたクラウドシステムを動作させるステップであって、前記ストレージシステムが第1のデータベース及び第2のデーアベースを備え、前記RAMは、クラウドオペレーティングシステム及びエンジンによって制御され、前記エンジンが前記クラウドオペレーティングシステム上で起動し、前記エンジンがストレージモジュール、グループ分割モジュール、及びコンピュータインタフェースを生成するモジュールを備え、クラウドコンピューティング環境が複数のクラウドクライアント及び前記エンジンに接続されたネットワークを備え、前記ネットワークが前記クラウドシステム及び前記クラウドクライアントを接続し、前記クラウドシステムが前記クラウドコンピューティング環境の外部にある少なくとも1つのクライアントと通信する、ステップを含み、
    方法は、前記動作の間、
    前記プロセッサが、複数の患者に関連する患者パラメータを含む複数の医療データを前記クラウドベースデータベースに記憶するステップであって、前記患者パラメータが、1又は2以上の疾患又は病状、1又は2以上の治療プロトコル、1又は2以上の臨床パラメータ、1又は2以上の研究所パラメータ、医療装置によって得られる1又は2以上のパラメータ、及び/又は医療機器によって得られる1又は2以上のパラメータの1又は2以上を含む、ステップと、
    前記プロセッサが、前記クラウドベースデータベースに記憶するためのパラメータを含む前記患者のデータの類似点によって、前記患者に関連する前記患者パラメータを含む前記複数の医療データを均質なサブグループにグループ分割するステップであって、少なくとも1つのメインパラメータ又は少なくとも1つの非重要パラメータの時間間隔の間の疾患又は病状の同じ値又は実質的に同じ値によって各均質なサブグループを決定し、これにより、少なくとも1つのメインパラメータ又は少なくとも1つの非重要パラメータのパラメータの動特性を反映し、前記パラメータの動特性を組み合わせて、患者間の類似点の比較を確立する根拠を形成し、そして、最も似ているものをあるサブグループにグループ分割し、前記グループ分割の結果を前記クラウドベースデータベースに記憶する、ステップと、
    前記プロセッサが、前記患者の疾患又は病状についての前記少なくとも1つのメインパラメータ又は前記少なくとも1つの非重要パラメータの動特性を1又は2以上のサブグループに相関付けを行う少なくとも1つの相関パラメータを識別するステップとを含み、
    方法は、さらに、
    前記プロセッサが、動特性を含む新規患者のパラメータ値を、前記クラウドベースデータベースからの前記データベースの前記サブグループにおける前記患者の疾患についての対応する前記少なくとも1つの相関パラメータの値及び動特性と比較するステップであって、前記新規患者のための推奨する1又は2以上のプロトコルを決定するために、前記新規患者を関連する1又は2以上のサブグループに前記データベースにおいて分類する、ステップと、
    前記比較の後、前記プロセッサが、前記新規患者の疾患又は病状に関連する推奨される少なくとも1つの治療を含む出力を受けるステップとを含む、方法。
  2. 前記複数の患者の医療データをサブグループにグループ分割する前記ステップ、及び前記新規患者の疾患テンプレートを照合する前記分類ステップは、第1のパラメータセット(メインパラメータ)から開始した後に第2のパラメータセット(2次パラメータ)に移り、前記疾患の一又は二以上の治療結果が一貫している前記パラメータの前記グループ分割の全てにおける小さな類似グループ及び前記パラメータの動特性が識別され、前記新規患者の医療データに対してフィルタ処理されるまでこの反復処理を継続する複数レベルの分類を含み、前記ステップは、特定の疾患又は病状に関連するパラメータの第1のセットにおける1又は2以上のパラメータの動特性の連続的な変動を決定し、治療の効果及びパラメータの第2のセットの相関性を決定することを含む、請求項1に記載の方法。
  3. 前記グループ分割は、前記システムの前記ストレージに新規患者又は既存の患者に対応する複数の医療データが追加された結果、いずれかのサブグループのエントロピーに有意な変化が生じた時に繰り返され、前記変化は、3パーセント(3%)よりも大きい場合に有意と見なされる、
    請求項1に記載の方法。
  4. 前記グループ分割によって生じたサブグループは、結果としての治療に対する前記患者の反応に統計的に有意な相違がない場合にはより大きなグループに統合され、有意性は、p<.05の水準の両側t検定によって判定される、
    請求項1に記載の方法。
  5. 前記治療に対する患者の反応は、単一の値ではなく経時的軌跡に対応する反応のベクトルである、
    請求項1に記載の方法。
  6. 前記グループ分割するステップは、ランダム変数Rに対する患者グループGのエントロピー(H)の算出を含み、治療tを受ける患者qiが結果Rとなる確率をp(t(qi)=R)、患者グループGのエントロピーをH(G)とする方程式:
    から計算される、
    請求項1に記載の方法。
  7. 前記新規患者の前記パラメータと、前記グループ分割されたサブグループの前記パラメータとの照合は、前記新規患者のそれぞれのパラメータと前記サブグループのそれぞれのパラメータとの間の差分を計算した後に該差分を合計し、各パラメータの動特性を含む前記新規患者のパラメータに対する前記差分の合計が最小になるサブグループを選択することによって計算される、
    請求項1に記載の方法。
  8. 前記新規患者の前記パラメータと、前記グループ分割されたサブグループの前記パラメータとの照合は、前記新規患者のそれぞれのパラメータと前記サブグループのそれぞれのパラメータとの間の差分の数をカウントし、前記新規患者のパラメータに対して異なるパラメータが最も少ないサブグループを選択することによって計算される、
    請求項1に記載の方法。
  9. 前記新規患者の前記パラメータと、前記グループ分割されたサブグループの前記パラメータとの照合は、前記新規患者のそれぞれのパラメータと前記サブグループのそれぞれのパラメータとの間の差分を計算した後に該差分の2乗を合計し、前記新規患者のパラメータに対する前記2乗した差分の合計が最小になるサブグループを選択することによって計算される、
    請求項1に記載の方法。
  10. 患者QのパラメータyiとサブグループGのパラメータg(xi)との間の差分の和は、デフォルトで1に設定される数学的ノルムをpとする
    によって計算される、
    請求項に記載の方法。
  11. 前記新規患者のテンプレートを受け取る前に、前記複数の患者の客観的医療データをグループ分割して、前記複数の客観的医療データをサブグループに分類するステップをさらに含み、該分類するステップは、各患者のパラメータ、疾患、該疾患について各患者が受けた治療、及び前記治療の結果に基づく少なくとも1つのレベルの分類と、より小さなサブグループの組が識別されるまで、各サブグループについて前記処理を反復的に繰り返すステップとを含み、前記より小さなサブグループ内の患者は、実質的に同様のパラメータ及び実質的に同様の結果を有する、
    請求項1に記載の方法。
  12. 前記患者の前記パラメータは、自動変換処理、正規化及び元々の患者パラメータの組み合わせにより、前記元々のパラメータから導出された属性によって増強される、
    請求項1に記載の方法。
  13. 前記患者パラメータは、全体としての患者人口の正規化範囲に変換され、属性a及びパラメータpの正規化計算は、
    に対応する、
    請求項12に記載の方法。
  14. 前記患者の前記パラメータがベクトルであり、各ベクトルの各要素が特定の時点で記録された値であり、前記ベクトルの長さが、前記パラメータの値が記録されている間の所望の時点の数である、
    請求項1に記載の方法。
  15. グループ分割についての患者データの前記比較がベクトルに基づいており、各ベクトルが各患者の疾患、治療、及び、前記治療に対する患者の応答についての進行における時点を表す、請求項3に記載の方法。
  16. 前記パラメータの第1のセットは、前記患者の1次疾患及び一般的病態に関するパラメータと、2次疾患に関する第2のパラメータセットとを含む、
    請求項に記載の方法。
  17. 前記患者の前記一般的病態は、Karnofskyの尺度によって測定される、請求項16に記載の方法。
  18. 前記パラメータの値が前記データベースにおいて反復的に更新され、新しい情報が既存の患者に利用可能となる、又は、新規な患者が前記データベースに追加される、請求項1に記載の方法。
  19. 前記医療データは、客観的医療データを含む、請求項1に記載の方法。
  20. 各患者の前記少なくとも1つの1又は2以上のパラメータは、患者の疾患、患者が受けている1又は2以上の治療、及び、各治療の結果を含む、請求項1に記載の方法。
  21. 方法は、提供ステップの後、さらに、所定の治療に対する以前治療した個人の複数の応答への既知の応答に基づく前記所定の治療に対して予測される臨床的応答を含む個人のグループのプロパティを電気的に算出することを含み、前記個人が共通の人口動態パラメータ、遺伝的パラメータ、病歴パラメータ及び診断パラメータを共有する、請求項1に記載の方法。
  22. 前記グループ分割によって生じたサブグループは、適用可能なサブグループに患者間の疾患についての前記メインパラメータの動特性に統計的に有意な相違がない場合にはより大きなグループに統合され、有意性は、p<0.05の水準の両側t検定によって判定される、
    請求項1に記載の方法。
  23. 前記相関パラメータは、治療プロトコルを含む、請求項1に記載の方法。
  24. 前記グループ分割によって生じたサブグループは、複数のサブグループ間の前記メインパラメータの少なくとも1つにおける動特性に統計的に有意な相違pを有する、相違pは、p<0.05である、
    請求項1に記載の方法。
  25. 前記グループ分割の処理は、新規な患者に対応するデータが前記クラウドベースデータベースのシステムに追加されたとき、及び、患者の疾患又は病状の動特性に対応する既存の患者についての新しいパラメータが前記クラウドベースデータベースのシステムに追加されたときに実行される、請求項1に記載の方法。
