JP6708483B2 - 画像処理装置、画像処理方法、およびプログラム - Google Patents

画像処理装置、画像処理方法、およびプログラム Download PDF

Info

Publication number
JP6708483B2
JP6708483B2 JP2016113511A JP2016113511A JP6708483B2 JP 6708483 B2 JP6708483 B2 JP 6708483B2 JP 2016113511 A JP2016113511 A JP 2016113511A JP 2016113511 A JP2016113511 A JP 2016113511A JP 6708483 B2 JP6708483 B2 JP 6708483B2
Authority
JP
Japan
Prior art keywords
image
image height
cutout area
height
cutout
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016113511A
Other languages
English (en)
Other versions
JP2017220785A (ja
Inventor
心 高木
心 高木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2016113511A priority Critical patent/JP6708483B2/ja
Publication of JP2017220785A publication Critical patent/JP2017220785A/ja
Application granted granted Critical
Publication of JP6708483B2 publication Critical patent/JP6708483B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Image Processing (AREA)
  • Studio Devices (AREA)

Description

本発明は、画像処理装置、画像処理方法、およびプログラムに関し、特に、歪曲収差を有する光学系で撮影された画像を歪補正して切り出すために用いて好適なものである。
従来から、歪曲収差を有する光学系で撮影された画像から任意の方向に光軸中心を向けた画像を歪補正して切り出す方法が提案されている。
特許文献1では、図8に示すモデルと、以下の正像変換の式((式a)および(式b))とを用いることで、画像の歪補正を行って座標変換を行う方法が開示されている。
x=R(uA+vB+wC)/√(u2+v2+w2) ・・・(式a)
y=R(uD+vE+wF)/√(u2+v2+w2) ・・・(式b)
ここで、A、B、C、D、E、F、wは、以下の(式c)〜(式i)で定義される。
A=cosφcosα−sinφsinαcosβ ・・・(式c)
B=−sinφcosα−cosφsinαcosβ ・・・(式d)
C=sinβsinα ・・・(式e)
D=cosφsinα+sinφcosαcosβ ・・・(式f)
E=−sinφsinα+cosφcosαcosβ ・・・(式g)
F=−sinβcosα ・・・(式h)
w=mR ・・・(式i)
以上の正像変換の式における記号は、図8に示す記号と対応している。尚、以上の正像変換の式において、mは倍率(2点OG間の距離を決めるファクター)であり、平面正則画像Tの切り出しサイズを示すパラメータである。また、図8において、Sは、三次元XYZ直交座標系のXY平面上に定義される歪曲円形画像であり、Hは、歪曲円形画像Sを底面とする半球状の球面を仮想球面である。
特許第5245963号公報
しかしながら、特許文献1に開示された技術では、正像変換の式に基づき歪補正を行う。このため、歪曲収差等の補正のモデルと異なるモデルを用いた処理が行われる。従って、例えば、歪補正を行うための処理をカメラ処理で行われる幾何変形処理の一部として組み込むのが容易ではなく、カメラ内で歪補正を行うために専用の処理や回路が必要になる。このように、特許文献1に開示された技術を用いる場合には、歪曲収差を有する光学系で撮影された画像の歪補正を容易に行えないことがある。
本発明は、このような問題点に鑑みてなされたものであり、歪曲収差を有する光学系で撮影された画像の歪補正を容易に行えるようにすることを目的とする。
本発明の画像処理装置は、歪曲収差を有する光学系を用いて撮影された撮影画像から切り出される切り出し領域に対する歪補正を含む処理を行う画像処理装置であって、前記切り出し領域の複数の位置に対応する光の入射角に基づいて、前記切り出し領域の画像の像高を補正する像高補正手段と、前記切り出し領域の中心に対応する光の入射角に基づいて、前記像高補正手段により像高が補正された前記切り出し領域の画像を射影変換する射影変換手段と、を有することを特徴とする。