  26. 新規な患者が1次疾患及び1又は2以上の2次疾患で診断され、患者のメインパラメータセットの第1のセットが、前記1次疾患に関連するパラメータ、又は、患者の状況を含み、及び、メインパラメータセットの第2のセットが、1又は2以上の2次疾患、又は、状況に関連する、請求項1に記載の方法。
  27. 方法は、前記識別するステップの後に、さらに、所定の治療に対する以前治療した個人の複数の応答への既知の応答に基づく前記所定の治療に対して予測される臨床的応答を含む個人のグループのプロパティを電気的に算出することを含み、前記個人が共通の人口動態パラメータ、遺伝的パラメータ、病歴パラメータ及び診断パラメータを含む共通のパラメータを共有する、請求項1に記載の方法。
  28. 前記患者のパラメータ及び前記動特性がガウス分布に正規化される、請求項1に記載の方法。
  29. 少なくとも1つのコンピュータプロセッサによって実行される医療分析のためのコンピュータ実装方法であって、
    複数の患者に関連する患者パラメータを含む複数の医療データを記憶するステップであって、前記患者パラメータが、1又は2以上の疾患又は病状、1又は2以上の治療プロトコル、1又は2以上の臨床パラメータ、1又は2以上の研究所パラメータ、医療装置によって得られる1又は2以上のパラメータ、及び/又は医療機器によって得られる1又は2以上のパラメータの1又は2以上を含む、ステップと、
    前記患者に関連する前記患者パラメータを含む前記複数の医療データを、データベースに記憶するための均質なサブグループにグループ分割するステップであって、ある特定のサブグループにおける患者間の疾患の少なくとも1つのメインパラメータの動特性の同一性又は実質的な類似性によって各均質なサブグループを決定する、ステップと、
    前記患者の各疾患についての前記少なくとも1つのメインパラメータの動特性を1又は2以上のサブグループに相関付けを行う少なくとも1つの相関パラメータ及び前記少なくとも1つの相関パラメータの動特性を識別するステップと、
    動特性を含む新規患者のパラメータ値を、前記データベースの前記サブグループにおける前記患者の疾患についての前記少なくとも1つの相関パラメータ又は少なくとも1つのメインパラメータと比較するステップであって、前記新規患者を関連する1又は2以上のサブグループに前記データベースにおいて連続的に分類する、ステップと、
    少なくとも1つのモニタリング機器又はセンサが、前記新規患者の前記少なくとも1つのメインパラメータ又は前記少なくとも1つの相関パラメータの動特性の変化のペースをオンラインで監視するステップであって、前記新規患者の前記少なくとも1つのメインパラメータ又は前記少なくとも1つの相関パラメータの動特性が関係するサブグループに関連する前記少なくとも1つのメインパラメータ又は前記少なくとも1つの相関パラメータの動特性から逸脱するとき、リアルタイムベースで医療ソースに警告を送信する、ステップとを含む、方法。
  30. 患者のメインパラメータの第1のセットは、前記患者の1次疾患又は状況及び一般的病態に関するパラメータを含み、メインパラメータの第2のセットは、少なくとも2次疾患又は状況に関する、
    請求項29に記載の方法。
  31. 前記一般的病態は、少なくとも1つの機器又はセンサによって測定される少なくとも1つの臨床パラメータを含む、請求項30に記載の方法。
  32. 前記グループ分割によって生じたサブグループは、適用可能なサブグループに患者間の疾患についての前記メインパラメータの動特性に統計的に有意な相違がない場合にはより大きなグループに統合され、有意性は、p<0.05の水準の両側t検定によって判定される、
    請求項29に記載の方法。
  33. 前記グループ分割によって生じたサブグループは、複数のサブグループ間の前記メインパラメータの少なくとも1つにおける動特性に統計的に有意な相違pを有する、相違pは、p<0.05である、
    請求項29に記載の方法。
  34. 前記グループ分割の処理は、新規な患者に対応するデータが前記クラウドベースデータベースのシステムに追加されたとき、及び、患者の疾患又は病状の動特性に対応する既存の患者についての新しいパラメータが前記クラウドベースデータベースのシステムに追加されたときに実行される、請求項29に記載の方法。
  35. 前記グループ分割するステップは、患者グループGのエントロピー(H)の使用を含み、治療tを受ける患者qiが結果Rとなる確率をp(t(qi)=R)、患者グループGのエントロピーをH(G)とする方程式:
    から計算される、
    請求項29に記載の方法。
  36. 前記新規患者の前記パラメータと、前記グループ分割されたサブグループの前記パラメータとの照合は、前記新規患者のそれぞれのパラメータと前記サブグループのそれぞれのパラメータとの間の差分を計算した後に該差分を合計し、前記新規患者のパラメータに対する前記差分の合計が最小になるサブグループを選択することによって計算される、
    請求項29に記載の方法。
  37. 前記新規患者の前記パラメータと、前記グループ分割されたサブグループの前記パラメータとの照合は、前記新規患者のそれぞれのパラメータと前記サブグループのそれぞれのパラメータとの間の差分の数をカウントし、前記新規患者のパラメータに対して異なるパラメータが最も少ないサブグループを選択することによって計算される、
    請求項29に記載の方法。
  38. 前記新規患者の前記パラメータと、前記グループ分割されたサブグループの前記パラメータとの照合は、前記新規患者のそれぞれのパラメータと前記サブグループのそれぞれのパラメータとの間の差分を計算した後に該差分の2乗を合計し、前記新規患者のパラメータに対する前記2乗した差分の合計が最小になるサブグループを選択することによって計算される、
    請求項29に記載の方法。
  39. 患者Qの前記パラメータとサブグループGのパラメータとの間の差分の和は、
    よって計算される、
    請求項29に記載の方法。
  40. 前記新規患者の客観的医療データをグループ分割する前に、前記複数の患者の客観的医療データをグループ分割して、前記複数の客観的医療データをサブグループに分類するステップをさらに含み、該分類するステップは、各患者のパラメータ、疾患、該疾患について各患者が受けた治療、及び前記治療の結果に基づく少なくとも1つのレベルの分類と、より小さなサブグループの組が識別されるまで、各サブグループについて前記処理を反復的に繰り返すステップとを含み、前記より小さなサブグループ内の患者は、実質的に同様のパラメータ及び実質的に同様の結果を有する、
    請求項29に記載の方法。
  41. 前記患者の前記パラメータは、自動変換処理及び元々の患者パラメータの組み合わせにより、前記元々のパラメータから導出された属性によって増強される、
    請求項29に記載の方法。
  42. 前記方法は、前記新規患者のための前記治療コースが前記患者の病態を改善する一定程度の可能性の予測をもたらす、
    請求項29に記載の方法。
  43. 前記方法は、前記新規患者のための複数の潜在的治療コースをもたらす、
    請求項29に記載の方法。
  44. 識別された治療コースヘルスケア提供者に送信するステップをさらに含む
    請求項29に記載の方法。
  45. 前記オンラインでの監視が、インターネット又は医療ネットワークのコンピュータシステムに接続された少なくとも1つの監視機器で実行される、
    請求項29に記載の方法。
  46. 少なくとも1つのコンピュータプロセッサによって実行される医療分析のためのコンピュータ実装方法であって、
    複数の患者に関連する患者パラメータを含む複数の医療データを記憶するステップであって、前記患者パラメータが、1又は2以上の疾患又は病状、1又は2以上の治療プロトコル、1又は2以上の臨床パラメータ、1又は2以上の研究所パラメータ、医療装置によって得られる1又は2以上のパラメータ、及び/又は医療機器によって得られる1又は2以上のパラメータの1又は2以上を含む、ステップと、
    前記患者に関連する前記患者パラメータを含む前記複数の医療データを、データベースに記憶するための均質なサブグループにグループ分割するステップであって、ある特定のサブグループにおける患者間の疾患の少なくとも1つのメインパラメータの動特性の同一性又は実質的な類似性によって各均質なサブグループを決定する、ステップと、
    前記患者の各疾患についての電子健康記録(EHRs)データベースの利用可能な異なる時間間隔に少なくとも1つのメインパラメータの動特性を1又は2以上のサブグループに相関付けを行う少なくとも1つの相関パラメータを識別するステップと、
    対応する新規患者のパラメータ値を、前記データベースの前記サブグループにおける前記患者の疾患についての前記少なくとも1つの相関パラメータ又は少なくとも1つのメインパラメータと比較するステップであって、前記新規患者を関連する1又は2以上のサブグループに前記データベースにおいて連続的に分類する、ステップと、を含み、
    前記患者に関連する前記患者パラメータを含む前記複数の医療データを1又は2以上の新しい種類のパラメータで更新し、疾患又は状態の少なくとも1つのメインパラメータの動特性で統計的に有意な効果を有する既知のパラメータ及び個別の動特性の値を含む患者の医療データを拡張する、方法。
  47. 少なくとも1つのコンピュータプロセッサによって実行される医療分析のためのコンピュータ実装方法であって、
    複数の患者に関連する患者パラメータを含む複数の医療データを記憶するステップであって、前記患者パラメータが、1又は2以上の疾患又は病状、1又は2以上の治療プロトコル、1又は2以上の臨床パラメータ、1又は2以上の研究所パラメータ、医療装置によって得られる1又は2以上のパラメータ、及び/又は医療機器によって得られる1又は2以上のパラメータの1又は2以上を含む、ステップと、
    前記患者に関連する前記患者パラメータを含む前記複数の医療データを、データベースに記憶するための均質なサブグループにグループ分割するステップであって、ある特定のサブグループにおける患者間の疾患の少なくとも1つのメインパラメータの動特性の同一性又は実質的な類似性によって各均質なサブグループを決定する、ステップと、
    前記患者の各疾患についての電子健康記録(EHRs)データベースの利用可能な異なる時間間隔に少なくとも1つのメインパラメータの動特性を1又は2以上のサブグループに相関付けを行う少なくとも1つの相関パラメータを識別するステップと、を含む、方法。
  48. 前記複数の医療データをサブグループの第1のセットにグループ分割する前記グループ分割のステップは、少なくとも1つのメインパラメータ又は少なくとも1つの2次パラメータに基づく、請求項47に記載の方法。
  49. 前記複数の客観的医療データを、サブグループの前記第1のセット、サブグループの第2のセット、及びサブグループの第3のセットにグループ分割する前記グループ分割のステップは、少なくとも1つのパラメータ又は少なくとも1つの非重要パラメータに基づく、請求項48に記載の方法。
  50. 前記複数の客観的医療データを、サブグループの第4のセットにグループ分割する前記グループ分割のステップは、少なくとも1つのライフスタイルパラメータに基づく、請求項49に記載の方法。
  51. 前記グループ分割によって生じたサブグループは、適用可能なサブグループに患者間の疾患についての前記メインパラメータの動特性に統計的に有意な相違がない場合にはより大きなグループに統合され、有意性は、p<0.05の水準の両側t検定によって判定される、
    請求項47に記載の方法。
  52. 前記相関パラメータは、治療プロトコルを含む、請求項47に記載の方法。
  53. 前記グループ分割によって生じたサブグループは、複数のサブグループ間の前記メインパラメータの少なくとも1つにおける動特性に統計的に有意な相違pを有する、相違pは、p<0.05である、
    請求項47に記載の方法。
  54. 少なくとも1つのコンピュータプロセッサによって実行される医療分析のためのコンピュータ実装方法であって、
    複数の患者に関連する患者パラメータを含む複数の医療データを記憶するステップであって、前記患者パラメータが、1又は2以上の疾患又は病状、1又は2以上の治療プロトコル、1又は2以上の臨床パラメータ、1又は2以上の研究所パラメータ、医療装置によって得られる1又は2以上のパラメータ、及び/又は医療機器によって得られる1又は2以上のパラメータの1又は2以上を含む、ステップと、
    前記患者の各疾患についての電子健康記録(EHRs)データベースの利用可能な異なる時間間隔に少なくとも1つのメインパラメータの動特性を1又は2以上のサブグループに相関付けを行う少なくとも1つの相関パラメータを識別するステップと、
    異なる値の少なくとも1つの相関パラメータが同じ疾患又は状況で患者グループに分割されるとき、前記患者に関連する前記患者パラメータを含む前記複数の医療データを2又は3以上のサブグループにグループ分割するステップであって、サブグループのそれぞれは、各サブグループ間の前記少なくとも1つの少なくとも1つのメインパラメータの動特性で統計的に有意な相違を有するステップと、を含む方法。
  55. システムであって、
    複数の患者に関連する患者パラメータを含む複数の医療データを記憶する記憶モジュールであって、前記患者パラメータが、1又は2以上の疾患又は病状、1又は2以上の治療プロトコル、1又は2以上の臨床パラメータ、1又は2以上の研究所パラメータ、医療装置によって得られる1又は2以上のパラメータ、及び/又は医療機器によって得られる1又は2以上のパラメータの1又は2以上を含む、記憶モジュールと、
    前記患者に関連する前記患者パラメータを含む前記複数の医療データを、データベースに記憶するための均質なサブグループにグループ分割し、前記記憶モジュールに通信するように接続されたグループ分割モジュールであって、ある特定のサブグループにおける患者間の疾患の少なくとも1つのメインパラメータの動特性の同一性又は実質的な類似性によって各均質なサブグループを決定する、グループ分割モジュールと、
    前記患者の各疾患についての電子健康記録(EHRs)データベースの利用可能な異なる時間間隔に少なくとも1つのメインパラメータの動特性を1又は2以上のサブグループに相関付けを行う少なくとも1つの相関パラメータを識別する識別モジュールと、
    新規患者のパラメータを、前記データベースの前記サブグループにおける前記患者の疾患についての前記少なくとも1つの相関パラメータ又は少なくとも1つのメインパラメータと比較する比較モジュールであって、新規患者のデータからの各新しいデータの間、前記新規患者を関連する1又は2以上のサブグループに前記データベースにおいて連続的に分類する、比較モジュールと、を備えたシステム。
  56. 前記グループ分割によって生じたサブグループは、適用可能なサブグループに患者間の疾患についての前記メインパラメータの動特性に統計的に有意な相違がない場合にはより大きなグループに統合され、有意性は、p<0.05の水準の両側t検定によって判定される、
    請求項55に記載のシステム。
  57. 前記グループ分割によって生じたサブグループは、複数のサブグループ間の前記メインパラメータの少なくとも1つにおける動特性に統計的に有意な相違pを有する、相違pは、p<0.05である、
    請求項55に記載のシステム。
  58. コンピュータによって実行されると、前記コンピュータにトランザクションをリターンさせるように処理するコンピュータ読み取り可能なプログラム命令を有する非一時的なコンピュータ読み取り可能な媒体を備えたコンピュータプログラムプロダクトであって、前記コンピュータ読み取り可能なプログラム命令が、
    複数の患者に関連する患者パラメータを含む複数の医療データを記憶するコンピュータ読み取り可能なプログラム命令であって、前記患者パラメータが、1又は2以上の疾患又は病状、1又は2以上の治療プロトコル、1又は2以上の臨床パラメータ、1又は2以上の研究所パラメータ、医療装置によって得られる1又は2以上のパラメータ、及び/又は医療機器によって得られる1又は2以上のパラメータの1又は2以上を含む、コンピュータ読み取り可能なプログラム命令と、
    前記患者に関連する前記患者パラメータを含む前記複数の医療データを、データベースに記憶するための均質なサブグループにグループ分割するコンピュータ読み取り可能なプログラム命令であって、ある特定のサブグループにおける患者間の疾患の少なくとも1つのメインパラメータの動特性の同一性又は実質的な類似性によって各均質なサブグループを決定する、コンピュータ読み取り可能なプログラム命令と、
    前記患者の各疾患についての電子健康記録(EHRs)データベースの利用可能な異なる時間間隔に少なくとも1つのメインパラメータの動特性を1又は2以上のサブグループに相関付けを行う少なくとも1つの相関パラメータを識別するコンピュータ読み取り可能なプログラム命令と、
    新規患者のパラメータを、前記データベースの前記サブグループにおける前記患者の疾患についての前記少なくとも1つの相関パラメータ又は少なくとも1つメインパラメータと比較するコンピュータ読み取り可能なプログラム命令であって、前記新規患者を関連する1又は2以上のサブグループに前記データベースにおいて分類する、コンピュータ読み取り可能なプログラム命令と、を備えたコンピュータプログラムプロダクト。
  59. 少なくとも1つのコンピュータプロセッサによって実行される、標準化された臨床パラメータの動的分析のためのコンピュータ実装方法であって、
    (a)複数の患者に関連する標準化された臨床患者パラメータを含む複数の医療臨床データを記憶するステップであって、前記患者パラメータが、1又は2以上の予め定められた標準化された臨床パラメータ、1又は2以上の標準化された臨床パラメータの値の順序、1又は2以上の標準化された臨床パラメータの分類、1又は2以上の標準化された臨床パラメータの検知、及び/又は、1又は2以上の標準化された臨床パラメータの検知の分類方法の1又は2以上を含む、ステップと、
    (b)疾患又は状況の識別データを記憶するステップと、
    (c)各患者についての1又は2以上の標準化された臨床パラメータに関連する特定の時間間隔の間、タイミングデータの継続時間を記憶するステップであって、前記タイミングデータが、複数の検知タイミングポイントを含む特定の時間間隔の間の標準化された臨床患者パラメータのそれぞれについての変化の速度を反映し、各検知タイミングポイントが特定の時間における特定の標準化された臨床パラメータの値を含む、ステップと、
    (d)データベースに記憶するためのパラメータを含む患者のデータの類似点によって、前記患者に関連する前記標準化された臨床患者パラメータを含む前記複数の医療データを、均質なサブグループにグループ分割するステップであって、ある特定のサブグループにおける患者間の疾患又は状況の前記少なくとも1つの標準化された臨床患者パラメータの動特性の同一性又は実質的な類似性によって各均質なサブグループを決定する、ステップと、
    (e)標準化された臨床パラメータの新規患者についての動特性を1又は2以上の均質なグループの標準化された臨床パラメータの動特性と比較するステップであって、前記新規患者の最も近い均質なグループを決定し、これにより、前記新規患者の治療のために最も近い均質なグループから最適な治療プロトコルを選択するステップであって、前記最も近い均質なグループが前記新規患者の動特性の最も近い類似点に基づいて選択される、ステップと、
    (f)ゼロの識別により、相関パラメータを含む患者の臨床データに一致する1又は2以上の疾患又は状況を得るステップと、を含む方法。
JP2016557188A 2013-12-04 2014-12-03 大量医学分析を用いたコンピュータ医療計画方法及びシステム Active JP6709166B2 (ja)