本発明によれば、歪曲収差を有する光学系で撮影された画像の歪補正を容易に行うことができる。
画像処理装置の構成を表す図である。 入力画像と出力画像との関係を表すモデルの第1の例を示す図である。 歪補正処理を段階的に説明するための図である。 画像処理装置の処理第1の例を示すフローチャートである。 最大出力像高と出力画像縮小率との関係を表す図である。 射影変換行列の算出方法を説明する図である。 画像処理装置の処理の第2の例を示すフローチャートである。 入力画像と出力画像との関係を表すモデルの第2の例を示す図である。
以下に、本発明の実施形態を、添付の図面に基づいて詳細に説明する。
(第1の実施形態)
まず、第1の実施形態を説明する。
図1は、画像処理装置100の構成の一例を表すブロック図である。
以下、本実施形態の歪補正処理の一例について説明する。本実施形態では、歪曲収差を有する光学系で撮影された画像として、被写体像を正射影で射影する魚眼レンズを用いて撮影された撮影画像を例に挙げて説明を行う。
撮像レンズ102は、歪曲収差を有し、撮影像を光学的に撮像素子104上に結像させる。前述したように本実施形態では、撮像レンズ102が魚眼レンズである場合を例に挙げて説明する。しかしながら、歪曲収差を有する光学系(レンズ)を用いており、且つ、像高方向の歪率を取得することができれば、魚眼レンズ以外のレンズを用いてもよい(即ち、撮影画像は円状の画像(魚眼画像)以外であってもよい)。
撮像素子104は、その撮影像をアナログの電気信号(アナログ信号)に変換する。また、撮像素子104は、複数の色フィルタを有する。A/D変換器106は、この撮像素子104から出力されるアナログ信号をデジタル信号に変換する。尚、画像は、動画像であっても静止画像であってもよい。
制御部108は、A/D変換器106、画像信号処理部110、切り出し領域指定部112、像高方向補正部114、射影変換部116、およびリサイズ部118の間のデータの流れの制御を行う。画像信号処理部110は、撮影された画像に対して、同時化処理、ホワイトバランス処理、γ処理、およびNR処理等の画像信号処理を行い、画像データを現像する。
切り出し領域指定部112は、撮影された画像に対して、切り出し領域を指定する。像高方向補正部114は、像高方向補正部114に入力された画像を像高方向に補正(即ち、像高方向補正部114に入力された画像の像高を補正)して出力する。射影変換部116は、射影変換部116に入力された画像に対して射影変換行列を適用し、当該画像を幾何変形した画像を出力する。リサイズ部118は、リサイズ部118に入力された画像に対して縮小、拡大のリサイズを行い出力する。記憶部120は、撮影された画像を記憶したり、像高方向補正部114や射影変換部116で幾何変形された画像を記憶したりする。
画像処理装置100は、撮像装置(例えば、監視カメラ)である。また、歪曲収差を有する光学系と撮像素子とを用いて撮影された画像に対して画像処理を行う装置であれば、撮像装置の用途は限定されない(監視カメラでなくてもよい)。また、画像処理装置100は、撮影以外の機能を有する装置であってもよい。また、画像処理装置は、撮像レンズ102、撮像素子104、およびA/D変換器106で得られたデジタル信号を外部から入力し、当該デジタル信号を処理する装置であってもよい。即ち、画像処理装置は、撮像レンズ102、撮像素子104、およびA/D変換器106を有していなくてもよい。
図2は、入力画像と出力画像との関係を表すモデルの一例を示す図である。尚、図2に示すモデルは、図8に示したモデルと記号の付け方が一部異なるが、図8に示したモデルと同等のモデルである。魚眼画像200は、撮像レンズ102および撮像素子104を用いることにより撮影される画像である。仮想球面202は、半径Rの仮想的な球面である。切り出し中心入射角方向204は、切り出し領域の中心に対応する入射角βの方向(即ち、入射角βで仮想球面202(出力画像206の中心)に入射する光線の方向)を示す。入射角方向208は、魚眼画像200の座標(x、y)に対応する入射角の方向を示す。出力画像206は、歪補正処理により生成されて出力される歪補正画像である。
図3は、本実施形態における歪補正処理の一例を段階的に説明するための図である。図3では、切り出し中心入射角方向204がy=0の平面上の方向(切り出し中心入射角方向303)である場合を例に挙げて示す。
図3(a)は、歪補正処理の最終的な入出力関係の一例を表す図である。入力画像304が出力画像305に歪補正されることを表している。魚眼画像301は、撮像レンズ102および撮像素子104を用いることにより撮影される画像である。魚眼画像301は、図2に示す魚眼画像200に対応する。仮想球面302は、魚眼画像301の半径Rを半径とする仮想的な球面である。仮想球面302は、図2に示した仮想球面202に対応する。