Applications Claiming Priority (11)

Application Number Priority Date Filing Date Title
US201361911618P 2013-12-04 2013-12-04
US61/911,618 2013-12-04
US201461946339P 2014-02-28 2014-02-28
US61/946,339 2014-02-28
US201461977512P 2014-04-09 2014-04-09
US61/977,512 2014-04-09
US201462059588P 2014-10-03 2014-10-03
US62/059,588 2014-10-03
US14/558,706 US20150161331A1 (en) 2013-12-04 2014-12-02 Computational medical treatment plan method and system with mass medical analysis
US14/558,706 2014-12-02
PCT/EP2014/076441 WO2015082555A1 (en) 2013-12-04 2014-12-03 Computational medical treatment plan method and system with mass medical analysis

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2020089359A Division JP7071438B2 (ja) 2013-12-04 2020-05-22 大量医学分析を用いたコンピュータ医療計画方法及びシステム

Publications (3)

Publication Number Publication Date
JP2017502439A JP2017502439A (ja) 2017-01-19
JP2017502439A5 JP2017502439A5 (ja) 2018-01-18
JP6709166B2 true JP6709166B2 (ja) 2020-06-10

Family

ID=53271440

Family Applications (4)

Application Number Title Priority Date Filing Date
JP2016557188A Active JP6709166B2 (ja) 2013-12-04 2014-12-03 大量医学分析を用いたコンピュータ医療計画方法及びシステム
JP2020089359A Active JP7071438B2 (ja) 2013-12-04 2020-05-22 大量医学分析を用いたコンピュータ医療計画方法及びシステム
JP2022076588A Ceased JP2022105174A (ja) 2013-12-04 2022-05-06 大量医学分析を用いたコンピュータ医療計画方法及びシステム
JP2023137990A Pending JP2023166464A (ja) 2013-12-04 2023-08-28 大量医学分析を用いたコンピュータ医療計画方法及びシステム

Family Applications After (3)

Application Number Title Priority Date Filing Date
JP2020089359A Active JP7071438B2 (ja) 2013-12-04 2020-05-22 大量医学分析を用いたコンピュータ医療計画方法及びシステム
JP2022076588A Ceased JP2022105174A (ja) 2013-12-04 2022-05-06 大量医学分析を用いたコンピュータ医療計画方法及びシステム
JP2023137990A Pending JP2023166464A (ja) 2013-12-04 2023-08-28 大量医学分析を用いたコンピュータ医療計画方法及びシステム

Country Status (8)

Country Link
US (1) US20150161331A1 (ja)
EP (1) EP3077933B1 (ja)
JP (4) JP6709166B2 (ja)
CN (2) CN111326224B (ja)
AU (3) AU2014359261A1 (ja)
CA (1) CA2941788A1 (ja)
RU (1) RU2662549C1 (ja)
WO (1) WO2015082555A1 (ja)