切り出し中心入射角方向303は、図2に示した切り出し中心入射角方向204に対応する。切り出し中心入射角方向303は、入射角βで仮想球面302に入射してきた光線の向きを表し、当該光線の像は、入力画像304の画角中心位置へ投影される。
入力画像304は、魚眼画像301の一部であり、歪補正の対象となる領域である。
出力画像305は、歪補正処理により生成されて出力される画像である。尚、出力画像305は、図2に示した出力画像206に対応する。
図3(b)は、歪補正処理の段階的な処理の第1段階の一例を表す図である。図3(b)では、像高方向補正部114が、入力画像304を像高方向に補正し、像高補正画像310として出力する処理を表す。
図3(c)は、歪補正処理の段階的な処理の第2段階の一例を表す図である。図3(c)では、射影変換部116が、点322を射影変換の中心とし、入射角βだけ平面をあおり回転し、像高補正画像310を射影変換画像320に射影変換して出力する処理を表す。
図3(d)は、歪補正処理の段階的な処理の第3段階の一例を表す図である。図3(d)では、リサイズ部118が、射影変換画像320を拡大し、出力画像305として出力する処理を表す。
図3(e)は、射影変換画像320の画像サイズと出力画像305の画像サイズとの関係の一例を説明するための図である。
図4は、本実施形態の画像処理装置100の処理の一例を示すフローチャートである。以下に、本実施形態の画像処理装置100の処理の一例を説明する。
まず、制御部108は、歪曲収差を有する撮像レンズ102を介して撮像素子104により撮影された魚眼画像301を取得する(S400)。
次に、制御部108は、撮影された魚眼画像301に対して、切り出し範囲を指定する(S401)。例えば、制御部108は、画像処理装置100が備える不図示のタッチパネル式表示装置に、撮影された魚眼画像301を表示させ、当該魚眼画像301に対する切り出し範囲をタッチパネルの操作によりユーザ(撮影者)に選択させる。この場合、制御部108は、ユーザにより選択された切り出し範囲を指定する。
続いて、制御部108は、S401で指定した切り出し範囲に対応する最大入射角β_maxを算出する(S402)。本実施形態のように正射影で射影された場合、魚眼画像301の各位置(複数の位置)に対応する入射角βのそれぞれと魚眼画像301上の像高rとの関係は、以下の(式1)で表される。
r=R・sinβ ・・・(式1)
Rは、図3(a)〜図3(e)に示す魚眼画像301の半径である。
最大入射角β_maxは、切り出し範囲内の最大像高r_maxとなる位置に対応する入射角であり、以下の(式2)から算出される。
β_max=arcsin(r_max/R) ・・・(式2)
ここで、最大入射角β_maxを算出する際に、arcsin関数の計算が必要である。このため、専用の数値演算ライブラリや演算回路が必要になる場合がある。
専用の数値演算ライブラリや演算回路を利用できない場合は、例えば、以下のようにすることができる。即ち、切り出し範囲内の最大像高r_maxと、最大入射角β_maxとの関係を定めたテーブルを予め用意する。制御部108は、このテーブルから、切り出し範囲内の最大像高r_maxに対応する入射角(最大入射角β_max)を読み出す。また、切り出し範囲内の最大像高r_maxが所定範囲内にある場合には、同一の最大入射角β_maxが出力されるようにテーブルを構成してもよい。このようにすれば、前述したようにして予め用意されるテーブルの記憶容量が大きくなる場合に、記憶容量を削減することができる。
前述したように本実施形態では、正射影方式の魚眼レンズが撮像レンズ102である場合を例に挙げて説明を行う。しかしながら、等立体角射影、等距離射影、立体射影等の各種射影方式の魚眼レンズである場合ついても、正射影方式の魚眼レンズと同様に歪補正処理を実施できる。例えば、等距離射影方式の魚眼レンズが撮像レンズ102である場合、入射角βと魚眼画像301上の像高rの関係は、以下の(式3)で表される。
r=β ・・・(式3)
従って、切り出し範囲内の最大像高r_maxは、以下の(式4)で計算される。
β_max=r_max ・・・(式4)
このように最大入射角β_maxが計算されれば、これ以後に説明する処理は正射影方式の場合と区別なく実施できる。
続いて、制御部108は、最大出力像高out_r_maxを算出する(S403)。
図3(b)に示す最大出力像高312(out_r_max)、最大入射角311(β_max)、および魚眼画像301の半径Rの関係から、制御部108は、以下の(式5)を用いて最大出力像高312(out_r_max)を算出する。