Families Citing this family (167)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5501445B2 (ja) 2009-04-30 2014-05-21 ペイシェンツライクミー, インコーポレイテッド オンラインコミュニティ内のデータ提出を促進するシステムおよび方法
US11568982B1 (en) 2014-02-17 2023-01-31 Health at Scale Corporation System to improve the logistics of clinical care by selectively matching patients to providers
US11114204B1 (en) 2014-04-04 2021-09-07 Predictive Modeling, Inc. System to determine inpatient or outpatient care and inform decisions about patient care
US10289679B2 (en) * 2014-12-10 2019-05-14 International Business Machines Corporation Data relationships in a question-answering environment
WO2016133928A1 (en) * 2015-02-17 2016-08-25 Massachusetts Institiute Of Technology System and method for sepsis care task management
US20160283690A1 (en) * 2015-03-26 2016-09-29 Ims Health Incorporated Database Retrieval of Impact Records
US9974492B1 (en) 2015-06-05 2018-05-22 Life365, Inc. Health monitoring and communications device
US10185513B1 (en) 2015-06-05 2019-01-22 Life365, Inc. Device configured for dynamic software change
US10560135B1 (en) 2015-06-05 2020-02-11 Life365, Inc. Health, wellness and activity monitor
US11329683B1 (en) 2015-06-05 2022-05-10 Life365, Inc. Device configured for functional diagnosis and updates
US10973587B2 (en) * 2015-08-19 2021-04-13 Brainlab Ag Reference array holder
US20170061079A1 (en) * 2015-09-02 2017-03-02 J. William LaValley Treatment management system and method
US11710572B2 (en) * 2015-09-11 2023-07-25 Navya Network, Inc. Experience engine-method and apparatus of learning from similar patients
US10572626B2 (en) * 2015-10-05 2020-02-25 Ricoh Co., Ltd. Advanced telemedicine system with virtual doctor
EP3360474A4 (en) * 2015-10-10 2019-07-03 Shenzhen Mindray Bio-Medical Electronics Co., Ltd. MEDICAL INTENSIVE CARE SYSTEM, INTENSIVE CARE DATA DISPLAY METHOD, AND INTENSIVE CARE DATA DISPLAY DEVICE
US11141859B2 (en) * 2015-11-02 2021-10-12 Brainlab Ag Determining a configuration of a medical robotic arm
CA3004267A1 (en) * 2015-11-06 2017-05-11 3M Innovative Properties Company Identification of low-efficacy patient population
TW201719557A (zh) * 2015-11-20 2017-06-01 長庚大學 醫療輔具搜尋及配對使用方法
EP3405102B1 (en) * 2016-01-20 2021-04-14 Lifebridge Health, Inc. Apparatus for detecting cells in circulating bloodstream
US11056218B2 (en) * 2016-05-31 2021-07-06 International Business Machines Corporation Identifying personalized time-varying predictive patterns of risk factors
WO2018027253A1 (en) * 2016-08-11 2018-02-15 Bloomfield Lochlan John Health management system and method
US10319574B2 (en) * 2016-08-22 2019-06-11 Highland Innovations Inc. Categorization data manipulation using a matrix-assisted laser desorption/ionization time-of-flight mass spectrometer
CN106383992B (zh) * 2016-08-31 2019-05-31 杭州逸曜信息技术有限公司 疾病信息的处理方法
WO2018057888A1 (en) * 2016-09-23 2018-03-29 Driver, Inc. Integrated systems and methods for automated processing and analysis of biological samples, clinical information processing and clinical trial matching
AU2017348111B2 (en) * 2016-10-27 2023-04-06 Progenics Pharmaceuticals, Inc. Network for medical image analysis, decision support system, and related graphical user interface (GUI) applications
CN110168659A (zh) * 2016-11-14 2019-08-23 科塔公司 用于改善临床结果并降低总护理费用的cna引导的护理
KR101809149B1 (ko) * 2016-11-25 2017-12-14 한국과학기술연구원 순환계질환 발생잠재도를 판단하는 장치 및 그 방법
CN106778002B (zh) * 2016-12-26 2023-08-01 中国科学院苏州生物医学工程技术研究所 一种医疗信息查询方法、设备和系统
CN106780475B (zh) * 2016-12-27 2019-10-01 北京市计算中心 一种基于病理组织切片图像组织区域的图像处理装置
CN106778036B (zh) * 2017-01-10 2017-12-29 首都医科大学附属北京友谊医院 一种数据处理的方法及装置
CN108320788A (zh) * 2017-01-16 2018-07-24 医渡云(北京)技术有限公司 医院业务分析方法及装置
US20190272913A1 (en) * 2017-02-14 2019-09-05 Harsh Nigam Method And System For Determining Homeopathic Medicinal Potency To Patient Based On Nigam's Potency Scale
TWI640018B (zh) * 2017-03-15 2018-11-01 長庚醫療財團法人林口長庚紀念醫院 Data integration method
US10387694B2 (en) 2017-04-13 2019-08-20 International Business Machines Corporation Embedded sensor chips in polymer-based coatings
CN108877921B (zh) * 2017-05-12 2021-10-19 京东方科技集团股份有限公司 医疗智能分诊方法和医疗智能分诊系统
US10832815B2 (en) 2017-05-18 2020-11-10 International Business Machines Corporation Medical side effects tracking
CN107693051B (zh) * 2017-07-24 2019-07-05 复旦大学附属中山医院 移植肾免疫状态的无创检测系统
KR20200003407A (ko) * 2017-07-28 2020-01-09 구글 엘엘씨 전자 건강 기록으로부터 의료 이벤트를 예측 및 요약하기 위한 시스템 및 방법
US20200279622A1 (en) * 2017-09-15 2020-09-03 PatientsLikeMe Inc. Systems and Methods for Collecting and Analyzing Comprehensive Medical Information
WO2019057295A1 (en) * 2017-09-22 2019-03-28 Brainlab Ag AGGREGATION OF ANATOMIC OR PHYSIOLOGICAL STATUS DATA
IL255255A0 (en) * 2017-10-25 2017-12-31 Optimata Ltd A system and method for predicting the effect of medical treatment
RU2676849C1 (ru) * 2017-11-03 2019-01-11 Дмитрий Владимирович Сидоров Распределенная автоматизированная система мониторинга здоровья пациентов, принимающих антикоагулянтные препараты
US10966791B2 (en) * 2017-12-28 2021-04-06 Ethicon Llc Cloud-based medical analytics for medical facility segmented individualization of instrument function
US20190206555A1 (en) * 2017-12-28 2019-07-04 Ethicon Llc Cloud-based medical analytics for customization and recommendations to a user
CN108122613B (zh) * 2018-01-15 2022-04-01 北京颐圣智能科技有限公司 基于健康预测模型的健康预测方法和装置
US20210043328A1 (en) * 2018-02-19 2021-02-11 Koninklijke Philips N.V. System and method for providing model-based population insight generation
US20190259482A1 (en) * 2018-02-20 2019-08-22 Mediedu Oy System and method of determining a prescription for a patient
WO2019217809A1 (en) 2018-05-10 2019-11-14 Jameel Mohamed Anver Method, apparatus, and computer readible media for artificial intelligence-based treatment guidance for the neurologically impaired patient who may need neurosurgery
US20190392324A1 (en) * 2018-06-26 2019-12-26 International Business Machines Corporation Cognitive Analysis and Disambiguation of Electronic Medical Records for Presentation of Pertinent Information for a Medical Treatment Plan
JP7099751B2 (ja) * 2018-06-29 2022-07-12 日本電気株式会社 患者アセスメント支援装置、患者アセスメント支援方法、プログラム
CN109360656B (zh) * 2018-08-20 2021-11-02 安徽大学 一种基于多目标演化算法的癌症检测方法
EP3844777A4 (en) * 2018-08-28 2022-05-25 Neurospring MEDICAL DEVICE AND METHODS FOR DIAGNOSIS AND TREATMENT OF DISEASES
JP7060852B2 (ja) * 2018-10-18 2022-04-27 株式会社シンクアウト 情報処理システム
CN109473153A (zh) * 2018-10-30 2019-03-15 医渡云(北京)技术有限公司 医疗数据的处理方法、装置、介质及电子设备
US11894139B1 (en) 2018-12-03 2024-02-06 Patientslikeme Llc Disease spectrum classification
US20200202989A1 (en) * 2018-12-21 2020-06-25 Lynx Md Ltd Enabling Graphical Illustration Based on Private Medical Information
JP7273393B2 (ja) * 2019-01-25 2023-05-15 国立大学法人京都大学 血液疾患の予後予測情報の生成システム、情報処理装置、サーバ、プログラム、又は方法
US20220189598A1 (en) * 2019-02-12 2022-06-16 Baylor Research Institute System and method of tuberculosis therapy
CN109887589A (zh) * 2019-02-21 2019-06-14 吉林禾熙科技开发有限公司 人工智能医疗大数据系统
CN109903846A (zh) * 2019-02-21 2019-06-18 吉林禾熙科技开发有限公司 基于医疗大数据的肺癌筛查系统及方法
US11341627B2 (en) * 2019-02-28 2022-05-24 Skidmore Owings & Merrill Llp Machine learning tool for structures
US12029940B2 (en) 2019-03-11 2024-07-09 Rom Technologies, Inc. Single sensor wearable device for monitoring joint extension and flexion
US11185735B2 (en) 2019-03-11 2021-11-30 Rom Technologies, Inc. System, method and apparatus for adjustable pedal crank
US11541274B2 (en) 2019-03-11 2023-01-03 Rom Technologies, Inc. System, method and apparatus for electrically actuated pedal for an exercise or rehabilitation machine
US11387002B2 (en) * 2019-03-14 2022-07-12 Elekta, Inc. Automated cancer registry record generation
US11915827B2 (en) * 2019-03-14 2024-02-27 Kenneth Neumann Methods and systems for classification to prognostic labels
CN110164524A (zh) * 2019-04-29 2019-08-23 北京国润健康医学投资有限公司 一种偏瘫患者康复训练任务自适应匹配方法及其系统
US20200349652A1 (en) * 2019-05-03 2020-11-05 Koninklijke Philips N.V. System to simulate outcomes of a new contract with a financier of care
US12102878B2 (en) 2019-05-10 2024-10-01 Rehab2Fit Technologies, Inc. Method and system for using artificial intelligence to determine a user's progress during interval training
US11957956B2 (en) 2019-05-10 2024-04-16 Rehab2Fit Technologies, Inc. System, method and apparatus for rehabilitation and exercise
US11957960B2 (en) 2019-05-10 2024-04-16 Rehab2Fit Technologies Inc. Method and system for using artificial intelligence to adjust pedal resistance
US11904207B2 (en) 2019-05-10 2024-02-20 Rehab2Fit Technologies, Inc. Method and system for using artificial intelligence to present a user interface representing a user's progress in various domains
US11801423B2 (en) 2019-05-10 2023-10-31 Rehab2Fit Technologies, Inc. Method and system for using artificial intelligence to interact with a user of an exercise device during an exercise session
US11433276B2 (en) 2019-05-10 2022-09-06 Rehab2Fit Technologies, Inc. Method and system for using artificial intelligence to independently adjust resistance of pedals based on leg strength
US11200814B2 (en) * 2019-06-03 2021-12-14 Kpn Innovations, Llc Methods and systems for self-fulfillment of a dietary request
US11205140B2 (en) * 2019-06-03 2021-12-21 Kpn Innovations Llc Methods and systems for self-fulfillment of an alimentary instruction set based on vibrant constitutional guidance
CN110334115B (zh) * 2019-06-04 2023-04-07 苏州惠邦医疗科技有限公司 一种适用于医疗行业的快速检索方法
US11896540B2 (en) 2019-06-24 2024-02-13 Rehab2Fit Technologies, Inc. Method and system for implementing an exercise protocol for osteogenesis and/or muscular hypertrophy
WO2021001592A1 (en) * 2019-07-02 2021-01-07 Etsimo Healthcare Oy Automated and real-time patient care planning
WO2021022365A1 (en) * 2019-08-02 2021-02-11 Intellijoint Surgical Inc. Systems and methods to collaborate, to train an expert system and to provide an expert system
US11929170B2 (en) 2019-08-22 2024-03-12 Kpn Innovations, Llc Methods and systems for selecting an ameliorative output using artificial intelligence
IT201900015078A1 (it) * 2019-08-27 2021-02-27 Marco Citro Sistema per l’analisi da remoto di dati biometrici relativi a pazienti con patologie oncologiche e/o onco-ematologiche con comorbidità e/o eventi avversi
US11071597B2 (en) 2019-10-03 2021-07-27 Rom Technologies, Inc. Telemedicine for orthopedic treatment
US11701548B2 (en) 2019-10-07 2023-07-18 Rom Technologies, Inc. Computer-implemented questionnaire for orthopedic treatment
USD928635S1 (en) 2019-09-18 2021-08-24 Rom Technologies, Inc. Goniometer
WO2021059789A1 (ja) * 2019-09-27 2021-04-01 富士フイルム株式会社 診療支援装置、その作動方法及び作動プログラム、並びに診療支援システム
AU2020358087A1 (en) * 2019-10-02 2022-05-12 Endpoint Health Inc. Directing medical diagnosis and intervention recommendations
US11087865B2 (en) 2019-10-03 2021-08-10 Rom Technologies, Inc. System and method for use of treatment device to reduce pain medication dependency
US11069436B2 (en) 2019-10-03 2021-07-20 Rom Technologies, Inc. System and method for use of telemedicine-enabled rehabilitative hardware and for encouraging rehabilitative compliance through patient-based virtual shared sessions with patient-enabled mutual encouragement across simulated social networks
US11955221B2 (en) 2019-10-03 2024-04-09 Rom Technologies, Inc. System and method for using AI/ML to generate treatment plans to stimulate preferred angiogenesis
US11282604B2 (en) 2019-10-03 2022-03-22 Rom Technologies, Inc. Method and system for use of telemedicine-enabled rehabilitative equipment for prediction of secondary disease