out_r_max=R・tan(β_max) ・・・(式5)
さらに、制御部108は、最大入射角β_maxが予め定めた閾値未満であるか否かを判定する(S404)。この判定の結果、最大入射角β_maxが閾値未満である場合には(S404でYesの場合には)、S405の処理に進む。尚、魚眼画像301の半径Rは、一意に決まる定数である。このため、S404において、最大入射角β_maxが予め定めた閾値未満であるか否かを判定することは、最大出力像高312(out_r_max)が予め定めた閾値未満であるか否かを判定することと同義である。
像高方向補正部114は、以下の(式6)に基づき、入力画像304を像高方向に補正する(S405)。
out_r=r・tanβ ・・・(式6)
ここで、out_rは、像高補正画像310の像高(像高補正後の像高)であり、rは、像高補正前の入力画像304(魚眼画像301)上の各位置における像高である。図3(b)に示すように、S405の処理により、像高補正画像310が得られる。
一方、S404において、最大入射角β_maxが閾値以上である場合には(S404でNoの場合には)、S406の処理に進む。
ここで、最大出力像高312(out_r_max)を算出する式((式5))から明らかなように、最大入射角β_maxが90度に近付く場合には、最大出力像高312(out_r_max)が非常に大きな値になる。そのため、演算がオーバーフローしたり、像高補正画像310を一時的に保持するために大きな記憶領域が必要になったり、後述する射影変換処理やリサイズ処理で大きな画像を処理する必要が生じ、処理に時間がかかる。
そこで本実施形態では、最大入射角β_maxを予め定めた閾値と比較し、閾値以上である場合には(S404でNo)、像高補正画像310を縮小する。
具体的に、像高方向補正部114は、以下の(式7)に基づき出力画像縮小率dist_kを算出する(S406)。
dist_k=OUT_R_LIMIT/out_r_max ・・・(式7)
ここで、最大出力可能像高OUT_R_LIMITは、予め定めた値である。S404による閾値として、例えば、最大出力可能像高OUT_R_LIMITに対応する入射角を用いることができる。最大出力可能像高OUT_R_LIMITとして、例えば、演算がオーバーフローしない範囲内で任意の値を設定することができる。図5は、最大出力像高312(out_r_max)と出力画像縮小率dist_kとの関係の一例を表す図である。図5に示す例では、最大出力像高312(out_r_max)が最大出力可能像高OUT_R_LIMIT未満である場合には、出力画像縮小率dist_kは「1」である(即ち、出力画像305を縮小しない)。最大出力像高312(out_r_max)が最大出力可能像高OUT_R_LIMIT以上である場合には、出力画像縮小率dist_kは「1」未満の値になる。この場合、出力画像縮小率dist_kは、最大出力像高312(out_r_max)が大きくなるほど小さくなり、0(ゼロ)に近づく。このように図5に示す関係には、最大出力像高312(out_r_max)が相対的に大きいときの出力画像縮小率dist_kが相対的に小さいときの出力画像縮小率dist_kよりも小さくなる関係が含まれる。
次に、像高方向補正部114は、S406で算出した出力画像縮小率dist_kを用いて、以下の(式8)に基づき、入力画像304を像高方向に補正する(S407)。
out_r=dist_k・r・tanβ ・・・(式8)
尚、(式8)において、出力画像縮小率dist_kを「1」としたものが前述した(式6)になる。
また、図4のフローチャートでは、最大入射角β_maxが予め定めた閾値以上である場合にのみ、補正後の像高の縮小処理を実行し、最大出力像高312(out_r_max)を、最大出力可能像高OUT_R_LIMITに変更する。しかしながら、必ずしもこのようにする必要はない。例えば、最大入射角β_maxが予め定めた閾値未満の場合においても、最大出力像高312(out_r_max)を、最大出力可能像高OUT_R_LIMITまで拡大してもよい。この場合、出力画像縮小率dist_kは、「1」を上回る値となり(即ち、拡大率となり)、入力画像304の像高に対する縮小または拡大を行うための変更率としての役割を有する。このように処理すると、この後に説明する射影変換処理やリサイズ処理の入力画像のサイズが一定になるため、画像の取り扱いが煩雑にならず処理を簡易化できる。
以上のようにしてS405またはS407で像高補正画像310の像高out_rが算出されると、射影変換部116は、像高補正画像310を射影変換する(S408)。射影変換部116は、図3(c)の点322を射影変換の中心とし、像高補正画像310を、入力画像304の画角中心位置に対応する入射角βと等しい角度321だけあおり回転し、射影変換画像320に射影変換する。