US11270795B2 (en) 2019-10-03 2022-03-08 Rom Technologies, Inc. Method and system for enabling physician-smart virtual conference rooms for use in a telehealth context
US11282599B2 (en) 2019-10-03 2022-03-22 Rom Technologies, Inc. System and method for use of telemedicine-enabled rehabilitative hardware and for encouragement of rehabilitative compliance through patient-based virtual shared sessions
US11075000B2 (en) 2019-10-03 2021-07-27 Rom Technologies, Inc. Method and system for using virtual avatars associated with medical professionals during exercise sessions
US11265234B2 (en) 2019-10-03 2022-03-01 Rom Technologies, Inc. System and method for transmitting data and ordering asynchronous data
US11915816B2 (en) 2019-10-03 2024-02-27 Rom Technologies, Inc. Systems and methods of using artificial intelligence and machine learning in a telemedical environment to predict user disease states
US11337648B2 (en) 2020-05-18 2022-05-24 Rom Technologies, Inc. Method and system for using artificial intelligence to assign patients to cohorts and dynamically controlling a treatment apparatus based on the assignment during an adaptive telemedical session
US11830601B2 (en) 2019-10-03 2023-11-28 Rom Technologies, Inc. System and method for facilitating cardiac rehabilitation among eligible users
US11325005B2 (en) 2019-10-03 2022-05-10 Rom Technologies, Inc. Systems and methods for using machine learning to control an electromechanical device used for prehabilitation, rehabilitation, and/or exercise
US11317975B2 (en) 2019-10-03 2022-05-03 Rom Technologies, Inc. Method and system for treating patients via telemedicine using sensor data from rehabilitation or exercise equipment
US11756666B2 (en) 2019-10-03 2023-09-12 Rom Technologies, Inc. Systems and methods to enable communication detection between devices and performance of a preventative action
US11515021B2 (en) 2019-10-03 2022-11-29 Rom Technologies, Inc. Method and system to analytically optimize telehealth practice-based billing processes and revenue while enabling regulatory compliance
US11915815B2 (en) 2019-10-03 2024-02-27 Rom Technologies, Inc. System and method for using artificial intelligence and machine learning and generic risk factors to improve cardiovascular health such that the need for additional cardiac interventions is mitigated
US20210134458A1 (en) 2019-10-03 2021-05-06 Rom Technologies, Inc. System and method to enable remote adjustment of a device during a telemedicine session
US12087426B2 (en) 2019-10-03 2024-09-10 Rom Technologies, Inc. Systems and methods for using AI ML to predict, based on data analytics or big data, an optimal number or range of rehabilitation sessions for a user
US11923065B2 (en) 2019-10-03 2024-03-05 Rom Technologies, Inc. Systems and methods for using artificial intelligence and machine learning to detect abnormal heart rhythms of a user performing a treatment plan with an electromechanical machine
US12062425B2 (en) 2019-10-03 2024-08-13 Rom Technologies, Inc. System and method for implementing a cardiac rehabilitation protocol by using artificial intelligence and standardized measurements
US11955220B2 (en) 2019-10-03 2024-04-09 Rom Technologies, Inc. System and method for using AI/ML and telemedicine for invasive surgical treatment to determine a cardiac treatment plan that uses an electromechanical machine
US11955222B2 (en) 2019-10-03 2024-04-09 Rom Technologies, Inc. System and method for determining, based on advanced metrics of actual performance of an electromechanical machine, medical procedure eligibility in order to ascertain survivability rates and measures of quality-of-life criteria
US20210142893A1 (en) 2019-10-03 2021-05-13 Rom Technologies, Inc. System and method for processing medical claims
US11101028B2 (en) 2019-10-03 2021-08-24 Rom Technologies, Inc. Method and system using artificial intelligence to monitor user characteristics during a telemedicine session
US11139060B2 (en) 2019-10-03 2021-10-05 Rom Technologies, Inc. Method and system for creating an immersive enhanced reality-driven exercise experience for a user
US11961603B2 (en) 2019-10-03 2024-04-16 Rom Technologies, Inc. System and method for using AI ML and telemedicine to perform bariatric rehabilitation via an electromechanical machine
US12020800B2 (en) 2019-10-03 2024-06-25 Rom Technologies, Inc. System and method for using AI/ML and telemedicine to integrate rehabilitation for a plurality of comorbid conditions
US11978559B2 (en) 2019-10-03 2024-05-07 Rom Technologies, Inc. Systems and methods for remotely-enabled identification of a user infection
US11515028B2 (en) 2019-10-03 2022-11-29 Rom Technologies, Inc. Method and system for using artificial intelligence and machine learning to create optimal treatment plans based on monetary value amount generated and/or patient outcome
US20210134432A1 (en) 2019-10-03 2021-05-06 Rom Technologies, Inc. Method and system for implementing dynamic treatment environments based on patient information
US11887717B2 (en) 2019-10-03 2024-01-30 Rom Technologies, Inc. System and method for using AI, machine learning and telemedicine to perform pulmonary rehabilitation via an electromechanical machine
US20210134412A1 (en) 2019-10-03 2021-05-06 Rom Technologies, Inc. System and method for processing medical claims using biometric signatures
US11282608B2 (en) 2019-10-03 2022-03-22 Rom Technologies, Inc. Method and system for using artificial intelligence and machine learning to provide recommendations to a healthcare provider in or near real-time during a telemedicine session
US20210128080A1 (en) 2019-10-03 2021-05-06 Rom Technologies, Inc. Augmented reality placement of goniometer or other sensors
US12020799B2 (en) 2019-10-03 2024-06-25 Rom Technologies, Inc. Rowing machines, systems including rowing machines, and methods for using rowing machines to perform treatment plans for rehabilitation
US20210127974A1 (en) 2019-10-03 2021-05-06 Rom Technologies, Inc. Remote examination through augmented reality
US11955223B2 (en) 2019-10-03 2024-04-09 Rom Technologies, Inc. System and method for using artificial intelligence and machine learning to provide an enhanced user interface presenting data pertaining to cardiac health, bariatric health, pulmonary health, and/or cardio-oncologic health for the purpose of performing preventative actions
US20210134425A1 (en) 2019-10-03 2021-05-06 Rom Technologies, Inc. System and method for using artificial intelligence in telemedicine-enabled hardware to optimize rehabilitative routines capable of enabling remote rehabilitative compliance
US11826613B2 (en) 2019-10-21 2023-11-28 Rom Technologies, Inc. Persuasive motivation for orthopedic treatment
US11170315B2 (en) 2019-10-30 2021-11-09 Kpn Innovations, Llc Methods and systems for providing dynamic constitutional guidance
CN110880362B (zh) * 2019-11-12 2022-10-11 南京航空航天大学 一种大规模医疗数据知识挖掘与治疗方案推荐系统
JP7380130B2 (ja) * 2019-11-20 2023-11-15 オムロンヘルスケア株式会社 生体情報管理システム、及び、生体情報管理方法
USD907143S1 (en) 2019-12-17 2021-01-05 Rom Technologies, Inc. Rehabilitation device
CN111161817B (zh) * 2019-12-31 2023-09-19 医渡云(北京)技术有限公司 医疗数据标准化处理方法、装置、介质及电子设备
US11763946B2 (en) * 2020-02-27 2023-09-19 Optum, Inc. Graph-based predictive inference
US20230091973A1 (en) * 2020-03-09 2023-03-23 Amar Chowdry Medzone.
CN111383729A (zh) * 2020-03-24 2020-07-07 长春中医药大学 一种用于代谢重构的心肌肥大发病过程记录装置
US11610679B1 (en) 2020-04-20 2023-03-21 Health at Scale Corporation Prediction and prevention of medical events using machine-learning algorithms
US11107591B1 (en) 2020-04-23 2021-08-31 Rom Technologies, Inc. Method and system for describing and recommending optimal treatment plans in adaptive telemedical or other contexts
WO2021247645A1 (en) * 2020-06-06 2021-12-09 Battelle Memorial Institute Non-verbal communications radio and non-verbal communication system using a plurality of non-verbal communication radios
CN115917668A (zh) * 2020-06-12 2023-04-04 霍夫曼-拉罗奇有限公司 用于促进个体多发性硬化症受试者的协同治疗的大数据处理
CN111968712A (zh) * 2020-07-20 2020-11-20 广州市健坤网络科技发展有限公司 一种抗肿瘤医疗服务平台
CN111859888B (zh) * 2020-07-22 2024-04-02 北京致医健康信息技术有限公司 一种诊断辅助方法、装置、电子设备和存储介质
US12100499B2 (en) 2020-08-06 2024-09-24 Rom Technologies, Inc. Method and system for using artificial intelligence and machine learning to create optimal treatment plans based on monetary value amount generated and/or patient outcome
US12094582B1 (en) 2020-08-11 2024-09-17 Health at Scale Corporation Intelligent healthcare data fabric system
KR102371037B1 (ko) * 2020-08-18 2022-03-07 서울대학교병원 프로그래밍이 가능한 전자의무기록 시스템
RU2745878C1 (ru) * 2020-09-04 2021-04-02 Федеральное государственное бюджетное образовательное учреждение высшего образования «Сибирский государственный медицинский университет» Министерства здравоохранения Российской Федерации Способ оценки риска развития послеоперационных осложнений после панкреатодуоденальной резекции
US12080428B1 (en) 2020-09-10 2024-09-03 Health at Scale Corporation Machine intelligence-based prioritization of non-emergent procedures and visits
JP7405054B2 (ja) * 2020-10-02 2023-12-26 トヨタ自動車株式会社 リハビリ支援システム、リハビリ支援方法、及びプログラム
CN114627986A (zh) * 2020-12-10 2022-06-14 深圳迈瑞生物医疗电子股份有限公司 样本分析系统及样本分析方法
RU2754518C1 (ru) * 2020-12-29 2021-09-02 федеральное государственное бюджетное образовательное учреждение высшего образования Омский государственный медицинский университет Министерства здравоохранения Российской Федерации (ФГБОУ ВО ОмГМУ Минздрава России) Способ прогнозирования неблагоприятного исхода лечения туберкулеза легких у пациентов на фоне хронической обструктивной болезни легких
CN112784166B (zh) * 2021-02-01 2024-09-13 深圳市贝斯曼精密仪器有限公司 一种个性化数据分析方案的服务平台及其方法
US20240161892A1 (en) * 2021-03-10 2024-05-16 Biotronik Se & Co. Kg Virtual Coach
EP4305632A1 (en) * 2021-03-10 2024-01-17 BIOTRONIK SE & Co. KG Closed loop device setting adjustment for medical devices
KR102538131B1 (ko) * 2021-04-22 2023-05-31 서울대학교병원 암환자 정보 수집 장치 및 그 방법
CN113094497B (zh) * 2021-06-07 2021-09-14 华中科技大学 一种电子健康记录推荐方法及共享边缘计算平台
US20230047438A1 (en) * 2021-07-29 2023-02-16 Precision Innovative Data Llc Dba Innovative Precision Health (Iph) Method and system for assessing disease progression
CN118098485A (zh) * 2021-09-20 2024-05-28 曹庆恒 一种治疗方案智能比较方法及系统
JPWO2023068049A1 (ja) * 2021-10-21 2023-04-27
EP4181152A1 (en) * 2021-11-15 2023-05-17 Koninklijke Philips N.V. Processing image data for assessing a clinical question
TWI792761B (zh) * 2021-12-10 2023-02-11 國立成功大學 氣管插管影像的處理方法與系統、以及氣管插管的成效評量方法
CN114449701B (zh) * 2021-12-29 2023-08-08 新瑞鹏宠物医疗集团有限公司 基于病历信息的灯光类型调控方法、装置及电子设备
WO2023164292A1 (en) * 2022-02-28 2023-08-31 Rom Technologies, Inc. Systems and methods of using artificial intelligence and machine learning in a telemedical environment to predict user disease states
WO2023220534A1 (en) * 2022-05-11 2023-11-16 Roche Diabetes Care, Inc. System and method for adaptive generation of graphical data of predicted diagnoses
JP2023179108A (ja) * 2022-06-07 2023-12-19 株式会社日立製作所 分析装置、分析方法、および分析プログラム
US20240112773A1 (en) * 2022-10-04 2024-04-04 George Hammitt, III Medical Record Management Assembly
CN116779190B (zh) * 2023-06-25 2024-02-13 急尼优医药科技(上海)有限公司 一种基于物联网的医疗平台用户随访管理系统及方法
CN116631578B (zh) * 2023-07-25 2023-10-13 山东硕杰医疗科技有限公司 一种肺癌网络综合管理信息平台
CN116719833B (zh) * 2023-08-09 2023-10-13 理县林业和草原局 一种基于并发同步的病虫害防治数据更新方法和系统
JP7517580B1 (ja) 2023-11-30 2024-07-17 Toppanホールディングス株式会社 医療情報集計システム、医療情報集計方法、およびプログラム