図6を参照しながら、あおり回転の射影変換行列の算出方法の一例を説明する。図6は、射影変換行列の算出方法の一例を説明するために、図3(c)の一部を抽出し、必要な符号を追記した図である。
uv平面上の点601(u,v)をu'v'平面上の点602(u',v')に射影する場合、図6に従い、射影変換行列は、以下の(式9)〜(式12)で計算される。
Figure 0006708483
(式12)が像高補正画像310を射影変換画像320に射影変換する射影変換行列である。
ところで、図3はy=0の平面上のモデルである。このため、あおり回転をする前に、まず、切り出し領域の中心をy=0の平面に移動する必要がある。そこで、射影変換部116は、図2に示した切り出し領域の中心(x,y)を、回転角θだけ以下の(式13)に基づいて回転処理を行う。(式13)において、−θとしたのは、回転角θをゼロにする回転処理を実施するからである。
Figure 0006708483
また、図2の平面傾斜角φを適用するために、あおり回転後に、以下の(式14)に基づいた座標変換処理が必要である。平面傾斜角φは、特許文献1に記載されているように、uv座標系においてu軸方向を向いたベクトルと、回転基準軸Jの方向を向いたベクトルとのなす角度である。
Figure 0006708483
従って、最終的な射影変換行列は以下の(式15)になる。射影変換部116は、(式15)の射影変換行列を用いて、像高補正画像310から射影変換画像320を導出し、射影変換画像320を出力する。
Figure 0006708483
続いて、リサイズ部118は、射影変換画像320を用いて拡大処理を実行する(S409)。拡大処理は、図3(d)の射影変換画像320を出力画像305に拡大することを意味する。拡大率は、図3(e)に示された2つの相似形の関係から、以下の(式16)で算出される。
[拡大率]=1/cosβ ・・・(式16)
また、S404において、最大出力像高312(out_r_max)が閾値以上であると判定された場合には(S404でNoと判定された場合には)、出力画像305のサイズが出力画像縮小率dist_kだけ小さくなっている。このため、リサイズ部118は、拡大率を以下の(式17)で算出してもよい。最大出力像高312(out_r_max)と出力画像縮小率dist_kの関係は図5で示した通りである。
[拡大率]=(1/cosβ)・(1/dist_k) ・・・(式17)
また、出力画像305のサイズは、入射角βや最大入射角β_maxに依存して変化する。そのため、図示しない最終的な出力画像のサイズを一定に保つために、出力画像305を拡大縮小率αで拡大縮小処理して、予め定めた最終的な出力画像のサイズに合わせてもよい。
その場合は、以下の(式18)式のように拡大縮小率αを(式17)に追加し、リサイズ部118は、拡大縮小率を以下の(式18)式で算出すればよい。
[拡大率]=α・(1/cosβ)・(1/dist_k) ・・・(式18)
尚、(18)式を用いる場合、最終的な出力画像のサイズは、例えば、画像処理装置100における記録画像サイズになる。また、最大入射角β_maxが閾値未満の場合においても、出力画像305のサイズを、予め定めた最終的な出力画像のサイズに合わせる場合には、(式16)に替えて、(式17)または(式18)を用いればよい。
以上のように本実施形態では、歪曲収差を有する光学系で撮影された画像から任意の方向に光軸中心を向けた画像を歪補正して切り出す際に、入力画像304の各位置に対応する入射角βに基づいて像高補正画像310を導出する。そして、入力画像304の画角中心位置に対応する入射角βに基づいて像高補正画像310を射影変換し、射影変換画像320を導出する。像高補正画像310は、入力画像304の像高を補正した画像であり、(8)式に示すように、入射角βに基づいて像高が補正された切り出し領域の画像の像高を出力画像縮小率dist_kに基づいて縮小した画像である。射影変換画像320は、像高補正画像310の座標を、切り出し中心入射角方向303に垂直な面の座標に変換する射影変換行列により射影変換することにより得られる画像である。従って、像高方向の補正値と射影変換行列とに基づき像高方向の補正と射影変換とを行うことで、正像変換の式を用いることなく歪曲収差を有する光学系で撮影された画像から任意の方向に光軸中心を向けた画像を歪補正して切り出すことを実施することができる。これにより、歪補正処理を、カメラ処理で行われる幾何変形処理の一部として組み込むことを、専用の処理や回路を用いることなく実現することができる。よって、歪曲収差を有する光学系で撮影された画像の歪補正を容易に行うことができる。