Family Cites Families (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5298896A (en) * 1993-03-15 1994-03-29 Bell Communications Research, Inc. Method and system for high order conditional entropy coding
JP2001118014A (ja) * 1999-10-18 2001-04-27 Hitachi Ltd 診療支援システム
US20020128860A1 (en) * 2001-01-04 2002-09-12 Leveque Joseph A. Collecting and managing clinical information
WO2002099568A2 (en) * 2001-06-01 2002-12-12 Prosanos Corporation Information processing method for disease stratification and assessment of disease progressing
US7529685B2 (en) * 2001-08-28 2009-05-05 Md Datacor, Inc. System, method, and apparatus for storing, retrieving, and integrating clinical, diagnostic, genomic, and therapeutic data
JP4296278B2 (ja) * 2002-05-07 2009-07-15 国立大学法人京都大学 医療用コクピットシステム
US20040059604A1 (en) * 2002-07-29 2004-03-25 Zaleski John R. Patient medical parameter acquisition and distribution system
JP2004288047A (ja) * 2003-03-24 2004-10-14 Fujitsu Ltd 診療支援システム及び診療支援プログラム
US7617002B2 (en) * 2003-09-15 2009-11-10 Medtronic, Inc. Selection of neurostimulator parameter configurations using decision trees
CN1961321A (zh) * 2004-05-21 2007-05-09 西门子医疗健康服务公司 为医疗决策提供支持的方法及系统
US20060173663A1 (en) 2004-12-30 2006-08-03 Proventys, Inc. Methods, system, and computer program products for developing and using predictive models for predicting a plurality of medical outcomes, for evaluating intervention strategies, and for simultaneously validating biomarker causality
CN1300580C (zh) * 2004-12-31 2007-02-14 中国人民解放军第306医院 检测肝癌血清特征蛋白的质谱模型及其制备方法和应用
JP4799251B2 (ja) * 2006-04-05 2011-10-26 富士フイルム株式会社 類似症例検索装置、類似症例検索方法およびそのプログラム
US10311533B2 (en) * 2006-12-27 2019-06-04 Cardiac Pacemakers, Inc. Method and system to enable physician labels on a remote server and use labels to verify and improve algorithm results
US20090112865A1 (en) * 2007-10-26 2009-04-30 Vee Erik N Hierarchical structure entropy measurement methods and systems
US8145583B2 (en) * 2007-11-20 2012-03-27 George Mason Intellectual Properties, Inc. Tailoring medication to individual characteristics
US7996245B2 (en) * 2007-12-07 2011-08-09 Roche Diagnostics Operations, Inc. Patient-centric healthcare information maintenance
EP2229644A1 (en) * 2007-12-27 2010-09-22 Koninklijke Philips Electronics N.V. Method and apparatus for refining similar case search
WO2009136354A1 (en) * 2008-05-09 2009-11-12 Koninklijke Philips Electronics N.V. Method and system for personalized guideline-based therapy augmented by imaging information
EP2279478A1 (en) * 2008-05-12 2011-02-02 Koninklijke Philips Electronics N.V. A medical analysis system
US10096075B2 (en) * 2008-09-12 2018-10-09 Epic Systems Corporation Patient community system with anonymized electronic medical data
JP5650647B2 (ja) * 2008-09-26 2015-01-07 コーニンクレッカ フィリップス エヌ ヴェ コンピュータ支援診断用に臨床フィーチャと画像フィーチャを融合するシステム及び方法
US20100094874A1 (en) * 2008-10-15 2010-04-15 Siemens Aktiengesellschaft Method and an apparatus for retrieving additional information regarding a patient record
AU2009308500A1 (en) * 2008-10-21 2010-04-29 PeraHealth, Inc Methods of assessing risk based on medical data and uses thereof
JP5785184B2 (ja) 2009-12-10 2015-09-24 コーニンクレッカ フィリップス エヌ ヴェ 画像の医療データ及び非画像の医療データの両者の連続的な記憶及び統合された分析のための診断技術
US20110301976A1 (en) * 2010-06-03 2011-12-08 International Business Machines Corporation Medical history diagnosis system and method
US8565500B2 (en) * 2010-06-14 2013-10-22 Siemens Medical Solutions Usa, Inc. Automatic patient and device recognition and association system
CN110570950A (zh) * 2010-12-16 2019-12-13 皇家飞利浦电子股份有限公司 用于使用基于病例的推理的治疗计划的临床决策支持的系统和方法
WO2012084723A1 (en) * 2010-12-22 2012-06-28 Roche Diagnostics Gmbh Automatic recognition of known patterns in physiological measurement data
US20130035956A1 (en) * 2011-08-02 2013-02-07 International Business Machines Corporation Visualization of patient treatments
JP2013077194A (ja) * 2011-09-30 2013-04-25 Hiroshi Sugimura 知識を活用する情報システム装置
US9292690B2 (en) * 2011-12-12 2016-03-22 International Business Machines Corporation Anomaly, association and clustering detection
WO2013087250A1 (en) * 2011-12-12 2013-06-20 International Business Machines Corporation Dynamic anomaly, association and clustering detection
CN102592200A (zh) * 2012-01-13 2012-07-18 王斌全 一种用于临床医学及科研的患者随访系统
US20130226612A1 (en) * 2012-02-26 2013-08-29 International Business Machines Corporation Framework for evidence based case structuring
CN102821465B (zh) * 2012-09-07 2014-11-26 哈尔滨工业大学 基于分区信息熵增益的wlan室内定位方法
CN203220511U (zh) * 2012-11-14 2013-10-02 中国人民武装警察部队后勤学院附属医院 一种方舱医疗系统用ct方舱

Also Published As

Publication number Publication date
CA2941788A1 (en) 2015-06-11
CN111326224B (zh) 2024-10-01
JP2022105174A (ja) 2022-07-12
JP2023166464A (ja) 2023-11-21
AU2014359261A1 (en) 2016-05-19
AU2022200074A1 (en) 2022-02-03
CN105793852B (zh) 2020-02-18
EP3077933B1 (en) 2024-11-06
JP2017502439A (ja) 2017-01-19
RU2662549C1 (ru) 2018-07-26
WO2015082555A1 (en) 2015-06-11
CN111326224A (zh) 2020-06-23
EP3077933A1 (en) 2016-10-12
JP7071438B2 (ja) 2022-05-18
JP2020149711A (ja) 2020-09-17
US20150161331A1 (en) 2015-06-11
CN105793852A (zh) 2016-07-20
AU2020230221A1 (en) 2020-10-01

Similar Documents

Publication Publication Date Title
JP7071438B2 (ja) 大量医学分析を用いたコンピュータ医療計画方法及びシステム
US20150339442A1 (en) Computational medical treatment plan method and system with mass medical analysis
Keel et al. Visualizing deep learning models for the detection of referable diabetic retinopathy and glaucoma
Kennedy et al. Safety and feasibility of using magnetic resonance imaging criteria to identify patients with “good prognosis” rectal cancer eligible for primary surgery: the phase 2 nonrandomized QuickSilver clinical trial
Teno et al. Family perspectives on aggressive cancer care near the end of life
Smith et al. Measuring and improving the quality of heart failure care globally
Jalilian et al. Precision medicine in anesthesiology
Cui et al. Deep learning performance of Ultra-Widefield fundus imaging for screening retinal lesions in rural locales
Borovska et al. Internet of medical imaging Things and analytics in support of precision medicine for early diagnostics of thyroid cancer
Tsega et al. Prediction and prevention using deep learning
Dow et al. A Deep-Learning Algorithm to Predict Short-Term Progression to Geographic Atrophy on Spectral-Domain Optical Coherence Tomography
Hu et al. Dermatomyositis induced by filler rhinoplasty using liquid silicone
Kwon et al. PSMA PET Scan
Ezon et al. Concurrent primary vitreoretinal and spinal cord lymphoma: a unique entity
Brook Health services research and clinical practice
Walker et al. Analysis of mortality in mental disorders—reply
Chester et al. Cost-Effectiveness of Fractional Flow Reserve–Guided Complete Revascularization in Acute Myocardial Infarction—Tipping the Scales?
Rohowetz et al. Measuring Anatomical Outcomes of Anti–Vascular Endothelial Growth Factor Treatment of Diabetic Macular Edema With Artificial Intelligence—A Step Toward Individualized Medicine
Sun Considerations When Using a Deep Learning System to Diagnose Glaucomatous Optic Neuropathy
Lee et al. Automated retinal fluid volume quantification: a nod to present and future applications of deep learning
Bergmann Neighborhood Opportunity and Life Expectancy at Birth
Swegal et al. Factors to consider when contemplating posttreatment surveillance for survivors of HPV-associated oropharyngeal squamous cell carcinoma
Dhannawat et al. Nystagmus in an emaciated infant
Koontz et al. More Answers and More Questions About Radiotherapy for Metastatic Prostate Cancer
Sève et al. Using 18F-fluoro-2-deoxyglucose Positron Emission Tomography to DetectPrimary Lung Cancer in an Isolated Choroidal Metastasis

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160606

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171201

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181018

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20190117

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20190318

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190418

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190919

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20191219

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20200219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200310

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200422

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200522

R150 Certificate of patent or registration of utility model

Ref document number: 6709166

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250