また、本実施形態では、最大出力像高312(out_r_max)が閾値以上である場合には、像高補正画像310を縮小する。従って、最大入射角β_maxが90度に近付き、切り出し位置が画角端に及ぶ場合において、演算のオーバーフローや記憶領域の容量の増加を抑えたまま歪補正処理を実行することができる。
尚、本実施形態では説明を簡略化するために、射影変換処理と拡大処理とを分けて説明したが、射影変換処理では拡大処理も表現できるため、拡大処理を射影変換処理に含めて実施してもよい。例えば、リサイズ部118を射影変換部116の中に組み込むことができる。この場合、拡大率をsとして、(式15)を以下の(式19)および(式20)のように変形することができる。
Figure 0006708483
(第2の実施形態)
次に、第2の実施形態を説明する。第1の実施形態では、最大入射角β_maxが閾値以上である場合には、像高方向の補正を、(式8)に基づいて一律に行う場合を例に挙げて説明した。これに対し、本実施形態では、最大入射角β_maxが閾値以上である場合、最終的な出力画像のサイズに応じて、像高方向の補正の方法を異ならせる。このように本実施形態と第1の実施形態とは、最大入射角β_maxが閾値以上である場合の処理の一部が主として異なる。従って、本実施形態の説明において、第1の実施形態と同一の部分については、図1〜図6に付した符号と同一の符号を付す等して詳細な説明を省略する。
図7は、本実施形態の画像処理装置の処理の一例を示すフローチャートである。
図7において、S400〜S405は、第1の実施形態で説明した図4のS400〜S405と同じ処理であるので、その詳細な説明を省略する。
また、S404において、最大入射角β_maxが予め定めた閾値以上である場合には、S406の処理へ進む。S406の処理は、第1の実施形態で説明した図4のS406と同じ処理であるので、その詳細な説明を省略する。尚、最大出力像高312(out_r_max)と出力画像縮小率dist_kとの関係の一例は、図5に示した通りである。
次に、像高方向補正部114は、最終的な出力画像のサイズが所定値以上であるか否かを判定する。尚、前述したように最終的な出力画像のサイズは、予め定められている。この判定の結果、最終的な出力画像のサイズが所定値以上である場合には(S700でYesの場合には)、S407の処理へ進む。S407の処理は、第1の実施形態で説明した図4のS407と同じ処理であるので、その詳細な説明を省略する。
一方、最終的な出力画像のサイズが所定値未満である場合には(S700でNoの場合には)、S701の処理へ進む。最終的な出力画像のサイズが所定値未満である場合には、入力画像304を縮小することにより生じる画像の劣化が目立ちにくくなる。そこで、像高方向補正部114は、S406で計算した出力画像縮小率dist_kに基づき、入力画像304を縮小する(S701)。具体的に像高方向補正部114は、入力画像304(301)の像高rを、以下の(式21)に基づき縮小する。
r_shrink=dist_k・r ・・・(式21)
続いて、像高方向補正部114は、以下の(式22)に基づき、入力画像304を像高方向に補正する。即ち、像高方向補正部114は、像高補正画像310の像高out_rを算出し、像高補正画像310を出力する。
out_r=r_shrink・tanβ ・・・(式22)
以降のS408、S409の処理は、それぞれ、第1の実施形態で説明した図4のS408、S409と同じ処理であるので、その詳細な説明を省略する。
以上のように本実施形態では、最大出力像高312(out_r_max)が閾値以上であり、且つ、最終的な出力画像のサイズが所定値未満である場合に、像高方向補正部114に入力される画像(入力画像304)の像高を縮小する。このようにして縮小された画像に対して像高補正を行う。従って、画像を縮小することにより画像の情報量を減らすことができる。よって、演算のオーバーフローや記憶領域の容量の増加をより確実に抑えることができるという効果が得られる。よって、例えば、出力画像305の画質の低下の抑制よりも、演算のオーバーフローや記憶領域の容量の増加の抑制を優先する場合に本実施形態を適用するのが好ましい。
尚、前述した各実施形態は、何れも本発明を実施するにあたっての具体化の例を示したものに過ぎず、これらによって本発明の技術的範囲が限定的に解釈されてはならないものである。すなわち、本発明はその技術思想、又はその主要な特徴から逸脱することなく、様々な形で実施することができる。
(その他の実施例)
本発明は、前述の実施形態の1以上の機能を実現するプログラムを、ネットワーク又は記憶媒体を介してシステム又は装置に供給し、そのシステム又は装置のコンピュータにおける1つ以上のプロセッサーがプログラムを読出し実行する処理でも実現可能である。また、1以上の機能を実現する回路(例えば、ASIC)によっても実現可能である。
100:画像処理装置、102:撮像レンズ、114:像高方向補正部、116:射影変換部

Claims (14)

  1. 歪曲収差を有する光学系を用いて撮影された撮影画像から切り出される切り出し領域に対する歪補正を含む処理を行う画像処理装置であって、
    前記切り出し領域の複数の位置に対応する光の入射角に基づいて、前記切り出し領域の画像の像高を補正する像高補正手段と、
    前記切り出し領域の中心に対応する光の入射角に基づいて、前記像高補正手段により像高が補正された前記切り出し領域の画像を射影変換する射影変換手段と、を有することを特徴とする画像処理装置。
  2. 前記像高補正手段による補正後の前記切り出し領域の画像を一定のサイズにすることを特徴とする請求項に記載の画像処理装置。
  3. 前記像高補正手段は、前記切り出し領域の複数の位置に対応する光の入射角と、前記切り出し領域の画像の像高に対する変更率とに基づいて、前記切り出し領域の画像の像高を補正することを特徴とする請求項またはに記載の画像処理装置。
  4. 前記変更率は、前記切り出し領域において像高が最大になる位置に対応する光の入射角に応じて定まり、
    前記切り出し領域において像高が最大になる位置に対応する光の入射角が大きくなるほど、前記切り出し領域の画像の像高の縮小率が大きくなるように前記変更率が定められることを特徴とする請求項に記載の画像処理装置。
  5. 前記像高補正手段は、前記切り出し領域において像高が最大になる位置に対応する光の入射角が閾値以上である場合に、前記変更率に基づいて、前記切り出し領域の画像の像高を縮小し、前記切り出し領域において像高が最大になる位置に対応する光の入射角が閾値未満である場合には、前記変更率に基づいて、前記切り出し領域の画像の像高を縮小しないことを特徴とする請求項またはに記載の画像処理装置。
  6. 前記像高補正手段は、前記切り出し領域の画像の像高を、前記切り出し領域の複数の位置に対応する光の入射角に基づいて補正し、当該像高を補正した前記切り出し領域の画像の像高を、前記変更率に基づいて縮小することを特徴とする請求項の何れか1項に記載の画像処理装置。
  7. 前記像高補正手段は、前記切り出し画像の像高を、前記変更率に基づいて縮小し、当該像高を縮小した前記切り出し領域の像高を、前記切り出し領域の複数の位置に対応する光の入射角に基づいて補正することを特徴とする請求項の何れか1項に記載の画像処理装置。
  8. 前記射影変換手段により射影変換された画像の大きさを、前記切り出し領域の中心に対応する光の入射角に基づいて変更するリサイズ手段を更に有することを特徴とする請求項の何れか1項に記載の画像処理装置。
  9. 前記射影変換手段により射影変換された画像の大きさを、前記切り出し領域の中心に対応する光の入射角と、前記変更率とに基づいて変更するリサイズ手段を更に有することを特徴とする請求項の何れか1項に記載の画像処理装置。
  10. 前記リサイズ手段は、予め定めた大きさになるように、前記射影変換手段により射影変換された画像の大きさを変更することを特徴とする請求項またはに記載の画像処理装置。
  11. 前記リサイズ手段は、予め定めた大きさになるように、前記射影変換手段により射影変換された画像の大きさを変更し、
    前記像高補正手段は、前記予め定めた大きさが所定値未満である場合には、前記切り出し画像の像高を、前記変更率に基づいて縮小し、当該像高を縮小した前記切り出し領域の像高を、前記切り出し領域の複数の位置に対応する光の入射角に基づいて補正し、前記予め定めた大きさが所定値以上である場合には、前記切り出し領域の画像の像高を、前記切り出し領域の複数の位置に対応する光の入射角に基づいて補正し、当該像高を補正した前記切り出し領域の画像の像高を、前記変更率に基づいて縮小することを特徴とする請求項に記載の画像処理装置。
  12. 前記撮影画像は、魚眼レンズを用いて撮影された画像であることを特徴とする請求項1〜11の何れか1項に記載の画像処理装置。
  13. 歪曲収差を有する光学系を用いて撮影された撮影画像から切り出される切り出し領域に対する歪補正を含む処理を行う画像処理方法であって、
    前記切り出し領域の複数の位置に対応する光の入射角に基づいて、前記切り出し領域の画像の像高を補正する像高補正工程と、
    前記切り出し領域の中心に対応する光の入射角に基づいて、前記像高補正工程において像高が補正された前記切り出し領域の画像を射影変換する射影変換工程と、を有することを特徴とする画像処理方法。
  14. 請求項1〜12の何れか1項に記載の画像処理装置の各手段としてコンピュータを機能させることを特徴とするプログラム。
JP2016113511A 2016-06-07 2016-06-07 画像処理装置、画像処理方法、およびプログラム Active JP6708483B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016113511A JP6708483B2 (ja) 2016-06-07 2016-06-07 画像処理装置、画像処理方法、およびプログラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016113511A JP6708483B2 (ja) 2016-06-07 2016-06-07 画像処理装置、画像処理方法、およびプログラム

Publications (2)

Publication Number Publication Date
JP2017220785A JP2017220785A (ja) 2017-12-14
JP6708483B2 true JP6708483B2 (ja) 2020-06-10

Family

ID=60656516

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016113511A Active JP6708483B2 (ja) 2016-06-07 2016-06-07 画像処理装置、画像処理方法、およびプログラム

Country Status (1)

Country Link
JP (1) JP6708483B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110547803B (zh) * 2019-07-27 2021-12-21 华南理工大学 一种适用于鱼眼相机俯视拍摄的行人身高估计方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009064225A (ja) * 2007-09-06 2009-03-26 Canon Inc 画像処理装置及び画像処理方法
JP5666069B1 (ja) * 2013-06-24 2015-02-12 三菱電機株式会社 座標算出装置及び方法、並びに画像処理装置及び方法

Also Published As

Publication number Publication date
JP2017220785A (ja) 2017-12-14

Similar Documents

Publication Publication Date Title
JP4629131B2 (ja) 画像変換装置
US10594941B2 (en) Method and device of image processing and camera
JP6394005B2 (ja) 投影画像補正装置、投影する原画像を補正する方法およびプログラム
JP4811462B2 (ja) 画像処理方法、画像処理プログラム、画像処理装置、及び撮像装置
EP3016065B1 (en) Coordinate computation device and method, and image processing device and method
EP3048787B1 (en) Image processing apparatus, image pickup apparatus, image processing method, program, and storage medium
JP6310320B2 (ja) 画像処理装置、撮像装置、画像処理方法、および、プログラム
CN112055869A (zh) 对面部的透视畸变校正
JP2013101525A (ja) 画像処理装置および方法、並びにプログラム
US10154241B2 (en) Depth map based perspective correction in digital photos
JP6708483B2 (ja) 画像処理装置、画像処理方法、およびプログラム
JP2019121945A (ja) 撮像装置、その制御方法及びプログラム
JP2016110312A (ja) 画像処理方法、画像処理装置及びプログラム
US20180374201A1 (en) Image processing apparatus, image processing method, and storage medium
JP2012103805A (ja) 画像処理装置及びその処理方法
JP6320165B2 (ja) 画像処理装置及びその制御方法、並びにプログラム
JP2016142991A (ja) 画像処理システム、情報処理装置、画像処理方法、及びプログラム
JP6351364B2 (ja) 情報処理装置、情報処理方法およびプログラム
JP6071364B2 (ja) 画像処理装置、その制御方法、および制御プログラム
JP7019895B2 (ja) 装置、撮像装置、撮像システム、移動体、方法、及びプログラム
CN111480335B (zh) 图像处理装置、图像处理方法、程序以及投影系统
JPH04275783A (ja) 画像情報処理装置
JP2022137198A (ja) 画像処理装置、画像処理方法、及び画像処理プログラム
KR20230007034A (ko) 어안 왜곡 이미지의 무손실 보정 방법 및 장치
JP2023174456A (ja) イメージ内の座標間の実際距離を算出する方法及び装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190603

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200303

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200402

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200421

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200521

R151 Written notification of patent or utility model registration

Ref document number: 6708483

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151